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ON THE CLASSIFICATION OF STATIONARY

ELECTRO-VACUUM BLACK HOLES

by

João Lopes Costa

Abstract. — We obtain a classification of stationary, I+–regular, non-degenerate
and analytic electro-vacuum space-times in terms of Weinstein solutions. In par-
ticular, for connected horizons, we prove uniqueness of the Kerr-Newman black
holes.
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1. Introduction

We address the following celebrated and long-standing conjecture:

Conjecture 1.1. — Let (M , g, F ) be a stationary, asymptotically flat, electro-

vacuum, four-dimensional regular space-time. Then the domain of outer commu-

nications 〈〈Mext〉〉 is either isometric to the domain of outer communications of a

Kerr-Newman space-time or to the domain of outer communications of a (standard)

Majumdar-Papapetrou space-time.
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Arguments to this effect have been given in the literature [5,21,26] (see also [22,

36]), with the hypotheses needed not always spelled out, and with some notable

technical gaps. The aim of this work is to give continuation to the project initiated

in [13], where the vacuum case was considered, and obtain a precise classifica-

tion of such electro-vacuum solutions in the class of analytic space-times with non-

degenerate event horizons, providing detailed filling of the gaps alluded to above.

As usual, in mathematical Relativity, part of the challenge posed by a conjecture

is to obtain a precise formulation. In the case of the “no-hair” conjectures this

non-linearity lies in the notion of regularity and it is our opinion that the non-

existence of a precise formalization for this concept has led to the enclosure of

“hairy” assumptions and technical difficulties which has made the state of the art

concerning this problem difficult to assess.(1) So, we start exactly by collecting

our technical assumptions in the following (we refer to Section 2 for the necessary

intermediary definitions):

Definition 1.2. — Let (M , g) be a space-time containing an asymptotically flat

end Sext, and let K be a stationary Killing vector field on M . We will say that

(M , g,K) is I+–regular if K is complete, if the domain of outer communications

〈〈Mext〉〉 is globally hyperbolic, and if 〈〈Mext〉〉 contains a spacelike, connected,

acausal hypersurface S ⊃ Sext, the closure S of which is a topological mani-

fold with boundary, consisting of the union of a compact set and of a finite number

of asymptotic ends, such that the boundary ∂S := S \S is a topological manifold

satisfying

(1.1) ∂S ⊂ E
+ := ∂〈〈Mext〉〉 ∩ I+(Mext) ,

with ∂S meeting every generator of E + precisely once. (See Figure 1.1.)

Needless to say, all these conditions are satisfied by the Kerr-Newman and the

Majumdar-Papapetrou solutions and, in particular, by Minkowski and Reissner-

Nordström. For a detailed discussion of the previous definition and an alternative

formulation of Conjecture 1.1 with regular replaced by a specific set of weaker con-

ditions see [13].

Mext∂S

S〈〈Mext〉〉

E +

Figure 1.1. The hypersurface S from the definition of I
+–regularity.

(1)An illustrative example is given by the product structure (3.15) that, although clear for

Minkowski with the usual R × U(1) action by isometries, seems far from obvious in the gener-

ality required. Other examples are the regularity of the horizon and the asymptotic behavior of

the relevant harmonic maps.
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In this work we establish the following special case of Conjecture 1.1:

Theorem 1.3. — Let (M , g, F ) be a stationary, asymptotically flat, I+–regular,

electro-vacuum, four-dimensional analytic space-time, satisfying (2.7) and (2.11).

If each component of the event horizon is mean non-degenerate, then 〈〈Mext〉〉 is

isometric to the domain of outer communications of one of the Weinstein solu-

tions of Section 6. In particular, if the event horizon is connected and mean non-

degenerate, then 〈〈Mext〉〉 is isometric to the domain of outer communications of a

Kerr-Newman space-time.

It should be emphasized that the hypotheses of analyticity and non-degeneracy

are highly unsatisfactory, and one believes that they are not needed for the con-

clusion. Note that by not allowing the existence of the “technically awkward” [6]

degenerate horizons we eliminate extreme Kerr-Newman as well as the Majumdar-

Papapetrou solutions from our classification. One also believes, in accordance with

the statement of Conjecture 1.1, that all solutions with non-connected event hori-

zon are in the Majumdar-Papapetrou family; consequently one expects all other

(non-connected) Weinstein solutions, and in particular the ones referred to in the

previous result, to be singular. We postpone further discussion of this issues to the

final section.

A critical remark comparing our work with the existing literature is in order;

we focus on those points that do not generalize immediately when passing from

pure to electro-vacuum. First of all, the famous reduction of the Einstein-Maxwell

source free equations to a singular harmonic map problem requires the use of Weyl

coordinates. The local existence of such coordinates has been well known for some

time now, but global existence has, to our knowledge, either been part of the ansatz,

usually implicitly, or based on incorrect or incomplete analysis. The main reasons

for this unsatisfactory situation resides in the existing proofs of non-negativity of

the area function (3.10) in 〈〈Mext〉〉, and existence of a global cross-section for the

R × U(1) action again in 〈〈Mext〉〉. In [13] we solved this problems for vacuum

and in Section 3 we present the necessary adjustments to extend this global exis-

tence result to the electro-vacuum scenario. Also, no previous work known to us

establishes the asymptotic behavior, as needed for the proof of uniqueness, of the

relevant harmonic maps. More specifically: the necessity to control the behavior at

points where the horizon meets the rotation axis, prior to [13], seems to have been

neglected; at infinity, which requires special attention in the electro-vacuum case,

part of the necessary estimates were imposed as extra conditions, beyond asymp-

totic flatness; (2) also, an apparent disregard for the singular character, at the axis,

of the hyperbolic distance (4.14) between the maps, even at large distance, appears

to be the norm. A detailed asymptotic analysis is carried out in Section 5.

We also note that a considerable part of the foundations of the theory underlying

the desired classification depend exclusively on stationarity, I+–regularity and the

null energy condition. Again, this work was carried out in [13], where various results

were established under conditions weaker than previously cited, or were generalized

to higher dimensions; this is of potential interest for further work on the subject.

(2)See, for example, Theorem 2 in [27].
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2. Preliminaries

An electro-vacuum space-time is a triple (M , g, F ), assembled by a (n + 1)–

dimensional Lorentzian manifold (M , g) endowed with a 2-form F , that satisfies

the source free Einstein-Maxwell field equations

(2.1) Ric − 1

2
Rg = 2 TF ,

(2.2) F = dA ,

(2.3) d ∗ F = 0 ,

where Ric is the Ricci curvature tensor of the metric g, R its scalar curvature and

TF is the energy-momentum tensor of the electromagnetic 2-form F ,

TF (u, v) := g(iuF, ivF ) − 1

2
|F |2g(u, v) .(2.4)

A space-time will be said to possess an asymptotically flat end if M contains

a spacelike hypersurface Sext diffeomorphic to Rn \ B(R), where B(R) is an open

coordinate ball of radius R, with the following properties: there exists a constant

α > 0 such that, in local coordinates on Sext obtained from Rn \B(R), the metric

γ induced by g on Sext, and the extrinsic curvature tensor Kij of Sext, satisfy the

fall-off conditions

γij − δij = Ok(r−α) , Kij = Ok−1(r
−1−α) ,(2.5)

for some k ≥ 1, where we write f = Ok(rα) if f satisfies

(2.6) ∂k1 . . . ∂kℓ
f = O(rα−ℓ) , 0 ≤ ℓ ≤ k .

In connection with the field equations we also request the following decay rate for

the electromagnetic potential

(2.7) Aµ = Ok(r−α) .

A Killing vector K is said to be complete if for every p ∈ M the orbit φt[K](p)

of K is defined for all t ∈ R, i.e., if (the flow of) K generates an action of R by

isometries; in an asymptotically flat context, K is called stationary if it is timelike at

large distances. The exterior region Mext and the domain of outer communications

〈〈Mext〉〉 are then defined as

(2.8) 〈〈Mext〉〉 = I+(∪tφt(Sext)
︸ ︷︷ ︸

=:Mext

) ∩ I−(∪tφt(Sext)) ,

with the event horizon being

(2.9) E := ∂〈〈Mext〉〉 ; E
± := I±(Mext) ∩ E .

