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THE STAR-CENTER OF THE QUATERNIONIC

NUMERICAL RANGE

LUÍS CARVALHO, CRISTINA DIOGO, AND SÉRGIO MENDES

Abstract. In this paper we prove that the quaternionic numerical

range is always star-shaped and its star-center is given by the equiva-

lence classes of the star-center of the bild. We determine the star-center

of the bild, and consequently of the numerical range, by showing that

the geometrical shape of the upper part of the center is defined by two

lines, tangents to the lower bild.

1. Introduction

Let H denote the skew-field of Hamilton quaternions. Let A be a n ×
n matrix with quaternionic entries. It is well known that the numerical
range WH(A) = W (A) is a connected but not necessarily convex subset
of the quaternions. The group of unitary quaternions SH acts on H by
automorphisms. Since every class [q], q ∈ H, has a representative in C+ and
each class of q ∈W (A) is contained in W (A), it became clear from the early
studies of the quaternionic numerical range that it is enough to study the
bild of A, B(A) = W (A) ∩ C or the upper-bild B+(A) = W (A) ∩ C+. The
latter has the advantage of being always convex whereas B(A) is convex
if, and only if, W (A) is convex, see [Zh, page 53] and theorem 3.1. The
convexity of the numerical range, the bild and upper bild has been studied
by several authors, see [AY1, AY2, R, S, ST, STZ].

In the complex setting the numerical range is convex thanks to the cele-
brated Toeplitz-Hausdorff Theorem [GR]. Over the time, several generaliza-
tions of the numerical range have been proposed, namely the C-numerical
range, the joint numerical range, among others, and in these cases convex-
ity may fail. It then becomes natural to look for convexity-like geometric
properties. For instance, the property of star-shapedness has been studied
in [CT, LLPS18, LLPS19, LNT, LP]. We recall that star-shapedness of a
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set B only requires that there is an element b0 ∈ B such that every seg-
ment connecting b0 and any other element of B must be contained in B, see
definition 2.1. Accordingly, we say that b0 is in the star-center of B.

For some generalizations of the numerical range, the star-shapedness of
the (complex) numerical range holds under certain conditions. In the article
we tackle the question of the star-shapedness in the quaternionic setting.
We prove that the quaternionic numerical range is always star-shaped. In
addition, we characterize the shape of the star-center for quaternionic ma-
trices.

The star-shapedness of the numerical range is a consequence of two simple
facts (see theorem 3.5). Firstly, the convexity of the upper and lower bilds
imply that the segments whose end is a real element of the bild is contained
in the bild. Therefore the bild is star-shaped and the reals therein are part
of its center. And secondly, the equality, up to isomorphism, of all two
dimensional real subalgebras of the quaternions that include the reals (as a
real subspace), leads us to the conclusion that the reals in W (A) are in fact
part of the (star) center of the numerical range.

As mentioned before, the general reason to focus on the bild is that
the whole numerical range can be reconstructed from it by using similar-
ity classes. Our result is in line with the elements of the bild being the
building blocks of the numerical range. In fact, we prove in theorem 3.9
that the center of the numerical range is given by the similarity classes of
the center of the bild. Therefore, we only need to know the center of the bild,
and then to build the similarity classes to obtain the center of the numerical
range. When the matrix is non hermitian the upper center (likewise for the
lower center) is the region of the upper bild limited by two lines. These two
lines are the tangents to the curve defining the boundary of the lower bild at
the reals, see theorems 4.1, 4.3 and corollary 4.5. As a consequence of these
results we establish a new proof of the important theorem by Au-Yeung
[AY1, theorem 3], which establish a necessary and sufficient condition for
convexity of the numerical range, see corollary 4.4. We conclude with an
example where we explicitly compute the center.

2. Preliminaries

The quaternionic skew-field H is an algebra of rank 4 over R with basis
{1, i, j, k}, where the product is given by i2 = j2 = k2 = ijk = −1. For any
q = a0 +a1i+a2j+a3k ∈ H we denote by qr = a0 and qv = a1i+a2j+a3k,
the real and imaginary parts of q, respectively. Let the pure quaternions
be P = spanR {i, j, k}. The conjugate of q is given by q∗ = qr − qv and the
norm is defined by |q|2 = qq∗. Two quaternions q, q′ ∈ H are called similar,
if there exists a unitary quaternion s such that s∗q′s = q. Similarity is an
equivalence relation and we denote by [q] the equivalence class containing
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q. A necessary and sufficient condition for the similarity of q and q′ is given
by qr = q′r and |qv| = |q′v|, see [R, theorem 2.2.6]. We will denote the set of
all equivalence classes of the elements of a set X ⊆ H by [X]. Then,

[X] =
⋃
x∈X

[x].

Let Hn be the n-dimensional H-space. The norm of x ∈ Hn is |x|2 = x∗x.
The disk with center a ∈ Hn and radius r > 0 is the set

DHn(a, r) = {x ∈ Hn : |x− a| ≤ r}

and its boundary is the sphere SHn(a, r). In particular, if a = 0 and r = 1,
we simply write DHn and SHn . With this notation, the group of unitary
quaternions is SH whereas SP denotes the unit sphere over the pure quater-
nions.

