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Resumo 

O objectivo desta tese é analisar a avaliação de opções de barreira no modelo de 

[Heston, S.L. (1993)].  Seguindo a abordagem presente em [Griebsch, S.A., and 

Pilz, K.F. (2012)] é estabelecido um preço para as opções de compra up-and-out 

via modelo de [Heston, S.L. (1993)]. Vários tópicos introdutórios são incluídos 

para evidenciar as semelhanças no método e nas técnicas aplicadas. A 

implementação numérica é feita em Matlab. O preço da opção barriera é calculado 

através de três métodos diferentes no caso mais simples. Para o caso geral, o 

algoritmo foi desenvolvido e implementado mas não produziu resultados 

satisfatórios. 

 

Palavras-Chave: Modelo de Heston, opções barreira, transformada rápida de 

Fourier 



Abstract

The thesis objective is to analyse the valuation of barrier options in the [He-

ston, S.L. (1993)] model. Following [Griebsch, S.A., and Pilz, K.F. (2012)]

approach up-and-out calls are priced via Heston model. Several introductory

topics are included to evidence the similarities in the method and the tech-

niques applied. The numerical implementation is done in Matlab. The price

for the option is calculated through three di¤erent methods in a simplest

case. For the general case, the algorithm was developed and implemented

but it did not present satisfactory results.

Key words: Heston model, barrier options, fast Fourier transform (FFT)
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1 Introduction

Today, in the middle of the European debt crisis, the theme of complex �nan-

cial instruments became an everyday public discussion. The fast developed

option pricing methods, started with [Black, F., and Scholes, M. (1973)]

model, have grown into complicated structures and became an inseparable

part of the market. In this paradigm, the e¢ cient price calculation techniques

are highly valued. It is important to understand the di¢ culties presented by

these instruments on both theoretical and implementation levels. Here, we

will center our attention on the price calculation of one particular exotic

option, the barrier option.

[Heston, S.L. (1993)] o¤ers a closed form solution for the pricing of

European-style standard options with stochastic volatility. The resulting

model became quickly popular amongst the practitioners. In this thesis,

mostly based on [Griebsch, S.A., and Pilz, K.F. (2012)], we look at the pric-

ing of European-style barrier options under the [Heston, S.L. (1993)] model.

The thesis has the following structure.

Chapter 1 introduces the general concepts of the stochastic calculus and

the Black-Sholes market model in particular. We focus in more detail on

the �rst hitting time distribution, since it plays an important role in our

approach to the pricing of barrier options. In the context of the Black-Sholes

model we review how the barrier options are treated and what di¢ culties

they present.
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Chapter 2 presents the [Heston, S.L. (1993)] model and, in particular, the

famous [Heston, S.L. (1993)] formula for standard call options.

Chapter 3 is dedicated to our main problem: to �nd the valuation for-

mula for up-and-out calls under the [Heston, S.L. (1993)] model. We start

by conditioning the options pay-o¤ on variance paths and calculating the

resulting joint distribution of the maximum to date and the generator of the

process. The problem is analysed in three cases, because the model para-

meters in�uence the di¢ culty of the task. In the �rst case, we assume that

there is no correlation between the two generator processes involved and the

risk free rate is equal to the dividend yield. In the second case, we only

maintain the zero correlation assumption and in the third case we study the

general situation with no restrictions on the parameters. Next, we proceed

to unconditioning. We analyse in detail only the cases 1 and 3. We derive

the exact formula for the up-and-out call in the case 1 and an approximated

one for the general case 3.

Finally, Chapter 4, is dedicated to the numerical analysis and to imple-

mentation issues. We describe some of the techniques used and develop the

algorithms for the cases 1 and 3. The numerical tool used was Matlab. We

compare the results obtained by the algorithms presented in the Appendix

of the thesis.
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1.1 Barrier options

The barrier option (BO) is a path dependent option which becomes either

active or extinguished when the underlying asset reaches the �barrier�level.

To illustrate this options a little better, we will de�ne an European-style

up-and-out call.

The European up-and-out call is an option to buy a certain asset S, at

a strike price K and at a time T , if the price of the asset never reaches the

barrier B until time T . The �nal pay-o¤ of this option is

VT =

8><>:
(ST �K)+ if sup

0�t�T
St < B

0 otherwise

(1.1)

The previous de�nition includes the following concepts:

� European - the option that can only be exercised at the speci�c time T .

Other possibilities could be Bermudian (can be exercised on several pre-

chosen dates), American (can be exercised at any time), Asian (average

price for a pre-chosen period of time), etc.

� Up - referring to an upper barrier B. Other possibilities would be down

(down barrier) or both barriers (double barrier).

� Out - the BO becomes extinct when touching a barrier. Other pos-

sibility would be �in�, if option is activated only upon reaching the

barrier.

3



� Call - the option to buy an asset S, at a strike priceK. Other possibility

would be a put option, i.e. the right to sell an asset S, at a strike price

K.

1.2 General assumptions

For the purpose of this thesis, we will consider certain theoretical assumptions

regarding the market-trading universe, which are considered to be standard.

We try to look at them from a BO point of view:

� Every variable has a continuos path, in particular the asset price S. In

practice, of course, this is not true. Even if we consider a basis point to

be our approximation to continuity, during times of �big news�, market

jumps are far from basis point ticks. An important consequence of the

continuity assumption is that the probability of any particular price Sp

(or Sp = B) is zero; hence, we can only work with intervals.

� The market is unique and liquid enough for any transactions, so in

our model we know without ambiguity when the barrier is triggered.

In practice these matters have to be carefully de�ned in the contract,

namely: underlying asset, underlying market or markets, private or

public trades, volume of the trade necessary to be considered a barrier

breach, etc.
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1.3 Brownian motion and the Black-Scholes model

With the previous assumptions in mind, we can start to develop a model for

the market and later calculate the price for BOs. As ground work to obtain

the price for BOs via [Heston, S.L. (1993)] model, we analyse the derivation

via the simpler [Black, F., and Scholes, M. (1973)] model �rst. This will

allow us to de�ne some necessary notions and correspondent useful results.

For this part we have [Shreve, S.E. (2000)] as our main reference.

1.3.1 First passage time distribution

De�nition 1 (Brownian Motion) Consider a probability space (
;F ;P).

For each ! 2 
, the continuous functionW (t), t � 0, that satis�esW (0) = 0,

depends on ! and for all t0 < t1 < ::: < tn the increments

W (t1) =W (t1)�W (t0);W (t2)�W (t1); :::;W (tn)�W (tn�1)

are independent and normally distributed with:

E[W (ti+1)�W (ti)] = 0

V ar[W (ti+1)�W (ti)] = ti+1 � ti

is called Brownian Motion (BM). [Shreve, S.E. (2000)] De�nition 3.3.1.

The BM is the center of the stochastic calculus, developed �rst in physics

to deal with the randomness of particle movements. One of the main concepts

is the �di¤erentiation� of the function whose variable is a BM (or more

generally a stochastic process) through the Ito�s Lemma, which is stated in

the Appendix as Theorem 1.
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Figure 1.1: Illustration of Re�ection Principle

The First passage time and maximum distributions

We start by deriving the distribution for the �rst passage time. Consider

�m - the �rst passage time through level m for BM W (t).

The Figure 1.1 illustrates the path of W (t) and its re�ected path

fW (t) =W�m^t � (Wt �W�m^t);

using the notation a ^ b = inf(a; b).

The BM is symmetrical with respect to the time axis. We know that

the path of W (t) crosses level m at �m � t. For every path that ends

below level ! there exists another equally probable path that ends above
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2m�! = ((m�!)+m). This observation gives us the Re�ection Principle,

[Shreve, S.E. (2000)] Theorem 3.7.1.

P(�m � t;W (t) � !) = P(W (t) � 2m� !): (1.2)

We can use equation (1.2) to calculate the distribution of the �rst passage

time . With choice ! = m and assuming m > 0, equation (1.2) becomes:

P(�m � t;W (t) � m) = P(W (t) � m):

On the other hand, it is always true that:

P(�m � t;W (t) � m) = P(W (t) � m):

Combining both equations:

P(�m � t) = 2P(W (t) � m) =
2p
2�t

1Z
m

e�
x2

2t dx;

since, W (t) has normal distribution with E[W (t)] = 0 and V ar[W (t)] = t.

Next, we introduce the concept of Maximum to Date:

M(t) = sup
0�s�t

W (s): (1.3)

We can rewrite the re�ection principle (1.2) as:

P(M(t) � m;W (t) � !) = P(W (t) � 2m� !); ! � m; m > 0: (1.4)

From equation (1.4) we can obtain the joint density distribution of (M(t);W (t)),

i.e. f(M(t);W (t)) di¤erentiating twice, �rst in order to m and then in order to

!:
1Z
m

!Z
�1

f(M(t);W (t))(x; y)dxdy =
1p
2�t

1Z
2m�!

e�
z2

2t dz

f(M(t);W (t))(m;!) =
2(2m� !)
t
p
2�t

e�
(2m�!)2

2t ; (1.5)
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see [Shreve, S.E. (2000)] Theorem 3.7.3.

Consider the BM with a drift � constant

Ŵ (t) = �t+W (t); 0 � t � T;

whereW (t) is a BM that has zero drift (i.e. it is a martingale) under the orig-

inal measure P, de�ned on a probability space (
;F ;P). We de�ne maximum

to date for Ŵ as

M̂(t) = sup
0�s�t

Ŵ (s): (1.6)

To calculate the joint density distribution of (M̂(T ); Ŵ (T )) it is necessary

to know how to change measures.

Theorem 2 (Girsanov, one-dimension) Let W (t); 0 � t � T; be a BM

on (
;F ;P), and F(t) be a �ltration for this BM. Let �(t), 0 � t � T , be

an adapted process. De�ne

Z(t) = expf�
tZ
0

�(u)dW (u)� 1
2

tZ
0

�2(u)dug;

fW (t) = W (t) +

tZ
0

�(u)du;

and assume that

E[
TZ
0

�2(u)Z2(u)du] <1

Set Z = Z(T ). Then EZ = 1 and under the probability measure eP given by
eP = Z

A

Z(!)dP (!) for all A 2 F ;

the process fW (t), 0 � t � T , is a BM.
8



Proof. For a proof see, for instance, [Shreve, S.E. (2000)] Theorem 5.2.3 or

[Øksendal, B. (2002)] Theorem 8.6.3

With the help of Girsanov theorem and equation (1.5) we can calculate

the joint density distribution of (M̂(T ); Ŵ (T )) as

f(M̂(T );Ŵ (T ))(m;!) =
2(2m� !)
T
p
2�T

e�!�
1
2
�2T� 1

2T
(2m�!)2 ; ! � m; m � 0; (1.7)

or zero for other values of m and !, see [Shreve, S.E. (2000)] Theorem 7.2.1.

1.3.2 The Black and Scholes (1973) model

The Black-Sholes (BS) �nancial market model created a revolution in option

pricing and, consequently, in option trading. It o¤ered a clear pricing method

for European-style standard options, making the option trading more trans-

parent and understandable. In the BS model, the asset price S(t) follows a

geometric BM. The associated stochastic di¤erential equation (SDE) under

the physical measure P is

dS = �Sdt+ �SdW S; (1.8)

where � is the drift or expected rate return of the asset, � is the standard

deviation of the rate of return on the asset, and W S is a standard BM. We

can rewrite equation 1.8 using Girsanov theorem 2 with � = ��(r�q)
�

, where r

is the risk free rate and q is dividend yield we arrive at Black-Scholes-Merton

equation [Merton, R (1973)]:

dS = (r � q)Sdt+ �SdfW; (1.9)
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where fW is a standard BM under the risk neutral measure Q. The solution

for the SDE (1.9) is

S = S0e
�fW+((r�q)� 1

2
�2)t: (1.10)

Using Ito�s Lemma, from the Theorem 1 in Appendix for an option V (t; S)

we derive:1

dV = Vtdt+ VSdS +
1

2
VSS�

2S2dt

= (Vt + (r � q)SVS +
1

2
�2S2VSS)dt+ VS�SdfW; (1.11)

Since eE[VS�SdfW jF(t)] = 0, then
eE[dV jF(t)] = (Vt + (r � q)SVS + 1

2
�2S2VSS)dt: (1.12)

On the other hand, under (1.12) the risk neutral measure

eE[dV jF(t)] = rV dt: (1.13)

Joining equations (1.12) and (1.13), we derive the Black-Scholes-Merton par-

tial di¤erential equation (PDE):

Vt + (r � q)SVS +
1

2
�2S2VSS = rV: (1.14)

1.3.3 Barrier options under Black-Scholes model

Here we follow [Shreve, S.E. (2000)], chapter 7.