One expects stationary electro-vacuum space-times to be static or stationary-

axisymmetric: static meaning that the stationary Killing vector is hypersurface-

orthogonal, i.e.,

(2.10) dK♭ ∧K♭ = 0 ,

where K♭ = g(K, ·), and stationary-axisymmetric corresponding to the existence of

a second complete Killing vector K(1), which together with the stationary Killing

vector K(0) := K generate an R × U(1) action by isometries. In connection with
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the field equations we require the electromagnetic field to be invariant under the

flow of the relevant Killing vectors

(2.11) LK(µ)
F = 0 .

In the stationary and asymptotic flat scenario one is able to choose adapted

coordinates so that the metric can, in a neighborhood of infinity, be written as

g = −V 2(dt+ θidx
i

︸ ︷︷ ︸

=θ

)2 + γijdx
idxj

︸ ︷︷ ︸

=γ

,(2.12)

with

(2.13) K = ∂t =⇒ ∂tV = ∂tθi = ∂tγij = 0 ;

since we are also assuming electro-vacuum we get the following improvement of the

original decay rates [7, Section 1.3],

(2.14) γij − δij = O∞(r−1) , θi = O∞(r−1) , V − 1 = O∞(r−1) ,

and

(2.15) Aµ = O∞(r−1) ,

where the infinity symbol means that (2.6) holds for arbitrary k.

3. Weyl coordinates

On a region charted by Weyl coordinates the source free Einstein-Maxwell equa-

tions simplify considerably. It has been for long expected and recently showed in [13]

that such global chart is available away from the axis of a stationary and axisym-

metric vacuum domain of outer communications. In fact the role of the vacuum

field equations in the referred analysis – they imply the orthogonal integrability con-

ditions (3.1) and allow us to show that, whenever defined, the squared root of the

area function (3.10) is harmonic with respect to the orbit space metric – is fulfilled

by the electro-vacuum field equations.

The first of these well known results, which neither requiresK(0) to be stationary,

nor K(1) to be a generator of axisymmetry, generalizes to higher dimensions as

follows (compare [4]):

Proposition 3.1. — Let (M , g, F ) be an (n+1)–dimensional electro-vacuum space-

time, possibly with a cosmological constant, with n − 1 commuting Killing vector

fields satisfying

LK(µ)
F = 0 , µ = 0, . . . , n− 2 .

If n− 2 of the zero sets Aµ := {p ∈ M | K(µ)|p = 0} are non-empty then (3)

(3.1) dK(µ) ∧K(0) ∧ . . . ∧K(n−2) = 0 , ∀µ = 0, . . . , n− 2 .

Proof. — To fix conventions, we use a Hodge star defined through the formula

α ∧ β = ±〈∗α, β〉Vol ,

where the plus sign is taken in the Riemannian case, minus in our Lorentzian one,

while Vol is the volume form. The following (well known) identities are useful [22];

(3.2) ∗ ∗θ = (−1)s(n+1−s)−1θ , ∀θ ∈ Λs ,

(3)By an abuse of notation, we use the same symbols for vector fields and for the associated

1-forms.
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(3.3) iX ∗ θ = ∗(θ ∧X) , ∀θ ∈ Λs , X ∈ Λ1 .

Further, for any Killing vector K,

(3.4) [LK , ∗] = 0 .

The Leibniz rule for the divergence δ := ∗d∗ reads, for θ ∈ Λs,

δ(θ ∧K) = ∗d ∗ (θ ∧K)
(3.3)
= ∗ d(iK ∗ θ) = ∗(LK ∗ θ − iKd ∗ θ)

(3.2),(3.4)
= ∗ ∗LKθ − ∗iK(−1)(n+1−s+1)(n+1−(n+1−s+1))−1 ∗ ∗d ∗ θ

= (−1)s(n+1−s)−1
LKθ − (−1)s(n+1−s)−n+1 ∗ ∗(δθ ∧K)

= (−1)s(n+1−s)−1
LKθ + (−1)n+1δθ ∧K .

Applying this to θ = dK one obtains

∗d ∗ (dK ∧K) = −LKdK + (−1)n+1δdK ∧K
= (−1)n+1δdK ∧K .

As any Killing vector is divergence free, we see that

δdK = (−1)n∆K = (−1)n2 tr∇2K = (−1)n+12 iK Ric ,

where ∆ is the Laplace-Beltrami operator. The assumed field equations (with cos-

mological constant Λ) imply

Ric = 2 TF +
2

n− 1
Λg ,

from which

∗d ∗ (dK ∧K) = (−1)n+1(−1)n+12 iK(2 TF +
2

n− 1
Λg) ∧K

= 2

(

2 iKTF ∧K +
2

n− 1
ΛK

)

∧K = 4 iKTF ∧K .

Letting α := iKF for any vector field X we have

α · iXF = − ∗ (α ∧ ∗iXF ) = −(−1)n ∗ (∗iXF ∧ α)

= (−1)n+1iα ∗ ∗F = (−1)n+1(−1)n+1iαiXF

= −F (α,X) ,

which inserted into (2.4) gives

iKTF = −iαF − 1

2
|F |2K ,

and consequently

∗d ∗ (dK ∧K) = −4(iαF +
1

2
|F |2K) ∧K = −4 iαF ∧K = 4K ∧ iαF .

Meanwhile, since (modulo sign)

iαK = ± ∗ (K ∧ ∗α) = ± ∗ (K ∧ ∗iKF ) = ± ∗ (K ∧ ∗iK ∗ ∗F )

= ± ∗ (K ∧ ∗ ∗ (∗F ∧K)) = ± ∗ (K ∧ ∗F ∧K) = 0 ,
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for β := iK ∗ F ∈ Λn−2, we have

∗(α ∧ β) = (−1)1×(n−2) ∗ (β ∧ α) = (−1)n−2iα ∗ β
= (−1)n−2iα ∗ iK ∗ F = (−1)n−2iα ∗ ∗(F ∧K)

= (−1)n−2iα(−1)3(n+1−3)−1F ∧K
= −(iαF ∧K + (−1)2F ∧ iαK) = −(iαF ∧K + 0)

= K ∧ iαF

which leads to the significant

(3.5) d ∗ (dK ∧K) = 4α ∧ β = 4 iKF ∧ iK ∗ F .

Now, for any two commuting Killing vectors and an arbitrary differential form we

have

[LK(µ)
, iK(ν)

]θ = LK(µ)
(iK(ν)

θ) − iK(ν)
(LK(µ)

θ)

= LK(µ)
[θ(K(ν) , . . .)] − (LK(µ)

θ)(K(ν) , . . .)

= (LK(µ)
θ)(K(ν) , . . .) + θ(LK(µ)

K(ν) , . . .) − (LK(µ)
θ)(K(ν) , . . .) = 0 ,

giving us the commutation relation

(3.6) [K(µ),K(ν)] = 0 =⇒ [LK(µ)
, iK(ν)

] = 0 ,

from which it follows that

dF (K(ν),K(µ)) = diK(µ)
α(ν) = −iK(µ)

dα(ν) + LK(µ)
α(µ)

= −iK(µ)
(−iK(ν)

dF + LK(ν)
F ) + iK(µ)

LK(µ)
F = 0 ,

where we used the fact that F is exact and invariant under the flow of this Killing

vectors. By the hypothesis on the zero sets, for any pair µ 6= ν, we may take

A(µ) 6= ∅. We then have F (K(µ),K(ν))|A(µ)
≡ 0 and consequently

(3.7) F (K(µ),K(ν)) ≡ 0 , ∀µ, ν ∈ {0, ..., n− 2} .

A similar computation leads to

(3.8) iK(µ)
iK(ν)

∗ F = 0 , ∀µ, ν ∈ {0, ..., n− 2} .

Now, let ω(µ) be the µ’th twist form,

ω(µ) := ∗(dK(µ) ∧K(µ)) .