Let Mn(H) be the set of all n× n matrices with entries over H. The set

W (A) = {x∗Ax : x ∈ SHn}

is called the quaternionic numerical range of A in H. From the above def-
inition we see that the quaternionic numerical range of A ∈ Mn(H) is the
subset of H containing the images of the quadratic function fA(x) = x∗Ax
over the quaternionic unitary sphere, x ∈ SHn . The numerical range is
invariant under unitary equivalence, i.e.

W (U∗AU) = W (A) ,

for every unitary U ∈Mn(H) [R, theorem 3.5.4].
It is well known that if q ∈ W (A) then [q] ⊆ W (A), see [R, page 38].

This means that if q1 ∼ q2 and q2 ∈ W (A) then q1 ∈ W (A). For simplicity
we just say that q2 belongs to W (A) by similarity. Therefore, it is enough
to study the subset of complex elements in each similarity class. This set is
known as B(A), the bild of A:

B(A) = W (A) ∩ C.

We will freely use both notations B(A) and W (A) ∩ C for the bild of A.
Although the bild may not be convex, the upper bild B+ = W (A) ∩ C+ is
always convex, see [ST]. Analogously, the lower bild B− = W (A) ∩ C− is
also always convex. Note that

C+ ∩ C− = R, B = B+ ∪B− and B+ ∩B− ⊆ R.

For p ∈ P, let

Span{1, p}+ = {α+ βp : α ∈ R, β ∈ R+
0 }.
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For any w ∈W (A) and p ∈ P, let w(p) be the representative of the class [w]

in span {1, p}+, that is,

{w(p)} = [w] ∩ span {1, p}+.

In particular,

{w(i)} = [w] ∩ span {1, i}+ ⊆ B+

and we can write w(i) = wr + i|wv|.
Let V ⊆ H ∼= R4 be a real subspace of H. We denote by πV the canonical

R-linear projection

πV : H→ V.

For h0, h1 ∈ H we will denote by [h0, h1] the set of convex linear combi-
nations of h0 and h1:

[h0, h1] = {(1− α)h0 + αh1 : α ∈ [0, 1]}.

Definition 2.1. Let B be a subset of a vector space. We say the set B is
star-shaped if there is a vector b0 ∈ B such that [b0, b] ⊆ B , ∀b ∈ B. The
star-center of a set B is defined to be

C (B) = {b0 ∈ B : [b0, b] ⊆ B, for any b ∈ B}.

For simplicity, we refer to the star-center of a set as the center.

3. Star-shapedness of the bild and numerical range

The upper bild and the bild fully specify the numerical range, but the first
is considered better suited to represent the quaternionic numerical range.
This is not only because it is convex but also because it has the advantage
of containing one single element from each similarity class. In a sense,
the upper bild can be interpreted as the set of equivalence classes for the
similarity relation ∼, that is, the quotient set

B+ = W/ ∼ .

However, from the convexity of the upper bild we cannot infer about the
convexity of the numerical range, as the first is always convex and the latter
is not.

The first result of this paper relates the convexity of the bild with the
convexity of the numerical range. This is a known result (see [Zh, page 53]),
however we present a different proof based on elementary properties of the
numerical range.

Theorem 3.1. Let A ∈ Mn(H). Then W (A) ∩ C is convex if and only if
W (A) is convex.

Proof. It is enough to prove that, if W (A)∩C is convex then W (A) is convex.
Let a, b ∈ W (A) and α ∈ [0, 1]. We need to show that c = αa+ (1− α)b ∈
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W (A). The quaternion c = cr + cv has cr = αar + (1− α)br and

(3.1) |cv| = |αav + (1− α)bv| ≤ α|av|+ (1− α)|bv|.

We will prove that c(i) ∈ B+, thus proving by similarity that c ∈ W (A).
Since the upper bild is convex,

(3.2) ω = αa(i) + (1− α)b(i) = cr +
(
α|av|+ (1− α)|bv|

)
i ∈ B+.

By similarity, ω∗ ∈ B−. Note that c(i) = c(i),r + c(i),v = cr + i|cv|. From
(3.2), c(i),r = ωr = ω∗r and from (3.1), |c(i),v| ≤ |ωv|. Therefore,

−ωv
i
≤
c(i),v

i
≤ ωv

i
,

and so there is β ∈ [0, 1] such that c(i),v = βωv+(1−β)ω∗v . Hence, c(i) = βω+
(1− β)ω∗. By hypothesis, W (A) ∩C is convex and so c(i) ∈W (A) ∩C. �

Any quaternionic matrix A ∈Mn(H) can be written as A = H̃ + S̃, with

H̃ = A+A∗

2 hermitian and S̃ = A−A∗

2 skew-hermitian. Let U ∈ Mn(H) be

the unitary matrix that diagonalize S̃, i.e,

S = U∗S̃U = diag (s1, . . . , sn).

Since the numerical range is invariant under unitary equivalence, we can
work with U∗AU , that can be written in the form

U∗AU = U∗H̃U + U∗S̃U = H + S.

Since H is hermitian fH(x) ∈ R and since S is skew-hermitian the real part
of fS(x) is zero, see [R, corollary 3.5.3].

We claim that 0 ∈ WH(S). To prove this we will find a vector x ∈ SHn

such that fS(x) = 0. Let x3 = . . . = xn = 0, then take z1 and z2 in
SH such that q1 = z∗1s1z1 ∈ C+ and q2 = z∗2s2z2 ∈ C−. The quaternions
q1 and q2 are either zero or the representatives of s1 in C+ and s2 in C−,
respectively. Thus they are pure complex. Finally, choose β ∈ [0, 1] such

that βq1 +(1−β)q2 = 0. Take x1 = β1/2z1 and x2 = (1−β)1/2z2. Then, the
vector x ∈ SHn is in the stated conditions. It is now clear that W (A)∩R 6= ∅.
In fact, take vector x and compute fA(x) = fH(x) + fS(x) = fH(x) ∈ R.
We have proved the following result.

