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ABSTRACT 

Unified Modeling Language class diagrams are widely used for modeling, playing a key role in the 
analysis and design of information systems, especially in development contexts that use modeling 
oriented methodologies. Therefore, it is relevant to ensure the creation and maintenance of correct class 
diagrams. With the use of class diagrams it is possible to specify classes, relations and restrictions, 
however, such diagrams are subject to modeling errors made by their authors and may degenerate into 
incorrect diagrams. A common cause of incorrect diagrams refers to the definition of contradictory and 
inconsistent constraints, leading to finite satisfiability problems. Several approaches to the verification of 
finite satisfiability are currently available, supported by different tools. Through this work, we proceed 
with the identification and comparison of the existing approaches for the verification of finite 
satisfiability in class diagrams, determining the effectiveness and efficiency of the proposed tools.  
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1. INTRODUCTION 

During recent years, Unified Modeling Language (UML) has emerged as a widely used 
standard in the analysis and design of information systems. UML is used to specify, visualize, 
construct and document the artifacts of an information system, providing itself as an essential 
analysis and modeling tool for system architects, engineers and software analysts (Rumbaugh 
et al. 1999). Additionally, UML can also be used for modeling business process, modeling 
databases and also modeling software unrelated aspects. UML provides a set of diagrams that 
allow the representation of several aspects of an information system. However, the class 
diagram is the most used diagram, with an adoption rate of 73% in projects that use UML for 
modeling purposes (Dobing and Parsons 2006). 
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Considering the key role of modeling in the analysis and design of information systems, 

especially in modeling focused contexts, such as Model-Driven Development (Mellor et al. 

2003) and Model-Driven Architecture (Mellor et al. 2002), it becomes relevant to ensure the 

creation and maintenance of correct UML diagrams. 

By using UML class diagrams, we can specify classes, their associations and constraints. 

However, these diagrams are subject to modeling errors by their authors and can degenerate 

into incorrect diagrams. Even with the use of Computer-Aided Software Engineering (CASE) 

tools to assist the process of modeling data, such does not prevent the creation of incorrect 

models, since CASE tools allow the creation of incorrect class diagrams.  

The creation of incorrect class diagrams causes several problems, which are related to 

different characteristics of UML models quality, such as coherence, correctness, completeness 

and consistency (Unhelkar 2005). The existence of problems in a class diagrams has an impact 

on the software development life cycle (SDLC), particularly when it relies on model 

dependent code generation methods. 

This study focuses on a recognized problem in UML class diagrams:  finite satisfiability 

(Berardi et al. 2005). We are in presence of finite satisfiability problems when it is impossible 

to instantiate a class diagram. More formally, when its instantiation requires the existence of 

empty or infinite classes in order to satisfy the constraints present in the diagram (Balaban et 

al. 2010).  

Finite satisfiability problems occur due to inadequate designs, e.g., conflicting constraints. 

In the presence of complex diagrams, conflicting constraints are sometimes near impossible to 

detect by humans. In data warehouse projects, when it is necessary to import data from 

multiple sources, conflicting constraints are also common. 

The verification of finite satisfiability in class diagrams can be performed manually, 

however, due to the visual nature of the class diagram, it is a time consuming and error-prone 

operation. Additionally, current commercial CASE tools do not provide functionalities for the 

verification of finite satisfiability in UML class diagrams (Cadoli et al. 2007; Balaban et al. 

2010). 

Through this study, we proceeded with the identification and comparison of approaches to 

finite satisfiability verification in UML class diagrams, with the objective of comparing the 

characteristics, advantages and disadvantages of the approaches, their effectiveness and 

efficiency, as well as determining which approaches and respective tools are most 

appropriated for finite satisfiability verification. By doing so, we offer a unique contribution to 

the existing literature in the field of finite satisfiability verification, which is scarce in 

comparative studies and practical usage scenarios. Additionally, the findings of this study 

provide a support guide for users when choosing a tool for finite satisfiability verification in 

UML class diagrams. 