The identity

LK(µ)
ω(ν) = LK(µ)

∗ (dK(µ) ∧K(ν))

= ∗(LK(µ)
dK(ν) + dK(ν) ∧ LK(µ)

K(ν)) = 0 ,

together with

LK(µ1)
(iK(µ2)

. . . iK(µℓ)
ω(µℓ+1)) = iK(µ2)

. . . iK(µn−1)
LK(µℓ)

ω(µℓ+1) = 0 ,

and Cartan’s formula for the Lie derivative, gives

(3.9) d(iK(µ1)
. . . iK(µℓ)

ω(µℓ+1)) = (−1)ℓiK(µ1)
. . . iK(µn−1)

dω(µℓ+1) .
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We thus have

d ∗ (dK(µ0) ∧K(µ0) ∧ . . . ∧K(µn−2)) = d(iK(µn−2)
. . . iK(µ1)

∗ (dK(µ0) ∧K(µ0)))

= (−1)n−2iK(µn−2)
. . . iK(µ1)

dω(µ0)

(3.5)
= (−1)niK(µn−2)

. . . iK(µ1)
4α(µ0) ∧ β(µ0)

= 4 (−1)niK(µn−2)
. . . iK(µ2)

(iK(µ1)
α(µ0) ∧ β(µ0) − α(µ0) ∧ iK(µ1)

β(µ0))

= 4 (−1)niK(µn−2)
. . . iK(µ2)

(F (K(µ0),K(µ1))β(µ0) − α(µ0) ∧ iK(µ1)
iK(µ0)

∗ F )

(3.7,3.8)
= 0 .

So the function ∗(dK(µ0) ∧K(µ0) ∧K(µ1) ∧ . . .∧K(µn−2)) is constant, and, as before,

the result follows from the hypothesis on the zero sets.

Noting that a globally hyperbolic, stationary and asymptotically flat domain of

outer communications satisfying the null energy condition is necessarily simply-

connected [16, 19, 20], in view of the previous result Theorem 5.6 of [13] translates

to the electro-vacuum setting as:

Theorem 3.2. — Let (M , g, F ) be a four-dimensional, I+–regular, asymptotically

flat, electro-vacuum space-time with stationary Killing vector K(0) and periodic

Killing vector K(1), jointly generating an R × U(1) subgroup of the isometry group

of (M , g). If 〈〈Mext〉〉 is globally hyperbolic, then the area function

(3.10) W := − det
(

g(K(µ),K(ν))
)

µ,ν=0,1
,

is non-negative on 〈〈Mext〉〉, vanishing precisely on the union of its boundary with

the (non-empty) set {g(K(1),K(1)) = 0}.

Away from points where K(0) ∧K(1) vanishes, which according to [13, Corollary

3.8] correspond, in a chronological(4) 〈〈Mext〉〉, exactly to axis points

(3.11) A := {q ∈ M | K(1)|q = 0} ,
there is a well defined and differentiable local cross-section for the R×U(1) action.

We can endow this cross-section with the orbit space metric

(3.12) q(Z1, Z2) = g(Z1, Z2) − hµν
g(Z1,K(µ))g(Z2,K(ν)) ,

whenever hµν := g(K(µ),K(ν)) is non-singular. The established orthogonality con-

ditions allow us to identify, at least locally, the previous orbit space structure with

a 2-surface orthogonal to the Killing vectors, provided by (3.1), endowed with the

induced metric. From this and Theorem (3.2) we see that q is well defined and

Riemannian throughout 〈〈Mext〉〉 \ A ; it is then well known [36] that

(3.13) ∆q

√
W = 0 ,

whenever W is non-negative and q is Riemannian, which again is the case within

〈〈Mext〉〉 \ A .

(4)No closed timelike curves allowed.
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According to the Structure Theorem [13], I+–regularity allows for the decompo-

sition

(3.14) 〈〈Mext〉〉 ∩ I+(Mext) = R × S ,

with K(1) tangent to S , a simply-connected spacelike hypersurface with boundary

which is an asymptotically flat global cross-section for the action generated by the

stationary vector. We are now allowed to use the classification of circle actions

on simply-connected 3-manifolds of Orlik and Raymond [29, 31] to obtain a global

cross-section for the R ×U(1) action in 〈〈Mext〉〉 \ A . Then, by (3.13) and relying

on the results of [10], while disallowing the existence of degenerate horizons, we are

able to undertake an analysis leading to

(3.15) 〈〈Mext〉〉 \ A ≈ R × S1 × R
+ × R ,

while showing that this diffeomorphism defines a global coordinate system (t, ϕ, ρ, z)

with

(3.16) K(0) = ∂t , K(1) = ∂ϕ and ρ =
√
W .

After invoking (3.1) once more, the desired global expression for the space-time

metric in terms of Weyl coordinates

(3.17) g = −ρ2e2λdt2 + e−2λ(dϕ− wdt)2 + e2u(dρ2 + dz2) ,

follows, with

(3.18) u = Ok−4(r
−1) , r =

√

ρ2 + z2 → ∞ .

4. Reduction to a harmonic map problem

The electro-vacuum field equations (2.1)-(2.3) and simple-connectedness of 〈〈Mext〉〉
guarantee the global existence of the following potentials:

(4.1) dχ = iK(1)
F , dψ = iK(1)

∗ F and dv = ω − 2(χdψ − ψdχ) ,

where

(4.2) ω := ∗(dK♭
(1) ∧K♭

(1)) ,

is the axial twist form. As discussed in detail in [36], when a global representation

in terms of Weyl coordinates like (3.17) is allowed, the space-time metric is uniquely

determined by an axisymmetric harmonic map

(4.3) Φ = (λ, v, χ, ψ) : R
3 \ A −→ H

2
C ,

here A = {(0, 0, z) | z ∈ R} and H2
C

is the ‘upper half-space model’ of the 2-

dimensional complex hyperbolic space, i.e., R4 with metric given by

(4.4) ds2 = dλ2 + e4λ(dv + χdψ − ψdχ)2 + e2λ(dχ2 + dψ2) .

The metric coefficient λ is part of the harmonic map and the remaining unknowns

of the metric can be determined from Φ by considering the unique solution (w, u)

of the set of equations

(4.5) ∂ρw = −e4λρ ωz , ∂zw = e4λρ ωρ ,

(4.6)

∂ρu−∂ρλ = ρ

[

(∂ρλ)
2 − (∂zλ)

2 +
1

4
e4λ(ω2

ρ − ω2
z) + e2λ

(
(∂ρχ)2 − (∂zχ)2 + (∂ρψ)2 − (∂zψ)2

)
]

(4.7) ∂zu− ∂zλ = 2 ρ

[

∂ρλ ∂zλ+
1

4
e4λωρ ωz + e2λ(∂ρχ ∂zχ+ ∂ρψ ∂zψ)

]

,
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that go to zero at infinity, and where we write ωa := ω(∂a) for a ∈ {ρ, z}.

4.1. Distance function on the target manifold. — The criteria for uniqueness

of harmonic maps used in this paper (see Theorem 6.1 and compare [12, Appendix

C]), is stated in terms of the pointwise distance between the maps. For the ‘disk

model’ of H2
C

the distance between two points z = (z1, z2) and w = (w1, w2) is given

by [35, eq 55, pg 26]

(4.8) cosh(d) =
|1 − z̄1 w1 − z̄2 w2|
√

1 − |z|2
√

1 − |w|2
.

