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Abstract—With tens of thousands of air quality monitoring
stations installed in the world, this source of information has
become the standard in air quality measuring. Air pollution
becoming a growing concern for decades now, the need for an
easy way to visualise pollution data arose. Extensive maps have
been created to represent air pollution using data collected from
monitoring stations, as well as other sources of information, such
as traffic density or weather forecasts. This paper introduces a
complementary source: direct environmental expert knowledge.
By using the developed tool, the goal is to allow experts to express
their knowledge about air pollution emission and diffusion as
a function of the presence of key topological elements in a
map, such as buildings or roads. The results of the usability
tests performed with a sample of 30 participants are promising.
Participants provided useful feedback regarding key application
features to be implemented in future iterations.

Index Terms—air quality mapping, graphical educational tool,
environmental awareness, environmental communication

I. INTRODUCTION

Traditionally, air pollution monitoring has relied on complex
and costly monitoring stations. As such, they are located
in major cities. With the advent of low-cost sensors (LCS),
there are now several networks of these sensors that provide
more coverage and, thus, more information [1]–[3]. Although
they are less accurate and reliable, they can still be used to
complement monitoring stations [4]. Despite this deployment
effort, there are still large regions of the globe, including cities,
that are not monitored.

Various currently available pollution mapping solutions [5]–
[7], while also using other sources of information, are often
dependent on monitoring stations as data providers. This is
the main issue with current solutions, given that there are not
enough monitoring stations to properly represent the whole
world’s pollution distribution with a street-level accuracy. In
areas where these data are not available, an accurate pollution
map is difficult to build, as estimates based on other sources
must be relied upon (for a review of different pollution
modelling approaches the reader can refer to [8]). In fact,
pollution maps generated from estimation models, rather than
from sensory observations, are often incomplete. A model that

This work was developed in the scope of the project ExpoLIS (LISBOA-01-
0145-FEDER-032088) funded by FEDER and by national funds, through FCT
– Foundation for Science and Technology, IP. C2TN authors also acknowledge
the support of FCT for funding the strategic project UIDB/04349/2020.

does not perform land-use regression may miss out heavy
polluters, such as coal factories.

This paper presents an alternative approach for pollution
mapping when in the absence of sensory data. Concretely,
this paper presents a graphical tool that performs knowledge
elicitation from environmental experts and applies the gathered
knowledge to produce dynamic pollution maps for a given
geographical location.

In the presented tool, expert knowledge is represented as
associations between city elements (e.g., buildings, roads)
in a given city map and pollution emission and dispersion
patterns. These associations are created by the expert via the
graphical tool. Then, these associations are used by the tool
to generate dense and dynamic pollution maps. For instance,
given the previous example, an expert can easily identify a
coal factory as a source of pollution. In particular, the expert
can select elements and assign them pollution profiles. These
can depend on hour, weekday, or any parameter that the expert
desires (e.g., main wind direction). Pollution is represented by
a dynamical heat map.

The interaction metaphors and the look-and-feel of the tool’s
interface were influenced by existing map-based applications.
As an example, there is the interface design of Google
Maps and the way information is presented in each layer
(standard, satellite imagery). Another example is Open Street
Map (OSM) which is a popular library to display geographical
data. The goal is to reduce the steepness of the learning
curve. Functionality and data availability were key aspects in
selecting a particular map library.

The main focus of this paper is on the ability for en-
vironmental experts to express their knowledge using the
devised tool. To assess the usability of the developed tool
and the viability of the approach, a set of tests with thirty
participants was carried out. These participants were asked to
perform several tasks with the tool and to answer a usability
questionnaire. The obtained results show the usability of the
tool and the merits of the proposed expert-based pollution
mapping approach.

The research reported here is part of the ExpoLIS project.
Our goal in the ExpoLIS project is to deploy a network of
mobile LCS to monitor air quality and to develop a set of
software tools [9]. The goals of these software tools include



TABLE I
MEANING, RANGE OF VALUES AND COLOUR OF AIR QUALITY INDEX

LEVELS.

