

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-06-23

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Silva, L., Abreu, F. & Amaral, V. (2014). A model-driven approach for mobile business information
systems applications. In Benoit Baudry (Ed.), Proceedings of the Doctoral Symposium at MODELS
2014. Valencia: CEUR.

Further information on publisher's website:
URN:NBN:DE: 0074-1321-0

Publisher's copyright statement:
This is the peer reviewed version of the following article: Silva, L., Abreu, F. & Amaral, V. (2014). A
model-driven approach for mobile business information systems applications. In Benoit Baudry (Ed.),
Proceedings of the Doctoral Symposium at MODELS 2014. Valencia: CEUR., which has been published
in final form at https://dx.doi.org/URN:NBN:DE: 0074-1321-0. This article may be used for non-
commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/URN:NBN:DE: 0074-1321-0

A Model-Driven Approach for Mobile

Business Information Systems Applications

Luís Pires Silva 1, Fernando Brito e Abreu 1,2, Vasco Amaral 2

1 QUASAR / ISTAR/ ISCTE-IUL, Av.ª das Forças Armadas, 1649-026 Lisboa, Portugal
2 CITI, FCT/UNL, Campus da Caparica, Quinta da Torre, 2829-516 Caparica, Portugal

luis.ptds@gmail.com, fba@iscte-iul.pt, vasco.amaral@fct.unl.pt

Abstract.

 Context: Mobile BIS apps demand is increasing, with shorter time-to-market

requirements, but their production faces problems, such as handling business

rules concurrently, multiple platforms, localization and extensibility.

 Objective: Propose a generative approach for mobile BIS apps that will miti-

gate the identified problems.

 Method: We adopted the Design Science Research methodology, that helps

gaining problem understanding, identifying systemically appropriate solutions,

and in evaluating innovative solutions.

 Results: We identified the problem and its motivation, defined the objectives

for a solution, designed and developed a prototype generative tool for BIS apps,

demonstrated its usage and evaluated how well it mitigates a subset of the iden-

tified problems in an observational study.

 Limitations: Several issues are pending such as distributed business rules en-

forcement and the formalization of the required transformations from the PIM

to several platform-specific models (PSMs).

 Conclusion: We intend to contribute for reducing BIS apps time-to-market,

while improving the maintainability of those apps.

Keywords: Mobile apps, BIS, MDE, business rules, OCL, transformations,

PIM, PSM, Design Science Research

1 Problem

The burst on the availability of smart mobile devices is powering a growing

mobile business ecosystem [1]. In this ecological metaphor firms are part of a

larger ecosystem, each playing a contributing role and forming symbiotic rela-

tionships with customers, suppliers, and competitors. This ecosystem is fueled

by the emergence of an “App Economy”, enabling new products and services,

but also influencing strategies and shaping business models [2]. According to

a software market diagnosis for the EU27 region, the apps share is the fastest

growing one and will account for roughly half of that market by 2020 [3].

The expanding mobile ecosystem puts an increasing pressure in the de-

mand for mobile business information systems (BIS) apps, therefore enforcing

mailto:fba@iscte-iul.pt

short time-to-market requirements [4]. However, developing such applications

is a challenging task, due to several technical hindrances. Some are generic,

such as the need to support localization features, and others are specific to

mobile devices, such as the ability to support the diversity of available de-

ployment platforms (e.g. diverse screen sizes, resolutions and orientation), as

we had the chance to experience on our previous work [5, 6].

Those mobile BIS apps must perform distributed business constraints han-

dling, since they will be used concurrently by users in both connected and

disconnected modes. Furthermore, since business rules change frequently, it is

important to make them as much detached as possible from the source code,

for maintainability sake. The aforementioned scenario calls for cost-effective

techniques to generate mobile BIS apps. This paper proposes a model-driven

generative approach that is expected to mitigate the aforementioned problems.

To guarantee business continuity, BIS apps must work online and offline.