To obtain the distance function for the ‘upper half-space model’ we will use the

isometry between the two referred models presented in [35, Appendix]: first we

perform the coordinate transformation

z1 =
1 − x1

1 + x1
, z2 =

2x2

1 + x1
,

with analogous expressions for wi = wi(y1, y2) to obtain

|1 − z̄1w1 − z̄2 w2| =
2 |x̄1 + y1 − 2 x̄2 y2|
|1 + x1| |1 + y1|

;

then we take

eλ1 =
|1 + z1|
√

1 − |z|2
and eλ2 =

|1 + h1|
√

1 − |h|2

so that

(4.9) cosh(d) =
1

2
|x̄1 + y1 − 2 x̄2 y2| eλ1+λ2 ;

and finally, by writing

(4.10) x1 = e−2λ1 + χ2
1 + ψ2

1 + 2 iv1 and x2 = χ1 + iψ1 ,

with similar expressions for yi = yi(λ2, v2, χ2, ψ2), we see that the distance function

satisfies (5)

cosh2(d) =
1

4
e2(λ1+λ2)(e−2λ1 + e−2λ2 + (χ1 − χ2)

2 + (ψ1 − ψ2)
2)2

(4.11)

+ e2(λ1+λ2)(v2 − v1 − χ1ψ2 + χ2ψ1)
2

=
1

4

{
e−λ1+λ2 + eλ1−λ2 + eλ1+λ2(χ1 − χ2)

2 + eλ1+λ2(ψ1 − ψ2)
2
}2

+ e2(λ1+λ2) {(v2 − v1) + (χ2ψ1 − χ1ψ2)}2
,

or in an apparently more intrinsic way

cosh2(d) =
1

4

{√

g2(∂ϕ, ∂ϕ)

g1(∂ϕ, ∂ϕ)
+

√

g1(∂ϕ, ∂ϕ)

g2(∂ϕ, ∂ϕ)
+

(χ1 − χ2)
2 + (ψ1 − ψ2)

2

√
g1(∂ϕ, ∂ϕ)

√
g2(∂ϕ, ∂ϕ)

}2

(4.12)

+

{

(v2 − v1) + (χ2ψ1 − χ1ψ2)
√

g1(∂ϕ, ∂ϕ)
√

g2(∂ϕ, ∂ϕ)

}2

.

(5) By taking χi = ψi ≡ 0 we see that this distance function is related to the one used in the

vacuum case [13, Section 6.5.1] by d = 2db. This discrepancy has its genesis in an analogous

relation between the line elements of the different disk models used.
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Figure 5.1. The quotient space and its double.

It will also be helpful to use the usual rescaling

(4.13) Ui = λi + ln ρ , so that gi(∂ϕ, ∂ϕ) = ρ2e−2Ui = e−2λi ,

from which we get our final expression for the distance in the ‘upper half-space’:

cosh2(d) =
1

4

{
eU1−U2 + e−U1+U2 + ρ−2eU1+U2(χ1 − χ2)

2 + ρ−2eU1+U2(ψ1 − ψ2)
2
}2

(4.14)

+
{
ρ−2eU1+U2(v2 − v1) − ρ−2eU1+U2(χ1ψ2 − χ2ψ1)

}2
.

5. Boundary conditions

5.1. The Axis. — From now on we will be controlling the distance, as given by

any of the formulae in the previous section, between the harmonic maps arising from

two I+–regular, stationary-axisymmetric and electro-vacuum space-times (Mi, gi),

i = 1, 2. We will start by showing that

(5.1) d(Φ1,Φ2) is bounded near A ∩ 〈〈Mext〉〉 .

In this section we will be working with the following coordinate systems: isothermal

coordinates (x̂i, ẑi) globally defined in the doubling across the axis of the orbit space

of an appropriate extension of the U(1) action to the manifold obtained by the

addition of 3-discs to every connected component of ∂Si;
(6) “canonical coordinates”

(ρ, z) of the half plane R
+
0 ×R, which is the image of each (physical) orbit space by

the map Ψi defined by (x̂i, ẑi) 7→ (ρi(x̂i, ẑi), zi(x̂i, ẑi)).

Let φs be the flow generated by the axial Killing vector K(1). In the doubling of

the orbit space the isothermal coordinates satisfy

x̂ ◦ φπ = −x̂ and ẑ ◦ φπ = ẑ .

Then, invariance of a function (x̂, ẑ) 7→ f(x̂, ẑ) under the axial flow, which is the

case for the fields v, χ and ψ, implies that the function x̂ 7→ f(x̂, ẑ) is even for all

(6)The resulting space is diffeomorphic to R2, see Figure 5.1, and for more details concerning this

construction see [13, Section 6]; also, the fact that I+-regularity, stationarity and the null energy

condition imply spherical topology for the connected components of the cross-section of the event

horizon ∂Si follows from [16].
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ẑ. In this case, if f is C2, Taylor expanding on x̂, from the axis, gives

(5.2) f(x̂, ẑ) = f(0, ẑ) +
1

2

∂2f

∂x̂2
(c(x̂), ẑ) x̂ 2 , |c(x̂)| ≤ |x̂| .

Now fix a point in A ∩ 〈〈Mext〉〉 and by rescaling ẑ assume it lies at the origin. Sup-

pose also that f ≡ f0 := f(0, 0) along the connected component of A ∩ 〈〈Mext〉〉,
in 〈〈Mext〉〉, containing (0, 0); this is clearly the case for all the functions appearing

in 4.11 and it also implies that we can realize the aforementioned extension of the

doubling of the orbit space to R2 while preserving the constancy of f along the

extended axis near the poles, i.e., near the points where the axis meets the event

horizon. Then (5.2) implies

(5.3) |f(x̂, ẑ) − f0| ≤ Cx̂ 2 near (0, 0) ∈ A ∩ 〈〈Mext〉〉 .
We will need bigger control over the functions e−2λ = gϕϕ. To this end let {x, y, z}
be Gaussian coordinates along the axis, in the extension of S , with A = {x = y =

0} and for which K(1) = x∂y − y∂x (see [10, pg 5] and compare with (5.23)). For

any path with initial velocity transverse to A we have

(5.4) ∇γ̇(0)K(1)|x=y=0 = ∇γi∂i
(x∂y − y∂x)|x=y=0 = γx∂y − γy∂x ,

and consequently g(∇γ̇(0)K(1),∇γ̇(0)K(1)) = (γx)2+(γy)2 6= 0. Since ∇µg(K(1),K(1)) =

2 g(∇µK(1),K(1)) we see that the gradient of gϕϕ vanishes at the axis and

∇µ∇ν g(K(1),K(1))|A = 2 g(∇µK(1),∇νK(1))|A .

Taylor expanding along γ yields

gϕϕ ◦ γ(s) = (g(∇γ̇(0)K(1),∇γ̇(0)K(1))
︸ ︷︷ ︸

6=0

+O(s))s2 ,

from which it follows that for any path transverse to A and small s

(5.5) C−1 s2 ≤ gϕϕ ◦ γ(s) ≤ C s2 .

We will need to consider two separate cases. First, fix, in each space-time, a

point belonging to Ai ∩ 〈〈Mext〉〉 and rescale all the previous coordinate systems

so that each of the fixed points corresponds to its respective origin and Ψi(0, 0) =

(0, 0). At these points, since there the boundary of the orbit space is analytic, the

function ρi = ρi(x̂i, ẑi) may be extended analytically across the origin, therefore,

as an immediate consequence of (5.5) we get control over the first terms appearing

in (4.14)

(5.6) eUj−Ui =

√

gi(∂ϕ, ∂ϕ)

gj(∂ϕ, ∂ϕ)
≤
√

Ciρ2

C−1
j ρ2

≤ C near (0, 0) ∈ A ∩ 〈〈Mext〉〉 .

Since the χi’s and the ψi’s are all bounded near the origin our goal gets reduced to

showing that

(5.7) ρ−2eU1+U2(f1 − f2) = O(1) near (0, 0) ∈ A ∩ 〈〈Mext〉〉 ,
when f1 = χ1, ψ1, v1, χ1ψ2 and f2 = χ2, ψ2, v2, χ2ψ1, where by this we mean that

if, for example, we set f1 = χ1 then f2 = χ2.