The paper is organized as follows: in section 2 we present and motivate the problem of 

finite satisfiability in class diagrams. In section 3, different approaches to finite satisfiability 

automatic verification are briefly presented. In section 4 we compare those approaches using a 

comparison framework defined by the authors. Some concluding remarks are presented in the 

last section. 

 

 



FINITE SATISFIABILITY VERIFICATION IN UML CLASS DIAGRAMS – A COMPARATIVE 

STUDY 

99 

2. FINITE SATISFIABILITY IN CLASS DIAGRAMS 

A class diagram is a model abstraction of a real word scenario and it presents a visual 

representation of the structure of an information system. The main components of a class 

diagram are classes and associations (see Fig. 1).   

 

 

Figure 1. Basic components of a UML class diagram 

A class (1) describes a set of objects that share the same specifications, constraints and 

semantics, and it is defined by its name (2), attributes (3) and operations (4). From a class an 

object can be created, through a process named instantiation. 

An association represents a relation between classes and it is defined by its role in the 

association (6) and its multiplicity (7). Multiplicity acts as a restriction, by defining the 

participation level of a class instance with the other class, i.e., the number of minimum and 

maximum objects allowed. Additional basic components of a class diagram are: binary 

association (5), n-ary association (8), association class (9), composition (10), aggregation (11), 

generalization (12) and generalization set (13). 

A detailed explanation of the class diagrams components and semantics can be found in 

the existing literature (Rumbaugh et al. 1999; Booch et al. 2005). 

Finite satisfiability is one of the inherent characteristics in class diagrams correctness, 

which is an aspect of UML class diagrams quality. A finite satisfiability problem is a symptom 

of an error that occurred in the analysis phase of software development (Cadoli et al. 2007), 

usually caused due to conflicting constraints specifications that impose multiplicity 

requirements that can only be satisfied by empty or infinite classes. Naturally, a diagram that 

can only be instantiated using empty or infinite classes does not have any practical use.  

A class is considered finitely satisfiable if it has a non-empty extension in a legal finite 

instance. A class diagram is considered finitely satisfiable if all classes are finitely satisfiable 

(Balaban et al. 2010). A legal instance refers to an instance of a class diagram where all 

classes and associations meet the restrictions of the diagram, i.e., there is no violation of the 

restrictions.  
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The term used for finite satisfiability can vary between authors. Some authors refer to the 

concept of finite satisfiability in two different levels: strong satisfiability and weak 

satisfiability (Berardi et al. 2005; Cabot et al. 2008). The term strong satisfiability is 

equivalent to the term finite satisfiability for the classification of a diagram, both having the 

same meaning. The term weak satisfiability is used to classify a class diagram that has at least 

one class that is finitely satisfiable (Cabot et al. 2008). The authors adopted the term finite 

satisifiability for this work. 

The verification of finite satisfiability is relevant in the context of software applications 

and databases, since the number of instances is intrinsically finite. In large real world class 

diagrams, finite satisfiability problems can easily arise due to the dimension of the diagrams 

and the edition of different parts of a diagram by different analysts. These problems are 

unlikely to be discovered manually (Cadoli et al. 2007). 

In order to illustrate a diagram with a finite satisfiability problem, consider the example in 

Fig. 2.   

 

 

Figure 2. Example of a UML class diagram with a finite satisfiability problem.  

Source: Figure adaption from Cabot et al. (2008). 

The model illustrated in Fig. 2 is considered finitely unsatisfiable. The multiplicity of the 

association Reviews mandates that exactly three student review a paper, however, the 

multiplicity of the Writes association, simultaneous mandates exactly one student as an author 

of a paper. One might imagine the instantiation of this model and verify that the instantiation 

of an object of the class Paper would generate three objects of the class Student, which by 

them self would generate newer Paper objects and subsequently new Student objects, in an 

infinite process. Since only an infinite or empty instantiation may satisfy both constraints 

simultaneously, it is said that this diagram presents a finite satisfiability problem and it is 

finitely unsatisfiable. 

The fact that the presented diagram has a problem of finite satisfiability, does not 

presuppose the absence of a possible diagram that would satisfy the desired restrictions. 

However, the creation and maintenance of diagrams is an error prone operation and there is a 

recognized tendency for the occurrence of undetected errors in large scale UML models 

(Lange and Chaudron 2006).  