Proposition 3.2. For any A ∈Mn(H), W (A) ∩ R 6= ∅.

The previous result has been apparently known for some time, as it ap-
pears in Siu’s thesis [Siu], supervised by Au-Yeung. However it has never
been published before, to the best of our knowledge. In spite of this, Au-
Yeung in [AY1, corollary 1] apropos of the connectedness of W (A)∩R, and
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citing a result from [J], states the possibility of W (A) ∩ R = ∅. This pos-
sibility is also stated in [Zh, theorem 9.2] and [K, corollary 2.10], repeating
again the same result from [J] (although [K] doesn’t cite it).

A common technique used to prove the Toeplitz-Hausdorff theorem re-
duces the study of the convexity of a linear operator to the study of the
convexity of a 2× 2 matrix, see [GR, theorem 1.1.2] . In general, this tech-
nique allows to extend some results regarding numerical range over finite
dimensional Hilbert spaces to infinite dimensional Hilbert spaces. This was
also used by [ST] to prove the convexity of the upper bild. Accordingly, the
result of proposition 3.2 can be extended for any bounded linear operator A
over any (right) quaternionic Hilbert space (H , 〈. , . 〉).

Corollary 3.3. Let A be a linear operator over any (right) quaternionic
Hilbert space (H , 〈. , . 〉). Then, W (A) ∩ R 6= ∅.1

Proof. Let e1, e2 ∈H be two unitary vectors and identify spanH{e1, e2} =
H2. Let P : H → H2 be the orthogonal projection. Then, the compression
PAP of A to the subspace H2 is a 2×2 quaternionic matrix. An element w ∈
W (PAP ) is of the form w = 〈PAPx, x〉, for some x ∈ SH2 . Since ‖Px‖ =
‖x‖ = 1 the element w = 〈APx, Px〉 lies in W (A). Hence, W (PAP ) ∩ R ⊆
W (A) ∩ R, and from proposition 3.2, W (A) ∩ R 6= ∅. �

From now on, we fix a matrix with quaternionic entries, A ∈Mn(H), and
we denote the quaternionic numerical range of A simply by W = W (A).

Let q1, q2 ∈ SP. We say an element a1 ∈ span{1, q1} is ∼̇-similar to
a2 ∈ span{1, q2}, if and only if, for some r, s ∈ R,

a1 = r + sq1 and a2 = r + sq2,

in which case we write a1∼̇a2. We say that A1 ⊆ span{1, q1} and A2 ⊆
span{1, q2} are ∼̇-similar, and denote it by A1∼̇A2, if and only if, for any
a1 ∈ A1 there is an a2 ∈ A2 such that a1∼̇a2, and vice versa. When two sets
are ∼̇-similar they share some properties, namely convexity. In fact, if A1

is convex we can conclude that A2 is convex. Take any a2, ã2 ∈ A2. Then,
there are a1, ã1 ∈ A1, such that a1∼̇a2 and ã1∼̇ã2. For any α ∈ [0, 1] it is a
matter of simple calculations to note that

αa1 + (1− α)ã1∼̇αa2 + (1− α)ã2.

Now, since A1∼̇A2 and A1 is convex we conclude that αa2+(1−α)ã2 ∈ A2.
Therefore A2 is also convex. A similar argument proves that the centers are
∼̇-similar for any two ∼̇-similar sets A1 and A2, since whenever a segment
is in A1 the ∼̇-similar segment must be in A2. That is, C (A1)∼̇C (A2)
whenever A1∼̇A2.

1 We thank the anonymous referee, whose question on the validity of proposition 3.2

for operators in infinite dimensional Hilbert space originated this corollary.
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Define, for q ∈ SP,

W (q) = W ∩ span{1, q}
and

W (q)+ = W ∩ span{1, q}+, W (q)− = W ∩ span{1, q}−.

Lemma 3.4. For any q1, q2 ∈ SP we have:

(i) W (q1)+,W (q1)− are convex,

(ii) C
(
W (q1)

)
∼̇C

(
W (q2)

)
.

Proof. The numerical range is such that, by similarity, W (q1)∼̇W (q2), for
any q1, q2 ∈ SP. It is also an immediate conclusion of numerical range’s
closedness to similarity that W (q1)+∼̇W (q2)+, for any q1, q2 ∈ SP. It is
known that the upper bild W (i)+ = B+ is convex, thus from the previous
discussion, we have that W (q)+ is also convex for any q ∈ SP. Moreover from

W (q1)∼̇W (q2) we know that C
(
W (q1)

)
∼̇C

(
W (q2)

)
. �

As a consequence of this lemma we only need to study the center of one
of the W (q)’s and the natural choice is to take q = i, that is, we only need
to study the center of the bild B = W (i).

Theorem 3.5. The quaternionic numerical range W is star-shaped and
W ∩ R ⊆ C (W ).

