
Highlighting Model Elements
to Improve OCL Comprehension

Maria Pedro dos Santos Sales

Master in
Computer Science and Business Management

Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte
Co-supervisor:
Doctor Marina Alexandra Pedro Andrade, Assistant Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

Highlighting Model Elements
to Improve OCL Comprehension

Maria Pedro dos Santos Sales

Master in
Computer Science and Business Management

Supervisor:
Doctor Fernando Brito e Abreu, Associate Professor,
Iscte
Co-supervisor:
Doctor Marina Alexandra Pedro Andrade, Assistant Professor,
Iscte

November, 2020

[This page has been intentionally left blank]

Highlighting Model Elements
to Improve OCL Comprehension

Copyright © 2020, Maria Pedro dos Santos Sales, School of Technology and Architecture, Uni-
versity Institute of Lisbon.
The School of Technology and Architecture and the University Institute of Lisbon have the right,
perpetual and without geographical boundaries, to file and publish this dissertation through
printed copies reproduced on paper or on digital form, or by any other means known or that
may be invented, and to disseminate through scientific repositories and admit its copying and
distribution for non-commercial, educational or research purposes, as long as credit is given to
the author and editor.

[This page has been intentionally left blank]

To my family and friends, for their unconditional support and
constant encouragement.

[This page has been intentionally left blank]

Acknowledgements

I want to express my sincere gratitude to my thesis supervisors Prof. Dr. Fernando Brito e
Abreu and Prof. Dr. Marina Alexandra Pedro Andrade, for their continuous support, guidance,
and encouragement. I would also like to thank all the involved professors and students who
took part in the experiments and used the provided prototypes, allowing for the completion of
this research.

ix

[This page has been intentionally left blank]

Abstract

Models, metamodels, and model transformations play a central role in Model-Driven Develop-
ment (MDD). Object Constraint Language (OCL) was initially proposed as part of the Unified
Modeling Language (UML) standard to add the precision and validation capabilities lacking
in its diagrams, and to express well-formedness rules in its metamodel. OCL has several other
applications, such as defining design metrics, code-generation templates, or validation rules
for model transformations, required in MDD.

Learning OCL as part of a UML course at the university would seem natural but is still the
exception rather than the rule. We believe that this is mainly due to a widespread perception
that OCL is hard to learn, as gleaned from claims made in the literature. Based on data gath-
ered over the past school years from numerous undergraduate students of di↵erent Software
Engineering courses, we analyzed how learning design by contract clauses with UML+OCL
compares with several other Software Engineering Body Of Knowledge (SWEBOK) topics. The
outcome of the learning process was collected in a rigorous setup, supported by an e-learning
platform. We performed inferential statistics on that data to support our conclusions and iden-
tify the relevant explanatory variables for students’ success/failure. The obtained findings lead
us to extend an existing OCL tool with two novel features: one is aimed at OCL apprentices and
goes straight to the heart of the matter by allowing to visualize how OCL expressions traverse
UML class diagrams; the other is intended for researchers and allows to compute OCL complex-
ity metrics, making it possible to replicate a research study like the one we are presenting.

Keywords: OCL; UML; highlighting model elements; OCL comprehension.

xi

[This page has been intentionally left blank]

Resumo

Modelos, metamodelos e transformações de modelo desempenham um papel central em
MDD. OCL foi inicialmente proposta como parte da UML para adicionar os recursos de precisão
e validação que faltavam nestes diagramas, e também para expressar regras de boa formação
no metamodelo. OCL possui outras aplicações, tais como definir métricas de desenho, modelos
de geração de código ou regras de validação para transformações de modelo, exigidas em MDD.