1Here the subscript indicates the derivative @V
@t := Vt
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Proposition 3 The price of an up-and-out call at time t, satis�es the PDE

equation (1.14) and the boundary conditions

V (t; 0) = 0; 0 � t � T;

V (t; B) = 0; 0 � t � T;

and

V (T; S) = (S(t)�K)+; 0 � S(t) < B;

assuming that the option was not knock-out before time t.

We will not proof Proposition 3 directly (i.e. solve the Cauchy problem)

but we can verify it later. Instead, we will calculate the price of an up-and-out

call by the direct application of the re�ection principle.

The pay-o¤ of the up-and-out call is given by equation (1.1). Since S(t)

is given by equation (1.10), de�ning M̂(T ) as in (1.6) and

Ŵ (T ) = fW (T ) + r � q � �2

2

�
T;

we have:

V (T ) =

8<: (S(T )�K)+ = (S(0)e�Ŵ (T ) �K) if M̂(T ) < b

0 if M̂(T ) � b
;

with b = 1
�
log( B

S(0)
), or

V (T ) = (S(0)e�Ŵ (T ) �K)+[1M̂T<b
]

= (S(0)e�Ŵ (T ) �K)[1ŴT>k; M̂T<b
];
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with k = 1
�
log( K

S(0)
). Hence,

V (0) =

bZ
k

bZ
!+

e�rT (S(0)e�w �K)f(M̂(T );Ŵ (T ))(m;w)dmdw:

with !+ = sup(!; 0). Using the density distribution of (M̂(T ); Ŵ (T )) given

by equation (1.7), with

� =
r � q � �2

2

�
;

then

V (0) =

bZ
k

bZ
!+

e�rT (S(0)e�! �K)2(2m� !)
T
p
2�T

e�!�
1
2
�2T� 1

2T
(2m�!)2dmd!

= �
bZ
k

(S(0)e�! �K) 1p
2�T

e�rT+�!�
1
2
�2T� 1

2T
(2m�!)2

����m=b
m=!+

d!

= S(0)I1 �KI2 + S(0)I3 �KI4; (1.15)

where Ij is the representation for the four integrals contained in equation

1.15, each of them is of the form

1p
2�T

bZ
k

e�+
!�
1
2�
!2dw = e

1
2

2T+�[N (b� 
Tp

T
)�N (k � 
Tp

T
)]; (1.16)

for some � and 
. Introducing

��(� ; s) =
1

�
p
t
[log s+ (r � 1

2
�2)� ];

12



and using equation (1.16), Ij can be solved as

I1 = N (�+(T;
S(0)

K
))�N (�+(T;

S(0)

B
))

I2 = e�rT [N (��(T;
S(0)

K
))�N (��(T;

S(0)

B
))]

I3 = (
S(0)

B
)�

2r
�2
�1(N (�+(T;

B2

KS(0)
))�N (�+(T;

B

S(0)
))

I4 = e�rT (
S(0)

B
)�

2r
�2
+1(N (��(T;

B2

KS(0)
))�N (��(T;

B

S(0)
)):

We can check that under the assumptions T > t, 0 � S(0) = S � B, our so-

lution veri�es the Black-Sholes-Merton PDE (1.14) with boundary conditions

given by Proposition 3.

2 Heston (1993) model

2.1 Introduction

The stochastic volatility model, given by the equations

dSt = (r � q)Sdt+pvtSdW S
t ; (2.1)

dvt = �(� � vt)dt+ �
p
vtdW

v
t ; (2.2)

and

dW S
t dW

v
t = �dt: (2.3)

is known as the Heston (1993) model. The typical introduction of any volatil-

ity model starts with the explanation of the limitations of the BS model.
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One randomness source is simply not enough. Hence, to satisfy the customer

(market), we need to introduce another element of randomness: the stochas-

tic process for the variance given by equation (2.2)2. The goal is to make

the new model �smile�on the volatility axis, in opposition to the rigid �at

volatility from the BS model. The third equation establishes the correlation

between the two BM�s. The processes involved are: the spot price process St,

the instantaneous volatility vt of logarithmic spot price with initial variance

v0 �xed and the standard BM�s W S
t and W

v
t . Model parameters are: the

dividend yield q, the risk free rate r, the mean reversion speed of variance

�, the mean reversion level for the variance �, the volatility of the variance

� and the correlation � between two BM�s. To ensure the strictly positive

volatility we have to enforce the Feller condition on the parameters

2�� > �2:

See, for instance, [Karatzas, I., and Shreve, S. (1991)].

Since the model has two BM�s (random sources) and only one tradable

asset St, our market model is incomplete. To complete it, we should have

introduced another tradable asset, like an European call, for example. See

[Hull, J. C., and White A. (1987)].

2The stochastic equation is known as a CIR (Cox, Ingersoll and Ross) process, see [Cox,

J.C., J.E. Ingersoll and S.A. Ross (1985)].
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2.2 Standard European call option price

The call price at time t under risk neutral measure Q is given by

ct(S;K; T ) = e
�r�EQ[(ST �K)+]:

where � = T � t is the time to expiration and K is the strike price, i.e.:

ct(S;K; T ) = e
�r�EQ[ST1ST>K ]� e�r�KEQ[1ST>K ]: (2.4)

Introducing the logarithmic spot price

xt = logSt; (2.5)

the probability of the call expiring in-the-money under risk neutral measure

Q is the second term in equation (2.4):

EQ[1ST>K ] = Q(ST > K) = Q(logST > logK) = P2(x; v; �): (2.6)

The �rst term in equation (2.4) needs a measure change due to ST term. We

introduce the Radon-Nykodim derivative (see [Shreve, S.E. (2000)]) by

Zt =
Ste

qt

ST eqT
er� ;

and de�ne the probability measure

Qs=
Z
A

er�ZtdQ for all A 2 F(t):

The �rst term on the right-hand side of equation (2.4) becomes

e�r�EQ[ST1ST>K ] = EQ[e�r�ST1ST>K ]

= EQs [e�r�ST1ST>KZt]

= Ste
�q�EQs [1ST>K ]

= ext�q�Qs(ST > K) = ext�q�P1(x; v; �): (2.7)
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Considering equations (2.4), (2.6) and (2.7), then

ct(S;K; T ) = e
xt�q�P1(x; v; �)� e�r�KP2(x; v; �) (2.8)

We can express the solution (2.8) through the characteristic function of xt,

method used in [Heston, S.L. (1993)]. Later on, we will use the same tech-

nique in our barrier option calculations and show it in more detail, so here,

we will announce the idea and present the solution from [Heston, S.L. (1993)].

The both probabilities Pj have to satisfy the Heston PDE

Vt +
1

2
vS2VSS + ��vSVvS +

1

2
�2vVvv � rV + (r � q)SVS + �(� � v)Vv = 0:

We use the Feynman-Kac theorem described in the Appendix 5.2 to calculate

the characteristic functions

fj(x; v; T ;u) = EQj [exp(iuxT )jFt];

with Q1 = Qs and Q2 = Q, using the guess

fj(x; v; T ;u) = exp(Cj(� ; u) +Dj(� ; u)v + iux)

and obtaining the probabilities Pj through the Inversion Theorem 4 by

Pj =
1

2
+
1

�

1Z
0

Re[
e�iu logKfj(x; v; u)

iu
]du:

The solution for j = 1; 2 is

Cj = (r � q)iu� + ��
�2
[(bj � ��iu+ dj)� � 2 log(

1� gjedj�
1� gj

)]

Dj =
bj � ��iu+ dj

�2
(
1� edj�
1� gjedj�

);
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with

gj =
bj � ��iu+ dj
bj � ��iu� dj

dj =
q
(��iu� bj)2 � �2(2ljiu� u2)

b1 = �� ��

b2 = �

lj = (�1)1+j 1
2

3 Barrier options via Heston (1993) model

Our objective is to compute the price of an up-and-out call assuming that

the market is described by the Heston (1993) model. As in the case of the

standard European call, a closed form solution is not known. Hence, we

will use the same technique: to represent the solution in an integral form

through the characteristic function. We will follow [Griebsch, S.A., and Pilz,

K.F. (2012)], starting by the conditioning of the option expected payo¤ on

variance paths, eliminating this way one source of randomness. Afterwords,

we can calculate the arising conditioned expectation in closed form. At the

end, we resolve the conditioning.
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3.1 Conditioning on variance paths

The payo¤of an up-and-out option is given by (1.1), and its discounted payo¤

is

V0 = e
�rTEQ[VT jF0]

where, Ft is the �ltration associated with BM�s Ws and Wv, or simply, F0
are initial conditions. We want to condition on a �-algebra generated by

variance paths up to time T , i.e.

GvT = �(fvs : 0 � s � Tg): (3.1)

The conditioning on the variance paths will eliminate one source of random-

ness from the model. The tower property of conditional expectations and

the payo¤ formula gives us3

V0 = e�rTE[E[VT jGvT ]jF0]

= e�rTE[E[(ST �K)+If sup
0�t�T

St<BgjGvT ]jF0]:

Introducing the notation

Ev=E[(ST �K)+If sup
0�t�T

St<BgjGvT ]; (3.2)

we rewrite

V0 = e
�rTE[EvjF0]:

3Further the measure would be Q unless speci�ed
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Applying Ito�s lemma to xt, logarithmic spot price, given by (2.5) we

have:

dxt =
@ logS

@t
dt+

@ logS

@S
dS � 1

2

@2 logS

@S2
dSdS

= 0dt+
1

S
dS � 1

2

1

S2
dSdS

= (r � q)dt+
p
vdW S � 1

2
vdt;

or in integral form

xt = x0 + (r � q)t+
tZ
0

p
vdW S

s �
1

2

tZ
0

vsds: (3.3)

We proceed by using the information from equations (2.2) and (2.3). Since

W S and W v are correlated, we want to isolate W v for more e¤ective condi-

tioning. Please consider the Cholesky decomposition A = L � L� where L is

a lower triangular matrix and L� is its conjugate transpose:

L =

241 0

�
p
1� �2

35
L � L� =

241 �

� 1

35 :
Hence, there is an independent BM W that satis�es

dW S = �dW v +
p
1� �2dW:

Then, equation (3.3) becomes

xt = x0 + (r � q)t�
1

2

tZ
0

vsds+ �

tZ
0

p
vsdW

v
s + �2

tZ
0

p
vsdWs; (3.4)
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where �2 =
p
1� �2. The second equation of the model in the integral form

is

vt = v0 + ��t� �
tZ
0

vsds+ �

tZ
0

p
vsdW

v
s :

Isolating the
tR
0

p
vdW v

s term and inserting it in the equation (3.4), we obtain:

xt = x0+(r�q)t�
1

2

tZ
0

vsds+
�

�
(vt�v0���t+�

tZ
0

vsds)+�2

tZ
0

p
vsdWs: (3.5)

Using the abbreviation

�(t) = (r � q)t� 1
2

tZ
0

vsds+
�

�
(vt � v0 � ��t+ �

tZ
0

vsds);

equation (3.5) becomes

xt = x0 + �(t) + �2

tZ
0

p
vsdWs:

Logarithmic spot price is the sum of: its initial value, a time-dependent drift

�(t) and an Itô integral �2
tR
0

p
vsdWs. Now the conditioning on the variance

paths (Gvt de�ned in (3.1)) looks appealing and a new variable4

xvt = xtjGvt ;

has a single random contribution, which arises from

Yt = �2

tZ
0

p
vsdWs;

4Further, we will use the superscript v to identify variables subjected to conditioning

on Gvt , or omit it when it creates no confusion
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The variable vt cannot be negative. The variable Yt has normal distribution,

because in Gvt , vt is non-random, i.e.