Health Concern Level Value Range Colour
Good 0-50
Moderate 51-100
Unhealthy for sensitive groups 101-150
Unhealthy 151-200
Very unhealthy 201-300
Hazardous 301-500

improving the work flow of an environmental expert and
to increase citizens’ awareness of air pollution. The tool
presented in this paper is an example of the first goal. As
for the second goal, we have developed a mobile app for
easy access to the generated air quality data [9] and a 3D
virtual environment for immersive and engaging air quality
data visualisation [10].

The article is organised as follows. Section II surveys related
work. Then, the developed tool is presented in Section III.
In Section IV, the testing phase is detailed and the obtained
results are presented and analysed. A set of conclusions and
future work direction are presented in Section V.

II. RELATED WORK

Disparate air pollution measuring units, with different rat-
ings, criteria and representations, are employed by countries
and existing mapping solutions. One of the most often used
is the American version of the Air Quality Index (AQI) [11],
particularly in scientific studies [12]–[15]. The AQI converts
pollutant concentration values into a colour-coded scale, in
which higher values indicate increased health risk, as depicted
in Table I.

Two main types of pollution mapping solutions are most
prominent. The first type generates maps that display moni-
toring stations’ locations and respective gathered air pollution
data. The World Air Quality Index [16] is a prime example of
a project that relies on this type of map. It collects data from
more than 30,000 monitoring stations in 2,000 major cities
containing individual pollutants concentrations and, through
these, an AQI value is obtained. By inspecting the generated
maps, it becomes clear that not enough monitoring stations are
currently installed in order to represent world-wide air quality
at a block-level precision, which is mostly due to their high
acquisition and maintenance costs.

The second type of pollution mapping solutions produce
estimated pollution heat maps resulting from a combination
of air quality sensor data and additional data, such as meteo-
rological and traffic information. A typical use of this type of
maps can be observed in BreezoMeter [5]. By processing all
collected data using proprietary algorithms, machine learning
techniques, big data analytics, and air pollution dispersion
modelling, BreezoMeter’s team claims to be able to provide
block level reliable air quality estimates at a 90% accuracy.
Nevertheless, regardless of all the layered information used
and sparse area covering, monitoring stations are still very
much relied upon. When in the absence of these stations, an

air quality estimate can hardly be calculated, even if every
other layer contains information. For example, BreezoMeter
does not contain information on Havana, Cuba, because there
are no known installed air quality stations, even though there
is satellite imagery of this city, as well as traffic data and
weather forecasts.

In recent years, a rise in the use of LCS to measure air
quality has been observed. PlumeLabs provides proprietary
LCS, called Flow, to the public at a fraction of the price
of traditional monitoring stations, although at the cost of
measured pollutants diversity and their general accuracy. When
activated, these sensors collect air quality data on PM1,
PM2.5, PM10, NO2, and volatile organic compounds every
60 seconds, which are then sent to PlumeLabs’s database and
used to create coloured street-by-street maps according to the
registered AQI values. However, there are drawbacks to LCS,
which are mainly related to accuracy and reliability. Recent
studies have shown that results are not consistent between
pollutants and different weather conditions, but acceptable
nonetheless, showing high correlation when compared to
official monitors [17], [18]. Although Flow already maps
hundreds of big cities, the overall world-wide coverage is still
far from complete. However, it does show promise, assuming
more and more people acquire and use Flow.

One of the main issues with currently available air pollution
mapping solutions, which is directly related to our work, is
the lack of representation of individual pollution emission
sources. For example, by centring BreezoMeter’s map over
the Bełchatów power station, in Poland, nothing indicates that
it is one the most polluting factories in Europe, according to
the European Environmental Agency [19]. Hence, being fully
data-driven, existing solutions tend to fail in poorly sensor
sampled areas. Our work overcomes this limitation in the state-
of-the-art by allowing environmental experts to input their
empirical knowledge into the mapping system, so that air
quality maps can be generated even in the absence of sensory
data.