Aprender OCL como parte de um curso de UML na universidade parecia portanto natural,
não sendo no entanto o que se verifica. Acreditamos que isso se deva a uma percepção generali-
zada de que OCL é difícil de aprender, tendo em conta afirmações feitas na literatura. Com base
em dados recolhidos em anos letivos anteriores de vários alunos de licenciatura de diferentes
cursos de Engenharia de Software, analisámos como a aprendizagem por cláusulas contratuais
de UML + OCL se compara a outros tópicos do SWEBOK. O resultado do processo de aprendi-
zagem foi recolhido de forma rigorosa, apoiado por uma plataforma de e-learning. Realizámos
estatísticas inferenciais sobre os dados para apoiar as nossas conclusões, de forma a identificar
as variáveis explicativas relevantes para o sucesso / fracasso dos alunos. As conclusões obtidas
levaram-nos a estender uma ferramenta OCL com duas novas funcionalidades: a primeira é
voltada para os estudantes de OCL e permite visualizar como as expressões percorrem um
diagrama de classes UML; a segunda é voltada para investigadores e permite calcular métricas
de complexidade OCL, habilitando a réplica de um estudo semelhante ao apresentado.

Palavras-chave: OCL; UML; destaque de elementos do modelo; compreensão do OCL.

xiii

[This page has been intentionally left blank]

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1
1.1 Motivation and research problem . 3
1.2 Objectives . 3
1.3 Contributions . 4
1.4 Dissertation organization . 4

2 Related Work 5
2.1 Concepts of model-driven development . 7
2.2 Comprehension of UML class diagrams . 7
2.3 Metrics for OCL expressions . 9
2.4 Impact of syntax highlighting on program comprehension 11
2.5 OCL tools . 13

3 Prototypes 17
3.1 OCL Highlight Plugin . 20

3.1.1 Requirements . 20
3.1.2 Design . 22
3.1.3 Implementation . 25
3.1.4 Highlighting examples . 26

3.2 OCL Complexity Plugin . 27
3.2.1 Requirements . 28
3.2.2 Design . 28
3.2.3 Implementation . 33
3.2.4 Metrics collection examples . 33

4 Experiment and Results 35
4.1 Experiment 1: the relative di�culty of learning OCL 37
4.2 Experiment 2: assessing OCL comprehension 39

xv

CONTENTS

4.2.1 OCL complexity metrics . 41
4.2.2 Readability metrics . 44

4.3 Experiment 3: on the e↵ect of using the OCL Highlight Plugin 46
4.3.1 Qualitative evaluation: experts . 46
4.3.2 Quantitative evaluation: students . 47

5 Conclusions and Future Work 55
5.1 Conclusion . 57
5.2 Future work . 57

Bibliography 59

xvi

List of Figures

2.1 Gaze plot of the exploration of a question and respective UML class diagram [21] 8
2.2 Heatmap of a UML class diagram exploration [21] 9
2.3 Relationship between structural properties of an OCL expression, cognitive com-

plexity related to tracing, understandability and maintainability (based on [14]) . 10
2.4 Same code snippet with (right) and without (left) syntax highlighting [16] 12
2.5 Fixation heatmap for the same code snippet with (right) and without (left) syntax

highlighting [16] . 13
2.6 Gaze plot for the same code snippet with (right) and without (left) syntax highlight-

ing [16]. 13
2.7 USE: Expression evaluation (Royal and Loyal example from [20]) 14
2.8 USE: Evaluation browser (Royal and Loyal example from [20]) 15
2.9 Class diagram view with coverage (Royal and Loyal example from [20]) 15
2.10 EclipseOCL: OCL console . 16
2.11 EclipseOCL: OCL debugger . 16

3.1 OCL Highlight Plugin and OCL Complexity Plugin: component diagram 19
3.2 OCL Highlight Plugin (red marker) and OCL Complexity Plugin (green ruler) icons 19
3.3 OCL Highlight Plugin: use case diagram . 20
3.4 OCL Highlight Plugin: activity diagram . 21
3.5 OCL Highlight Plugin: class diagram . 22
3.6 OCL Highlight Plugin: package diagram . 23
3.7 OCL Highlight Plugin: panel . 24
3.8 OCL Highlight Plugin: highlight color configuration panel 25
3.9 OCL Highlight Plugin: expression 1 . 26
3.10 OCL Highlight Plugin: expression 2 . 27
3.11 OCL Complexity Plugin: use case diagram . 28
3.12 OCL Complexity Plugin: activity diagram . 29
3.13 OCL Complexity Plugin: class diagram . 30
3.14 OCL Complexity Plugin: package diagram . 31
3.15 OCL Complexity Plugin: panel . 32
3.16 OCL Complexity Plugin: expression 1 . 34
3.17 OCL Complexity Plugin: expression 2 . 34