Yt � N (0; �22�2(t));

where

�2(t) =

tZ
0

vsds:

The variable xvt is also normally distributed

xvt � N (�v(t); �22�2(t));

with mean

�v(t) = x0 + �
v(t):

Note that �v(t) is a deterministic continuos function, but nowhere di¤eren-

tiable (due to vs term), unless � = 0.

Next objective is to rewrite the equation (3.2) for Ev, through the new

variables

Ŷt = �(t) + Yt

M̂t = supfŶs : 0 � s � tg;

and using the observations

xt = logSt = x0 + Ŷt;

St = e
x0eŶt = S0e

Ŷt ;

supSt < B =) supS0e
Ŷt < B =) M̂t < b = log(

B

S0
);
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ST �K > 0 =) ŶT > k = log(
K

S0
);

we can rewrite (3.2) as

Ev = E[(S0eŶt �K)IfM̂t<b;Ŷt>kgjG
v
T ]

= Ev[(S0eŶt �K)IfM̂t<b;Ŷt>kg]: (3.6)

To calculate the expectation Ev we need the joint distribution of (Ŷ ; M̂)

under the probability measure Qv.

3.1.1 Derivation of the joint density distribution for

(M(T ); Y (T ))

Proposition 1 (Re�ection Principle) Let fYtgt�0 be an Itô process of the

form

Yt =

tZ
0

�(s)dWs (3.7)

with deterministic � and Mt = sups�t Ys for t � 0. Then the re�ection

principle holds,

Q(Mt � x; Yt < y) = Q(Yt > 2x� y) for all t � 0; x � y _ 0:

Therefore,

Qv(Mt � x; Yt � y) = Qv(Yt � 2x� y): (3.8)

Proof. For a proof see [Griebsch, S.A., and Pilz, K.F. (2012)], theorem 1.

We can use the previous proposition to calculate the density distribution

of (M(T ); Y (T )). Consider Yt de�ned by (3.7). Then,
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Proposition 2 For m 6= 0 the random variable �m = infft � 0 : Yt � mg

has the following distribution

Qv(Mt � m) = Qv(�m � t) =
2p
2�

+1Z
jmjp
�22�

2(t)

e�
1
2
y2dy:

Proof. Following [Griebsch, S.A., and Pilz, K.F. (2012)], proposition 1.

The proof is a straightforward application of the re�ection principle. Setting

m > 0, x = y = m and using equation (3.8), then

Qv(Mt � m;Yt � m) = Qv(�m � t; Yt � m) = Qv(Yt � m)

Since Y0 = 0, if Yt � m, then �m � t, i.e.

Qv(�m � t; Yt � m) = Qv(Yt � m)

Adding the previous two quantities, we get the cumulative distribution of

�m:

Qv(�m � t) = Qv(�m � t; Yt � m) +Qv(�m � t; Yt � m)

= 2Qv(Yt � m)

=
2p

2��2�(t)

1Z
m

e
� 1
2

x2

�22�
2(t)dx

If m < 0, then �m
d
= � jmj.

Proposition 3 For t > 0 the joint distribution of (Mt; Yt) is given by:

fM;Y (m;w) =
2(2m� w)p
2��32�

3(t)
exp(�1

2

(2m� w)2
�22�

2(t)
); for w � m;m > 0: (3.9)
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Proof. Following [Griebsch, S.A., and Pilz, K.F. (2012)], proposition 2.

Since,

Qv(Mt � m;Yt � w) = Qv(Yt � 2m� w);

and

Qv(Mt � m;Yt � w) =
1Z
m

wZ
�1

fM;Y (u; s)duds;

by the re�ection principle and by de�nition, and because

Qv(Yt � 2m� w) =
1p

2��2�(t)

1Z
2m�w

e
� 1
2

y2

�22�
2(t)dy;

then
1Z
m

wZ
�1

fM;Y (u; s)duds =
1p

2��2�(t)

1Z
2m�w

e
� 1
2

y2

�22�
2(t)dy:

Di¤erentiating twice, �rst with respect tom and then with respect to w leads

to equation (3.9).
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3.1.2 Case 1 - interest rate equal to the dividend yield and no

correlation (r = q and � = 0)

For case 1, where r = q and � = 0, we de�ne:

Yt = �2

tZ
0

p
vsdWs =

tZ
0

p
vsdWs; (3.10)

�(t) = �1
2

tZ
0

vsds; (3.11)

Ŷt = �(t) + Yt = �
1

2

tZ
0

vsds+ Yt; (3.12)

M̂t = supfŶs : 0 � s � tg: (3.13)

We want to calculate fM̂;Ŷ (m;w) under the Qv measure.

Proposition 4 The joint density of (M̂T ; ŶT ) under Qv is given by

fM̂;Ŷ (m;w) = exp(�
1

2
w � 1

8
�2(T ))

2(2m� w)p
2��3(T )

exp(�1
2

(2m� w)2
�2(T )

); (3.14)

for w � m;m > 0:

Proof. We will proceed as following: 1) de�ne measure for which (M̂T ; ŶT )

has no drift, 2) use Girsanov theorem and Proposition 3, 3) change back to
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the measure Qv. Since Ŷ0 = 0 and M̂t � Ŷt, (M̂; Ŷ ) take values on a set

f(m;w) : m � 0; w � mg. Considering equations (3.10)-(3.12), then

dYt =
p
vtdWt;

dŶt = d�(t) +
p
vtdWt =

p
vtdŴt;

dŴt = dWt +
d�(t)
p
vt
= dWt + 
(t)dt with 
(t) = �1

2

p
vt; (3.15)

Ŵt =

tZ
0


(s)ds+Wt:

Hence, Ŵt is a BM under Qv with drift 
(t). Next, we introduce an expo-

nential martingale:

Ĥt = exp(�
tZ
0


(s)dWs �
1

2

tZ
0


2(s)ds) (3.16)

= exp(�
tZ
0


(s)dŴs +
1

2

tZ
0


2(s)ds); (3.17)

where the last equality is due to equation (3.15). We de�ne a new measure

Q̂(A) =
Z
A

ĤTdQv for all A 2 GvT (3.18)

conditioned on a �-algebra generated by variance paths. Q̂(A) is well de�ned,

satisfying Novikov�s condition (appendix Theorem 2), in our case:

EQ[expf1
2

TZ
0

(�1
2
vs)

2dsg j GvT ] <1;

since +1 is a natural boundary, i.e. cannot be reached. Now we are able to

use Girsanov�s theorem 2 to conclude that Ŵ is a BM with zero drift under
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Q̂ and through proposition 3 we know its density distribution. To �nish the

proof we have to calculate it in the Qv measure.

Qv(M̂T � m; bYT � w) = Ev[IfM̂T�m;ŶT�wg]

= bE � 1
Ĥ
IfM̂T�m;ŶT�wg

�
(3.19)

= bE
24exp( TZ

0


(s)dŴs �
1

2

TZ
0


2(s)ds)IfM̂T�m;ŶT�wg

35
= bE

24exp(�1
2

TZ
0

p
vsdŴs �

1

8

TZ
0

vsds)IfM̂T�m;ŶT�wg

35
=

wZ
�1

mZ
�1

exp(�1
2
y � 1

8
�2(T ))f̂M̂;Ŷ (x; y)dxdy:

To obtain the density distribution, for set f(m;w) : m � 0; w � mg and zero

for other values, we just have to compute:

@2

@m@w
Qv(M̂T � m; bYt � w) =

= exp(�1
2
w � 1

8
�2(T ))

2(2m� w)p
2��3(T )

exp(�1
2

(2m� w)2
�2(T )

):

3.1.3 Case 2 - no correlation (� = 0) and arbitrary rates r and q

The analysis of this case will be similar to the previous one, (re)introducing

Yt = �2

tZ
0

p
vsdWs =

tZ
0

p
vsdWs; (3.20)

�(t) = (r � q)t� 1
2

tZ
0

vsds (3.21)

27



and also

Ŷt = Yt + �(t);

dŶt =
p
vtdŴt;

dŴt = dWt + 
(t)dt;

with a new drift 
(t) de�ned by


(s) =
@
@s
�(s)
p
vs

=
r � q
p
vs
� 1
2

p
vs: (3.22)

The new �(t) from equation (3.21) is still di¤erentiable, but the newly de�ned

drift 
(t) (3.22) is not, so we can not use the same technique as in the previous

case. We still rely on the change of measure (3.18), but with a di¤erent 
(t).

We have

Qv(M̂T � m; ŶT � w) = bE[ 1
Ĥ
IfM̂T�m;ŶT�wg]

= bE[exp( TZ
0


(s)dŴs �
1

2

TZ
0


2(s)ds)IfM̂T�m;ŶT�wg]

= bE[exp((r � q) TZ
0

1
p
vs
dŴs �

1

2

TZ
0

p
vsdŴt � (3.23)

�1
2

TZ
0


2(s)ds)IfM̂T�m;ŶT�wg]:

Introducing the random variable X̂T and the function bI(t):

X̂T =

TZ
0

1
p
vs
dŴs

bI(t) =
1

2

tZ
0


2(s)ds =
1

2

tZ
0

(
(r � q)2
vs

� (r � q) + 1
4
vs)ds
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equation (3.23) becomes

Qv(MT � m;YT � w) = bE[exp((r � q)X̂T �
1

2
ŶT � bI(T ))IfM̂T�m;ŶT�wg]:

(3.24)

Proceeding similarly to the previous case, we need to calculate the joint

distribution f̂X̂;Ŷ ;M̂ : Instead of looking for it, we will linearly approximate X̂

by Ŷ and rewrite (3.24) as

Qv(MT � m;YT � w) =

=

Z
R

Z
R

1Z
0

exp((r � q)x� 1
2
y � bI(T ))Ifz�m;y�wgf̂X̂;Ŷ ;M̂(x; y; z)dzdydx

=

Z
R

1Z
0

exp(�1
2
y � bI(T ))Ifz�m;y�wgf̂Ŷ ;M̂(y; z)�

�bE[e(r�q)X̂T jŶT = y; M̂T = z]dzdy: (3.25)

With this approach we can use the density distribution from Proposition 3

for (M̂T ; ŶT ).

Proposition 5 The random variable (X̂T ; ŶT ) is normally distributed with

0 mean and covariance matrix given by

� =

0@�2inv(T ) T

T �2(T )

1A ; (3.26)

where

�2inv(T ) =

TZ
0

1

vs
ds;

�2(T ) =

TZ
0

vsds:
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Proof. We are going to calculate the characteristic function of (X̂T ; ŶT ) and

compare it with the bivariate normal distribution:

bE[exp(u1X̂T + u2ŶT )] = bE[exp( TZ
0

(u1
1
p
vs
+ u2

p
vs)dŴs)]:

We de�ne

Z(t) = exp(�
tZ
0

(u1
1
p
vs
+ u2

p
vs)dŴs)�

1

2

tZ
0

(u1
1
p
vs
+ u2

p
vs)

2ds:

ByGirsanov multi-dimensional theorem (see [Shreve, S.E. (2000)]), Ev[Z(T )] =

1. Under the probability measure de�ned by equation (3.18), the character-

istic function of (X̂T ; ŶT ) is

bE[exp( TZ
0

(u1
1
p
vs
+ u2

p
vs)dŴs)]

= bE[exp(1
2

TZ
0

(u1
1
p
vs
+ u2

p
vs)

2ds)]

= exp(�1
2
(u21

TZ
0

1

vs
ds+ 2u1u2T + u

2
2

TZ
0

vsds);

which is equal to the characteristic function of the normal distribution with

the covariate matrix given by equation (3.26), for further reference see [Øk-

sendal, B. (2002)].