However, since multiple users will be working concurrently, business con-

straints violations may arise when switching from offline to online (P1).

These business constraints are usually buried in the BIS apps source code,

thus increasing maintenance costs and fault proneness (P2). Mobile platforms

are very diverse, in terms of size and resolution, requiring BIS apps to per-

form a dynamic reconfiguration of their user interfaces (P3). The usually

small size of those interfaces may be a hindrance in BIS apps, especially when

the problem domain is complex, due to the multitude of concepts and their

interrelationship that must be handled through their GUI (P4). Users should

also be able to work in their native language, but we cannot forecast, at design

time, which will be required (P5). Last, but not the least, automatically gener-

ated software systems are usually hard to understand, extend and integrate

with existing systems, as recognized in a recent survey on MDE adoption in

industry [7] (P6).

2 Related work

A good starting point were some systematic secondary studies on model-

driven engineering (MDE) generative approaches [7, 8]. There, we could con-

firm our suspicions that, while many MDE code generation endeavors have

been carried out during recent years, most seem to be small-scale studies. We

could not find any generative approach supporting distributed constraints sat-

isfaction in the context of mobile BIS apps. Still, we could find evidence of

some related approaches targeting comprehensive BIS apps generation.

The Naked Objects pattern, initially defined in [9], advocates that all busi-

ness logic should be encapsulated onto the domain objects. It also recom-

mends that the user interface should be a direct representation of the domain

objects, with all user actions consisting, explicitly, of creating or retrieving

domain objects and/or invoking methods on those objects. The user interface

should be created 100% automatically from the definition of the domain ob-

jects, for instance, using reflection techniques. There are some code genera-

tion tools based on the this approach, such as the Naked Objects for .NET [10]

or the Apache Isis for Java [11]. Both tools follow the same principle, which

is providing automatically a strong base structure, where the programmer can

then specify directly in code the domain model and reach other layers through

annotations. Another example is JMatter [12], a software framework, also

based in the Naked Objects pattern, for constructing workgroup business ap-

plications, where the domain model can be specified in UML trough Ultravio-

let, a light UML editor [13]. Regarding the visualization, they are all very

similar, being the main difference that the first two are web oriented, and

JMatter produces a Java GUI environment. All aforementioned examples

seem to follow a table oriented view style to represent entities and their rela-

tionships, which could became a hindrance on small screen phones, due to

space restrictions.

None of the aforementioned generative approaches seem to have synchro-

nization concerns, since they operate within the server database and therefore

only solve direct concurrency problems. For instance, the Apache Isis targets

web apps, server connection is considered to be always available, so a REST-

ful standard approach is implemented [14]. Furthermore, both Naked Objects

and Apache Isis apparently offer the most complete and maintainable ap-

proach, since they are based on a reflection type approach. Such a feature al-

lows the developer to fill in the gaps and still make use of the provided API.

Another drawback of the previous approaches is that simple naked objects are

unable to convey all the abstractions and characteristics of a complex UI,

namely its composition and behavior (e.g. navigation paths) [15, 16].

3 Proposed solution

To mitigate the aforementioned problems (P1 through P6) we propose ap-

plying MDE techniques to automatically generate fully functional mobile BIS

apps with a sound, maintainable, architecture. MDE is about the systematic

use of software abstractions – or models – as primary artifacts during a soft-

ware engineering process [17]. Our generative approach builds upon the fol-

lowing mainstays: (i) Model centered generation – everything follows the

model, from GUI navigation to persistence; (ii) Separation of concerns – there

is a clear separation in layers or components, each encapsulating a concern of

its own (e.g. presentation, persistence, synchronization); (iii) Paradigm seam-

lessness – the object paradigm is used throughout; by using the same type

system, we avoid type conversions (e.g. from object to relational and vice-

versa) that hamper maintainability.