4.1 Barchart of total answers per school year . 40

xvii

[This page has been intentionally left blank]

List of Tables

2.1 Tracing-related OCL expression metrics (based on [14]) 10
2.2 Main OCL tools characteristics (based on [19]) . 14

3.1 OCL Highlight Plugin: OCLHighlightPlugin class attributes 23
3.2 OCL Highlight Plugin: HighlightExpressionVisitor class attributes 23
3.3 OCL Highlight Plugin: EvalOCLDialog class attributes 24
3.4 OCL Highlight Plugin: OCLHighlightConfigDialog class attributes 25
3.5 OCL Complexity Plugin: OCLComplexityPlugin class attributes 28
3.6 OCL Complexity Plugin: ExpressionComplexityVisitor class attributes 31
3.7 OCL Complexity Plugin: EvalOCLDialog class attributes 32
3.8 OCL Complexity Plugin: DNNode class attributes 32
3.9 OCL Complexity Plugin: ComplexityMetricResult class attributes 32
3.10 OCL Complexity Plugin: ComplexityMetric class attributes 33

4.1 Descriptive statistics for the learning grades per SWEBOK area 37
4.2 Related-Samples Wilcoxon Signed Rank test results (questionnaire grades in OCL ver-

sus other SWEBOK topics) . 38
4.3 Related-Samples Friedman ANOVA test (questionnaire grades in OCL versus other

SWEBOK topics) . 39
4.4 Crosstabs of answers’ correctness per school year 41
4.5 Kolmogorov–Smirnov test on the normal distribution of OCL complexity metrics . 42
4.6 Spearman’s rho correlation coe�cient of OCL complexity metrics 42
4.7 Linear Regression using NAN, WNO, NUCO, and WCO to explain the success . . . 43
4.8 Principal Component Analysis for OCL metrics . 43
4.9 Component Matrix for the resulting PCA components 44
4.10 Readability metrics for the given question . 45
4.11 Qualitative validation of the OCL Highlight Plugin 49
4.12 Independent Samples T-Test between test duration and usage of the plugin 50
4.13 Independent Samples T-Test between the total of correct answers and usage of the

plugin . 50
4.14 Chi-Square test for the association between answer’s correctness and usage of the

plugin . 51
4.15 Independent Samples T-Test between the readability metrics of years 2 and 5 52
4.16 Independent Samples T-Test between the OCL complexity metrics of years 2 and 5 . 53

xix

[This page has been intentionally left blank]

Listings

3.1 OCL expression 1 . 26
3.2 OCL expression 2 . 27
4.1 OCL expression 3 . 39

xxi

[This page has been intentionally left blank]

Acronyms

API Application Programming Interface.
AST Abstract Syntax Tree.

BPMN Business Process Model and Notation.

MDD Model-Driven Development.

NL Natural Language.

OCL Object Constraint Language.
OMG Object Management Group.

SQL Structured Query Language.
SWEBOK Software Engineering Body Of Knowledge.

UML Unified Modeling Language.
USE UML-based Specification Environment.

XML Extensible Markup Language.

xxiii

[This page has been intentionally left blank]

C
h
a
p
t
e
r11 1

Introduction

Contents
1.1 Motivation and research problem . 3

1.2 Objectives . 3

1.3 Contributions . 4

1.4 Dissertation organization . 4

This chapter describes the motivation and scope of this dissertation and presents the document’s
contributions and organization.