In order to linearly approximate X̂T by ŶT , we take

X̂T = k0 + k1ŶT + ";

for some normal distribution ". We have to �nd the constants k0 and k1 such

that bE["] = 0 and bE["2] is minimal. Hence,
k0 = bE[X̂T ]� k1bE[ŶT ]� bE["] = 0;
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and

bE["2] = bE[(X̂T � k1ŶT )2] = bE[X̂2
T ] + k

2
1
bE[Ŷ 2T ]� 2Cov(X̂T ; k1ŶT )

= �2inv(T ) + k
2
1�
2(T )� 2Tk1 (3.27)

by the Proposition 5. The expected value bE["2] is minimal for
2k1�

2(T )� 2T = 0

k1 =
T

�2(T )
: (3.28)

Since, the variable (X̂T ; ŶT ) is normally distributed, any linear combination

of X̂T and ŶT and, in particular,

" = X̂T � k1ŶT

is still normally distributed. Moreover, the variable (ŶT ; ") is normally dis-

tributed, since all the linear combination of (ŶT ; ") are the same as of (X̂T ,ŶT )

[Gut, A. (2009)]. The variance of " is given by (3.27):

bE["2] = �2inv(T )� T

�2(T )
: (3.29)

also, " is uncorrelated to ŶT :

Cov(ŶT ; ") = Cov(ŶT ; X̂T � k1ŶT ) =

= bE[ŶT (X̂T � k1ŶT )]� bE[ŶT ]bE[X̂T � k1ŶT ]

= bE[ŶT X̂T ]� k1bE[Ŷ 2T ]� 0
= T � T = 0;

and hence, independent.
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We introduce a standard normal variable U , such that

" = k2U

k2 =

s
�2inv(T )�

T

�2(T )
;

and U and ŶT are independent. Now, the decomposition of X̂T is complete:

X̂T = k1ŶT + k2U:

The independence between U and ŶT was veri�ed, but to completely solve

the inner expected value from equation (3.25), we need the independence

of U from M̂ . We will ignore this dependence, since U is the �rest� of

the decomposition of X̂T after the ŶT contribution. The variable M̂T is the

supremum of ŶT and should not contribute much. We will proceed as if U

was independent from M̂T and consider it as an approximation.

The expected value from equation (3.25) becomes

bE[e(r�q)X̂T jŶT = y; M̂T = z] = bE[e(r�q)(k1ŶT+k2U)jŶT = y; M̂T = z]

= e(r�q)k1y � bE[e(r�q)k2U jŶT = y; M̂T = z]

� e(r�q)k1y � bE[e(r�q)k2U ]:
The distribution of e(r�q)k2U , is log-normal and we have:

bE[e(r�q)k2U ] = e 12 (r�q)2k22 :
We can now rewrite equation (3.25) as

Qv(M̂T � m; ŶT � w) �

� e
1
2
k22(r�q)2

wZ
�1

mZ
0

exp(((r � q)k1 �
1

2
)y � bI(T ))f̂Ŷ ;M̂(y; z)dzdy:
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The application of Proposition 3 for the density distribution f̂Ŷ ;M̂(y; z) and

the di¤erentiation lead to the following result for the case 2 (� = 0 and

r 6= q):

Proposition 6 In case 2, the density of (M̂T ; ŶT ) under Qv is

@

@w@m
Qv(M̂T � m; ŶT � w) �

� 2(2m� w)p
2��3(T )

exp(((r � q)k1 �
1

2
)w � bI(T )�

1

2

(2m� w)2
�2(T )

);

where bI(T ) = 1
2
[(r � q)2 T 2

�2(T )
� (r � q)T + 1

4
�2(T ))].

3.1.4 Case 3 - the general case, arbitrary r; q and �

We now consider the general case: an arbitrary rates r, q and correlation �.

In this case,

�(t) = (r � q)t� 1
2

tZ
0

vsds+
�

�
(vt � v0 � k�t+ k

tZ
0

vsds); (3.30)

and hence, 
(t) should be


(t)dt =
d�(t)

�2
p
vt
: (3.31)

The new �(t) is not di¤erentiable, due to term vt, which is actually a real-

ization of the Heston (1993) model. As we will show in the next proposition,

choosing an approximation of vt, �vt, such that �vt is di¤erentiable

v0 = �v0 and vT = �vT (3.32)
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will lead to the same result. The �nal formula (for f̂Ŷ ;M̂ under Qv) in the

next proposition only depends on the path of vs and boundary values v0,

and vT . The following theorem, gives us the density function conditioned on

variance paths, under the general case.

Theorem 7 Consider, the general model with arbitrary r, q and �. Let �vt be

a di¤erentiable approximation of vt satisfying conditions (3.32). Then, the

density function of (M̂; Ŷ ) under Qv is given by

f̂M̂;Ŷ (m;w) � 2(2m� w)p
2��32�

3(T )
exp

�
�1
2

(2m� w)2
�22�

2(T )

�
�

� exp
�
c1k1 + c2 + c3k3

�22
w � b2(T )

�
; (3.33)

with

b2(T ) =
1

2�22
[c21

T 2

�2(T )
+ c23

(vT � v0)2
�2(T )

+ 2c1c3
(vT � v0)T
�2(T )

+ c22�
2(T ) +

+2c1c2T + 2c2c3(vT � v0)]

c1 = (r � q)� ���
�

(3.34)

c2 = (
��

�
� 1
2
) (3.35)

c3 =
�

�
: (3.36)

Proof. Following [Griebsch, S.A., and Pilz, K.F. (2012)], theorem 2. Ap-

proximating vt by �vt, and taking �v0t =
d�vt
dt
, equation (3.31) yields:


(t) =
1

�2
p
vt

�
(r � q)� 1

2
vt +

�

�
(�v0t � �� + �vt)

�
=

1

�2
((r � q)� ���

�
)
1
p
vt
+
1

�2
(
��

�
� 1
2
)
p
vt +

1

�2

�

�

�v0tp
vt
:
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Function 
(t) is now composed of 3 types of terms, two we encountered

already and the new �v0tp
vt
. As usual, we de�ne the new measure given by

(3.18) where Ĥt is given by equation (3.16). Under this measure Ŷt, has no

drift. The �rst term under expected value on the right-hand side of equation

(3.19) is

TZ
0


(s)dŴs = exp(
1

�2
((r � q)� ���

�
)

TZ
0

1
p
vs
dŴs + (3.37)

+
1

�2
(
��

�
� 1
2
)

TZ
0

p
vtdŴs +

1

�2

�

�

TZ
0

�v0tp
vt
dŴs):

If we (re)introduce

Ŷt = �2

tZ
0

p
vsdŴs;

X̂t = �2

tZ
0

1
p
vs
dŴs;

Ẑt = �2

tZ
0

�v0sp
vs
dŴs;

equation (3.37) can be rewritten as

TZ
0


(s)dŴs =
1

�22
((r � q)� ���

�
)X̂T +

1

�22
(
��

�
� 1
2
)ŶT +

+
1

�22

�

�
ẐT

=
1

�22
(c1X̂T + c2ŶT + c3ẐT ); (3.38)
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with c1, c2 and c3 de�ned by equations (3.34)-(3.36). As in the previous case,

we want to approximate X̂T and ẐT by ŶT and some independent normal

variables, i.e.

X̂T = k0 + k1ŶT + "
X

ẐT = k2 + k3ŶT + "
Z

such that

E["X ] = E["Z ] = 0

E[("X)2] and E[("Z)2] are minimal.

Proposition 8 1) The random variable (X̂T ; ŶT ; ẐT ) is normally distributed

with zero mean and a covariance matrix

� = �22 �

26664
�2inv(T ) T �2II(T )

T �2(T ) (� 0(T ))2

�2II(T ) (� 0(T ))2 �2I(T )

37775
where

�I(T ) =

vuuut TZ
0

(�v0s)
2

vs
ds;

�II(T ) =

vuuut TZ
0

�v0s
vs
ds;

� 0(T ) =

vuuut TZ
0

�v0sds;
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provided that all these integrals exist.

2) The variable ("X ; "Z) is normally distributed with zero mean and covari-

ance matrix

� = �22 �

24 �2inv(T )� k1T �2II(T )� k3T

�2II(T )� k3T �2I(T )� k3(� 0(T ))2

35
and is independent of ŶT .

Proof. For a proof see [Griebsch, S.A., and Pilz, K.F. (2012)], p 29.

Using the �rst result from Proposition 8, we have:

E["X ] = 0 = E[[X̂T � k0 + k1ŶT ]) k0 = 0;

E["Z ] = 0 = E[ẐT � k2 + k3ŶT ]) k2 = 0;

k0 = k2 = 0;

k1 =
T

�2(T )
and k3 =

(� 0(T ))2

�2(T )
=
vT � v0
�2(T )

:

For k1 and k3 we minimize the variances as

E[("X)2] = E[(X̂T )
2] + k21E[ŶT ]� 2k1Cov(X̂T ; ŶT ) = �

2
2(�

2
inv + k

2
1�
2 � 2k1T )

) k1 =
T

�2(T )

E[("Z)2] = E[(ẐT )2] + k23E[ŶT ]� 2k3Cov(ẐT ; ŶT ) = �22(�2I + k23�2 � 2k3(� 0)2)

k3 =
(� 0(T ))2

�2(T )
=
vT � v0
�2(T )

:

Please note that k3 is well de�ned even without the di¤erentiability of vs.

Equation (3.38) now becomes

TZ
0


(s)dŴs =
1

�22
(c1(k1ŶT + "

X) + c2ŶT + c3(k3ŶT + "
Z)):
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We introduce bI(T ) as the second term under the expected value on the

right-hand side of equation (3.19):

bI(T ) = �1
2

TZ
0


2(s)ds

= � 1

2�22
[c21�

2
inv(T ) + c

2
2�
2(T ) + c23�

2
I(T ) + 2c1c2T + 2c1c3�

2
II(T ) +

+2c2c3(vT � v0)]:

The (M̂T ; ŶT ) probability is

Qv(M̂T � m; ŶT � w) =

= bE[(exp(bI(T ) + 1

�22
(c1X̂T + c2ŶT + c3ẐT ))IfM̂T�m;ŶT�wg]

= ebI(T )bE[(expf 1
�22
(c1(k1ŶT + "

X) + c2ŶT+

+ c3(k3ŶT + "
Z)g)IfM̂T�m;ŶT�wg]

= ebI(T )bE[e c1"X+c2"
Z

�22 ]� (3.39)

� bE[(expf 1
�22
(c1k1 + c2 + c3k3)ŶTg)IfM̂T�m;ŶT�wg];

where the �rst passage arises because bI is deterministic in GvT , the second

follows from Proposition 8, due to the independence of ("X ; "Z) from ŶT , and,

as in the previous case, with a similar argument, we assume that ("X ; "Z)

are independent from M̂T . Introducing

bII = bE[e c1"X+c2"
Z

�22 ]

=
1

2�22
[c21(�

2
inv(T )�

T 2

�2(T )
) + c23(�

2
I(T )�

(vT � v0)2
�2(T )

) +

+2c1c3(�
2
II �

(vT � v0)
�2(T )

)]
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and

�b2 = bI(T ) + bII(T );

equation (3.39) becomes

Qv(M̂T � m; ŶT � w) = e�b2
wZ

�1

mZ
�1

e
y

�22
(c1k1+c2+c3k3)

f̂M̂T ;ŶT
(x; y)dxdy

= e�b2
wZ

�1

mZ
�1

e
y

�22
(c1k1+c2+c3k3) 2(2x� y)p

2��32�
3(T )

exp(�1
2

(2x� y)2
�22�

2(T )
)dxdy;

after another application of Proposition 3. The di¤erentiation will lead to

equation (3.33).

3.2 Up-and-out call formula

Having computed the density distributions for the three cases, our next ob-

jective is to solve the inner expectation from equation (3.6), i.e. the value of

up-and-out call, conditioned on variance paths,

Ev = Ev[(S0eŶt �K)IfM̂t<b;Ŷt>kg]:

The density distributions for all three cases can be represented as

fŶ ;M̂(m;w) �
2(2m� w)p
2��32v

2(T )
e
� 1
2
(2m�w)2

�22v
2(T )

+Fw+G

where

F =

8>>><>>>:
�1
2

case 1

(r � q)k1 � 1
2

case 2

(c1k1 + c2 + c3k3)=�
2
2 case 3

G =

8>>><>>>:
�1
8
v2(T ) case 1

�b1(T ) case 2

�b2(T ) case 3

:
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Note that the quantities F and G are completely deterministic in GvT , r, q and

ci depend only on model parameters, but ki and bi are additionally functions

of the time-integrated variance v and vT . The formula for case 1 is exact,

but for cases 2 and 3 is approximated.