Our input is a PIM expressed as a UML class diagram enriched with de-

sign-by-contract constraints expressed with OCL. The model is further anno-

tated for expressing presentation and synchronization rules, also in a platform-

independent fashion. The non-functional requirements for the generated BIS

apps include local persistency capabilities, required for offline usage, and

distributed synchronization capabilities to guarantee overall system state con-

sistency. Other required “qualities” with which we are concerned, include

portability and maintainability. The aforementioned synchronization across

multiple users requires a coordination server to guarantee that business rules

consistency is kept system-wide. This issue is similar to the distributed con-

straint satisfaction problem that has been addressed in the AI field [18] and is

probably the greatest challenge to be faced in this research work.

The output of our generative approach is supposed to be a fully functional

BIS app for a given target platform. To address this desideratum, we plan to

apply language engineering transformation techniques [19] in two steps. In

the first step we will go from the PIM to a PSM, corresponding to the desired

platform. In the second step we will take as input the PSM and generate

source code for the client-side. The server-side code generation process is

performed directly from the PIM, since it has no dependencies on the mobile

platform used.

4 Preliminary work

In the context of his MSc thesis, the first author, supervised by the second

author, has developed the JUSE4Android
1
 tool. Its main goal was to reduce

the development effort of Android BIS apps by means of a PIM centered gen-

erative approach [5]. The PIM is a UML class diagram, enriched with annota-

tions that set the rules for the UI and persistency layers.

The generated apps follow a model-based navigation scheme, support local

persistency, all the CRUD operations and are also capable of simple synchro-

nization. We used DB4O, an object-oriented database management system

(ODBMS) that has features that make it particularly suitable for mobile plat-

forms [20], besides being more efficient than relational counterparts [21].

DB4O allowed to avoid unnecessary transformations from the object-oriented

type system of the host language (Java) to the more recurrent relational model

used for persistence in Android apps. The resulting code is more maintainable

due to this paradigm seamlessness.

The followed model-based navigation scheme allows us to support, in an

easier way regarding layout structures, several screen sizes, since we only

show one entity type at a time. In order to see associated objects, the user

1 https://code.google.com/p/juse4android/

must navigate by means of an offered navigation bar. By following the master

detail flow design pattern it is possible to accommodate smaller phone screens

by showing either the master, or the detail screens. If the screen is large

enough, both are shown at the same time. Regarding screen size recognition,

adaptation and elements sizing, we use Android’s size qualifiers when creat-

ing the folders which will contain the generated XML files that describe the

layouts and views, so that the Android operating system is able to select au-

tomatically the required ones, depending on the characteristics of the current

device. We followed the same generative principle for all the layers (except

the model layer), by making every possible view or class as much independ-

ent of other entity types as possible.

JUSE4Android uses the UML Specification Environment (USE), devel-

oped at Bremen University
2
, which is used to parse the supplied PIM and val-

idate it. The JDOM
3
 package was also embedded into the JUSE4Android,

since it provides a simple API to read, manipulate and create XML type files.

It follows the visitor pattern to facilitate extensibility, being the model classes

the common argument of the visitor. For each supplied PIM, JUSE4Android

generates, two applications: one for the client-side and another for the server-

side. The client-side has several layers: the View layer where the views are

describe in XML files; the View-Model layer (control layer) which acts as a

middle man between the View and Model layers and controls and reacts to

user inputs; the Model layer holds the domain logic, as described in the do-

main model; the Persistency layer offers the required API to communicate

with the DB4O persistency engine; and lastly the Synchronization layer. The

Model layer, besides the usual getters and setters, provides CRUD operations

for all navigations that are possible to perform from a given domain entity,

and was built upon the experience gathered in the open-source project JUSE

for Java
4
 developed for educational purposes in the context of MDE, by the

second author of this paper.