Let us start with f1 = χ1, ψ1, v1 and f2 = χ2, ψ2, v2. Each fi is invariant under

the respective axial flow and constant along each connected component of Ai ∩
〈〈Mext〉〉, so if we impose f1(0, 0) = f2(0, 0) = f0, which is always achievable if the

space-times (Mi, gi) have the same set of masses, angular momenta and charges (see
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Section 6 and [36, Section 2.3]), we see that (5.3) holds and using (5.5) and (5.6)

we get

(5.8)

∣
∣ρ−2eU1+U2(f1 − f2)

∣
∣ =

∣
∣
∣
∣
∣

f1 − f2
√

g1(∂ϕ, ∂ϕ)
√

g2(∂ϕ, ∂ϕ)

∣
∣
∣
∣
∣
≤ |f1 − f0| + |f2 − f0|
√

g1(∂ϕ, ∂ϕ)
√

g2(∂ϕ, ∂ϕ)

=
|f1 − f0|

g1(∂ϕ, ∂ϕ)

√

g1(∂ϕ, ∂ϕ)

g2(∂ϕ, ∂ϕ)
+

|f2 − f0|
g2(∂ϕ, ∂ϕ)

√

g2(∂ϕ, ∂ϕ)

g1(∂ϕ, ∂ϕ)

≤ C1x̂
2
1

C−1
2 x̂2

1

C3 +
C4x̂

2
2

C−1
5 x̂2

2

C6

≤ C near (0, 0) ∈ A ∩ 〈〈Mext〉〉 .

We take the chance to stress the fact that the previous argument does not apply

to the fields χ1ψ2 and χ2ψ1 since these products involve functions originating from

different space-times and therefore only make sense as functions of (ρ, z) for which

estimates like 5.3 are not available a priori.(7)

To bypass this problem we write

χ1ψ2 − χ2ψ1 = (χ1 + χ2)(ψ2 − ψ1) + χ1ψ1 − χ2ψ2 .

Since χ1 + χ2 is bounded, to control the first term we just need to take fi = ψi as

before. Setting f1 = χ1ψ1 and f2 = χ2ψ2 we see that the previous argument still

applies as these are also axially symmetric functions which are constant along the

axis components. The desired result follows.

To finish the proof of boundedness of (4.14) near the singular set A ∩ 〈〈Mext〉〉
we still have to analyze what happens near points where the axis meets the horizon.

Choose such a point in each space-time and, without loss of generality, assume that

these are ‘north poles’ which, as before, lie at the origin of the coordinate systems

(x̂i, ẑi), and satisfy (ρ, z) = Ψi(0, 0) = (0, 0).

As already mentioned, a careful extension of the doubling of the orbits spaces

validates (5.3) in a neighborhood of these ‘north poles’, but, on the other hand, the

ρi’s are now non-differentiable at such points and (5.6) no longer holds. Nonetheless,

if we are able to control eUi−Uj by other means, then the inequalities established

in (5.8) extend to the case under consideration and boundedness of the distance

near the axis follows. This problem, which is in fact the major difficulty that arises

in the analysis of the boundary conditions of this axisymmetric harmonic maps, has

been recently overcomed for the vacuum case [13, Section 6.5.1] by obtaining the

following uniform estimate

(5.9) U = ln

√

z +
√

z2 + ρ2 +O(1) near (0, 0) ∈ A ∩ E
+ ,

from which the desired consequence immediately follows. This result, which requires

this component of the horizon to be non-degenerate, extends to the electro-vacuum

case immediately.

(7)In fact, extending ρi and zi near this axis points by ρi(−x̂i, ẑi) = −ρi(x̂i, ẑi) and zi(−x̂i, ẑi) =

zi(x̂i, ẑi) shows that invariance under the axial flow implies that f(ρ, z) := f ◦ Ψ−1
i

(ρ, z) is an

even function of ρ. Then, direct estimates in terms of ρ analogous to (5.3) may be obtained for all

the fields and the presented procedure including (5.8) may be bypassed. Unfortunately this is no

longer possible near points where the axis meets the horizon as the ρi are no longer differentiable.
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5.2. Spatial infinity. — In this section we want to show that

(5.10) lim√
ρ2+z2→+∞

d(Φ1,Φ2) = 0 ,

with d implicitly defined by (4.14). For this we will assume stationarity and asymp-

totic flatness as given by the system of equations (2.12)–(2.15). It turns out that

the estimates provided by asymptotic flatness, even in the way just defined, seem

insufficient to control the relevant fields; even in an adapted frame provided by

the results of Section 3 integration of the defining equations (4.1) yields divergent

logarithmic terms. Fortunately, in the stationary and electro-vacuum setting, the

asymptotic analysis of Beig and Simon [3,32] provides relevant improvements of the

initial decay rates by means of the expansion (5.15).

Let D and ǫijk denote the covariant derivative and volume element of γ, the

induced metric in Sext as in Section 2. A well known consequence of the source

free Einstein-Maxwell equations (2.1)-(2.3) and simple-connectedness of 〈〈Mext〉〉 is

the global existence of functions τ and σ satisfying [24, 32, 36]

(5.11) Diτ = V 2ǫi
jk(DjAk + θjDkA0) ,

and

(5.12) Diσ = −V 4ǫi
jkDjθk + i(Ψ̄∂iΨ − Ψ∂iΨ̄) ,

where Ψ := A0 + iτ . If we introduce the Ernst potential

(5.13) C = V 2 − ΨΨ̄ + iσ ,

and consider the complex valued fields ζ and ϑ, implicitly defined by

(5.14) C =
1 − ϑ

1 + ϑ
, Ψ =

ζ

1 + ϑ
,

then [32, eq 3.11] provides the following expansion for the vector E A := (ϑ, ζ) ∈ C2

in terms of an arbitrary asymptoticaly flat coordinate system

(5.15) E
A =

MA

r
+
MA

k x
k

r3
+O∞(log r/r3) .

We note that the apparent discrepancy between the error term here with the one

in the original paper comes from the fact that the result there is presented in

adapted coordinates obtained from arbitrary asymptotically flat coordinates by a

transformation of the form xi 7→ xi + O∞(log r).

Using the identity A
B+C

= A
B
− AC

B(B+C) we get

C =
1 − ϑ

1 + ϑ
=

1 + ϑ− 2 ϑ

1 + ϑ
= 1 − 2 ϑ

1 + ϑ
= 1 − 2

(

ϑ− ϑ2

1 + ϑ

)

= 1 − 2

(

ϑ− ϑ2 +
ϑ3

1 + ϑ

)

.

Inserting the ϑ-component of (5.15) into the last expression yields

C = 1 − 2

(
Mϑ

r
+
Mϑ

k x
k

r3
+O∞(log r/r3)

)

+ 2

(
Mϑ

r
+
Mϑ

k x
k

r3
+O∞(log r/r3)

)2

+O∞(r−3)

= 1 − 2
Mϑ

r
− 2

Mϑ
k x

k

r3
+ 2

(Mϑ)2

r2
+O∞(r−4) +O∞(log r/r3) .

Noting that the topological restrictions imposed by asymptotic flatness imply that

the imaginary part of Mϑ vanishes, ℑMϑ = 0 [32, Section IV], we write Mϑ = M
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and by setting Mϑ
k = Mk + iSk we get

(5.16) C = 1 − 2
M

r
+ 2

M2

r2
− 2

Mkx
k

r3
− 2 i

Skx
k

r3
+O∞(log r/r3) .

Consequently

(5.17) σ = ℑC = −2
Skx

k

r3
+O∞(log r/r3) .

Similarly for Ψ we get

Ψ =
ζ

1 + ϑ
= ζ − ζϑ

1 + ϑ
= ζ − ζϑ+

ζϑ2

1 + ϑ
.

Inserting (5.15) into the last expression yields

Ψ = ζ(1 − ϑ) +O∞(r−3)

=

(

M ζ

r
+
M ζ

kx
k

r3
+O∞(log r/r3)

)(

1 − Mϑ

r
− Mϑ

k x
k

r3
+O∞(log r/r3)

)

+O∞(r−3)

=
M ζ

r
− M ζMϑ

r2
+
M ζ

kx
k

r3
+O∞(log r/r3) .

As before ℑMv = 0. So now, by setting M ζ = Q
2 and M ζ

k = Qk + iBk, we see that

(5.18) A0 = ℜΨ =
Q

2 r
− MQ

2 r2
+
Qkx

k

r3
+O∞(log r/r3) ,

(5.19) τ = ℑΨ =
Bkx

k

r3
+O∞(log r/r3) .