Additional examples of finite satisfiability problems can be found in the existing literature 

(Balaban et al. 2010; Cabot et al. 2008; Cadoli et al. 2007).  
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3. APPROACHES TO FINITE SATISFIABILITY 

VERIFICATION 

Considering the importance of class diagrams and the need to produce models with quality, it 

becomes relevant the existence of additional functionalities to CASE tools, in order to provide 

methods for reasoning in UML diagrams and identify potential problems (Berardi et al. 2005; 

Cadoli et al. 2007; Balaban et al. 2010).  

Several studies have been performed in order to obtain answers to the problem of finite 

satisfiability in UML class diagrams. Currently, there are several approaches to the subject, 

which involve the use of different tools. The set of approaches referred in this comparative 

study are identified by their respective tools in Table 1. 

Current solutions for the verification of finite satisfiability employ different formalisms, 

such as linear programming (Maraee and Balaban 2007), deductive databases query 

containment tests (Queralt and Teniente 2006) and constraints satisfaction problems (Cabot et 

al. 2008; Cadoli et al. 2007). All approaches take in consideration the use of UML class 

diagrams, but some approaches additionally consider the use of OCL (Object Constraint 

Language) (Richters and Martin 1998) constraints in the UML class diagrams, as noted in 

Table 1.  

Table 1. Approaches to the verification of finite satisfiability  

Tool Description 

AuRUS 
Approach based on the translation of UML/OCL class diagrams for a logical 

representation, upon which deductive databases query containment tests are applied.  

CCC/EinaGMC 
Approach based on the use of methods of reasoning in terms of logic description for the 

transformation of class diagrams into constraint satisfaction problems. 

EMFtoCSP Evolution of the UMLtoCSP approach, adapted to consider the EMF modeling system. 

FiniteSatUSE 
Approach by linear programming, based on the transformation of class diagrams in linear 

inequalities systems. 

UMLtoCSP 

Approach based on the transformation of UML/OCL class diagrams in constraint 

satisfaction problems, using the syntax provided by the ECLiPSe Constraint Programming 

System. 

 

Some approaches have resorted to the creation of specific tools for this purpose, while 

others use existing tools or implement features to existing tools in the form of plugins. The 

AuRUS tool is available through the Internet as a java applet application, CCC/EinaGMC as a 

plugin for the EinaGMC IDE tool, EMFtoCSP and UMLtoCSP as a plugin library for the 

Eclipse IDE. The FiniteSatUSE tool is implemented as a standalone tool, although it makes 

use of core classes of the USE tool.  

Regardless of the used implementation resource, most of these tools still show several 

limitations and there is not a record of the use of these tools in a professional environment. 

We present below an overview of the different formalisms and respective approaches, as 

well as the tools that materialize the approaches. 
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3.1 Linear Programming based Approaches 

Initial approaches to the problem of finite satisfiability using the linear programming 

techniques emerged in entity-relationship diagrams (Lenzerini and Nobili 1990), supporting 

entities, binary relations and multiplicity constraints. More recent extensions of these 

approaches where applied to UML class diagrams, supporting also restrictions in class 

hierarchy and generalization (Balaban and Maraee 2006) and providing a higher efficiency in 

the detection of finite satisfiability problems (Maraee and Balaban 2007). 

The linear programming method, in a finite satisfiability verification context, consists in 

the use of linear inequalities. Through the use of linear inequalities, the problem of detecting a 

satisfiability problem is reduced to finding a solution for a system of linear inequalities that 

represents the restrictions of a class diagram. The linear programming method is also 

complemented by the use of detection graphs. The combined use of both methods in an 

algorithm named FiniteSat (Balaban et al. 2010; Maraee and Balaban 2007) is one possible 

approach to the verification of finite satisfiability in UML class diagrams. 

The linear inequalities method is premised on the transformation of the multiplicity 

constraints into a set of linear inequalities, composing an inequality system. The variables of 

the linear inequalities system represent the dimension of the entities and the types of relations 

of the possible instances. If the inequality system has a solution, the diagram is finitely 

satisfiable. Otherwise, it is not finitely satisfiable (Balaban et al. 2010). 