The limits of integration for the inner expectation Ev are

(Ŷt > k; M̂t < b) =) fk � w � b; w+ � m � bg:

Hence,

Ev =

bZ
k

bZ
w+

(S0e
w �K)fŶ ;M̂(m;w)dmdw

=

bZ
k

bZ
w+

(S0e
w �K) 2(2m� w)p

2��32�
2(T )

e
� 1
2
(2m�w)2

�22�
2(T )

+Fw+G
dmdw:

We can integrate with respect to m using the substitution

y =
(2m� w)2
2�22�

2(T )
;

i.e.

dy =
2(2m� w)
�22�

2(T )
dm:

Yielding,

Ev = � 1p
2��2�

2

bZ
k

(S0e
w �K) exp(Fw +G)

� (2b�w)2

2�22�
2(T )Z

� (2w+�w)2
2�22�

2(T )

eydydw

=
1p

2��2�(T )

bZ
k

(S0e
w �K) exp(Fw +G� 1

2

(2m� w)2
�22�

2(T )
)

����m=b
m=w+

dw:
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The term eG is independent from w, so we can take it out and separate the

inner bracket as

Ev =
1p

2��2�(T )
eG

bZ
k

(S0e
w �K) exp(Fw � 1

2

(2m� w)2
�22�

2(T )
)

����m=b
m=w+

dw

=
S0p

2��2�(T )
eG

bZ
k

exp((F + 1)w � 1
2

(2m� w)2
�22�

2(T )
)

����m=b
m=w+

dw (3.40)

� Kp
2��2�(T )

eG
bZ
k

exp(Fw � 1
2

(2m� w)2
�22�

2(T )
)

����m=b
m=w+

dw:

Both integrals on the right-hand side of equation (3.40) have the form of a

normal distribution (after completing the square), and can be expressed as:

I1;x = exp(
1

2
(F + x)2�22�

2(T ) +G)�

�
"
N
 
log(S0

K
) + (F + x)�22�

2(T )

�2�(T )

!
�N

 
log(S0

B
) + (F + x)�22�

2(T )

�2�(T )

!#
I2;x = exp(

1

2
(F + x)2�22�

2(T ) +G+ 2b(F + x))�

�
"
N
 
log( B

2

S0K
) + (F + x)�22�

2(T )

�2�(T )

!
�N

 
log( B

S0
) + (F + x)�22�

2(T )

�2�(T )

!#
;

for x 2 f0; 1g. Finally, the inner expectation can be expressed as

Ev = S0I1;1(x)�KI1;0(x)� S0I2;1(x) +KI2;0(x):

The separated formulas are presented in Appendix 5.1. The value of the

up-and-out call option in the [Heston, S.L. (1993)] model at time 0 is given

by

V0 � e�rTE[S0I1;1(x)�KI1;0(x)� S0I2;1(x) +KI2;0(x)]: (3.41)
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The formula is exact for the simple case 1 and an approximation for the cases

2 and 3. It is important to note, for the purposes of unconditioning, that

the only path dependent variables �to solve� are �2(T ) for the case 1 and

(�2(T ); vT ) for the general case 3. Hence, for the unconditioning we will need

the density distribution of �2(T ) and (�2(T ); vT ). We will not show here the

unconditioning for case 2, since it is similar in idea and less complicated than

the case 3.

3.3 Resolving the conditioning

Next, we have to solve the conditioning on the variance paths i.e.:

V0 = e
�rTE[EvjF0]: (3.42)

For this purpose we need the distribution of �2(T ) for case 1 and the distri-

bution (�2(T ); v(T )) for case 3. We will proceed in the following steps:

1. Find the characteristic function PDE

2. Solve PDE (get the characteristic function)

3. Use the inversion theorem to calculate the distribution of �2(T ) or

(�2(T ); v(T )), depending on the case under analysis

4. Use the obtained distribution in equation (3.42)
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3.3.1 Case 1

We will start with the simpler case 1, with r = q and � = 0. We are looking

for the characteristic function of �2(T ).

Proposition 9 The characteristic function of �2(T ) in case 1 is given by

��2(T )(u) = E[eiu�
2(T )] = exp[A(u)v0 +B(u)];

where

A(u) =
2iue�

de+ + �e�
;

B(u) =
��

�2
(�� d)T + 2��

�2
log(

2d

de+ + �e�
);

with d =
p
�2 � 2�2iu and e� = 1� exp(�dT ).

Proof. To compute the characteristic function, we will �nd the martingale

(time invariant) and the PDE associated with it. Afterwords, we solve the

resulting PDE through guessing the from of the solution. We de�ne

F (u; t; v) = E[exp(iu
tZ
0

v(s)dsjF0];

and a candidate for martingale

M(t) = exp(iu

tZ
0

v(s)ds)F (u; � ; vt);

with � = T � t. The M(t) is martingale

E[M(T )jF0] = E[exp(iu
TZ
0

v(s)ds)F (0; vT )jF0] = F (u; T; v0) =M0:
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Applying Ito�s Lemma toM(t) and using the subscript index as a derivative,

i.e. @A
@x
= Ax, we have

dM =Mtdt+Mvdv +
1

2
Mvvdvdv: (3.43)

To further simplify notation we will use $ = iu

tZ
0

v(s)ds. Therefore,

Mt = Fte
$ + iuve$F;

Mv = Fve
$ + F (e$)v = Fve

$;

Mvv = Fvve
$;

dvdv = �2vdt:

It is important to note that all F derivatives and F itself are taken at a point

(u; � ; v). Combining the previous results with equation (3.43),

dM = (Fte
$ + iuve$F + �(� � v)Fve$ +

1

2
�2vFvve

$)dt+ �
p
vFve

$dW v:

Since, M is a martingale, the dt term must be 0. So, our function F satis�es

the following PDE:

Fte
$ + iuve$F + �(� � v)Fve$ +

1

2
�2vFvve

$ = 0

Ft + iuvF + �(� � v)Fv +
1

2
�2vFvv = 0: (3.44)

We guess that the solution can be represented as

F (u; � ; v) = exp[A(u; �)vt +B(u; �)]:

For this trial function the derivatives are

Ft = �(Atv +Bt)F

Fv = AF

Fvv = A2F;
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and the equation (3.44) is

�(Atv +Bt) + iuv + �(� � v)A+
1

2
�2vA2 = 0:

Combining v-terms and non-v-terms, since it has to be valid for all v�s, we

get the system of equations

At + iu� �vA+
1

2
�2A2 = 0 (3.45)

�Bt + ��A = 0: (3.46)

We can solve the �rst equation and through it solve the second one. The

�rst equation (3.45) is a Riccati ordinary di¤erential equation

yt = P +Qy +Ry
2;

which is solved by considering the second order auxiliary di¤erential equation

for !(t)

!tt � (
Pt
P
+Q)!t + PR! = 0;

or

!tt � p!t + q! = 0; (3.47)

where solution y(t) is given by

y(t) = �!t
!

1

R
:

The solution for the equation (3.47) has the form

!(t) = ae�t + be�t;

where the roots � and � are obtained from the quadratic equation x2+ px+

q = 0:

� =
�p+

p
p2 � 4q
2

;

� =
�p�

p
p2 � 4q
2

:
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For our case

P = iu;

Q = ��;

R =
1

2
�2;

and, consequently,

p = �(Pt
P
+Q) = �Q = �

q = PR =
1

2
iu�2;

and, introducing, d =
p
�2 � 2iu�2,

� =
1

2
(��+ d);

� =
1

2
(��� d):

Hence,

A(u; �) = � 1
R
(
K�e�� + �e��

Ke�� + e��
); (3.48)

with K = a
b
. Up until now, we did not mention the boundary conditions on

our function F . They are:

F (u; 0; v) = 1) A(u; 0)v0 +B(u; 0) = 0;

for every v0, hence for the trial function, the boundary conditions are

A(u; 0) = 0; (3.49)

B(u; 0) = 0: (3.50)

Combining equations (3.49) and (3.48), then

K�+ � = 0) K = ��
�
:
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Hence,

A(u; �) = � 1
R

��
�
�e�� + �e��

��
�
e�� + e��

= � �
R

�e�� + e��

��
�
e�� + e��

= � �
R

e��

e��
�1 + e(���)�

��
�
e�� + e(���)�

= � �
R

�1 + e�d�

��
�
e�� + e�d�

=
�

R

e�

��
�
e�� + e�d�

=
�

R

e�

�d+�
d��e

�� + e�d�

=
�(d� �)
R

e�

(�e� + de+)

=
2uie�

�e� + de+
;

with e� = 1�e�d� . The equation for the function B(u; �) follows from (3.46):

B� =
2uik�e�

�e� + de+
:

Introducing � = 2��ui and integrating, then

B(u; �) = �

�Z
0

e�

�e� + de+
+ C;

with a constant C. After using the boundary condition (3.50), we �nd that

C = 0. To solve the integral we want to rewrite it as

bZ
a

1� x
(1� �x)xdx = [log x+

1� �
�

log(1� �x)]
����b
a

: (3.51)
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With a change of coordinates x = e�d� , then

B(u; �) = �

�Z
0

e�

�e� + de+

= �

e�d�Z
1

1� x
d(1� x) + d(1 + x)

1

x(�d)dx

=
�

(�d)(�+ d)

e�d�Z
1

1� x
(1 + d��

d+�
x)x

dx

= � �

d(d+ �)

e�d�Z
1

1� x
(1� �x)xdx;

with � = �d��
d+�
. Applying equation (3.51),

B(u; �) = � �

d(d+ �)
[log x+

1� �
�

log(1� �x)]je�d�1

= � �

d(d+ �)
[(�d�)� 0 + 1� �

�
log(

1� �e�d�
1� � )]

=
��

�2
(�� d)� � 2��

�2
log(

de+ + �e�

2d
)

=
��

�2
(�� d)� + 2��

�2
log(

2d

de+ + �e�
):

We have calculated the characteristic function of �2(T ). Next, we use the

Inversion theorem 4 from the Appendix to calculate the density distribution

of �2(T ):

d�2(T )(x) =
1

2�

Z
R

e�ixu��2(T )(u)du =
1

�

Z
R+

e�ixu��2(T )(u)du; (3.52)
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since the last integral is symmetric. We combine the previous results with

equation (3.41), the value for our up-and-out call is

V0 = e
�rT
Z
R+

(S0I1;1(x)�KI1;0(x)�S0I2;1(x)+KI2;0(x))�d�2(T )(x)dx: (3.53)

3.3.2 Case 3

The approach to the general case is similar to the �rst simpler case. We start

by looking for the characteristic function of (�2(T ); vT ).

Proposition 10 The characteristic function in case 3 is given by

��2(T );v(T )(u;w; v0) = E[e�iu�
2(T )�iwv(T )] = exp[A(u;w; T )v0 +B(u;w; T )];

where

A(u;w; �) =
2iue� � �iwe� + diwe+


(w)
;

B(u;w; �) =
��

�2
(�� d)� + 2�

�2
log(

2d


(w)
);

with d =
p
�2 � 2�2iu, e� = 1 � exp(�d�) and 
(w) = 2d exp(�d�) + (� +

d� �2iw)e�

Proof. (Sketch) We follow [Nunes, J.P.] and [Lamberton, D., and Lapeyre,

P. (1996)]. As in previous the case, there is only one stochastic process (v)

involved, and we (re)introduce

F (u;w; t; v) = E[exp(iwv) exp(iu
tZ
0

v(s)ds)]
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and the martingale

M(t) = exp(iu

tZ
0

v(s)ds)F (u; v; � ; v):

The PDE is derived in a similar way to equation (3.44) as

Ft + iuvF + �(� � v)Fv +
1

2
�2vFvv = 0; (3.54)

for the new function F . To complete our Cauchy problem, in this case, the

terminal conditions are

F (u;w; 0; v) = eiwv: (3.55)

The trial function is

F (u;w; � ; v) = exp[A(u;w; �)v +B(u;w; �)]: (3.56)

As in case 1, we can solve the PDE (3.54) with boundary conditions (3.55)

for the trial function (3.56). The techniques in this case are similar to the

previous one.