Proof. By proposition 3.2, there is r ∈ W (A) ∩ R. For every ω ∈ W , there

is q ∈ SP such that ω ∈ W (q). Since W (q) = W (q)+ ∪ W (q)− and using
lemma 3.4 we have that [r, ω] ⊆ W (q) ⊆ W . Hence, the numerical range is
star-shaped. Moreover, W ∩ R ⊆ C (W ). �

The numerical rangeW (A) is contained in R if, and only if, A is hermitian,
see [R, corollary 3.5.3].. The next result follows trivially from theorem 3.5.

Corollary 3.6. If A is hermitian then C (W (A)) = W (A).

Lemma 3.7. The center of the bild is closed under conjugation, i.e.

C (W ∩ C) = C (W ∩ C)∗.

Proof. Assume c ∈ C (W ∩C). Let ω be any element of the bild ω ∈W ∩C.
Since the bild is closed for conjugation, ω∗ ∈ W ∩ C. Then c being in the
center implies that αc+(1−α)ω∗ ∈W∩C, for any α ∈ [0, 1]. And again using
the bild’s closedness to conjugation we conclude that αc∗+(1−α)ω ∈W ∩C.
Since this is true for any ω ∈W ∩C, c∗ ∈ C (W ∩C). The converse inclusion
follows similar steps. �

We now establish the equality between the center of the bild and the
complex part of the center of the numerical range.
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Proposition 3.8. We have:

C (W ) ∩ C = C (W ∩ C).

Proof. The inclusion C (W ) ∩ C ⊆ C (W ∩ C) is obvious since a complex
element in the center of W must be in the center of W ∩ C.

For the converse inclusion, starting with c ∈ C (W ∩ C), we will prove
that y = αc+ (1− α)ω ∈W for any α ∈ [0, 1] and ω ∈W .

We can assume, without loss of generality, that c = c(i) ∈ C+. Since any
quaternion y can be written as the sum of a real with a pure quaternion, we
may write y = yr + |yv|q, with q ∈ SP. We have:

y =
(
αcr + (1− α)wr

)
+
∣∣∣αcv + (1− α)wv

∣∣∣q.
By similarity, it is enough to prove that y(i) ∈ B+. With this purpose, we

will find two elements a, b ∈ B+ such that

(3.3) ar = br = yr and |av| ≤ |yv| ≤ |bv|.

In this case, by convexity of the upper bild, y(i) ∈ B+ since y(i) = βa +
(1− β)b, for some β ∈ [0, 1]. Let

b = αc(i) + (1− α)w(i)

= yr +
(
α|cv|+ (1− α)|wv|

)
i ∈W ∩ C+.

The conclusion that b ∈ B+ follows from the fact that w(i), c(i) ∈ B+,
which is a convex set.

If α|cv| − (1 − α)|wv| > 0 we take a = αc(i) + (1 − α)w∗(i), else we take

a = αc∗(i) + (1− α)w(i) (clearly, a ∈ C+).

We now need to check that a and b are in W and satisfy conditions (3.3).
It is trivial to conclude that the real parts are all equal. On the other hand,

|bv| = α|cv|+ (1− α)|wv| ≥ |αcv + (1− α)wv| = |yv|.

To conclude that |av| ≤ |yv| we will use Cauchy-Schwartz inequality. If we
look a quaternion q ∈ H as a vector in R4, its norm is given by 〈q, q〉 = |q|2,
where 〈., .〉 is the usual inner product in real vector spaces. Then we have:

|yv|2 =
〈
αcv + (1− α)wv, αcv + (1− α)wv

〉
= α2|cv|2 + (1− α)2|wv|2 + α(1− α)

(
〈cv, wv〉+ 〈wv, cv〉

)
≥ α2|cv|2 + (1− α)2|wv|2 − 2α(1− α)|cv||wv|

=
(
α|cv| − (1− α)|wv|

)2
.
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Since |cv| = |c(i),v| and|wv| = |w(i),v|, we have:

|yv|2 ≥
(
α|c(i),v| − (1− α)|w(i),v|

)2
.

Using the equality (αc(i) + (1 − α)w∗(i)

)
v

= α|c(i),v|i − (1 − α)|w(i),v|i, it

follows that

|yv|2 ≥
∣∣∣(αc(i) + (1− α)w∗(i)

)
v

∣∣∣2
=
∣∣∣(αc∗(i) + (1− α)w(i)

)
v

∣∣∣2
= |av|2.

Therefore, |av| ≤ |yv| ≤ |bv|.
It remains to prove that a ∈W . If a = αc(i) + (1− α)w∗(i), by hypothesis

c(i) ∈ C (W ∩C) and w∗(i) ∈W ∩C, then any convex combination of them is

also in W ∩C. If a = αc∗(i)+(1−α)w(i) then a ∈W , because c∗(i) ∈ C (W ∩C)

by lemma 3.7, and w(i) ∈W ∩ C. �

Next result establish the relation between the center of the numerical
range C (W ) and the center of the bild C (W ∩ C).

Theorem 3.9. The center of the numerical range is such that

C
(
W
)

=
[
C (W ∩ C)

]
.

Proof. Let c ∈ C (W ). For some q ∈ SP, we have c ∈ C (W ) ∩ span {1, q}.
Using a similar reasoning of the proof of proposition 3.8, we can show that

C (W ) ∩ span {1, q} = C (W ∩ span {1, q}) = C (W (q)).

Now, c ∈ C (W ) if and only if c ∈ C (W (q)), for some q ∈ SP, that is,

c ∈ C (W )⇔ c ∈ C (W (q)), for some q ∈ SP.