The use of detection graphs is based on the creation of a detection graph whose nodes 

represent the classes of the class diagram and the paths represent the associations. To each 

path a weight is attributed, based on the association multiplicities. The weight of a path is 

calculated as the product of its edges. Paths whose weight is below a specific value represent a 

critical cycle, i.e., a restriction on the class diagram that is the cause of a finite satisfiability 

problem (Maraee et al. 2008). 

The FinitSat algorithm was materialized in the FiniteSatUSE tool. The FiniteSatUSE is a 

tool used for checking finite satisfiability in UML class diagrams, providing methods for 

detecting the problems and identifying the causes of the problems. (Balaban et al. 2010; 

Maraee et al. 2008) 

The FiniteSatUSE tool, developed in Java, is an extension of the original USE tool 

(Gogolla et al. 2007), although it does not make use of its graphical interface. It uses an 

extension of the USE grammar, which must be used to define the class diagrams which will be 

checked by the FiniteSatUSE tool. The fact that the FiniteSatUSE tool mandates the use of 

USE grammar can be seen by itself as a limitation, due to the inexistence of mature tools that 

provide the conversion of a UML class diagram to USE grammar. However, there is some 

undergoing work for the development of a tool that will allow the transformation of UML 

class diagrams expressed in generic XML Metadata Interchange (XMI) (Kovse and Härder 

2002) format to USE grammar. 

Other authors have explored this approach and developed proposals for the creation of 

other tools (Berrabah et al. 2006; Berrabah and Boufares 2008), however, those approaches 

never materialized into available tools. 
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3.2 Deductive Database Systems based Approaches 

Queralt and Teniente (2006) proposed an approach oriented to conceptual schemes, specified 

by class diagrams, which allows the verification of UML/OCL class diagrams. This approach 

is based on the translation of UML class diagrams and the OCL constraints for a logical 

representation, on which the Constructive Query Containment (CQC) (Farré et al. 2004; Farré 

et al. 2005) method is applied to perform the verification. 

This method starts with the transformation of the UML class diagram. During the 

transformation process, classes, attributes and associations are transformed into basic 

predicates, whereas the OCL constraints and the cardinality constraints are transformed into 

formulas, in order to specify conditions that must be met. 

After the transformation of the class diagram, the CQC method is applied. The CQC 

method conducts query containment tests, verifying several properties of a conceptual scheme. 

Queralt and Teniente (2006) extended the use of the CQC method, using it to perform 

constraint satisfaction tests in class diagrams. This method implies the attempt to create an 

example that satisfies a certain condition, i.e., the method verifies and demonstrates the 

instantiation of certain conditions that are able to meet all constraints present in the class 

diagram. The approach proposed by Queral and Teniente (2006) allows the verification of 

different characteristics of a class diagram. However, in the present work, it is only considered 

the capacity to check finite satisfiability. 

This approach is materialized by the AuRUS tool. The AuRUS tool allows automated 

reasioning on UML/OCL schemes and can be used to verify several characteristics of class 

diagrams (Queralt et al. 2010), such as finite satisfiability. Although it supports the use of 

OCL constraints, it is limited to the use of OCL operations that result in a boolean value 

(Queralt and Teniente 2006). 

The AuRUS tool was initially implemented as a standalone tool, however, this 

implementation was later discarded and it is currently implemented and available through the 

Internet as a Java applet application.  

One should note that the existing literature regarding the AuRUS tool considers the initial 

implementation of the tool, rather than the existing implementation. 

3.3 Constraint Satisfaction Problems based Approaches 

Constraint programming is a paradigm in which the programming process uses the definition 

of a set of constraints in order to find the solution to a particular problem, which is called a 

constraint satisfaction problem (Marriott and Stuckey 1998). 

A constraint satisfaction problem is defined by a set of variables and a set of constraints. 

Each variable has a domain of possible values. In turn, each constraint involves a subset of 

variables and the possible combinations of values for this subset. The satisfaction of the 

problem is verified by the attribution of a range of possible values to the variables. Thus, when 

the attribution of a particular set of values involves all the variables without the violation of 

restrictions, it is determined that the solution for the problem was found (Russell and Norvig 

2009). 