5 Expected contributions

Business rules can be specified with OCL in the PIM and then compiled by

the USE component. We will survey existing proposals to generate Java code

from OCL business rules before implementing our own, to obtain the best of

the breed. Here we plan to deliver (i) a systematic review on OCL to Java

transformation and (ii) a new version of the JUSE4Android tool, capable of

generating the code for business rules enforcement upon a local DB4O data-

2 http://sourceforge.net/apps/mediawiki/useocl/
3 http://www.jdom.org/
4 https://code.google.com/p/j-use/

http://sourceforge.net/apps/mediawiki/useocl/
http://www.jdom.org/
https://code.google.com/p/j-use/

base instance. That code can be embedded in the client-side Android BIS app,

required for offline work, or in the one running in the cloud server.

We will research the problem of distributed constraints satisfaction,

through another systematic review, which will provide a better understanding

of the advances in the field and its players, along with corroborating the re-

search niche where our expected contributions will fit. We expect to devise a

solution that will allow orchestrating business rules enforcement, namely re-

solving inconsistencies that arise when concurrent users of the mobile BIS

apps shift from offline to online usage. The existing DB4O synchronization

engine component, which we tested, only provides distributed data updates,

therefore not guaranteeing the required business rules consistency. This is

probably the biggest research challenge to be faced in this project and the

expected results will be: (i) a systematic review on distributed constraints

handling, (ii) our proposed approach for distributed rules orchestration, and

(iii) a new version of the JUSE4Android tool supporting that orchestration.

We aim at generating mobile BIS apps for other mobile platforms. Alt-

hough there are Java virtual machines (JVMs) available for all of them, the

rendering mechanisms for the GUIs are platform-specific. We plan to apply

language engineering transformation techniques [19] in two steps, to address

this issue. In the first step (model-to-model transformation) we will go from

the PIM to a PSM, corresponding to the desired platform (e.g. Android, iOS,

Windows Mobile). In the second step (model-to-code transformation) we will

take as input the PSM and generate source code for the client-side (the BIS

app running on the users’ mobile device). The code generation process for the

server-side will hopefully be performed directly from the PIM, since we can-

not envisage dependencies on the platform. The portability of the DB4O com-

ponent on all the required mobile platforms is also an issue here, but we ex-

pect the Versant open-source community
5
 will find a solution for that prob-

lem. The expected outcomes of this thread are: (i) the formal specifications of

the PIM to PSMs and PSM to code transformations and (ii) the new

JUSE4Mobile tool, supporting those transformations. Several components of

JUSE4Android, described in section Error! Reference source not found.,

are expected to be reused here, with some adaptations.

6 Plan for evaluation and validation

To assess the outcome of the previous threads, we plan to conduct several

qualitative and quantitative validation experiments. The latter will be per-

formed for the two encompassed roles: the developer that generates mobile

BIS apps and the user that installs and runs those apps. Those experiments

5 http://community.versant.com/

http://community.versant.com/

will address different quality characteristics such as usability, maintainability,

portability and efficiency, as defined in the ISO/IEC SQuaRE standard [22]. A

usability validation experiment targeting the user role, in the context of the

preliminary work, can be found in [5]. That experiment provided evidence

that our model-driven navigation paradigm is easy to understand and pro-

motes incremental conceptual learning. Since we will always make the tool

available as an open-source project, we expect to collect usage data and feed-

back from those that will use it. That feedback will hopefully provide the ul-

timate proof of feasibility for our proposals. We will also strive at receiving

feedback from the automated software engineering and MDE research com-

munities, by preparing demos for presentation in scientific meetings
6
.

7 Current status

We have proposed a MDE generative approach for mobile business apps that

is expected to mitigate several problems such as guaranteeing distributed

business rules fulfilment, support multiple platforms and handle localization,

while reducing the development and maintenance effort. Its input is a PIM

model, where business rules are expressed in OCL. The support to several

target platforms will be achieved through transformation techniques, namely

to fulfill the required GUI reconfiguration requirements which are platform-

specific. A model-driven interaction paradigm is also briefly introduced. The

generated mobile BIS apps have a layered architecture, with paradigm seam-

lessness, which is expected to increase program comprehension and maintain-

ability. The planned timeline for completion is represented in Figure 1.