By lemma 3.4, C (W (q))∼̇C (W (i)). We conclude that

c ∈ [C (W (q))] = [C (W (i))] = [C (W ∩ C)].

�

If we use the fact that W is the set of all elements similar to those in
W ∩ C, that is,

W =
[
W ∩ C

]
,

the above result can be written in the following way:

C
([
W ∩ C

])
=
[
C (W ∩ C)

]
.
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In other words, the operations of taking the center and of taking the
equivalence classes of a numerical range commute.

4. Characterization of the center of the bild

We now know that it is possible to characterize the center of the numerical
range from the center of the bild. On the other hand, lemma 3.7 guarantees
that the lower part of the center of the bild is the conjugate of the upper
part,

(4.1) C− = C (W ) ∩ C− = (C+)∗ = (C (W ) ∩ C+)∗,

and we conclude that to determine C (W ) we only need to know C+. From
corollary 3.6, we may focus only on non-hermitian matrices.

By the convexity of the upper bild, the segment joining any two elements
in the upper bild is contained in it. Therefore an element of the upper bild
is not in the center if and only if a convex combination with an element in
the lower bild is not in the bild. That is, an element ω ∈ W ∩ C+ is not in
the center of the bild, ω 6∈ C (W ∩ C), if and only if, there is z ∈ W ∩ C−
such that the segment connecting the two is not contained in the bild, i.e.
[ω, z] 6⊆ W ∩ C. The argument we will use is build upon the fact that a
segment, joining two elements of the bild, is not totally contained in the
bild, if and only if it crosses the reals outside of it. Thus, either an element
ω of the upper bild has all its segments [ω, z], for z ∈W ∩C−, crossing the
real line inside the bild, that is, [ω, z] ∩ R ⊆ B, in which case ω is in the
center, or there is one of these segments that crosses the real line outside
the bild, and the element ω is not in the center.

For the rest of this section we will slightly change notation and write
z = x+ iy as (x, y). Let

m = minW ∩ R and M = maxW ∩ R

be the minimum and maximum of the real elements in the bild. Using the
previous reasoning, but on a dual perspective, to find out if an element ω in
the upper bild is in the center, we only need to see if the segments joining
ω to (M, 0) and to (m, 0) intersects the interior of the lower bild or not. In
the case where it does the element is not in the center. For instance, if the
segment joining ω ∈ B+ to (m, 0) intersects B− at z in the lower part of the
interior of the bild, then there is an element z̃ to the left of z such that the
segment [ω, z̃] will cross the reals to the left of (m, 0), and therefore outside
of the bild.

The next results formalize this intuitive argument. To reach this we will
need to define for each ω ∈ C+ two lines, one denoted lω connecting ω =
(ω1, ω2) to (m, 0), and the other denoted Lω connecting ω to (M, 0). Since
the real points of the numerical range belongs to the center (see theorem
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3.5), it is enough to consider points ω = (ω1, ω2), with ω2 > 0. The lines
are given by

lω = {(x, y) : x = ay +m}
Lω = {(x, y) : x = by +M)},

with a =
ω1 −m
ω2

and b =
ω1 −M
ω2

.

Let

ym = min{πSpan{i}(B)} and yM = max{πSpan{i}(B)}.

By symmetry of the bild, yM = −ym. Since the matrix is non-hermitian,
yM > 0.

We may define, for y ∈ [ym, 0], two functions:

x1(y) = min {x : (x, y) ∈ B−} and x2(y) = max {x : (x, y) ∈ B−}.

Notice that x1(0) = m and x2(0) = M . According to [Roc, theorem 5.3],
x1(·) is convex and x2(·) is concave. The lower bild may be written using
x1(·) and x2(·):

(4.2) B− =
{

(x, y) : ym ≤ y ≤ 0 and x1(y) ≤ x ≤ x2(y)
}
.

The interior of the lower bild is given by:

(4.3) (B−)
o

=
{

(x, y) : ym < y < 0 and x1(y) < x < x2(y)
}
.

The next result gives a characterization of C (B), when m < M . For
ω ∈ B+ the lines lω and Lω do not cross over the interior of the lower bild,
if and only if, ω ∈ C (B).

Theorem 4.1. Let m < M and let ω ∈ B+. Then, ω ∈ C (B) if, and only
if, (

lω ∩ (B−)
o
)⋃(

Lω ∩ (B−)
o
)

= ∅.

Proof. We begin by observing the following. Let ω = (ω1, ω2) ∈ B+ with
ω2 > 0. The line lω passing through ω and (m, 0) can be written as:

lω(y) =
ω1 −m
ω2

(y − ω2) + ω1

and define two half planes:

℘− : x− lω(y) < 0 and ℘+ : x− lω(y) > 0.

To prove that if ω ∈ C (B), then (lω ∪ Lω) ∩ (B−)
o

= ∅ we proceed by
contrapositive.
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Fix an element ω = (ω1, ω2) ∈ B+ as before, i.e., with ω2 6= 0, and
suppose there is an element z ∈ lω ∩ (B−)

o
(if z ∈ Lω ∩ (B−)

o
the proof is

analogous). Since z = (z1, z2) ∈ lω, the line lω may also be written as

f(y) =
ω1 − z1
ω2 − z2

(y − ω2) + ω1.

