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Abstract—The present work addresses a particular issue re-
lated to the nonnegative factorisation of a matrix (NMF). When
NMF is formulated as a nonlinear programming optimisation
problem some algebraic properties concerning the dimensionality
of the factorisation arise as especially important for the numerical
resolution. Its importance comes in the form of a guarantee to
obtain good quality approximations to the solutions of signal
processing image problems. The focus of this work lies in the
importance of the rank of the factor matrices, especially in the
so-called posrank of the factorisation. We report computational
tests that favor the conclusion that the value of the posrank has
an important impact on the quality of the test images recovered
from the decomposition.

I. INTRODUCTION

Factorisation of matrices is a fundamental step in various
models and systems. The decomposition of nonnegative ma-
trices able to preserve the nonnegative constraints, usually
known as Nonnegative Matrix Factorisation (NMF), has been
used in virtually all application areas of data mining and
machine learning such as biomedical applications, face and
object recognition, computer vision, activity recognition, so-
cial network analysis, and information extraction, among many
others. In fact, NMF concerns the analysis of data matrices
whose elements are nonnegative, a common occurrence in
data sets derived from text and images. Usually, this type of
decomposition becomes necessary mainly for processing very
large datasets. The possibility of achieving reduction of dimen-
sionality contributes to the preprocessing of high-dimensional
spaces, namely by giving a low-dimensional representation of
high-dimensional data for effective and efficient data analysis.
Dimensionality reduction is also believed to be essential to
human perception helping to reveal low dimensional structures
of patterns observed in high dimensional spaces. Consider
an image as a point in high-dimensional space where each
image pixel takes a value in {0, 1, . . . , 255}. The number of
possible combinations is 256m×n, where n and m are the
matrix dimensions. Although it is possible to describe a wide
variety of visual object classes or patterns, for a specific pattern
(such as the human face) the number of feasible combinations
is but a small fraction of that huge number [11].

Some models for physical phenomena are only meaningful
when the data to be analysed is nonnegative in nature. Conse-
quently, in order to maintain an accurate interpretation of the
captured phenomena, we need to apply processing tools over
these representations that are able to preserve the nonnegativity

of the data. Other decomposition techniques are well known
but the only matrix decomposition that insures the needed
preservation of nonnegativity in data while achieving low–rank
factorisation is NMF. The method can be described as: given
a nonnegative data matrix V , find a decomposition V = WH
such that W and H are also nonnegative matrices.

There are two major characteristics of NMF that are imme-
diately appealing: a) it provides a lower rank approximation
formed by factors whose elements are kept nonnegative; b)
it tends to produce sparse representations of the data. This
sparseness can be further improved by imposing penalty
weights into the objective function [12]. Thus, NMF can
produce both object detection and recognition with charac-
terization of a pattern (or classification of different patterns)
as well as dimension reduction.

Within video and image signal processing, each data matrix
V is made up of several images, showing a composite object
in many articulations or poses, or a sequence of video frames.
In a simplified way this means that: (a) each column (line)
in V can be an image (frame) or a sequence of images; (b)
the columns in W represent the basis elements for this image
space; (c) the columns of H denote the coefficient sequences
representing n images in the basis elements. The importance
of NMF within Video Signal Processing is twofold: on one
hand, it can be applied as a compression tool (previous to
coding) since the factor matrices tend to be sparse and, if a
good enough low-rank approximation is produced, there are
much less matrix entries to code. Secondly, NMF can also
detect scene boundaries or special features within the video,
which can be used in video summarisation/segmentation tools
or, even, for devising new methods for motion detection [6].

The paper is organised as follows. We begin by presenting
the definition of an NMF minimisation problem using the most
common formulation and classical algorithmic approaches.
Section III offers a brief review of the most important
theoretical results concerning the rank dimensionality and
its importance for the existence of exact factorisations. In
Section IV we present some computational experiments as
a proof of concept towards the importance of the parameter
that controls the factorisation rank, ending with Section V
where conclusions are drawn and trends for future work are
discussed.



II. CLASSICAL NUMERICAL OPTIMISATION
FORMULATIONS AND ALGORITHMS

The NMF as an optimisation problem can be applied to
various and potentially different applications. Nevertheless,
our main motivation and examples will come from the area
of Video and Image Signal Processing. Given a nonnegative
matrix V ∈ Rm×n, the most commonly used and general
formulation for NMF as an optimisation problem is the min-
imisation of the Fröbenius norm:

min 1
2 ||V −WH||2F (1)

s.t. Wm×r ≥ 0 , Hr×n ≥ 0 .

Clearly, the product WH is an approximate factorisation of
rank r. The choice of the parameter r is, usually, problem
dependent. However, it is generally chosen so that 1 <
r << min{m,n}. Therefore, WH can be thought of as a
compressed form of V .