Mapping solutions need to rely on a set of API to boost
development, foster cross-platform operation, provide intuitive
user interactivity, facilitate customisation, and to access mul-
tiple data providers. According to these criteria, three libraries
standout as the most popular: Mapbox GL JS, OpenLayers,
and Leaflet. These three rely on Open Street Map (OSM),
which is a community-driven project focused on creating and
maintaining open-source geographical data [20]. There are two
commonly used map rendering approaches: raster tiles and
vector tiles. The raster tiles approach downloads tiles at a fixed
resolution and styling, which negatively affects interactivity,
seeing that each time a change is made to the data set, the
whole tile generation process must be redone. Contrarily, the
vector tiles approach does all the rendering and styling at the
client side, which means that changes can be made to the
data set without having to recall assets. Hence, the vector tiles
approach is the most adequate when map entity selection and
dynamic styling are required, as it is the case of our tool.
Leaflet does not support vector tiles unless an external plugin



is included; and, even with the plugin installed, it requires a
larger network bandwidth. Given that Mapbox GL is known
to perform better than OpenLayers, even though by a small
margin [21], it was selected for our tool. Furthermore, Mapbox
GL implementation and documentation are more intuitive than
the alternatives.

Empirical knowledge about air quality is introduced in our
tool by environmental experts, by interactively associating air
pollution simplified models to map entities (e.g., buildings,
roads). This interactive process is considerably similar to the
one often employed for image annotation, which, in turn,
depends heavily on automatic/manual image segmentation.
Image annotation is key for building large data sets for
later use in supervised machine learning [22]. For instance,
LabelMe [23] provides a web-based tool for easy labelling of
images as well as a set of 10,000 images, 7,000 of which still
to be annotated, and label information should include object
classes, shape, locations, and other relevant labels. In the past
two decades, plenty of research has been conducted on the
topic of semi-automatic segmentation which is, to some extent,
publicly available today in Microsoft’s Paint3D or Adobe
Photoshop’s MagicWand, for example. Using the graph-cut
optimisation technique [24], GrabCut [25] popularised semi-
automatic image segmentation using a bounding box selection.
After setting a bounding box around a certain object, a rough
segmentation is automatically initiated to retrieve said object
from the scene. The final interactive step is to draw scribbles
over the object in order to obtain the desired result.

Despite all improvements observed in semi-supervised im-
age segmentation techniques over the years, these may still
fail in more challenging situations. To circumvent the chal-
lenges and limitations of current semi-automatic segmentation
solutions and, thus, reduce the burden on the environmental
expert, our tool relies on the semantic segmentation of city
maps available in the OSM’s database. Nevertheless, in some
rare occasions, OSM fails to properly segment map entities
(e.g., smaller buildings). To cope with these situations, the
user is allowed to flexibly draw polygons and associate labels
to them.

III. TOOL DESCRIPTION

The tool was developed with two major goals in mind: to
allow environmental experts to express their knowledge on
how air pollution is correlated with city topology and time-
varying factors; and to generate dynamic air pollution maps
given the elicited expert’s knowledge. Fig. 1 depicts the class
diagram of the developed tool so as to cover these two major
functionalities. The tool was developed in node.js 1 and
thus can be run in any JavaScript compliant browser. The next
sections discuss each of the classes and how the goals are
realised.

A. Map Entities

One of the core structures of the tool is a map entity.
This can represent a road, a building, or a green area. They

1https://nodejs.org
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Fig. 1. Class diagram of the developed tool.

are created for every OSM object that is imported once the
geographical area to be mapped has been selected by the user.
The user can also create a map entity if it is missing from the
OSM database. An important relation associated to each entity
is its perimeter, as it is in a set of points evenly sampled on
the perimeter that pollution is assumed to be emitted by the
entity.

Figure 2 shows a screenshot of the tool with a map entity
selected (left side of the image) and its properties displayed
on the right panel. There are other map entities displayed with
different colours depending on their tags: green for vegetation
and blue for buildings.

In order to facilitate getting a specific entity, the tool
provides a search functionality where the user can look for
map entities by tag. This is useful when there is a need to
assign a pollution source to multiple entities.

B. Pollution Heat Map

Pollution is represented as a heat map using the AQI colours
(see Table I). Fig. 3 shows an example of a single heat map.
All pollution magnitude values use the AQI scale, therefore the
250 value, used as magnitude in Fig. 3, should be interpreted
as very unhealthy.