Cabot et al. (2008) proposed an approach for finite satisfiability verification of UML/OCL 

class diagrams, transforming them into constraint satisfaction problems, using the syntax 

provided by the ECL
i
PS

e
 Constraint Programming System (Apt and Wallace 2007).  
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In addition to the transformation of the diagram and OCL constraints, the properties which 

ensure the correctness of the finite satisfiability are added as additional constraints of the 

constraint satisfaction problem. If the constraint satisfaction problem has a solution, it can be 

concluded that the model is finitely satisfiable (Cabot et al. 2008). 

Cabot et al. (2008) approach is materialized through a tool created for the purpose, named 

UMLtoCSP. The UMLtoCSP tool accepts UML/OCL class diagrams as an input, transforms 

the class diagrams to constraint satisfaction problems and processes the verification of finite 

satisfialibity. Recently, this approach has been adapted and extended, as well as materialized 

in a tool named EMFtoCSP (Gonzalez et al. 2012). 

The UMLtoCSP tool allows the verification of several properties of UML/OCL class 

diagrams, based on the solving of constraint satisfaction problems, however, for this work 

only the verification of finite satisfiability was considered. The tool accepts class diagrams in 

XMI format as an input, as well as OCL constraints in text file format. It makes use of the 

ECL
i
PS

e 
constraint libraries and libraries from the Desdren tool to perform the transformation 

of UML/OCL class diagrams and posterior processing, obtaining as a final output the 

indication of the finite satisfiability of a class diagram.  

The EMFtoCSP tool was designed as a plugin tool for the Eclipse IDE (McAffer and 

Lemieux 2005), integrating seamlessly into the modeling process, even if restricted to this 

particular tool. Although this tool refers to the EMF framework of the Eclipse IDE for 

modeling, the importation and creation of UML diagrams is possible. Additionally to 

indicating the finite satisfiability of a class diagram, the tool will also try to provide a valid 

instance of a diagram, as a proof of satisfaction of the finite satisfiability property. 

Such as the UMLtoCSP tool, the EMFtoCSP tool also provides the verification of several 

properties of UML/OCL class diagrams, however, for this work only the verification of finite 

satisfiability was considered. 

Similarly to the UMLtoCSP and the EMFtoCSP tools, the CCC/EinaGMC tool also 

considers a constraint satisfaction problem based approach, extending an approach initially 

presented by Cadoli et al. (2004), exploiting the enconding of UML class diagrams in terms of 

description logics, making use of constraint satisfaction problem solving.  

 The Cardinality Constraints Checker (CCC) tool is implemented as a plugin that extends 

the functionalities of the EinaGMC tool, which provides a working environment to verify 

conceptual schemes that use UML and OCL (GMC 2010). The use of CCC/EinaGMC allows 

the loading of UML class diagrams in XMI format and posterior verification of the finite 

satisfiability. EinaGMC provides plugins that allow the manipulation and verification of 

several properties of a class diagram, but such as the previous approaches and respective tools, 

only finite satisfiability was considered. 

4. COMPARATIVE STUDY 

Due to the embryonic state of the subject, at the time, there is no comparison framework for 

comparing tools of this nature. Thus, a set of comparison criteria was compiled and defined by 

the authors, creating a comparison framework. The comparison criteria and guidelines used in 

this comparative study were defined by adopting criteria suggested in the literature (Cabot and 

Clarisó 2005), similar comparison studies for different tools and concepts (Shaikh et al. 2011) 

and CASE tools selection guides (ISO 1995). The characteristics defined for comparison are 
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grouped into six distinct groups of classification and comparison: problem addressing, 

completeness, essential characteristics, UML support, effectiveness and efficiency. These 

comparison characteristics are explained in 4.1.  

In order to perform the comparative tests, a set of UML class diagrams was prepared. The 

authors opted for the use of class diagrams of the Common Information Model (CIM), 

provided by the Distributed Management Task Force (DMTF). The CIM consists of a set of 

UML class diagrams that provides the definition of management information for systems, 

networks and applications, ensuring standardized use throughout the industry. To cover the 

intended test scenarios, several adaptions where performed, for the range of dimension desired 

(considering the number of classes, associations and attributes). There was also some 

adulteration of the diagrams, through the purposely insertion of errors that originate finite 

satisfiability problems. 