We have Ψ̄∂iΨ − Ψ∂iΨ̄ = 2i(A0∂iτ − τ∂iA0) = O∞(r−4) and using (2.14)

and (5.17) we get

(5.20)

ǫi
jkDjθk = −V −4

(
Diσ − i(Ψ̄DiΨ − ΨDiΨ̄)

)
= Di

(

2
Skx

k

r3
+O∞(log r/r3)

)

.

With the exception of the already noted log r discrepancy in the error term, this

is [3, eq 4.1, pg 1010] and so we get

(5.21) θi :=
git

gtt
= 2eijk

Sjxk

r3
+Ok(log r/r3) ,

where e[ijk] = eijk with e123 = 1.

5.2.1. The electromagnetic twist potential and the norm of the axial Killing vector.

— Until now we have been working with a generic asymptotically flat coordinate

system, but to estimate the electromagnetic twist potential v via the Ernst equa-

tions (4.5) and the results of the previous section we will need to use adapted

coordinates. So, let {t, ϕ, ρ, z} be the Weyl coordinates as constructed in Section 3

and define the cylindrical type coordinates

(5.22)

{
x = ρ cosϕ

y = ρ sinϕ
.

A simple but noteworthy fact is that in this coordinate system we have

(5.23) K(1) = ∂ϕ = x∂y − y∂x .

The estimates of the previous section will only be available to us in this coordinates

if {t, xi} = {t, x, y, z} is an asymptotically flat coordinate system. This is in fact
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the case. To see it note that in the orbit space {t = ϕ = 0} the identity [13, eq 6.9]

yields

(5.24) ∂ρ = (1 +Ok(r̂−1))∂x̂ +O∞(r̂−1)∂ẑ (ϕ = 0) ,

(5.25) ∂z = O∞(r̂−1)∂x̂ + (1 +O∞(r̂−1))∂ẑ (ϕ = 0) .

Recall that {x̂, ẑ} are asymptotically flat isothermal coordinates (for the orbit space

metric). Direct computations yield gxx|ϕ=0 = 1+O∞(r−1), a similar expression for

gyy and, using gρϕ ≡ 0, also gxy|ϕ=0 = 0. The defining decay rates are now obtained

by flowing the previous estimates along the integral lines of the axial Killing vector.

We illustrate this with an explicit calculation:

gxy|ϕ=−ϕ0 = g((φϕ0)∗∂x, (φϕ0)∗∂y)|ϕ=0

= g(cosϕ0∂x+ sinϕ0∂y,− sinϕ0∂x+ cosϕ0∂y)|ϕ=0

= − sinϕ0 cosϕ0 gxx|ϕ=0
︸ ︷︷ ︸

=1+O∞(r−1)

(cos2 ϕ0 − sin2 ϕ0) gxy|ϕ=0
︸ ︷︷ ︸

=0

+ sinϕ0 cosϕ0 gyy|ϕ=0
︸ ︷︷ ︸

=1+O∞(r−1)

= O∞(r−1) .

So we have constructed asymptotically flat coordinates for which the following

uniform estimate holds

(5.26) gϕϕ|ϕ=0 = ρ2
gyy|ϕ=0 = ρ2(1 +O∞(r−1)) .

As a nice consequence we get

(5.27) e−2U :=
gϕϕ

ρ2
= 1 +O∞(r−1) ,

from which we see that

(5.28) eUi±Uj := (1 +O∞(r−1))(1 +O∞(r−1))±1 = 1 +O∞(r−1) →r→+∞ 1 ,

and our goal (5.10) gets reduced to showing that

lim√
ρ2+z2→+∞

(ψ1 − ψ2)
2

ρ2
= lim√

ρ2+z2→+∞

(χ1 − χ2)
2

ρ2
(5.29)

= lim√
ρ2+z2→+∞

v1 − v2
ρ2

= lim√
ρ2+z2→+∞

χ1ψ2 − χ2ψ1

ρ2
= 0 .

It follows from (5.21) and (3.17) that

gzt ≡ 0 ⇒ θz ≡ 0 ⇒ Sx = Sy = 0 .

So we set J := −Sz and by using (5.21) with (2.14) we get

(5.30) gyt|ϕ=0 = 2J
ρ

r3
+O∞(log r/r3) ,

from which

(5.31) gϕt|ϕ=0 = g(ρ∂y, ∂t)|ϕ=0 = 2J
ρ2

r3
+ ρO∞(log r/r3) ,

and therefore

(5.32)
gϕt

gϕϕ
|ϕ=0 =

2J

r3
+

1

ρ
O∞(log r/r3) .
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The Ernst equations (4.5) together with the estimates (5.33), (5.35), (5.47)

and (5.48), that will be established in the next section, provide

(5.33)

{
∂zv = −6Jρ4/r5 + ρO∞(log r/r3)

∂ρv = 6Jρ3z/r5 + ρ2O∞(log r/r4)
.

Integrating this system by using the polar coordinates ρ = r cos θ, z = r sin θ, while

imposing the standard condition

(5.34) v(0, z) ≡ 0, for z ≫ 0 ,

yields

(5.35) v = 4J − J

2

z

r

(
3ρ2 − z2

r2
+ 9

)

+ ρO∞(log r/r2) .

We note the following relevant relation with the total angular momentum as

given by the Komar integral formula

lim
R→+∞

1

16π

∫

{r=R}

∗dK♭
(1) = lim

R→+∞
− 1

16π
2π

∫

{r=R}∩{ϕ=0}

iK(1)
∗ dK♭

(1)

= −1

8
lim

R→+∞

∫

{r=R}∩{ϕ=0}

∗(dK♭
(1) ∧K♭

(1))

= −1

8
lim

R→+∞

∫

{r=R}∩{ϕ=0}

(
dv + 2 (χdψ − ψdχ)

︸ ︷︷ ︸

=O(r−2)

)

= −1

8
lim

R→+∞

(
v(0, R) − v(0,−R)

)

= −1

8
(0 − 8J)

= J .

We are now able to establish the electromagnetic twist potential part of (5.29).

For two twist potentials satisfying (5.34) we have

(5.36) lim√
ρ2+z2→+∞ ,ρ6→0

v1 − v2
ρ2

= 0 .

To take care of the asymptotic behavior of v near the axis we Taylor expand on

ρ around a point (0, z), away from the poles, to get

(5.37) v(ρ, z) = v(0, z) + ∂ρv(c(ρ), z)ρ , |c(ρ)| ≤ ρ .

Then, using (5.33) to obtain

(5.38) ∂ρv = ρ2O∞(r−3) ,

we conclude that for |z| ≫ 0 and ρ ≤ |z|

(5.39) v = v(0, z) + ρ2O(r−3) .

Finally, for two twist potentials that agree along the axis for both large positive

and negative z we have, in the region ρ ≤ |z|,

(5.40) ρ−2(v1 − v2) = O(r−3) ,

and the desired result follows.
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5.2.2. The electromagnetic potentials. — Asymptotic flatness (2.7) together with (5.18)

and (5.19) yield the desired improvement of the initial decay rates

(5.41) ∂[iAj] = O∞(r−3) .

Now in the {xµ} = {t, x, y, z} coordinates of the previous section we have

dχ := iK(1)
F

= Fµνdx
µdxν(K(1), ·)

= Fµν

(
dxµ(K(1)) dx

ν − dxν(K(1)) dx
µ
)

= 2Fµνdx
µ(K(1)) dx

ν

= 2Fµνdx
µ(x∂y − y∂x) dxν = 2Fµν(xδµ

y − yδµ
x) dxν

= 2 (xFyν − yFxν) dxν = 4
(
x∂[yAν] − y∂[yAν]

)
dxν .

With (5.41) we see that, in the orbit space {ϕ = 0} (where y = 0, x = ρ and

∂x = ∂ρ), we have

(5.42)

{
∂ρχ|ϕ=0 = 4ρ ∂[yAρ] = ρO∞(r−3)

∂zχ|ϕ=0 = 4ρ ∂[yAz] = ρO∞(r−3)
.