As map entities can be represented by polygons with various
shapes or multiple lines, several points are sampled either on
the perimeter of the polygon or on the line. Pollution is then



Fig. 2. After selecting a building (see red square), its bounding polygon
becomes highlighted and its properties are displayed at the Entity Information
panel.

Fig. 3. Pollution heat map after adding 250 (AQI units) to pollution magnitude
and 200 pollution range to a single entity (building). The heat-point cluster
dissipation is demonstrated by the transition between the colour red to green.

drawn as a circular heat map centred in each of these points.
The amplitude and decay of these maps are defined by the
user for each map entity in order to better represent what they
believe to be the entity’s typical pollution emission. All these
circular heat maps are superposed to obtain the final heat map.
The resulting visual scene can be seen in Fig. 4.

C. Pollution Profile

Any map entity can be associated with a pollution source.
The latter is represented by class PollutionSource which only
specifies a pollution magnitude and range, but these attributes
only allow the expert to express a baseline pollution. The
classes PollutionDynamic and PlotPoint allow the expert to
represent pollution that depends on a set of parameters. The

Fig. 4. Pollution heat map after adding 150 (AQI units) to pollution magnitude
and 90 to pollution range to all visible roads.

Fig. 5. Pollution profile that depends on day of week. Pollution is lower
on weekends compared to weekdays. On the left panel, the highlighted box
shows where the expert can select a set of parameter values.

expert can create a pollution profile function that given a
parameter value (day of week, hour of the day, wind main
orientation) returns a percentage that is multiplied to the
pollution magnitude. An example of such pollution profile is
shown in Fig. 5.

As can be seen in the class diagram in Fig. 1, the user can
assign a PollutionSource to any map entity, and the user can
also create any number of PollutionDynamics as desired. It
is only when the user creates an association between the two
previous classes that an air pollution source is created. More-
over, a PollutionSource can have several pollution dynamics
to represent different factors that influence a pollution source.

D. Pollution Analysis

Once pollution plots are constructed, the expert can analyse
different pollution scenarios. The expert can select a set of
parameters, and visualise the pollution on the map. This
functionality is represented by method simulatePollution in
class Map.

An important feature is the ability to export simulated
pollution data so that the user can perform further analysis.
Method exportPollution allows the user to create a CSV file
with a pollution given a set of parameters. Examples of further
analysis are the ability to perform classification on the data
created by the user.

By being able to construct pollution plots that depend on
user defined parameters, the expert can represent knowledge
on how a specific parameter will impact the pollution emitted
by any pollution source that is associated. The expert can
select a combination of parameter values and the tool displays
a heat map representing the pollution, as can be seen in Fig. 5.
Combined with the ability to export pollution data, the goals
mentioned earlier in this section can be achieved with the
pollution plot feature.

IV. EVALUATION

The tool has been validated across three phases of devel-
opment: requirements analysis, interface interactions, interface
evaluation. In this paper we will focus extensively on the last
phase, as it provided an usability score.



The set of requirements devised for the tool were analysed
and revised with interviews with environmental experts. This
consisted in creating a set of sketches to illustrate the main
functionalities of the tool: the ability to select a geographical
element, to create a pollution profile, and to assign a pollution
profile to a geographical element.

Then, the Cognitive Work Analysis (CWA) framework [26]
was used to plan the interface’s structure beforehand. By
employing this methodology, a constraint-based analysis of
the interface was conducted in order to contain possible user
interactions inside set boundaries. CWA’s multiple phases
facilitated early layout planning on what activities could be
conducted given user’s knowledge.

Despite being environmental experts, end-users are not
expected to be computer-savvy. Therefore, in order to reduce
interface usability problems, heuristic evaluations [27] were
performed to guide interface adjustments across development
iterations. Moreover, formative tests with six people (average
age of 20.7) were conducted in order to identify application
errors and bugs, as well as evident interface design issues.
Each formative test began with participants just exploring the
interface and becoming familiar with it. After exploring, a set
of three exercises were presented, given a certain map location
to work in: generate a heat map by associating pollution
magnitude values to map entities; associate edited entities to
profile any; and represent weekly variations using a chart.
In order to identify poorer design decisions during the initial
implementation phase, it is common practice to run formative
tests with a small group of people, usually five.