The density distribution can be obtained by the Inversion theorem 4

dv2;vT (x; y) =
1

(2�)2

ZZ
R2

e�ixu�i!y��2(T );v(T )(u; !)d!du: (3.57)
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Following [Griebsch, S.A., and Pilz, K.F. (2012)], our aim is to solve analyt-

ically one of the integrals above. Applying the solution from the Proposition

10 to (3.57),

d�2;vT (x; y) =
1

(2�)2

ZZ
R2

e�ixu�i!y exp[A(u;w; T )v0 +B(u;w; T )]dwdu

=
1

(2�)2

ZZ
R2

e�ixu�i!ye
2iue���iwe�+diwe+


(w)
v0+

��
�2
(��d)T+ 2�

�2
log( 2d


(w)
)dwdu

=
1

(2�)2

Z
R

e�ixue
��
�2
(��d)T

Z
R

e�iwy(

(w)

2d
)�

2��
�2 �

�e
2iue���iwe�+diwe+


(w)
v0dwdu: (3.58)

We want to solve the inner integral relative to w, i.e.

� =

Z
R

e�iwy(

(w)

2d
)�

2��
�2 e

2iue���iwe�+diwe+

(w)

v0dw: (3.59)

For the next transformation, we should have in mind the following inverse

Laplace transform:

1

2�i

�+i1Z
��i1

eczz�2Lekz
�1
dz = L�1c (z�2Lekz

�1
); (3.60)

with L and k constants. The inverse Laplace transform of the complex func-

tion f(s) is the operator de�ned as

L�1t (f(s)) =
1

2�i

�+i1Z
��i1

etsf(s)ds;

for some � 2 R. For f(s) = eks�1s��, we have

L�1t (f(s)) =
1

2�i

�+i1Z
��i1

etseks
�1
s��ds = (

t

k
)
��1
2 I��1(2

p
kt);
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where I��1 is modi�ed Bessel function for complex variables of the �rst kind,

de�ned as

I�(z) = (
z

2
)�

1X
n=0

( z
2
)2n

�(n+ 1)�(� + n+ 1)
;

where �(z) is Gamma function as de�ned by [Abramowitz, M., and Stegun,

I.A.] and [Lamberton, D., and Lapeyre, P. (1996)]. De�ning

z =

(w)

2d
=
de+ + �e�

2d
� iw�

2e�

2d
:= n� iwn

and noting that dw = � 1
in
dz, the integral (3.59) becomes

� = � 1

2�in
e�

y
n
m

m+in1Z
m�in1

e
y
n
ze

�e��de+
2dn

v0e
2iue��m(�e��de+)

2dn
v0z�1z�

2��
�2 dz: (3.61)

Introducing

k =
2iue� �m(�e� � de+)

2dn
v0;

L =
��

�2
;

c =
y

n
;

we can rewrite (3.61) and solve it using (3.60), see [Griebsch, S.A., and Pilz,

K.F. (2012)]:

� 1

2�in
e�

y
n
me

�e��de+
2dn

v0

m+in1Z
m�in1

eczekz
�1
z�2Ldz

=
2d

�2e�
exp(�yde

+ + �e�

�2e�
) exp(v0

�e� � de+
�2e�

)(
y

v0
ed� )L�

1
2 I2L�1(

4d

�2e�

p
yv0e�d� ):

Combining the previous result with equation (3.58),

dv2;vT (x; y) =
1

2�
eL��+(v0�y)

�
�2 � (3.62)

�
Z
R

2d

�2e�
e�iux�Ld��(v0+y)

de+

�2e� (
yed�

v0
)L�

1
2 I2L�1(

4d

�2e�

p
yv0e�d� )du:
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The value for up-and-out call in the [Heston, S.L. (1993)] model for the

general case (case 3) is

V0 � e�rT
ZZ
R2+

(S0I1;1(x; y)�KI1;0(x; y)� S0I2;1(x; y) + (3.63)

+KI2;0(x; y))d�2;vT (x; y)dxdy;

where dv2;vT (x; y) is given by the equation (3.62) and Ij;k are obtained from

Appendix 5.1, case 3.

4 Numerical analysis

4.1 Matlab implementation

The big part of the problem with exotic options pricing is the numerical

implementation. We will spend some time announcing the methods and

techniques adopted. The implementation was done in Matlab.

4.1.1 The (Log-)Euler discretization and the Monte-Carlo Simu-

lation

One of the most frequently used techniques for the pricing of exotic options

and, in general, for the BM modeling is the discretization of the equations

followed by the Monte-Carlo simulation.
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To simulate the BM we divide time into intervals, and for each interval

we assume a normally distributed �jump�

W (t+ h)�W (t):

A complete path (possibility) is a sequence of �jumps�from the time t0 to

the �nal destination at time T . Using the pseudo-random routines, we can

run a large number of simulations (possible paths) and take the average of all

the results. This average will be the approximation for the expected value.

We start by discreticising the model equations (2.1), (2.2) and (2.3). Be-

ginning with (2.2), for every jump �t = T=N , where N is the number of

jumps, we have

v(t+�t) = v(t)� �(� � v(t))�t+ �
p
v(t)Zv

p
�t;

where Zv has a standard normal distribution and the last term is the approx-

imation of the stochastic integral

t+�tZ
t

�
p
v(t)dW v � �

p
v(t)

t+�tZ
t

dW v

= �
p
v(t)(W (t+�t)�W (t)) � �

p
v(t)N (0;

p
t)

= �
p
v(t)Zv

p
�t:

The values for v(t) have to be real and positive, which is not guaranteed.

The negative values have the probability

Q(v(t) < 0) = Qv(Zv <
�v(s) + �(� � v(s))�t

�
p
v(s)

p
�t

)

= �(
�v(s) + �(� � v(s))�t

�
p
v(s)

p
�t

);
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which tends to zero as �t ! 0 but is still always positive. The easiest way

to deal with this problem is to truncate v(t) to v+(t) = sup(v(t); 0) and hope

the bias introduced is not very signi�cant. This is the most popular approach

in practical situations [Andersen, L. (2008)]. The full truncation scheme for

the variance equation is

v(t+�t) = v(t)� �(� � v+(t))�t+ �
p
v+(t)Zv

p
�t:

The direct discretization of the stock price equation (2.1) leads to

S(t+�t) = S(t)(1 + (r � q)�t+
p
v(t)ZS

p
�t);

where ZS is a normal random variable correlated by � with Zv. For the

practical implementation in Matlab simulation, we used the Cholesky de-

composition:

Z1 = Zv;

Z2 = �Zv +
p
1� �2Z2:

Alternatively, we can use the exact solution

S(t+�t) = S(t) exp[

t+�tZ
t

((r � q)� 1
2
v(u))du+

t+�tZ
t

p
v(t)dW S(u)];

and, as stated by [Haastrecht, A., and Pelsser, A. (2008)], �...taking log-

arithms and discreticising in an Eulerly fashion, one obtains the following

log-Euler scheme�:

logS(t+�t) = log(S(t)) + ((r � q)� 1
2
v+(t))�t+

p
v+(t)ZS

p
�t;

with the same choice of truncation for the negative v(t) values.
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4.1.2 The Fast Fourier Transform (FFT)

The FFT is the algorithm invented by Gauss to e¢ ciently compute the sums

of the form

FFT (X)l = Y [l] =

N�1X
j=0

e�
2�i
N
jlX[j] (4.1)

for any complex input fX[j] 2 C : j = 0; ::; N � 1g. So why do we need it?

The technique is very commonly used for option pricing, due to its connection

to the option pricing schemes when the characteristic function approach is

used, see [Carr, P., and Madan, D. (1999)]. During the e¤orts to calculate

the oscillatory integrals, it was decided to apply the FFT as the numerical

technique. The struggle with Matlab was enlightening, after trying several

solutions for oscillatory integrals, this was the method that proved to be

robust, and last but not least, it is fun.

4.1.3 The trapezoidal rule and 2D integration

The objective is to calculate numerically
RR
R2
f(x; y)dxdy:

Since, we are talking about a numerical calculation, the in�nite limits

have to be changed. The integrals appearing in our formulas are fast con-

verging, so, we will not be losing much on a limit truncation. Fortunately,

the 2D integration or any multi-dimensional integration scheme is much more

interesting then a simple integration on a lane. It is possible to choose di¤er-

ent shapes for the contour, weights, etc., besides the alternatives in the point

selection (random, equally spaced, etc.). Said that, we will pick the simplest
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of them all, the extension of the trapezoidal rule to two dimensions. We will

be integrating over the rectangles R = f(x; y) : a � x � b; c � y � dg, with

xi = x0 + ih; h =
b� a
m

; i = 0; ::;m

yj = y0 + jk; k =
d� c
n
; j = 0; ::; n;

so the interval R will be divided in the same length rectangles f(x; y) 2

[xi; xi+1]� [yj; yj+1]g. Besides border points, all other points have the same

weights.ZZ
R2

f(x; y)dxdy = Trap2D(f; h; k) =
1

4
hk(f(a; c) + f(b; c) + f(a; b)

+f(b; d) + 2
m�1X
i=1

f(xi; c) + 2
m�1X
i=1

f(xi; d) +

+2
n�1X
j=1

f(a; yj) + 2
n�1X
j=1

f(b; yj) + 4
m�1X
i=1

n�1X
j=1

f(xi; yj)):

The error in this approximation is of magnitude O(h2) +O(k2), i.e.

Err(Trap2D(f; h; k)) =

ZZ
R2

f(x; y)dxdy�Trap2D(f; h; k) = O(h2)+O(k2):

For the further reference see [Atkinson, K. (1989)].

4.2 Case 1

For case 1 we have to calculate (3.53), with d�2(T ) given by (3.52). This

simple case provides a good illustration for the oscillatory behavior of the
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integral calculated through FFT. We begin with d�2(T )(x) and afterwords V0.

To make the notation a little bit easier we will change

d�2(T )(x) : = d1(x)

��2(T )(u) : = �1(u)

and de�ne

f(x) = [S0I1;1(x)�KI1;0(x)� S0I2;1(x) +KI2;0(x)]:

The steps for our algorithm will be:

1. A de�nition of the limits of integration

2. A discretization of the integrals and of the FFT application for d1(x)

3. A calculation of V0

We have to limit the inde�nite integrals to �nite intervals and do it in a

way that does not a¤ect the result. Since, well de�ned limits will drastically

change the performance of an algorithm, it is worth spending time trying

di¤erent inputs. The variables in this case are u and x. We simply de�ne the

functions in Matlab and by intelligent observation verify where we need to

stop. It is possible to create a routine for this step, however for this case it

is not necessary. The d1(x) is an oscillatory integral. Hence, for large u or x,

as oscillations become more frequent, they cancel themselves. The function

�1(u) converges to 0 quickly. All the above will in�uence our choice of the

interval u 2 [�a; a]. Table 4.1 contains the model parameters adopted.
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Figure 4.1: �(u) for the tested parameters
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Table 4.1: The model parameters adopted

Parameter Value(s) Parameter Value(s)

� 2 S0 80-100

� 0 K 100

� 0.04 r 0.03

� 0.25 q 0.03

v0 0.04 B 105-145

T 1

For tested parameters �(u) near 800 is almost zero (see Figure 4.1), so

the choice a = 800 is adequate. For x 2 [�b; b], we have to look at f(x): It

is also a well behaved fast converging function. We do not need the negative

x values for the calculation of V0, but it is easier to work with them in the

FFT algorithm. From the analysis above we can observe that it would be

bene�cial to discreticise the functions unevenly. Unfortunately, this is not

compatible with the FFT algorithm. The d1 integral in a discrete form is

d1(x) =
1

2�

Z
R

e�ixu�1(u)du �
1

2�

aZ
�a

e�ixu�1(u)du

� 1

2�

N�1X
n=0

e�ixun�1(u)�u; (4.2)

where �u is a u step, i.e. un = (n � N
2
)�u for n = 0; ::; N with N intervals

for [�a; a]. The sum (4.2) is almost the same as equation (4.1). All we need

to do is to choose wisely the x points:

xp = (p�
N

2
)�x and �x�u =

2�

N
; (4.3)

60



for p = 0; ::; N � 1. With these choices,

X[p] =
1

2�

N�1X
n=0

e�i(n�
N
2
)�u(p�N

2
) 2�
N�u �1(u)�u

=
1

2�

N�1X
n=0

e�
2�i
N
(np+N2

4
�Np

2
�Nn

2
)�1(u)�u: (4.4)

Note that the exponential parcels are:

1. e�
2�i
N
np ! ready for the FFT

2. e�
2�iN
4 = 1 ! if we choose N = 22k

3. e+�ip = (�1)p ! independent of n

4. e+�in = (�1)n

Combining all the terms, equation (4.4) becomes

X[p] =
1

2�
(�1)p

N�1X
n=0

e�
2�i
N
np[(�1)n�1(un)]:

Hence, the application of the FFT to

U [n] = (�1)n�1(un)

will give us the sum (integral estimation) at point xp. Note that the second

condition from (4.3) is the trade-o¤ between the number of points N (speed)

and the values of �x and �u (accuracy). These choices have to be well

made and veri�ed or we will get some �impressive�results. For our tested

parameters, we choose N = 28 and �u = 6.