As such, a set of diagrams was adapted, consisting in 3 different dimensions and different 

numbers of finite satisfiability problems. Regarding the dimension, the smaller diagram is a 

simple diagram with 2 classes, followed by a medium sized diagram with 9 classes and the 

larger diagram is composed of 32 classes. Comparison testing with larger diagrams is already 

considered for future work. 

4.1 Comparison Results 

The problem addressing criteria refers to three levels of problem reasoning, as defined by 

Hartman (2001): the detection of the problem (C1.1), the identification of the cause (C1.2) and 

the suggestion of a solution (C1.3). Problem detection relates to the ability of the tool to issue 

a notification when in the presence of a problem. Cause identification relates to the ability to 

identify the source of the problem. Solution suggestion refers to the ability to advice a solution 

to correct the error that originates the finite satisfiability problem. 

Table 2. Comparison results for problem addressing  

Tool 
C1.1 - Ability to determine 

that a problem exists? 

C1.2 - Ability to identify 

the cause of the problem? 

C1.3 - Ability to suggest a solution 

to the problem? 

AuRUS Yes No No 

CCC/EinaGMC Yes No No 

EMFtoCSP Yes Yes No 

FiniteSatUSE Yes Yes No 

UMLtoCSP Yes Yes No 

 

As shown by the results, the approaches embodied by the tools EMFtoCSP, FiniteSatUSE 

and UMLtoCSP offer the ability to detect the existence of finite satisfiability problems and 

indicate the cause of the problem.The AuRUS and CCC/EinaGMC tools are only able to 

indicate the existence of problems, but not the cause.  

Currently, no tool provides the ability to suggest a solution to the problem. The absence of 

this functionality is not resultant of a lack of technical implementation, but an omission 

present in all the approaches. However, the FiniteSatUSE team is currently undergoing 

investigation regarding this particular capability (Balaban et al. 2010). 
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Through the completeness comparison, we determine which approach offers a more 

complete solution. Thus, the compared characteristics refer to the ability to identify more than 

one finite satisfiability problem (C2.1) and the ability to present a proof of finite satisfiability 

when a class diagram does not have finite satisfiability problems (C2.2).  

Table 3. Comparison results for completeness  

Tool 
C2.1 - Ability to identify multiple 

problems? 

C2.2 - Ability to present proof of finite 

satisfiability? 

AuRUS No No 

CCC/EinaGMC No No 

EMFtoCSP Yes Yes 

FiniteSatUSE Yes No 

UMLtoCSP Yes Yes 

 

The AuRUS and CCC/EinaGMC tools failed to identify the existence of more than one 

finite satisfiability problem. These tools only provide a feedback regarding the finite 

satisfiability of the class diagram, regardless of having just one problem or more problems. 

Contrarily, the EMFtoCSP, FiniteSatUSE and UMLtoCSP are able to provide information 

about the existence of more than one finite satisfiability problem. Regarding the proof of non-

existent  problems, only the EMFtoCSP and UMLtoCSP tools comply with this feature, 

suggesting an object diagram, which represents a possible instance of the class diagram 

satisfying all constraints and, therefore, finitely satisfiable. 

The essential characteristics comparison mainly refers to a set of characteristics that are 

regarded as essential for a finite satisfiability verification tool (Cabot and Clarisó 2005). These 

characteristics include the ability to: accept an input perceptible by the user (C3.1) and 

commonly accepted (e.g. UML/OCL), analyze the diagrams as they are, without requiring 

additional annotations (C3.2), verify automatically, without the manual interaction of the user 

(C3.3), provide understandable results (C3.4) and integrate effortlessly in the SDLC (C3.5), 

without the need of additional time consuming steps. 

Table 4. Comparison results of essential characteristics 

Tool 

C3.1 - Accepts as 

an input a notation 

understandable by 

the user? 

C3.2 - Ability to 

verify without 

additional 

annotations? 