Important challenges affecting the numerical optimisation
include the existence of local minima due to the non-convexity
of the objective function in both W and H. Within Video and
Image Signal Processing, if a good enough approximation is
obtained it is considered that a (good) solution was found since
our eyes cannot detect but a certain level of image distortion.

The numerical approaches found in the related literature
apply one of four general techniques: Alternating Constrained
Least-Squares (e.g. [7], [14]); Multiplicative Update Rules
(Fixed Point approach, namely [17]); Projected Gradient De-
scent Methods (e.g. [15], [16]); and Unconstrained Newton-
type Methods (e.g. [9]). In 2006, Lin proposes the use of
Projected Gradient descent (PG) methods for NMF [15]. The
author proved that a projected gradient method solving least-
squares subproblems leads to faster convergence than the,
until then, most popular multiplicative update method by the
previous authors. Recently, there has been a considerable
growth of interest in PG methods: they are usually highly
efficient in solving large-scale optimisation problems subject
to linear constraints. The work presented in [15] started a
surge of studies that attempt to present faster and better PG
and Projected Alternating Least-Squares (PALS) methods (e.g.
[7], [14]). In fact, Chichoki, Zudnek and others have been
exploring the use of projected gradient descent methods with
considerable success in their experiments [21].

III. A BRIEF OVERVIEW OF FORMER RESULTS

The numerical optimisation of formulation (1) uses (n +
m)r variables, which implies that the bigger the data matrix
dimension the larger the scale of the problem resolution. Other
issue relates to the existence of local minima due to the non-
convexity of the objective function in both W and H. The
fact that the norm is not a convex function implies that a
stationary point is not necessarily a minimal solution for (1).
Nevertheless, this formulation constitutes a global optimisation
problem for which the minimum possible value is known: zero.

Another important point to be made is that, although the
human eye cannot detect but a certain level of image distortion,

still the major unresolved question in NMF within video
and image fields is the insurance on the quality of the final
approximate solution.

Is has been proven that if the elements of V are strictly
positive then there exists an infinity of solutions for the
optimisation of problem (1). Moreover, in order to have a
unique solution, V must have zero value elements ([1]).

The following definition allows to establish a more useful
condition to ensure the existence of an exact factorisation for
a given matrix V : Given Vm×n ≥ 0, the minimum r such that
there is Wm×r, Hr×n for the exact factorisation V = WH , is
the positive rank for V , posrank(V ) ([1]).

Thus, obtaining exact factorisations is directly dependent on
the value of r that is used. On the other hand, we know that
given Vm×n ≥ 0([1]),

rank(V ) ≤ posrank(V ) ≤ min{m,n} .

There are some particular matrices and certain values of r
for which we know that an exact decomposition exists. That
is the case of any positive definite matrix whose Cholesky
decomposition is an exact factorisation of rank r = n.
Moreover, for {0, 1} matrices there are particular results that
either provide the minimal rank exact factorisation or are
able to reduce the possible range of the posrank values ([3],
[4], [5]). Nevertheless, for a general nonnegative matrix the
exact determination of the value of a matrix posrank is still
unknown.

When thinking of global optimisation, the estimation of the
posrank value is especially important for the success of the
approach since, as previously referred, if we assure that exact
decompositions exist then we know the minimal possible value
for the objective function. However, the existence of exact fac-
torisations is directly dependent on the value of r that is used.
The optimum, that is, the exact factorisation, can obviously
be achieved fixing r ≥ posrank(V ). In fact, the lowest rank
exact factorisation is obtained using r = posrank(V ). For
any value below this limit only approximate solutions exist.

IV. THE INFLUENCE OF THE posrank VALUE ON NMF
RESULTS

Hereinafter, all the algorithms used are Projected Gradi-
ent Descent based. Furthermore, the results presented were
obtained either using the commercial optimisation software
GAMS, namely, the MINOS solver for non-linear optimisa-
tion models, or the initial Alternated Least-Squares Projected
Gradient (ALSPG) algorithm proposed by C.Lin [15] in 2006.
The initial points used were randomly generated so as to limit
the influence of the initialisation in the final result. The final
difference outcomes are due only to the value of the chosen
parameter r.

The experiments next described use images from known
data sets, in particular, a shorter form of the Swimmer
database that was introduced by Donoho and Stodden [10],
and the ORL database that stores pictures of several faces
(www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html).



Fig. 1. Original Swimmer image picturing 10 different positions (n =
48;m = 120).

r = 25 = rank(V) r = 35 > rank(V) r = 40 � rank(V)

Fig. 2. Images obtained with MINOS model software when r = 25, 35, 40
and using wik = 0.5 = hkj as the initial values of W and H .

(a) (b) (c)

Fig. 3. (a) Original ORL image; Results obtained using LIN’s ALSPG
algorithm starting with P3 and setting: (b) worst result for r = 16 and (c)
best result for r = 92.