Finally, the improved (current) version of the tool was
subject to a summative evaluation, which is described in the
following sections.

A. Summative Evaluation

Thirty participants were invited to test the tool, with the goal
of assessing its interface efficiency and usability, validating
the viability of the proposed knowledge-based approach for
pollution mapping, and collecting feedback and improvement
suggestions. Out of the 30 participants, a total of 6 are
environmental experts (researchers and MSc students in envi-
ronmental sciences, the latter being surrogates of established
researchers), the other 24 users being non-experts (70% male
and 30% female). All non-experts are MSc and BSc students,
3 from economics and management and the remaining from
the computing area. Although the test results obtained with all
participants were considered to assess the usability aspect of
the interface, only the test results obtained with environmental
experts were considered to assess the viability of the tool as
a pollution knowledge elicitation tool.

Each user testing session started with a brief description
of the project and the testing process itself. The participant
was then asked to think out loud throughout the testing
session, so it could be evident which interface aspect was
being focused on, and which train of thought being followed
when facing any potential challenge. After this introduction, a
tutorial consisting of seven slides was shown to the participant,

TABLE II

# Task Description
1 Associating a pollution magnitude value of 100 (AQI units) to

a specified road
2 Select and associate a pollution magnitude value of 150 (AQI

units) to every building alongside a specified road
3 Represent weeklong variation in the viewport considering that

at the weekend pollution is reduced to half
4 Select and associate a pollution magnitude value of 100 (AQI

units) to all roads currently in the view-port
5 Associate a pollution magnitude of 500 (AQI units) to a

specified non-segmented building
6 Represent daylong variation of the previous task’s building,

considering that this variation has half the impact of the
weeklong variation

TABLE III

# SUS Question Description
1 I think that i would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person to

be able to use this system.
5 I found the various functions in this system were well inte-

grated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this

system very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.

10 I needed to learn a lot of things before I could get going with
this system.

11 In the last task, the tool allowed me to create a pollution map
given a zone and its properties.

12 In the last task, the tool allowed me to express my knowledge
on pollution emission given a zone and its properties.

13 The pollution map I created given a zone, and its properties,
is representative of what I expect is correct.

each slide describing a functionality of the application by
displaying a video of its use, along with a short textual
description. Afterwards, the actual user testing session begun.
Three different phases composed this stage, the first two
being interaction-oriented, whereas the third being opinion-
oriented. Quantitative data such as completion rate or usability
score were obtained in all three phases, while qualitative data
was obtained when a participant required help to complete
a task and in the final debriefing. Firstly, a set of six tasks
with specific goals and related to main functionalities to be
achieved using the interface was presented to the participant.
The description of these tasks is shown on table II.

Secondly, a separate task requiring interaction with the
application in order to produce a pollution map from scratch
in a new location was presented. Finally, the participant was
asked to fill the user interface evaluation questionnaire, System
Usability Scale (SUS) [28], [29], consisting of 10 items with
a five-point Likert scale ranging from strongly disagree to
Strongly Agree, to assess the application’s usability (see items
1-10 in Table III). Furthermore, three items were added to
the questionnaire in order to further evaluate the viability of
the proposed knowledge-based approach for pollution mapping
(see items 11-13 in Table III).
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Fig. 6. Number of testers (count) that completed, partially completed, and
did not complete each task. Testers are split in (environmental) experts and
non-experts. Description of each task is presented in Table II.

B. Results

Overall, the summative evaluation, described in the pre-
vious section, shows that the tool’s usability is satisfactory.
Fig. 6 shows the number of testers that completed, partially
completed, and did not complete task. The middle category
was introduced to cope with the fact that in a couple of tasks
there were testers that took over than five minutes to complete
a task and/or required some kind of hint by the researcher
conducting the test to be concluded. Overall, looking at the
results presented in the figure, all tasks, except the sixth (chart
creation and profile managing), were carried out successfully
within the allotted time and without help by at least 70%
testers. Generally, each task has a single goal that needs to
be achieved for it to be considered successful.