61



The double barrier option price in this case can be computed by the

Liptons eigenfunction expansion method from [Lipton, A. (2001)] presented

in Appendix 5.4, with the lower barrier close to zero (L = 0:001) and the

upper barrier U = B. The error level was established at 10�13. The results

are presented in the Table 4.2.

Table 4.2: The barrier option price via Liptons eigenfunction expansion,

(Spot 80-100, Barrier 105-145)

80 85 90 95 100

105 1.27 0.70 0.31 0.09 0.01

110 3.32 2.05 1.10 0.48 0.14

115 5.81 3.90 2.36 1.25 0.53

120 8.39 5.94 3.89 2.31 1.20

125 10.81 7.93 5.48 3.51 2.04

130 12.91 9.73 6.97 4.70 2.95

135 14.67 11.25 8.27 5.78 3.81

140 16.08 12.50 9.35 6.71 4.58

145 17.18 13.49 10.23 7.47 5.24

The di¤erences between equation (3.53) and our algorithm in Appendix

5.5 are presented in table 4.3.

In comparison, the Monte-Carlo simulation from Appendix 5.5 with N =

105 and the jump interval �t = 1=300 is presented in Table 4.4.

As expected, due to the full truncation algorithm, the Monte-Carlo sim-

ulation is less accurate.
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Table 4.3: The di¤erence between case 1 formula and Liptons eigenfunction

expansion, (Spot 80-100, Barrier 105-145)

80 85 90 95 100

105 0.002% 0.003% 0.006% 0.015% 0.304%

110 -0.001% -0.002% -0.002% -0.003% 0.237%

115 -0.001% -0.001% -0.001% -0.001% 0.163%

120 -0.001% -0.001% -0.001% -0.001% 0.105%

125 0.000% 0.000% 0.000% 0.000% 0.067%

130 0.000% 0.000% 0.000% 0.000% 0.044%

135 0.000% 0.000% 0.000% 0.000% 0.031%

140 0.000% 0.000% 0.000% 0.000% 0.024%

145 0.000% 0.000% 0.000% 0.000% 0.020%

4.3 Case 3

For the general case, we will be dealing with equations (3.63) and (3.62). In

more comfortable notation

V0 � e�rT
ZZ
R2+

f3(x; y)� d3(x; y)dxdy; (4.5)

with

f3(x; y) = S0I1;1(x; y)�KI1;0(x; y)� S0I2;1(x; y) +KI2;0(x; y)

d3 = dv2;vT (x; y) = g(y)

Z
R

e�ixuh(y; u)du; (4.6)
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Table 4.4: The di¤erence between the Monte-Carlo simulation and Liptons

eigenfunction expansion, (Spot 80-100, Barrier 105-145)

80 85 90 95 100

105 -19.492% -23.811% -24.158% -13.294% -47.534%

110 -6.644% -11.961% -10.848% -14.311% -18.082%

115 -6.811% -9.093% -13.712% -9.089% -16.118%

120 -4.585% -7.851% -4.287% -6.667% -4.882%

125 -2.179% -4.003% -5.056% -5.605% -3.238%

130 -3.108% -2.391% -3.944% -3.357% -2.804%

135 -3.231% -2.630% -2.811% -2.896% -5.419%

140 -1.221% -2.268% -3.145% -2.423% -2.123%

145 -2.280% -1.163% -3.112% -1.879% -0.541%

where Ij;k is given for case 3, in Appendix 5.1, and

g(y) =
1

2�
eL��+(v0�y)

�
�2 ;

h(y; u) = e�Ld��(v0+y)
de+

�2e� (
yed�

v0
)L�

1
2 I2L�1(

4d

�2e�

p
yv0e�d� ):

From equation (4.6) for the �xed y we have the same problem as in case

1 for the function d1(x). Hence, we will apply the FFT for each y and create

a (x; y) grid for the integral in (4.5). We can summarize our algorithm as:

1. Fix yp

2. Calculate d3(xi; yp) through the FFT

3. Repeat the steps 1 and 2 for the entire y grid
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4. Combine all the d3(xi; yp) values with f3(xi; yp) and use the 2D trape-

zoidal rule

5. Hope that everything goes well, as planned

Unfortunately the �nal step was very hard to accomplish. The algorithm

is hard to calibrate.

65



5 Appendix

Theorem 1 Ito�s Lemma or Ito�s Formula. Let

dX(t) = �dt+ �dB(t)

be an n-dimensional Itô process. Let g : [0;1[�Rn ! Rp be a C2 map. Then

the process

Y (t; w) = g(t;X(t))

is again the Itô process whose component Yk, is given by

dYk =
@gk
@t
(t;X)dt+

X
i

@gk
@Xi

(t;X)dXi +
1

2

X
ij

@gk
@Xi@Xj

;

where dBidBj = �ijdt and dBidt = dtdBi = 0.

For reference see [Øksendal, B. (2002)].

5.1 The inner expectation formulas

Case 1: r = q and � = 0

I1;1 = N
 
log(S0

K
) + 1

2
�2(T )

�(T )

!
�N

 
log(S0

B
) + 1

2
�2(T )

�(T )

!

I1;0 = N
 
log(S0

K
) + 1

2
�2(T )

�(T )

!
�N

 
log(S0

B
) + 1

2
�2(T )

�(T )

!

I2;1 =
B

S0

"
N
 
log( B

2

S0K
) + 1

2
�2(T )

�(T )

!
�N

 
log( B

S0
) + 1

2
�2(T )

�(T )

!#

I2;0 =
S0
B

"
N
 
log( B

2

S0K
) + 1

2
�2(T )

�(T )

!
�N

 
log( B

S0
) + 1

2
�2(T )

�(T )

!#
:
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Case 2: r 6= q and � = 0

I1;1 = exp((r � q)T )�
"
N
 
log(S0

K
) + (r � q)T + 1

2
�2(T )

�(T )

!
�N

 
log(S0

B
) + (r � q)T + 1

2
�2(T )

�(T )

!#

I1;0 =

"
N
 
log(S0

K
) + (r � q)T � 1

2
�2(T )

�(T )

!
�N

 
log(S0

B
) + (r � q)T � 1

2
�2(T )

�(T )

!#
I2;1 = exp((r � q)T ( 2

�2(T )
log(

B

S0
) + 1))�

�B
S0

"
N
 
log( B

2

S0K
) + (r � q)T + 1

2
�2(T )

�(T )

!
�N

 
log( B

S0
) + (r � q)T + 1

2
�2(T )

�(T )

!#
I2;0 = exp((r � q)T ( 2

�2(T )
log(

B

S0
) + 1))�

�S0
B

"
N
 
log( B

2

S0K
) + (r � q)T � 1

2
�2(T )

�(T )

!
�N

 
log( B

S0
) + (r � q)T � 1

2
�2(T )

�(T )

!#
:

Case 3: r 6= q and � arbitrary

I1;1 = exp(
1

2
�22�

2(T ) + q)�

�
"
N
 
log(S0

K
) + q + �22�

2(T )

�2�(T )

!
�N

 
log(S0

B
) + q + �22�

2(T ))

�2�(T )

!#

I1;0 =

"
N
 
log(S0

K
) + q

�2�(T )

!
�N

 
log(S0

B
) + q

�2�(T )

!#

I2;1 = exp(
1

2
�22�

2(T ) + q)(
B

S0
)

2q

�22�
2(T )

+2
�

�
"
N
 
log( B

2

S0K
) + q + �22�

2(T )

�2�(T )

!
�N

 
log( B

S0
) + q + �22�

2(T )

�2�(T )

!#

I2;0 = (
B

S0
)

2q

�22�
2(T )

"
N
 
log( B

2

S0K
) + q

�2�(T )

!
�N

 
log( B

S0
) + q

�2�(T )

!#
;
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where

q = c1T + c2�
2(T ) + c3(vT + v0):

Proposition 2 (Novikov�s Condition) For Xt adapted process, on the

probability space (
;Ft;P) and BM Wt, if

E
�
e
RT
0 jXtj2dt

�
<1

then

Zt = e
�

tR
0

XsdWs� 1
2

tR
0

X2
sds

is a Martingale. See e.g. [Øksendal, B. (2002)], and the reference therein.

5.2 Feynman-Kac Theorem

Theorem 3 (Feyman-Kac) Consider the stochastic di¤erential equation

dX(t) = �(t;X(t))dt+ 
(t;X(t))dW (t)

Let h(y) be a Borel-measurable function. Fix T > 0, and let t 2 [0; T ] be

given. De�ne the function

g(t; x) = Et;x[h(X(T )] = [E[h(X(T )jF(t)];

(We assume that Et;x[h(X(T )] < 1 for all t and x). Then g(t; x) satis�es

the PDE

gt(t; x) + �(t; x)gx(t; x) +
1

2

2(t; x)gxx(t; x) = 0

and the terminal condition

g(T; x) = h(x) 8x

See e.g. [Shreve, S.E. (2000)].
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5.3 Inversion Theorem

From the characteristic function we can retrieve the probability density through

the following theorem.

Theorem 4 (Inversion Theorem) IfX has a characteristic function 'X(t)

than for any interval (a; b)

P [a < x < b] +
P [x = a] + P [x = b]

2
= lim

T!1

1

2�

TZ
�T

e�iua � e�iub
iu

'X(u)du:

If 'X is integrable, then PX is absolutely continuous and X has a probability

density function given by:

fX(x) = P
0(x) =

1

2�

Z
R

e�iux'X(u)du:

For a proof and further detail see [Billingsley, P. (1995)].