C3.3 - Automatic 

verification 

capability, without 

user interaction? 

C3.4 - Provides 

understandable 

results for the 

user? 

C3.5 - 

Integrates 

effortlessly in 

SDLC? 

AuRUS Yes Yes Yes Yes No 

CCC/EinaGMC Yes Yes Yes Yes Yes 

EMFtoCSP Yes Yes Yes Yes Yes 

FiniteSatUSE No Yes Yes Yes No 

UMLtoCSP Yes Yes Yes Yes Yes 

 

Regarding the ability to accept a perceptible and commonly used input, only the 

FiniteSatUSE was considered as not able, because of the use of USE grammar. The use of this 

tool implies the conversion of the UML class diagrams to USE grammar. Despite the 

existence of a prototype conversion tool from XMI to USE grammar (Sun et al. 2009), it was 

not possible to use it with success and some manual conversion work was necessary.  
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It was observed that all tools were able to verify the diagrams without the use of a specific 

additional annotation, without user interaction and the results were perceptible and 

understandable.  

The FiniteSatUSE tool was considered as not able to effortlessly integrate in the SDLC due 

to the conversion problem already mentioned, which involves a time consuming and error 

prone additional step in contrast to the other tools.  

The UML support comparison was defined in order to verify which tools support the most 

common components present in UML class diagrams. Accordingly, it was verified if the 

approaches and respective tools supported: binary associations (C4.1), associations n-ary 

(C4.2), associative classes (C4.3), aggregation (C4. 4), composition (C4.5) and generalization 

(C4.6).  

As shown by the results, the AuRUS and FiniteSatUSE tools do not support n-ary 

relations. Also, the EMFtoCSP and UMLtoCSP tools do not support aggregation and 

composition.  

Note that this support refers mainly to the loading of the class diagram, rather than the 

verification process. 

Table 5. Comparison results of UML support  

Tool 

C4.1 – 

Supports 

binary 

associations? 

C4.2 – 

Supports n-

ary 

associations? 

C4.3 – Supports 

associative 

classes? 

C4.4 – 

Supports 

aggregation? 

C4.5 – 

Supports 

composition? 

C4.6 – 

Supports 

generalization 

? 

AuRUS Yes No Yes Yes No Yes 

CCC/EinaGMC Yes Yes Yes Yes Yes Yes 

EMFtoCSP Yes Yes Yes No No Yes 

FiniteSatUSE Yes No Yes Yes No Yes 

UMLtoCSP Yes Yes Yes No No Yes 

 

The effectiveness comparison refers to two dimensions:  the ability to verify a diagram 

accordingly to the number of problems and the ability to very accordingly to the dimension of 

the diagram. Thus, comparison criteria was defined to verify the successful verification in 

diagrams without problems (C5.1) with only one problem (C5.2) and with more than one 

problem (C5.3). Additionally, it was verified the verification success in diagrams with 

different dimensions (C5.4, C5.5 and C5.6). The dimension specifications refer to the number 

of classes, attributes and associations of the diagrams.  

Results show that all tools are effective when verifying diagrams, independently of the 

number of problems in the diagram. This comparison criterion refers only to the capacity for 

verifying the diagram and not the fact of being able to indicate the existing problems, as this 

feature had been tested previously (C2.1). 
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Table 6. Comparison results for effectiveness  

Tool 

C5.1 – 

Verification 

with 0 

problems? 

C5.2 – 

Verification 

with 1 

problem? 

C5.3 – 

Verification 

with 1+ 

problems? 

C5.4 – 

Verification of 

Nclass ≈2, Nassoc 

≈1, Natrib ≈ 5 

diagrams? 

C5.5 – 

Verification of 

Nclass ≈10, 

Nassoc ≈5, Natrib 

≈ 25 diagrams? 

C5.6 – 

Verification of 

Nclass ≈30, Nassoc 

≈20, Natrib ≈ 100 

diagrams? 