A. Figures from the Swimmer database

So that we can draw conclusions using a known example we
experimented to use a reduced Swimmer matrix. This example
was taken from the Swimmer Database where we can see a
stick figure with four limbs in articulated positions, depicting
a swimmer (in a kind of) swim (Fig.1).

The sequence of images presented in Figure 2 shows that
using MINOS software we were not able to find any good
enough approximation for the original image. Nevertheless,
setting r equal or bigger than the original data matrix rank,
which is 25, the final results showed but an increase in image
resolution.

B. Faces from the ORL database

The ORL repository is an archive of the AT&T Labora-
tories at Cambridge hosted in conjunction with The Digital
Technology Group from Cambridge University Computer Lab-
oratory. When compared with the previous images already
experimented with these are different in the sense that the
data matrices are full rank ones. This means that the posrank
value is exactly the rank of the original matrix and no exact
factorisation exists with lower rank. Thus, the lower-rank
nonnegative decomposition of any of these faces will always
be an approximate one.

Hereinafter, and due to the fact that we access
GAMS/MINOS software through an academic license, which
rather limits the power and the solvers the software can pro-

TABLE I
PERFORMANCE OF ALSPG FOR DIFFERENT STARTING POINTS (P1:

wik = hik = 124, P2: wik = 10; hik = 246 AND P3:
wik = 1; hik = 255) AND DIFFERENT PARAMETER VALUES.

r = 92
P1 P2 P3

Iter Tmp OF Iter Tmp OF Iter Tmp OF
134 1000.00 0.49 143 1000.00 0.55 137 1000.00 0.49

1000 8818.74 0.41 1000 9237.13 0.49 1000 9724.43 0.40
1418 12000.00 0.40 1079 12000.00 0.49 1267 12000.00 0.39

r = 16
P1 P2 P3

Iter Tmp OF Iter Tmp OF Iter Tmp OF
904 1000.00 2.31 899 1000.00 2.30 929 1000.00 2.29

3830 4032.33 2.31 7002 6000.00 2.29 6681 6000.00 2.28
3830 4032.33 2.31 9106 10000.00 2.29 8746 10000.00 2.28

vide, we resorted to use only the ALSPG Lin’s approximation
algorithm introduced in [15] (ALSPG algorithm).

We chose, at random, one of the faces in the database since
it is sufficient for settling our point (Fig.3 (a)). The pixel
matrix representation has dimension 112 × 92 and rank 92.
We tested several starting points and rank parameter values.
However, due to the similarity between the final results, we
chose to present only the ones concerning the lowest and
the highest parameter values used, r = 16 and r = 92,
respectively. The latter presents, as expected, the best visual
performance. When compared with the other intermediate
parameter results, is the only one that consistently presented
values around 0.5 for the objective function in (1), i.e, the
minimisation of the Fröbenius norm. In Table I we can observe
that, with one exception, all the OF values stay below this
threshold. The fact that the algorithm failed to converge to the
optimum using r = posrank is due to time limitations since
an upper limit of 12000 seconds (more than 3h) was set. In
fact, for each value of r, each row represents different stopping
time bounds (1000s, 6000s, and 12000s, respectively). With
r = 16 the ALSPG presented the worst–case performance
of all. Notice that, although none of the recovered images in
Figure 3 is as fair as desirable towards the original picture,
the image (c) is more detailed and slightly less fuzzy than (b).

For all the other parameter values used, r ∈ ]16, 46], the
final objective function values ranged between the ones shown
in Table I. However, the smallest of the remaining values was
never inferior to 1.0 thus far from the results obtained by using
the posrank parameter r = 92 for the decomposition.

V. CONCLUSIONS

The main goal of this work is that of highlighting the impor-
tance of the rank value for nonnegative matrix factorisation.
The case-study here presented and its numerical experiments
help stressing the fact that setting the decomposition parameter
r respecting limiting bounds for posrank is very important to
assure that good enough quality images can be achieved.

Using posrank–based decompositions might imply that the
parameter value r would be larger than desirable when com-
pression is intended. If this is the case, sparsity in W and H is
quite important not only for algorithms to efficiently compute
the decomposition pair of matrices but also for subsequent



image processing (coding) so that it can efficiently decrease
the amount of loss of information.

An interesting trend for future work relates to the fact
that although active-set methods can find stationary points
(local minima) for small values of m, n and r are unable to
efficiently process large-scale optimisation problems, which
is the case for video and image data. The dimensions of
the problems within these areas tend, in practice, to be quite
large so Projected Gradient type algorithms can be useful for
dealing with this kind of dimensions. There is one variation
of PG algorithms that seems, to us, quite promising and that
we intend to follow: the use of spectral controlled projected
gradient methods.
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