5.4 Lipton eigenfunction expansion method

V D0 = 2e�qT
p
SK

1X
n=1

sin(kn ln
S

L
)eA(kn)v0+B(kn)

(�1)n+1kn(
q

U
K
�
q

K
U
) + sin(kn ln

L
K
)

(k2n +
1
4
) ln(U

L
)

;
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with

e�(k) = 1� e��(k)T

kn =
�n

ln(U
L
)

�(k) =

r
�2 + �2(k2 +

1

4
)

A(k) =
�(k2 + 1

4
)e�(k)

�(k)e+(k) + �e�(k)

B(k) =
��

�2
(�� �(k))T + 2��

�2
log(

2�(k)

�(k)e+(k)� �e�(k)):

See e.g. [Lipton, A. (2001)]

5.5 Matlab code

Monte-Carlo simulation

syms u x

tic

v0=Data(1); % initial variance

k=Data(2); % rate of mean inversion

theta=Data(3); % long term variance

ro=Data(4); % Correlation between two processes Z1 e Z2

T=Data(5); % time to maturity (T)

rd=Data(6); % domestic rate
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rf=Data(7); % foreign rate

LIVRE=Data(8);

sigma=Data(9); % volatility of the variance

K=Data(10); % strike price

L=Data(11); % lower barrier

U=Data(12); % upper barrier

C=Data(13); % cap

S0=Data(14); % spot

rr=0;

bb=1;

for Strike=80:5:100

for Barrier=105:5:145

K=Strike;

U=Barrier;

d=sqrt(k^2-2*sigma^2*1i*u);

e_plus=1+exp(-d*T);

e_minus=1-exp(-d*T);

A=(2*1i*u*e_minus)/(d*e_plus+k*e_minus);
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B=k*theta/sigma^2*(k-d)*T+2*k*theta/sigma^2*log(2*d/(d*e_plus+k*e_minus));

Char_Nu_squared=exp(A*v0+B); % symetrica

¤_f=matlabFunction(Char_Nu_squared);

I_1_1=@(x) normcdf((log(S0/K)+0.5.*x)./sqrt(x))-normcdf((log(S0/U)+0.5.*x)./sqrt(x));

% N(z)=1-N(-z)

I_1_0= @(x) normcdf((log(S0/K)-0.5.*x)/sqrt(x))-normcdf((log(S0/U)-

0.5.*x)/sqrt(x));

I_2_1=@(x) (U/S0)*(normcdf((log(U^2/(S0*K))+0.5.*x)/sqrt(x))-normcdf((log(U/S0)+0.5.*x)/sqrt(x)));

I_2_0=@(x) (S0/U)* (normcdf((log(U^2/(S0*K))-0.5.*x)/sqrt(x))-normcdf((log(U/S0)-

0.5.*x)/sqrt(x)));

f_Int_Case_A=@(x) S0*I_1_1(x)-K*I_1_0(x)-S0*I_2_1(x)+K*I_2_0(x);

H = @(x) (x >= 0);

f_f=¤_f;

N=2^8; % 16384

d_step=6;

lambda_step=2*pi/(N*d_step);

mm=0:1:N;

pp=0:1:N;

uu=(mm-N/2)*d_step;
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uu_max=(N-N/2)*d_step;

uu_min=(0-N/2)*d_step;

xx=(pp-N/2)*lambda_step;

xx0=N/2+1;

phi_uu=f_f(uu);

four=zeros(1,N);

for m=1:N

four(m)=((-1)^(m-1))*phi_uu(m);

end

GAMMA=¤t(four);

real_GAMMA=real(GAMMA);

INV_GAMMA=i¤t(real_GAMMA);

for p=1:N

I(p)=GAMMA(p)*d_step*((-1)^(p-1));

end

real_I=real(I);

x_plot=5000;

Integral_2=quadgk(f_f,uu_min,uu_max);
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Integral_3=I(xx0);

jj=1;

for ii=1:N

if abs(I(ii))>1/10^6 && xx(ii)>=0

teste_valores(jj)=ii;

jj=jj+1;

end

end

for tt=1:length(teste_valores)

I_opt(tt)=I(teste_valores(tt))*f_Int_Case_A(xx(teste_valores(tt)));

end

Integral_Spline=spline(xx(teste_valores),[0,I_opt,0]);

Val_Integral=ppint(Integral_Spline, xx(min(teste_valores)), xx(max(teste_valores)));

V_option=(1/(2*pi))*exp(-rd*T)*Val_Integral;

rr=rr+1;

Resultado(rr,bb)=real(V_option);

end

bb=bb+1;
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rr=0;

end

toc

Case 1

% function [Price,time, erro] = f_Heston_Barrier_MonteCarlo_DOC(Data)

v0=Data(1); % initial variance

k=Data(2); % rate of mean inversion

theta=Data(3); % long term variance

ro=Data(4); % Corelation between two processes Z1 e Z2

T=Data(5); % time to maturity (T)

rd=Data(6); % domestic rate

rf=Data(7); % foreign rate

LIVRE=Data(8);

sigma=Data(9); % volatility of the variance

K=Data(10); % strike price

L=Data(11); % lower barrrier

U=Data(12); % upper barrrier

C=Data(13); % cap
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S0=Data(14); % spot

rr=0;

bb=1;

for Strike=80:5:100

for Barrier=105:5:145

K=Strike;

U=Barrier;

r=rd-rf;

Num_Intervals=300;

Num_tests=10000;

dt=T/Num_Intervals;

Pr=zeros(1,Num_tests);

teste=zeros(1,Num_tests);

teste(1:Num_tests) = 1;

tic

for n_test=1:Num_tests

Z1=randn(1,Num_Intervals);

Z2=randn(1,Num_Intervals);
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Zv=Z1;

Zs=Z2;

S=zeros(1,Num_Intervals+1);

S(1)=S0;

v=zeros(1,Num_Intervals+1);

v(1)=v0;

for n=1:Num_Intervals

v_plus=max(v(n),0);

S(n+1)=S(n)*(1+(v_plus^0.5)*Zs(n)*dt^0.5);

v(n+1)=v(n)+k*dt*(theta-v_plus)+sigma*v_plus^0.5*Zv(n)*dt^0.5;

if S(n+1)>=U

teste(n_test)=0;

break

end

end

if teste(n_test)==1

Pr(n_test)=max(S(n+1)-K,0);

else
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Pr(n_test)=0;

end

end

Price=mean(Pr); %sum(Pr(:))/Num_tests;

V_Opt_MC=exp(-rd*T)*Price;

rr=rr+1;

Resultado_MC(rr,bb)=real(V_Opt_MC);

end

bb=bb+1;

rr=0;

end

time=toc;

Double trapezoidal rule

function output = Double_Int_Trapez(x,y,z)

m=length(x); % num_int_x

n=length(y); % num_int_y

h=(x(1)-x(m))/(m-1);

k=(y(1)-y(n))/(n-1);
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S1=z(1,1)+z(1,n)+z(m,1)+z(m,n);

sum_z_x=sum(z,1);

sum_z_y=sum(z,2);

S2=2*(sum_z_x(1)+sum_z_x(n)+sum_z_y(1)+sum_z_y(m)-2*S1);

z_apoio=z(2:m-1,2:n-1);

S3=4*sum(z_apoio(:));

output=1/4*h*k*(S1+S2+S3);

Case 3

syms x y u

v0=Data(1); % initial variance

k=Data(2); % rate of mean inversion

theta=Data(3); % long term variance

ro=Data(4); % Corelation between two processes Z1 e Z2

T=Data(5); % time to maturity (T)

rd=Data(6); % domestic rate

rf=Data(7); % foreign rate

V_Option_price=Data(8); % Resultado que é suposto dar

sigma=Data(9); % volatility of the variance
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K=Data(10); % strike price

L=Data(11); % lower barrrier

U=Data(12); % upper barrrier

C=Data(13); % cap

S0=Data(14); % spot

B=U;

ro2=sqrt(1-ro^2);

LL=k*theta/sigma^2;

d=sqrt(k^2-2*sigma^2*1i*u); % u esta substituido por 1^1

e_plus=1+exp(-d*T);

e_minus=1-exp(-d*T);

% BE=besseli(2*LL-1,argum_B);

q=@(x,y)(rd-rf)*T-x/2+(ro/sigma)*(y-v0-k*theta*T+k*x);

I_1_1=@(x,y) exp(0.5*ro2^2.*x+q(x,y))*(normcdf((log(S0/K)+q(x,y)+ro2^2*x)./(ro2*(x.^1/2)))-

normcdf((log(S0/B)+q(x,y)+ro2^2*x)./(ro2*(x.^1/2))));

I_1_0=@(x,y) normcdf((log(S0/K)+q(x,y))./(ro2*x.^1/2))-normcdf((log(S0/B)+q(x,y))./(ro2*x.^1/2));

I_2_1_exp=@(x,y) exp(0.5*ro2^2.*x+q(x,y));

I_2_1_BS=@(x,y) (B/S0)^(2*q(x,y)./(ro2^2*x)+2);
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I_2_1_Norm=@(x,y) normcdf((log(B^2/(S0*K))+q(x,y)+ro2^2*x)./(ro2*x.^1/2))-

normcdf((log(B/S0)+q(x,y)+ro2^2*x)./(ro2*x.^1/2));

I_2_1=@(x,y) I_2_1_exp(x,y).*I_2_1_BS(x,y).*I_2_1_Norm(x,y);

I_2_0_BS=@(x,y) (B/S0)^(2*q(x,y)./(ro2^2.*x));

I_2_0_Norm=@(x,y) normcdf((log(B^2/S0/K)+q(x,y))./(ro2*x.^1/2))-

normcdf((log(B/S0)+q(x,y))./(ro2*x.^1/2));

I_2_0=@(x,y) I_2_0_BS(x,y).*I_2_0_Norm(x,y);

f_Int_Case_C=@(x,y) S0*I_1_1(x,y)-K*I_1_0(x,y)-S0*I_2_1(x,y)+K*I_2_0(x,y);

N=2^8; % 16384=2^14

d_step=2^(4);

lambda_step=2*pi/(N*d_step);

mm=0:1:N-1;

pp=0:1:N-1;

uu=(mm-N/2)*d_step;

uu_max=(N-N/2)*d_step;

uu_min=(0-N/2)*d_step;

uu_0=uu(N/2+1);

xx=(pp-N/2)*lambda_step;

xx0=N/2+1;
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d_vT_v2T_out=0.5/pi*exp(LL*k*T+(v0-y)*k/sigma^2);

den_coef=2*d/(sigma^2/e_minus);

den_exp=exp(-LL*d*T-(v0+y)*d*e_plus/(sigma^2*e_minus));

den_pot=(y*exp(d*T)/v0)^(LL-0.5);

den_argum_B=(4*d/(sigma^2*e_minus))*(y*v0*exp(-d*T))^0.5;

den_BE=besseli(2*LL-1,den_argum_B);

den_fun=den_coef*den_pot*den_BE*den_exp; % RealPart: Since "1"

goses to 0 at 60+. Near 0 needs "u" around 1000. At 0 gives error. Max

never at u=0.

y_min=0.001;

y_max=0.25+y_min;

y_step=0.001;

y_N=(y_max-y_min)/y_step;

yy=zeros(1,y_N+1);

d_vT_v2T_out_yy=zeros(1,y_N+1);

I=zeros(N,y_N+1);

I_opt=zeros(N/2,y_N+1);

for ii=1:y_N+1

yy(ii)=y_min+y_step*(ii-1);
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d_vT_v2T_out_yy(ii)=subs(d_vT_v2T_out,y,yy(ii));

if ii==100

d_vT_v2T_out_yy_100=d_vT_v2T_out_yy(ii);

end

den_fun_�xed_y=subs(den_fun,y,yy(ii));

f_f=matlabFunction(den_fun_�xed_y); % All that depends only

on (y and u)

if ii==100

f_f_100=f_f;

end

phi_uu=f_f(uu);

if ii==100

phi_uu_100=phi_uu;

end

four=zeros(1,N);

for m=1:N

four(m)=((-1)^(m-1))*phi_uu(m); %((-1)^(m-1))*

end
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if ii==100

four_100=four;

end

GAMMA=¤t(four);

if ii==100

GAMMA_100=GAMMA;

end

for p=1:N

I(p,ii)=GAMMA(p)*d_step*((-1)^(p-1)); %*((-1)^(p-1))

if ii==100

I_100(p)=I(p,ii);

end

end

for tt=1:N/2

I_opt(tt,ii)=I(N/2+tt,ii)*f_Int_Case_C(xx(N/2+tt),yy(ii))*d_vT_v2T_out_yy(ii);

if isnan(I_opt(tt,ii))

I_opt(tt,ii)=0;

end
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if ii==100

f_Int_Case_C_100=f_Int_Case_C(xx(N/2+tt),yy(ii));

I_opt_100(tt)=I_opt(tt,ii);

end

end

end

I_opt_Real=I_opt;

tr_xxx=xx(xx0:N);

tr_yyy=yy;

tr_zzz=I_opt_Real;

Int_Opt=Double_Int_Trapez(tr_xxx,tr_yyy,tr_zzz);

V_Opt_FFT=exp(-rd*T)*Int_Opt;

yt=20;

den_fun_�xed_yt=subs(den_fun,y,yy(yt));

f_f_teste=matlabFunction(den_fun_�xed_yt);

Teste_Zero1=quadgk(@(u) f_f_teste(u).*exp(-1i*xx(xx0+5)*u),uu_min,uu_max);

Teste_Zero2=I(xx0+5,20);

toc
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