Considering the first five tasks, a few usability issues were
highlighted: the roads selection lines are too thin, requiring the
user to be very precise when clicking on them; a few missteps
were noticed in the multi-selection task which included the
accidental selection of unwanted entities; the drop down menu
for switching between simulation scenarios (corresponding to
graphs items) was barely used; after drawing a polygon to
create a new entity, users felt confused when trying to choose
a tag to identify the latter.

The sixth task involved three implicit sub-tasks, that should
be uncovered by the user (see Table IV): (1) to create a new
pollution variation chart; (2) to adjust its relevance to half;
and (3) to associate it to the same profile as the map entity
created in the previous task. This task was considered to be
successfully executed if all three sub-tasks were successfully
executed. A middling success was assigned if only two sub-
tasks were successful, and a failure in case of one or none.
Table IV) shows that graph creation was successfully handled
by the majority of users. The graph’s relevance value defines
how much it affects the associated entities’ pollution emission.
Table IV) shows that the sub-task associated to the adjust-
ment of this parameter produced mixed results. Possibly, a

TABLE IV
SUCCESS RATE OF TASK SIX’S SUB-TASKS.

Sub-Task Success
To create a new pollution variation chart 76%
To adjust the chart’s relevance to half 43%
To associate the chart to profile of previous task 33%
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Fig. 7. Confidence intervals for completeness rate of tasks.

comprehensive reference in the tutorial would have decreased
this issue’s occurrence rate. Profile management proved to be
the most misunderstood functionality, as shown in Table IV.
User feedback obtained in debriefing revealed that the tutorial
description and the accompanying video could have been more
clarifying. Furthermore, once the interface element associated
to profile management is opened, only one profile is visible:
any. Perhaps the inclusion of more pre-defined profiles could
help the user in obtaining a better understanding of the
functionality.

To extrapolate the ability of any person to perform the
tasks that we have analysed, Fig. 7 shows the 95% confidence
intervals of the completeness rate. We have used the data
both from experts and non-experts. We considered two types
of completion, one where we only consider if a task was
completed under the allotted time, and a second where we
also consider the data were a person required extra time, or
assistance by the researcher. Overall we can see that the confi-
dence interval for tasks 3 and 5 is above 75% independently of
how the tasks were completed. If we also consider the second
type of completion, then the confidence interval of tasks 1, 2,
and 4 raises above 75%. The confidence interval of task 6 is
the only one that is low, which explains the feedback that we
discussed in the previous paragraph.

A second phase of the summative evaluation process was
carried out to assess the viability of the proposed knowledge-
based approach for air pollution mapping. This builds upon the
ability of environmental experts to use our tool to represent
their knowledge regarding air pollution emission and diffusion,
given satellite imagery. The specificity of this analysis led
us to focus this second phase on the environmental experts.



These participants were asked to create an air pollution heat
map to the best of their knowledge, given a pre-selected
area in the corresponding satellite imagery. A proportion of
53% of the participants, which tried to create a pollution
map in this task, wound up selecting multiple entities, mainly
roads, and then associating the same pollution magnitude to
all of them, whereas only 13% tried to introduce different
values depending on the type and apparent width of the road.
However, all participants exhibited difficulties in associating
aggregate AQI values to entities, as they are used to per-
form more specific pollutant-wise assessments. As a result,
the general opinion reported by the experts is that the tool
should allow them to express their knowledge at the level of
individual pollutants, instead of solely aggregate AQI values.
Consequently, although experts recognised the novelty and
value of the tool to their field, they displayed some difficulties
in using it as a means to express their knowledge in its
current form. Fortunately, their rich feedback generated a list
of improvements that will be included in future versions of
the tool. Among this feedback, we highlight the suggestion
for using the tool in educational contexts.