Imposing the boundary condition

(5.43) χ(0, z) ≡ 0, for z ≫ 0 ,

integration yields

(5.44) χ|ϕ=0 = ρO∞(r−2) .

Arguing as in the end of section 5.2.1 the equation in (5.29) corresponding to the

potentials χi follows.

To obtain a coordinate expression for dψ it will be helpful to rearrange our

preferred coordinate system and consider {xµ} = {t, y, x, z}, then

dψ := iK(1)
∗ F

=
1

2
Fµνǫµνλσdx

λdxσ(K(1), ·) = Fµνǫµνλσdx
λ(x∂y − y∂x) dxσ

= Fµνǫµνλσ(xδλ
y − yδλ

x) dxσ = Fµν(x ǫµνyσ − y ǫµν xσ) dxσ .

Now, in the orbit space and away from the axis, we have (compare with (3.17))

(5.45) gµν |ϕ=0 =







gtt ρ−1
gtϕ 0 0

ρ−1
gtϕ ρ−2

gϕϕ 0 0

0 0 e2u 0

0 0 0 e2u







,

therefore

(5.46) det(gµν |ϕ=0) =

(

gtt
gϕϕ

ρ2
−

g
2
tϕ

ρ2

)

e4u =
1

ρ2
(−ρ2)e4u = −e4u ;

so

∂ρψ|ϕ=0 = ρ ǫµνyxF
µν = ρ(ǫtzyxF

tz + ǫztyxF
zt) = 2ρ ǫtzyxF

tz

= 2ρ
√

| det(gµν)|F tz = 2ρ e2u
g

µt
g

νzFµν

= 2ρ e2u
g

µt
g

zzFµz = 2ρ e2ue−2u(gttFtz + g
ytFyz)

= 2ρ

{

−gϕϕ

ρ2
(∂tAz − ∂zAt) + 2

gtϕ

ρ
∂[yAz]

}

= 2
gϕϕ

ρ
∂zAt + 4gtϕ∂[yAz] = 2ρ(1 +O∞(r−1))∂zA0 + ρO∞(r−5) ,
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where in the last equality we used (5.26), (5.31) and (5.41); also

∂zψ|ϕ=0 = ρ ǫµνyzF
µν = 2ρ ǫtxyzF

tx

= −2ρ
√

| det(gµν)|F tx = −2ρ e2u
g

µt
g

νxFµν

= −2ρ e2u
g

µt
g

xxFµx = −2ρ (gttFtx + g
ytFyx)

= −2ρ

{

−gϕϕ

ρ2
(∂tAx − ∂xAt) + 2

gtϕ

ρ
∂[yAx]

}

= −2ρ(1 +O∞(r−1))∂ρA0 + ρO∞(r−5) .

From (5.18) we get

(5.47)

{

∂ρψ|ϕ=0 = −Qρ z
r3 + ρO∞(r−3)

∂zψ|ϕ=0 = Qρ2

r3 + ρO∞(r−3)
.

Integrating as before while using a standard boundary condition provides

(5.48) ψ = Q
(

−1 +
z

r

)

+ ρO∞(r−2) .

We note the following relevant and expected relation with the total electric charge

given by the Komar integral

(5.49) lim
R→+∞

− 1

4π

∫

{r=R}

∗F = Q .

It should be now clear that (5.29) follows.

The results of this last two sections establish one of the significant missing ele-

ments of all previous uniqueness claims for the Kerr-Newman metric:

Proposition 5.1. — Let Ψi = (Ui, vi, χi, ψi), i = 1, 2, be the Ernst potentials

associated with two I+–regular, electro-vacuum, stationary, asymptotically flat ax-

isymmetric metrics with non-degenerate event horizons. If v1 = v2, ψ1 = ψ2 and

χ1 = χ2 on the rotation axis, then the hyperbolic-space distance between Ψ1 and Ψ2

is bounded, going to zero as r tends to infinity in the asymptotic region.

6. Weinstein Solutions: existence and uniqueness

In this section we construct axisymmetric Ernst maps

Φ = (U, v, χ, ψ) : R
3 \ A → H

2
C ,

which are “close” to some reference maps, not necessarily harmonic, satisfying con-

ditions modeled on the local behavior of the Kerr-Newman solutions. First recall

the definitions of mass, angular momentum and electric charge of the k-th black

hole as given by the Komar integrals

(6.1) mk := − 1

8π

∫

Sk

∗dK♭
(0) ,

(6.2) Jk :=
1

16π

∫

Sk

∗dK♭
(1) ,

(6.3) qk := − 1

4π

∫

Sk

∗F .

for some 2–sphere Sk whose interior intersects the event horizon exactly at its k-th

component.
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We are now able to characterize the reference maps Φ̃ = (Ũ , ṽ, χ̃, ψ̃):

1. The components f̃ = ṽ, χ̃ and ψ̃ are locally bounded, constant along each

connected component of A \ E + = ∪N
k=0Ak and we write f̃ |Ak

≡ f̃k. These

functions are normalized to satisfy f̃N = 0.

2. There exist Ndh ≥ 0 degenerate event horizons, which are represented by

punctures (ϕ = 0, ρ = 0, z = bi), together with a mass parameter mi > 0.

In a neighborhood of such puncture, containing only this component of the

horizon, the map Φ̃ corresponds to the harmonic map of the (extreme) Kerr-

Newman solution parameterized by

(mi, qi) = (mi,
ψ̃i+1 − ψ̃i

2
) .

3. There exist Nndh ≥ 0 non-degenerate horizons, which are represented by

bounded open intervals (c−i , c
+
i ) = Ii ⊂ A , with none of the previous bj’s

belonging to the union of the closures of the Ii. In a neighborhood of such in-

terval, containing only this component of the horizon, the map Φ̃ corresponds

to the harmonic map of the Kerr-Newman solution parameterized by

(µj , λj , qj) = (2

∫

Ij

dz, ṽi+1 − ṽi,
ψ̃i+1 − ψ̃i

2
) .

To retrieve the usual parametrization using mass, angular mommentum and

charge one uses the known explicit formulas for Kerr-Newman (e.g., equations

2.31. of [36]) together with the following relations [36, section 2.3.]

(6.4) Jj =
λj + lj

4
,

(6.5) mj = µj + 2wjJj ,

where the auxiliary parameters are defined by λj :=
∫

Ij
dv, lj =

∫

Ij
χdψ−ψdχ,

and w|Ij
≡ wj , with w defined by (3.17).

4. In a neighborhood of infinity the functions Ũ , ṽ, χ̃ and ψ̃ coincide with the

components of the harmonic map associated with the Kerr-Newman solution

with mass M :=
∑

k mk angular momentum J :=
∑

k Jk = v0/8 and electric

charge Q :=
∑

k qk = −ψ0/2, where the sums are taken over all the compo-

nents of the event horizon.

5. The functions Ũ , ṽ, χ̃ and ψ̃ are smooth across A \ (∪i{bi} ∪j Ij).

A collection {bi,mi}Ndh
i=1 , {Ij , v(c−j ), v(c+j )}Ndh

j=1 , and {ψk}N−1
k=0 will be called “electro-

vacuum axis data”.

A map Φ̃ satisfying condition 1.–5. above defines singular Dirichlet data [37, Def-

inition 2] (compare [36, Section 2.4.]) with a target manifold with constant negative

sectional curvature. We then have the following version of [37, Theorem 2] (com-

pare [12, Appendix C] where the uniqueness claim is clarified, and [36] for a similar

result stated purely in terms of axis data):

Theorem 6.1. — For any set of electro-vacuum axis data there exists a unique

harmonic map Φ : R3 \ A → H2
C

whose distance, as given by (4.14), from an ax-

isymmetric map Φ̃ : R3 \A → H2
C
, not necessarily harmonic but with the properties

1.–5. above, satisfies:

(6.6) d(Φ, Φ̃) ∈ L∞(R3 \ A ) ,
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and

(6.7) d(Φ, Φ̃) → 0 as r → +∞ .