Figure 1 - Planned timeline for completion

6 e.g. in http://ase-conferences.org/ or www.modelsconference.org/

http://ase-conferences.org/
http://www.modelsconference.org/

References

1. Basole, R., Karla, J.: On the Evolution of Mobile Platform Ecosystem Structure

and Strategy. Business & Information Systems Engineering 3, 313-322 (2011)

2. Page, M., Molina, M., Jones, G.: The Mobile Economy. Kearney, AT (2013)

3. Aumasson, A., Bonneau, V., Leimbach, T., Gödel, M.: Economic and Social

Impact of Software & Software-Based Services. BE: European Commission

(2010)

4. Parada, A.G., Brisolara, L.B.: A Model Driven Approach for Android

Applications Development. Brazilian Symposium on Computing System

Engineering (SBESC'2012), pp. 192-197, Natal, Brazil (2012)

5. Pires Silva, L.: A Model-Driven Approach to Generative Programming for Mobile

Devices. DCTI, vol. MSc. Instituto Universitário de Lisboa (ISCTE-IUL),

Lisbon, Portugal (2014)

6. Pires Silva, L., Brito e Abreu, F.: Model-Driven GUI Generation and Navigation

for Android BIS Apps. In: Lisbon, P. (ed.) 2
nd

 International Conference on Model-

Driven Engineering and Software Development (MODELSWARD’2014), pp.

400-407. SCITEPRESS Digital Library, Lisbon, Portugal (2014)

7. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical

assessment of MDE in industry. Proceedings of the 33rd International Conference

on Software Engineering, pp. 471-480. ACM, Waikiki, Honolulu, HI, USA (2011)

8. Schieferdecker, I., Hartman, A., Mohagheghi, P., Dehlen, V.: Where Is the Proof?

- A Review of Experiences from Applying MDE in Industry. Model Driven

Architecture – Foundations and Applications, vol. 5095, pp. 432-443. Springer

Berlin Heidelberg (2008)

9. Pawson, R.: Naked objects. Department of Computer Science. University of

Dublin, Trinity College (2004)

10. Pawson, R.: Naked Objects. IEEE Software 19, 81-83 (2002)

11. Haywood, D.: Apache Isis. (2012)

12. Suez, E.: JMatter. (2013)

13. Ramage, R.: umlc - UML modeling with code generation and UMLcompiler.

(2006)

14. Fielding, R.T.: Architectural styles and the design of network-based software

architectures. University of California, Irvine (2000)

15. Kennard, R., Steele, R.: Application of Software Mining to Automatic User

Interface Generation. In: SoMeT, pp. 244-254. IOS Press, (Year)

16. Xudong, L., Jiancheng, W.: User interface design model. Eighth ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed Computing, vol. 3, pp. 538-543. IEEE,

Qingdao, China (2007)

17. Kleppe, A.G., Warmer, J.B., Bast, W.: MDA explained: the model driven

architecture: practice and promise. Addison-Wesley Professional (2003)

18. Yokoo, M.: Distributed constraint satisfaction: foundations of cooperation in

multi-agent systems. Springer Publishing Company, Incorporated (2012)

19. Santiago, I., Jiménez, Á., Vara, J.M., De Castro, V., Bollati, V.A., Marcos, E.:

Model-Driven Engineering as a new landscape for traceability management: A

systematic literature review. Information and Software Technology 54, 1340-1356

(2012)

20. Falsken, E.: Enabling the Mobile Enterprise with db4o Versant (2013)

21. Roopak, K.E., Rao, K.S.S., Ritesh, S., Chickerur, S.: Performance Comparison of

Relational Database with Object Database (DB4o). In: Computational Intelligence

and Communication Networks (CICN), 2013 5th International Conference on, pp.

512-515. (Year)

22. Esaki, K., Azuma, M., Komiyama, T.: Introduction of Quality Requirement and

Evaluation Based on ISO/IEC SQuaRE Series of Standard. Trustworthy

Computing and Services, pp. 94-101. Springer (2013)