1

[This page has been intentionally left blank]

1.1. MOTIVATION AND RESEARCH PROBLEM

UML1 was created by the Object Management Group (OMG)2 and had its first specification
draft proposed in January 1997. It is currently the standard language used in software devel-
opment for specifying, visualizing, assembling, and documenting artifacts of software systems.
However, UML graphical modeling constructs are not precise enough to express all relevant
aspects of a specification. To mitigate this problem, a semi-formal language named OCL3 was
included in the UML standard and has been employed in a beneficial way to provide precision
to models [4]. OCL is based on first-order logic (predicate calculus) and set theory, provides mul-
tiple collection operations, and can be used in several contexts, such as expressing constraints
(class invariants, pre-and post-conditions, ...) and derivation rules for attributes or associations
in a class diagram. It also allows the specification of well-formedness rules and metrics at
the metamodel level, querying objects in an object diagram (equivalent to Structured Query
Language (SQL) queries in relational databases), and specifying guards on state transitions in
state diagrams.

Formal Methods are a long-discussed topic in Software Engineering, and several studies
have been conducted to assess the benefits of using OCL alongside UMLmodels [2, 3]. Although
there are still disputes about under what circumstances formal methods and languages should
be used, there appears to be a consensus that OCL is advantageous to modelers once they
overcome the initial learning curve, which was proved to be a di�cult task [22].

1.1 Motivation and research problem

Several support tools were developed to assist inMDD, including the analysis and design phases
where modelers need to interpret and write OCL expressions. These tools have their specific
characteristics and provide a variety of useful functionalities, including syntactic analysis, con-
nection with the UML model, and debugging [19]. To the best of our knowledge, none of these
tools provides highlighting of class diagrams’ elements for manually introduced OCL expres-
sions, which we believe could soften the learning curve for this language by reducing the mental
burden when reading, analyzing, and writing expressions. Our hypothesis is based on the mul-
tiple studies available that investigate the impact of visual aspects (color, layout, font, ...) on
program comprehension, and they all reveal positive outcomes on subject’s comprehensibility
when enhancing programs with visual features [11, 12, 16, 21].

1.2 Objectives

As a first objective, we aim to shed some light on which factors influence OCL’s learning process.
To achieve this, we study the results of OCL-related questionnaires taken by undergraduate
students across di↵erent school years and how distinctive variables a↵ect their results, including
questions’ complexity (given by readability formulas) and answers’ complexity (provided by
OCL complexity metrics).

1UML - Available: http://www.uml.org/what-is-uml.htm Accessed: 2020-11-28
2OMG - Available: http://www.omg.org/ Accessed: 2020-11-28
3OCL - Available: https://www.omg.org/spec/OCL/2.4/PDF Accessed: 2020-11-28

3

http://www.uml.org/what-is-uml.htm
http://www.omg.org/
https://www.omg.org/spec/OCL/2.4/PDF

CHAPTER 1. INTRODUCTION

As a second objective, we seek a solution to soften OCL’s learning curve by reducing the
cognitive e↵ort needed to produce a clause from a specification in Natural Language (NL)
correctly, in the context of a UML class diagram. To accomplish this goal, we propose the OCL
Highlight Plugin (presented in the next section).

1.3 Contributions

This dissertation’s contributions are the design, implementation, prototype, and experimental
validation of two plugins for the UML-based Specification Environment (USE) tool. The first
plugin, named OCL Highlight Plugin, provides highlighting of elements for manually intro-
duced OCL expressions in the context of a UML class diagram. This plugin analyses the syntax
tree of an OCL expression and highlights the diagram components referred in that specific
expression, including classes, properties, and navigations. The second plugin, named OCL
Complexity Plugin, analyses the same syntax tree and evaluates OCL expressions’ complexity
using a set of metrics defined by Reynoso et al. [13, 15]. The idea of including the calculation of
these metrics in a plugin resulted from the studies performed to fulfill this dissertation’s first
objective.

1.4 Dissertation organization

This dissertation is structured in 5 chapters, where the first is the introduction. The remainder
of this document is organized as follows. Chapter 2 presents the topic’s background and related
work, consisting of relevant research contributions. Chapter 3 describes the implemented pro-
totypes, from a broader perspective to a more detailed one. Chapter 4 discusses the conducted
experiments and relevant results. Chapter 5 contains the concluding remarks and addresses
open issues and future research work directions.