From an harmonic map Φ : R3 \ A → H2
C

one can construct a stationary and

axisymmetric solution of the source free Einstein-Maxwell field equations [36, Sec-

tion 4.1.]. Such (not necessarily I+–regular) space-times, arising from the harmonic

maps of the previous theorem will be referred to as Weinstein solutions.

7. Proof of Theorem 1.3

If E + is empty we obtain Minkowski by an aplication of [7, Theorem 2.7]. Oth-

erwise the proof splits into two cases, according to whether or not K is tangent to

the generators of E +.

Rotating horizons:

Suppose, first, that the Killing vector is not tangent to the generators of some

connected component E
+
0 . Proposition 1.9 of [7] allows us to generalize [13, Proposi-

tion 4.10] to electro-vacuum and then Theorem 4.11 together with the Remark 4.12

of [13] show that the event horizon is analytic if the metric is; also, by (5.41) and

Einstein’s equations, Gµν = 2Tµν = O(r−5). So the Rigidity Theorem, as pre-

sented in [8, Theorem 5.1], applies and establishes the existence of a R × U(1)

subgroup of the isometry group of (M , g). The analysis of Section 3, leading to the

global representation (3.17) of the metric, is now available. As stressed through-

out this paper, in this gauge, the field equations (2.1)-(2.3) reduce to a harmonic

map Φ (4.3). The analysis of the asymptotic behavior of such map, whose results

are compiled in Proposition 5.1, shows that Φ lies a finite distance from one of

the harmonic maps associated to the Weinstein solutions of Theorem 6.1 and the

uniqueness part of such theorem allows us to conclude; note that in the connected

and non-degenerate setting the Weinstein solutions correspond to the non-extreme

Kerr-Newman metrics.

Non-rotating case:

Now let us consider the case when the stationary Killing vector K(0) is tangent to

the generators of every component of E +. Following the procedure in [13, Section

7.2], based on [30], we extend 〈〈Mext〉〉 to a space-time where each connected com-

ponent of the event horizon is contained in a bifurcate horizon. Then, by [15] there

exists an asymptotically flat Cauchy hypersurface for the domain of outer commu-

nications, with boundary on the union of the bifurcate spheres, which is maximal.

We are now able to conclude from Theorem 3.4 of [33] that 〈〈Mext〉〉 is static. By

taking in account the corrections presented in the proof of Theorem 1.4 of [13] we

can invoke, after relying on analyticity once more, the non-degenerate part of the

conclusion of Theorem 1.3 of [9], yielding non-extreme Reissner-Nordström as the

only non-rotating solution satisfying the remaining conditions of the desired result.

8. Concluding remarks

To obtain a satisfactory classification in four dimensions, the following issues

remain to be addressed:
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1. Analyticity. The previous versions of the uniqueness theorem required an-

alyticity of both the metric and the horizon. As shown in the proof of Theo-

rem 1.3, the latter follows from the former. This is a worthwhile improvement,

as even C1-differentiability of the horizon is not clear a priori. But the hy-

pothesis of analyticity of the metric remains to be removed. In this context

one should keep in mind the Curzon solution, where analyticity of the metric

fails precisely at the horizon.

We further note that a new approach to Hawking’s rigidity without analyt-

icity [1, 2] as yield significant breakthroughs in the vacuum case. According

to A.D. Ionescu (private communication) the generalization of the results to

electro-vacuum should follow by similar techniques. However, some problems

still need to be settled, even for vacuum: the local claim requires a non-

expanding horizon which we expect to be a consequence of I+–regularity and

the results and techniques of [11, 13], but such claim requires checking; also,

as it stands, the global result is restricted to near Kerr geometries.

The hypothesis of analyticity is particularly annoying in the static context,

being needed there only to exclude non-embedded Killing prehorizons [13,

Section 5]. The nature of that problem seems to be rather different from

Hawking’s rigidity, with presumably a simpler solution, yet to be found.

2. Degeneracy. The classification of black holes with degenerate components

of the event horizon requires further investigations. We believe that the re-

sults here go a long way to obtain a classification, in terms of Weinstein

solutions, of stationary, axisymmetric, rotating configurations allowing both

degenerate and non-degenerate components of the horizon: the foundations

are settled but we are still missing an equivalent of Proposition 5.1. Recall

that in the static case a complete classification in terms of the Majumdar-

Papapetrou and the Reissner-Norsdtröm families, with neither degeneracy or

connectedness assumptions is already available by the work in [17] and ref-

erences therein. In fact more is known in the degenerate class, since it was

established in [14] that appropriately regular, I+–regular in particular, Israel-

Wilson-Perjés Black holes belong to the Majumdar-Papapetrou family.

It has been announced [23] that the question of uniqueness of degenerate

black holes (with connected event horizon) has been settled. Unfortunately,

that reference does not contain any new results, as compared to what had

already been published in [13], or is contained in this work, and so, it is our

belief that this problem remains open. Indeed, the existence of global Weyl

coordinates with controlled behavior at the singular set is assumed. In the

non-degenerate case this issue was first settled for vacuum in [13], but the

degenerate case appears to present serious technical difficulties, and requires

further study.

3. Multi Component Solutions. In agreement with the statement of Con-

jecture 1.1, one believes that all solutions with non-connected E + are in the

Majumdar-Papapetrou family. From what was said in the previous item, we

see that it remains to show that non-static Weinstein solutions with non-

connected horizons are singular; besides the already quoted result dealing

with the Israel-Wilson-Perjés family, this has been established for slowly ro-

tating black holes in vacuum by a regularity analysis of the relevant harmonic

maps [25,34] and recent and promising results seem to have settled the prob-

lem for two-body configurations, also in vacuum [28].



ON THE CLASSIFICATION OF STATIONARY ELECTRO-VACUUM BLACK HOLES 23

Acknowledgements: We are grateful to Piotr Chruściel and José Natário for

numerous comments on a previous version of the paper and many useful discussions.

References

[1] S. Alexakis , A. Ionescu & S. Klainerman – “Hawking’s local rigidity theorem
without analyticity ”, (2009), arXiv:0902.1173v1 [gr-qc].

[2] S. Alexakis , A. Ionescu & S. Klainerman – “Uniqueness of smooth sta-
tionary black holes in vacuum: small perturbations of the Kerr spaces ”, (2009),
arXiv:0904.0982v1 [gr-qc].

[3] R. Beig & W. Simon – “The stationary gravitational field near spatial infinity. Gen.

Relativity Gravitation 12 (1980), , no. 12, 1003–1013.

[4] B. Carter – “Killing horizons and orthogonally transitive groups in space-time”,
Jour. Math. Phys. 10 (1969), p. 70–81.

[5] , “Black hole equilibrium states”, Black Holes (C. de Witt & B. de Witt, eds.),
Gordon & Breach, New York, London, Paris, 1973, Proceedings of the Les Houches
Summer School.

[6] , “Has the black hole equilibrium problem been solved?”, The Eighth Marcel
Grossmann Meeting, Part A, B (Jerusalem, 1997), 136–155, World Sci. Publ., River
Edge, NJ, (1999), arXiv:gr-qc/9712038

[7] P. Chrusciel – “‘No hair’ theorems—folklore, conjectures, results.”, Contemp.

Math. Differential geometry and mathematical physics (Vancouver, BC, 1993), 23–49,
Contemp. Math., 170, Amer. Math. Soc., Providence, RI, (1994), arXiv:gr-qc/9402032
[gr-qc].

[8] , “Uniqueness of black holes revisited”, Helv. Phys. Acta 69 (1996), p. 529–
552, Proceedings of Journés Relativistes 1996, Ascona, May 1996, N. Straumann,Ph.
Jetzer and G. Lavrelashvili (Eds.), arXiv:gr-qc/9610010.

[9] , “Towards a classification of static electrovacuum spacetimes containing an
asymptotically flat spacelike hypersurface with compact interior”, Class. Quantum

Grav. 16 (1999), p. 689–704.

[10] , “Mass and angular-momentum inequalities for axi-symmetric initial
data sets. I. Positivity of mass”, Annals Phys. 323 (2008), p. 2566–2590,
doi:10.1016/j.aop.2007.12.010, arXiv:0710.3680 [gr-qc].
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