AuRUS Yes Yes Yes Yes Yes No 

CCC/EinaGMC Yes Yes Yes Yes Yes No 

EMFtoCSP Yes Yes Yes Yes Yes Yes 

FiniteSatUSE Yes Yes Yes Yes Yes Yes 

UMLtoCSP Yes Yes Yes Yes Yes Yes 

 

The comparison regarding the verification of diagrams of different dimensions showed 

some differences between tools. While all tools have been able to load and check the smaller 

dimension diagrams (C5.4 and C5.5), the AuRUS and CCC/EinaGMC tools did not succeeded 

in checking the larger dimension diagram (C5.6). However, it was not possible to determine 

whether the failure is related to a weak technical capacity of the tool for manipulating larger 

diagrams or an actual limitation of the verification process. 

The comparison of the efficiency refers to the time necessary for the verification of finite 

satisfiability problems in diagrams of different dimensions. The measure is presented in 

seconds and represents the average value of three consecutive runs. 

Table 7. Comparison results for efficiency  

Tool 

C6.1 – Verification time of 

Nclass ≈2, Nassoc ≈1, Natrib ≈ 

5 diagrams? 

C6.2 – Verification time of 

Nclass ≈10, Nassoc ≈5, Natrib ≈ 

25 diagrams? 

C6.3 – Verification time of Nclass 

≈30, Nassoc ≈20, Natrib ≈ 100 

diagrams? 

AuRUS 5 s 203 s - 

CCC/EinaGMC < 1s 107 s - 

EMFtoCSP < 1s 112 s 3105 s 

FiniteSatUSE < 1 s 78 s 2720 s 

UMLtoCSP < 1 s 102 s 3010 s 

 

Regarding the verification of the smaller dimension diagram (C6.1) with the exception of 

the AuRUS tool, all verification times are less than 1 second. The higher time of the AuRUS 

may be affected by the fact that this tool is provided through the Internet and subject to 

inherent network limitations. The verification of the medium-sized diagram (C6.2) presented 

times from 78 seconds to 203 seconds. The verification of the larger diagram (C6.3) presented 

a considerable increase of time required to perform the verification, with time values near the 

3000 seconds mark. Concerning the AuRUS and CCC/EinaGMC tools, it was not possible to 

determine the processing time, since this tools were unable to process the diagram.  

 

 

 

 



FINITE SATISFIABILITY VERIFICATION IN UML CLASS DIAGRAMS – A COMPARATIVE 

STUDY 

109 

5. CONCLUSION AND FUTURE WORK 

Upon the completion of the comparative study and the analysis of the results, some 

conclusions can be reached, as well as some additional considerations by the authors. 

Although most available approaches still have some limitations, it was found that most 

approaches and respective tools can detect with success the existence of finite satisfiability 

problems in UML class diagrams. 

Taking in account the results of the comparison study, the authors consider the following 

tools to be the most suitable for the verification of finite satisfiability: EMFtoCSP, 

UMLtoCSP and FiniteSatUSE. This conclusion takes mainly in account the ability for 

verifying large diagrams, as well as the capability for identifying more than one finite 

satisfiability problem and respective causes of the problems. The EinaGMC and AuRUS tools, 

although considered less suitable, may be recommended for specific scenarios where one only 

needs to validate the finite satisfiability of small diagrams.  

Note that the findings and conclusions reflect the current state of the tools at the time of 

execution of this comparative study, from September 2011 to June 2012. As most of these 

tools exist in a prototype mode and are in a permanent state of evolution and development, it 

is correct to assume that some negative results may be due to the referred permanent state of 

evolution and it is possible that the repetition of this comparative study in a near future would 

provide different results.  

Additionally, the authors consider that, due to the current state of the art regarding finite 

satisfiability verification tools and the lack of studies that may indicate significant advantages 

of adopting the verification of finite satisfiability in the software development life cycle, one 

should not expect a near future adoption of these tools in professional environments. 

In future work, the authors intend to enrich the comparison framework, by defining 

quantitative scales and new comparison criteria’s, recurring to a joint survey of researchers 

and specialists in finite satisfiability. By doing so, the authors aim to create a universally 

accepted comparison framework, used for future comparison and benchmark studies. The 

authors also intend to pursue studies regarding the impact and acceptance of finite 

satisfiability verification tools in real work environment. 
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