4

C
h
a
p
t
e
r22 2

Related Work

Contents
2.1 Concepts of model-driven development . 7

2.2 Comprehension of UML class diagrams . 7

2.3 Metrics for OCL expressions . 9

2.4 Impact of syntax highlighting on program comprehension 11

2.5 OCL tools . 13

In this chapter, we explore the concepts and state of the art concerning the topics that relate to
our intended work, allowing us to better understand the problem under study. This chapter is
organized in 5 sections, structured as follows. Section 2.1 starts by presenting the main concepts
of Model-Driven Development, including the definition of UML and OCL. Section 2.2 covers
existing studies regarding the comprehension of UML class diagrams and the impact of OCL
on UML-based development. Section 2.3 discusses OCL expressions’ complexity and presents
existing metrics proposed by experts to calculate it. Section 2.4 examines relevant papers
concerning the impact of syntax highlighting on program comprehension. Finally, Section 2.5
presents some OCL support tools and their functionalities.

5

[This page has been intentionally left blank]

2.1. CONCEPTS OF MODEL-DRIVEN DEVELOPMENT

To identify relevant studies for our topic, we started by defining a search strategy, which
states that the title, abstract, and keywords of the articles, books, and conference proceedings
will be searched in the appropriate electronic databases (IEEE Xplore, ACM Digital Library,
Elsevier, Springer, ...) according to the following search string:

(((”uml” AND ”class diagram”) OR ”ocl” OR ”program”) AND (”comprehension” OR ”com-
plexity” OR ”highlight”)) OR (”ocl” AND ”tool”)

To only select articles that are pertinent to our topic, the following inclusion/exclusion
criteria were applied: if the abstract of the article is not related to the topic under study, or if
a top publisher did not publish it (e.g., IEEE, ACM, Wiley, Springer, Elsevier), then the article
was not considered. Additionally, we used forward snowballing whenever the references of the
selected articles were relevant in the context of this dissertation.

2.1 Concepts of model-driven development

Model-Driven Development is presented as a software development methodology with models
as the primary focus, rather than computer programs. Models are artifacts used to specify the
system’s required functionality and architecture as well as to guide the development of the final
piece of software. Since these models are closer to the problem domain, abstracted from the
underlying technologies, they are a high-level specification, easier to specify, understand, and
maintain [1, 17].

To express the necessary information of a system, models need to be represented in a way
that can be comprehended bymodelers, developers, stakeholders, and other supporting systems.
A modeling language is either a graphical or textual computer language that allows the creation
of models, following a specific set of structures, terms, notations, syntaxes, semantics, and
integrity rules1. There are many well-known modeling languages, including Business Process
Model and Notation (BPMN), SQL Schema, Extensible Markup Language (XML) Schema, and
UML. UML is currently accepted as the standard graphical notation for software development,
but its diagrams cannot express all constraints and essential aspects of a system precisely. To
address the existing limitations in UML diagrams, IBM proposed Object Constraint Language,
which is now part of the UML standard. OCL is a ”semi-formal” language as it lacks inference
mechanisms (second-order logic) and allows specification of invariants, pre-and post-conditions,
as well as the description of guards and constraints on operations.

2.2 Comprehension of UML class diagrams

Over the years, several studies have been conducted to assess how software engineers build,
understand, and design programs. In the topic of program comprehension, we are particularly
interested in addressing how humans process class diagrams to acquire information about a
system. These are a type of UML diagram useful for both modeling and understanding of
a program. They describe a program’s structure and global behavior by showing its classes,
attributes, operations, and relationships.

1MDAGuide rev. 2.0 - Available: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01Accessed: 2020-11-28