Let Nε(z) ⊂ (B−)
o

be a neighborhood of z. Then, there is z̃ = (z̃1, z̃2) ∈
Nε(z) such that z̃1 < z1 and z̃2 = z2.

The line l̃ passing through ω and z̃ is

g(y) =
ω1 − z̃1
ω2 − z2

(y − ω2) + ω1.

Define the affine function h(.) by:

h(y) ≡ g(y)− f(y) =
z1 − z̃1
ω2 − z2

(y − ω2).

Clearly, h(ω2) = 0 and h(z2) = z̃1 − z1 < 0. Since ω2 > 0 and z2 < 0,
there is β ∈ (0, 1) such that 0 = βω2 + (1−β)z2. Moreover, since h is affine,

h(0) = βh(ω2) + (1− β)h(z2)

= (1− β)h(z2) < 0

and so, g(0) < f(0) = lω(0) = m. Hence, the line passing through ω and z̃
does not intersect B ∩ R, which implies that [w, z̃] * B and ω /∈ C (B).

Now we prove the converse, that is, given ω = (ωx, ωy) ∈ B+, if (lω ∪
Lω)∩(B−)

o
= ∅, then ω ∈ C (B). Take a generic point z = (zx, zy) ∈ (B−)

o
.

Let λ be the line passing by ω and z. Since (lω ∪ Lω) ∩ (B−)
o

= ∅ and
lω, Lω and λ are lines passing by ω we know that

lω(zy) < λ(zy) < Lω(zy)

and

lω(ωy) = λ(ωy) = Lω(ωy) = ωx.

Therefore for any ty ∈ [zy, ωy] we have that lω(ty) < λ(ty) < Lω(ty). In
particular for ty = 0 we get lω(0) = m < λ(0) < M = Lω(0). That is,
the line joining z to ω crosses the real line in a value λ(0) that belongs
to [m,M ], then λ0 =

(
λ(0), 0

)
∈ B, since W ∩ R = B ∩ R is connected.

Convexity of the upper and lower bild implies that[
λ0,ω

]
⊆ B+ and

[
z,λ0

]
⊆ B−.(4.4)

Thus [z,ω] ⊆ B.
We still need to verify that [z,ω] ⊆ B for z in the boundary of the lower

bild, ∂B−. Take a sequence (zn)n in (B−)
o

converging to z ∈ ∂B−. Let
rn = (rn,x, 0) be the point over the real line crossed by the segment joining
zn and ω, that is rn = [zn,ω] ∩ R. Likewise, r = (rx, 0) = [z,ω] ∩ R. By
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continuity, rn → r. On the other hand, since zn ∈ (B−)
o

we know that
rn,x ∈ [m,M ]. Thus rx ∈ [m,M ], and using (4.4), we have that [z,ω] ⊆ B.
We can now conclude that ω ∈ C (B). �

Relying on our previous results, we will now prove the existence of two
lines containing (m, 0) and (M, 0) that define the upper boundary of the
center. Such lines are denoted respectively by l and L.

Any concave function has lateral derivatives [Roc, theorem 23.1], therefore
let

a = x′1(0
−) and b = x′2(0

−),

the left derivative at 0 of x1(·) and x2(·), respectively.
Let the left tangent line to x1 and x2 at 0 be given by the sets

(4.5) {(x, y) : x = l(y) = ay +m} and {(x, y) : x = L(y) = by +M},

respectively. Since x1(·) is convex and x2(·) is concave we have, [Roc, theo-
rem 25.1], l(y) ≤ x1(y) and x2(y) ≤ L(y), for every y ∈ [ym, 0].

Proposition 4.2. Let m < M and let ω = (ω1, ω2) ∈ B+. Then,

(i) l(ω2) ≤ ω1 if, and only if, lω ∩ (B−)
o

= ∅,
(ii) ω1 ≤ L(ω2) if, and only if, Lω ∩ (B−)

o
= ∅.

Proof. We will prove (i). A similar reasoning proves (ii). Let ω ∈ B+ with
ω2 > 0 and lω be the line passing through ω and (m, 0). We can write

lω(y) = ãy +m, with ã =
ω1 −m
ω2

.

Now we will prove that if ω1 ≥ l(ω2) then the line lω does not intersect
(B−)

o
. Since ω1 = lω(ω2) ≥ l(ω2), it is clear that ãω2 +m ≥ aω2 +m, i.e.,

(ã− a)ω2 ≥ 0. Since ω2 > 0 we have ã ≥ a. For y ≥ 0, (lω(y), y) ∈ C+ and
so

(lω(y), y) /∈ C− ⊇ (B−)
o
.

For y < 0 we have lω(y) ≤ l(y), since ã ≥ a. From the convexity of x1(·) and
using [Roc, theorem 25.1] we have x1(y) ≥ l(y) for any y ∈ [ym, 0]. Then,
lω(y) ≤ x1(y). Therefore, (lω(y), y) ∈ lω with lω(y) ≤ x1(y) and from (4.3)
we see that (lω(y), y) /∈ (B−)

o
.

To prove the converse, we want to show that if l(ω2) > ω1 then lω ∩
(B−)

o 6= ∅, that is, the line lω ⊇ [(ω1, ω2), (m, 0)] = [ω, (m, 0)] intersects
(B−)

o
. Again, we have ω1 = lω(ω2) < l(ω2), and therefore (ã − a)ω2 < 0.