To obtain more statistical information about the tool’s
usability, in a third phase of the summative evaluation, a
usability questionnaire consisting of 13 items was presented
to the testers. Ten of these items are from SUS, whereas
the other 3 were appended so as to handle the specificities
of task 6. Fig. 8 shows that, considering the first 10 item
questionnaire, the obtained results are satisfactory. To better
evaluate the results, a scoring method [29] was executed. The
final score of the used method ranges between 0 and 100.
Studies in usability [28] suggest that an acceptable interface
should have a score of, at least, 68. The score 68.83 achieved
by our tool indicates that the usability of its interface is
satisfactory, although continued improvement should be imple-
mented. If we consider the usability and learning dimensions
in separate [30], our tool obtained a score of 68.13 and
71.67, respectively. This means that the usability of our tool
is still satisfactory. The three last questions (non-SUS) of the
questionnaire related to task 6 showed very different results
from a usability standpoint, performing much worse than the
previous ten, which is not surprising, considering the low
success rate of the task. Returned feedback suggests that
building upon and improving the developed tool by altering
existing functionalities (e.g., individual pollutant definition)
and adding new ones (e.g., including more data sources,
and entity searching by tag) should produce better viability
results. Information such as this, will be extremely useful in
development of future iterations of the tool herein presented.

V. CONCLUSIONS

A graphical tool was presented with the novel idea of
allowing users, namely environmental experts, to express and
share their knowledge on air pollution emission and dispersion
on an interactive map. This tool contributes with a novel
way of complementing existing sensor-based air pollution
mapping approaches, the ultimate goal being to use direct
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Fig. 8. Questionnaire results. Description of each question is shown in
Table III.

expert knowledge to extend the range and efficacy of air
quality predictions, particularly regarding individual pollu-
tion emitters. The obtained results in the evaluation phase
demonstrate good usability levels. Participants generally found
the interface to be intuitive. Functionalities such as entity
selection, multi-selection, and polygon drawing were quickly
recognizable. In some cases, adding pollution to entities and
chart interactions required use of the tutorial, after which were
easily realized. Some functionalities were not as easily used
though, such as managing profiles, where feedback suggested
that the corresponding tutorial slide should have been more
clarifying.

While the tasks participants where asked to perform can
be considered as specific to an environmental expert, they are
rather focused on using the tool to perform an action which is
not related to a real context. For instance in task 1, we ask the
user to select a graphical element in the interface and assign a
property to that element. This action is also found in another
applications. If the task would be assign a high pollution value
to the most road in a city, then this would require knowledge
about the surrounding environment.

When faced with the idea underlying the tool, experts
recognised its value and novelty. When requested to express
their knowledge with the tool, a few improvements for forth-
coming tool’s versions became evident. The elements pointed
out by the experts as the most valuable to bring the tool
to the next level are: to allow the user to associate specific
pollutant magnitude values to map entities, rather than a single



aggregate AQI value; to provide the user with additional
topological information, such as road width and buildings
height, as these are known to greatly influence air dynamics;
and provide the user with traffic information as, again, is key
to predict air pollution magnitude. A reviewer also suggested
including a scale with the AQI level.

We believe that future iterations of this tool have the
potential of drastically improving it in terms of usability
and viability. After resolving all usability issues and adding
required functionalities, research should be made on additional
data sources that provide some of the aforementioned infor-
mation. Mapbox’s own traffic layer, would be an option to
consider for its relatively high coverage. Furthermore, having
the option to view the map with 3D rendered buildings might
help users to better visualise it and identify street canyons,
which generally increase pollution. Again, Mapbox provides
a layer that does this, although limited in the number of cities
with complete information. The waqi.info API [16] overlays
the map with all accepted air quality monitors and respective
results. By including this API in the application, a new study
could be conducted in which expert knowledge was compared
with curated sensor data. This could answer the question of
how relevant direct expert knowledge would be in pollution
mapping. We also intend to study the value of the tool for
expert knowledge-based filtering of noisy sensory data. Future
versions of the tool will support the user when associating air
pollution to map entities with semi-supervised segmentation
techniques. Finally, we will study how this tool can be used
in educational contexts. In a possible educational use case,
a teacher could create an air pollution map to demonstrate
features that cause or contribute to mitigate pollution. Students
would then learn how to improve air quality.
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