Since ω2 > 0, necessarily ã < a. Define, for y ∈ [ym, 0],

h(y) = lω(y)− x1(y).
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By the first order Taylor’s approximation of x1(·), for small ε > 0 we get

h(−ε) = l′ω(0−)(−ε)− x′1(0−)(−ε) + o(−ε)
= ã(−ε)− a(−ε) + o(−ε)

= −ε
(
ã− a+

o(−ε)
−ε

)
.

Since ã < a, it follows that h(−ε) > 0, for small ε > 0. In other words,
lω(−ε) > x1(−ε) for ε small enough. Taking into account that lω(0) = m <
x2(0) = M and that lω and x2(·) are continuous [Roc, corollary 10.1.1],
for ε small enough we have lω(−ε) < x2(−ε). Therefore, we can choose
an ε > 0 such that x1(−ε) < lω(−ε) < x2(−ε) and ym < −ε < 0. Then
(lω(−ε),−ε) ∈ (B−)

o
. �

We can now present a general way to determine the center. Let

πm ≡ minπR(W ) and πM ≡ maxπR(W ).

Theorem 4.3. Let ω = (ω1, ω2) ∈ B+. Then, l(ω2) ≤ ω1 ≤ L(ω2) if, and
only if, ω ∈ C (B).

Proof. When m < M , proposition 4.2 and theorem 4.1 prove the stated
equivalence. For the case m = M we will first find out the C (B) and then
prove the equality with the set {(ω1, ω2) ∈ B+ : l(ω2) ≤ ω1 ≤ L(ω2)}.

When m = M and the bild is a vertical segment B = {m} × [ym, yM ]
then, clearly, C (B) = B and, in this case, C+(B) = B+ = {m} × [0, yM ] .
If m = M but the bild is not a vertical line (πm < πM ) then we claim the
center is C = {(m, 0)}. To see this, first consider that z = (z1, z2) ∈ B with
z1 6= m. Then z∗ = (z1,−z2) ∈ B and 1

2z + 1
2z
∗ = (z1, 0) /∈ B. Therefore

z /∈ C (B). It remains to consider the case where ω = (m, y) ∈ B, for some
y 6= 0. There is (z1, z2), (z1,−z2) ∈ B with z1 6= m and z2 6= 0. Assume,
without loss of generality that z2 has opposite sign of y. Then there is a
β ∈ (0, 1), such that βy+(1−β)z2 = 0. Clearly, m 6= βm+(1−β)z1 6∈ B∩R,
thus

β(m, y) + (1− β)(z1, z2) = (βm+ (1− β)z1, 0) 6= (m, 0) = B ∩ R.

We concluded that β(m, y) + (1−β)(z1, z2) 6∈ B and therefore that (m, y) /∈
C (B), for y 6= 0.

In the case where B = {m} × [ym, yM ], x1(y) = m = x2(y) for y ∈ [ym, 0]
and x′1(0

−) = x′2(0
−) = 0, thus l(y) = L(y) = m for any y ∈ R. Then

{(x, y) ∈ B+ : l(y) ≤ x ≤ L(y)} = {(x, y) ∈ B+ : x = m} = {m} × [0, yM ].

When m = M and πm < πM , we know that x1(·) ≤ x2(·) and x1(0) =
x2(0) = m. Then a ≡ x′1(0

−) ≥ x′2(0
−) ≡ b. In the case where a > b we
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have

l(y) = m+ ay > m+ by = L(y), for y > 0.

Therefore, {(x, y) ∈ B+ : l(y) ≤ x ≤ L(y)} = (m, 0) and this is, in fact, the
upper center of B.

We now consider a = b 6= 0 (the case where a = b = 0 is the one where
B = {m} × [ym, yM ]). Since x1(·) is convex and x2(·) is concave we know
that, using again [Roc, theorem 25.1], l(y) ≤ x1(y) ≤ x2(y) ≤ L(y). As a
consequence of a = b we have that l = L and thus

l(y) = x1(y) = x2(y),

that is, the lower bild is a line, and we can write it as the set

B− = {(x, y) ∈ R2 : x = l(y), ym ≤ y ≤ 0}
= {(x, y) ∈ R2 : x = m+ ay, ym ≤ y ≤ 0}.

Since the upper bild is the conjugate of the lower bild,

B+ = {(x, y) ∈ R2 : x = m− ay, 0 ≤ y ≤ yM}.

Then the intersection of B+ and l = {(x, y) ∈ R2 : x = m + ay, y ∈ R},
when a 6= 0 is just (m, 0). That is

{(x, y) ∈ B+ : x = l(y)} = (m, 0) = C+(B).

�

A simple observation on the slope of the lines l and L allows us to give
a different proof of the known result of Au-Yeung (see, [AY1, theorem 3]),
which establishes an equivalent condition for the convexity of the quater-
nionic numerical range.

It is well known [Roc, theorem 23.1] that for any convex function f of real
variable and any fixed element y1 in the domain of f the function defined
by

y 7→ f(y1)− f(y)

y1 − y

is increasing with y. Then any line that joins (f(y), y) and (f(y1), y1) in
the graph of f with y < y1 has slope smaller than f ′(y−1 ). Notice now
that there is an element (πm, yπm) in the lower bild. Using the previous
conclusion when the convex function is x1, the reference point is y1 = 0 and
x1(yπm) = πm < x1(0) = m, we conclude that

(4.6) a = x′1(0
−) ≥ x1(0)− x1(yπm)

0− yπm
> 0,
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[Roc, theorem 23.1], that is, l has positive slope. For the case when πm = m
we have

a = x′1(0
−) = lim

ε→0−

x1(0)− x1(ε)
0− ε

= lim
ε→0−

m− x1(ε)
−ε

≤ 0,(4.7)

since ε < 0 and m ≤ x1(ε). Thus l has nonpositive slope.
Analogously, it can be shown that when M < πM , L has negative slope

and when M = πM , L has nonnegative slope.

Corollary 4.4. The numerical range is convex if and only if πm = m and
πM = M .

Proof. We begin by proving that if πm 6= m or πM 6= M , then the numerical
range is non-convex. Suppose πm < m (the case M < πM is analogous).
Let x = l(y) = m+ ay be the left tangent line to x1(·) at 0 as in (4.5).

For y > 0, we have, by (4.6), x = l(y) = m + ay ≥ m. Notice that
(πm,−yπm) ∈ B+. Therefore, l(−yπm) = m + (−yπm)a ≥ l(0) = m > πm.
Hence, we have found (πm,−yπm) ∈ B+ such that l(−yπm) > πm. From
theorem 4.3 we have (πm,−yπm) /∈ C (B) and so B is not convex since
C (B) 6= B. By theorem 3.1 we conclude that W is not convex.

Now we prove that if πm = m and πM = M then the numerical range is
convex. Recall that l(y) = ay+m, with a ≤ 0, see (4.7). For y > 0, we have
l(y) ≤ m. For every (x, y) ∈ B, we have x ≥ m ≥ l(y).

Analogously, we can show that x ≤ M ≤ L(y). From theorem 4.3 we
have that (x, y) ∈ C (B). Since (x, y) is arbitrary, we have that C (B) = B
is convex and from theorem 3.1, W is convex. �

An interesting case, where the center is a kite, is when πm < m and
M < πM . The next corollary proves this result.

Corollary 4.5. Let πm < m ≤ M < πM . Suppose there is ω̃ ∈ C+ such
that l ∩ L = {ω̃}. Then,

C (W ) ∩ C = conv
{

(m, 0), (M, 0), ω̃, ω̃∗
}
∩B.

Proof. When πm < m, as we have noticed in (4.6), l has positive slope.
Similarly, we can show that L has negative slope. Since l passes through
(m, 0) and L through (M, 0), l and L must cross at a point in C+. Let this
point be ω̃. The result follows from theorem 4.3. �

The follow example illustrates a case where the center is a kite.

Example. Following [ST, page 318], let

A =

[
k1i α
−α 1 + k2i

]
,
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with α, k1, k2 ∈ R+ and α2 > k1k2. In this case, the boundary of the lower
bild B− consists of an ellipse E and the segment [m,M ]×{0}, where (m, 0)
and (M, 0) are the points where E intersects the real axis (the notation in
[ST] is m = T1 and M = T2). Our aim is to describe the center of the bild
of A.

From [ST, lemma 6.4], case 5, the ellipse E contains the points (0,−k1),
(1,−k2), (m, 0) and (M, 0), where

(4.8) m =
k21

k21(α+ (α2 − k1k2)
1
2 )2

and M =
k21

k21(α− (α2 − k1k2)
1
2 )2

.

Moreover, we know that the vertical lines x = 0 and x = 1 are tangent to the
ellipse at (0,−k1) and (1,−k2), respectively. These data fully characterize
the ellipse E . Therefore, if we substitute those points in the general equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0,

we obtain a homogeneous system of six linear equations with six unknowns.
From formulas (4.8) one concludes that the linear system’s matrix has rank
5. Solving the linear system leads to the following characterization of E :

(4.9) x2 + 2(k2 − k1)
mM

k21
xy +

mM

k21
y2 − (M +m)x+

2mM

k1
y +mM = 0.

Taking the derivative
d

dy
in (4.9) with x = x(y) (recall that the left deriva-

tives x′1(0
−) and x′2(0

−) exist), we get

x′1(0
−) =

2mM(k1 + (k2 − k1)m)

k21(M −m)
and x′2(0

−) = −2mM(k1 + (k2 − k1)M)

k21(M −m)
.

It is now possible, albeit a tedious computation, to define the lines l and L
as in theorem 4.3 and characterize C (B).

Let us consider a more specific example. Take

A =

 1

8
i

1

4

−1

4
1 +

1

8
i

 ,
i.e. α =

1

4
and k1 = k2 =

1

8
. Then, the ellipse E becomes

x2 + 4y2 − x+ y +
1

16
= 0,

or, in the reduced form,

(x− 1
2)2

(12)2
+

(y + 1
8)2

(14)2
= 1.
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We have:

m =
1

2
−
√

3

4
, M =

1

2
+

√
3

4
and

x′1(0
−) =

2
√

3

3
, x′2(0

−) = −2
√

3

3
.

The lines l and L are given by

l : x =
2
√

3

3
y +

1

2
−
√

3

4
and L : x = −2

√
3

3
y +

1

2
+

√
3

4
.

They intersect at
(1

2
,
3

8

)
, a point on the boundary of the bild of A.

We conclude that the center of the bild of

A =

 1

8
i

1

4

−1

4
1 +

1

8
i


is given by

C (B) =

{
(x, y) ∈ R2 :

∣∣∣x− 1

2

∣∣∣ ≤ √3

4
− 2
√

3

3
|y|

}
.
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