7

https://www.omg.org/cgi-bin/doc?ormsc/14-06-01

CHAPTER 2. RELATED WORK

Guehénéuc [8] and Yusuf [21] used eye-tracking technology to obtain data on how subjects
process UML class diagrams, namely how they explore, visualize, and examine data. Sight is
essential in this process, making it relevant to study the human eye’s behavior, where three
types of information are fundamental: fixations, saccades, and scanpaths. Fixations are defined
by a period where the subject maintains the visual gaze on a single location, represented by a
pair of coordinates; saccades involve a quick movement between two fixation points; finally,
scanpaths are defined as directed paths formed by saccades between fixations. Results of eye-
tracking studies can be represented as follows: in Figure 2.1 we observe a gaze plot of a UML
class diagrams with fixations, saccades, and scanpaths, whereas in Figure 2.2 we perceive a
heatmap of fixations. By analyzing these two figures, it is possible to discern the path taken by
the subject’s eyes through the diagram and which were the main focus points. This information
is essential when trying to understand how subjects visually process class diagrams. Relevant
conclusions show that relationships mainly contain fixations on their ends and saccades on the
line, indicating that lines are mainly used for navigation purposes. A large number of fixations
on a stimulus, an object that is viewed by a subject, indicate a greater e↵ort to understand
the object in question due to its complexity or the poor layout arrangement. The use of color
information was found useful for experts when trying to explore class diagrams more e�ciently.

Figure 2.1: Gaze plot of the exploration of a question and respective UML class diagram [21]

Comprehension of UML class diagrams is fundamental when designing and maintaining
OCL expressions for the reason that they are always tied to the context of this type of diagram.
These expressions can be used to specify objects’ invariants, pre-and post-conditions on oper-
ations, as well as to query the system data to return information to the user. The impact of
OCL in UML-based development has been discussed throughout several investigations over
the past years, focusing on OCL’s influence on comprehension and maintainability of UML
models, and considering if the additional e↵ort and formality justify the benefit. Briand et al.
[2, 3] investigated the impact of OCL during the development, understanding, and modifica-
tion of UML analysis documents, which are three typical software engineering activities. The
authors compared subjects’ (4th year software/computer engineering students) performance

8

2.3. METRICS FOR OCL EXPRESSIONS

Figure 2.2: Heatmap of a UML class diagram exploration [21]

on comprehension and maintenance tasks when using OCL to document invariants, pre-and
post-conditions, which are typically documented in NL. Results showed that OCL has the po-
tential to promote comprehension and modification of UML diagrams but requires a high level
of experience and training.

2.3 Metrics for OCL expressions

The cognitive e↵ort needed to comprehend, design, or maintain systems is influenced by the
complexity levels that characterize OCL expressions. There has been an ongoing e↵ort to define
OCL complexity metrics [14] and study how they can capture di↵erent levels of comprehensi-
bility and maintainability of OCL expressions. Reynoso et al. [13, 15] sought insight into the
process of understanding OCL expressions by applying the techniques of chunking (which in-
volves recognizing groups of declarations and the extraction of information that is remembered
as a chunk) and tracing (which involves scanning through a program in di↵erent directions in
search of relevant chunks). While there are many distinct metrics that capture the di↵erent
aspects that characterize expressions’ complexity, these authors decided to focus on the impact
of tracing-based metrics since this technique was proven as an essential activity in program
comprehension [14]. They found statistical significance on the impact of tracing-related met-
rics on the understandability and, consequently, modifiability of OCL expressions. The process
is shown in Figure 2.3: the structural properties of an OCL expression a↵ect the cognitive
complexity needed to comprehend that expression, which consequently influences understand-
ability and maintainability. Table 2.1 shows the metrics in question and their classifications,
depending on their focus on the structural properties of OCL expressions: coupling (degree of
interdependence between objects), size, and length.

The definition of these metrics is described below, based on [14]:

9

CHAPTER 2. RELATED WORK

Figure 2.3: Relationship between structural properties of an OCL expression, cognitive com-
plexity related to tracing, understandability and maintainability (based on [14])

Table 2.1: Tracing-related OCL expression metrics (based on [14])

Metric
Acronym

Metric
Description

Metric
Classification

NNR Number of Navigated Relationships C

NAN Number of Attributes referred through Navigations C

WNO
Weighted Number of referred Operations
through Navigations C

NNC Number of Navigated Classes C

WNM Weighted Number of Messages C, S

NPT
Number of Parameters whose Types are classes
defined in a class diagram C

NUCA Number of Utility Classes Attributes Used C

NUCO Number of Utility Classes Operations Used C

DN Depth of Navigations L

WNN Weighted Number of Navigations S

WCO Weighted Number of Collection Operations S

Note: In the table above, C stands for coupling, S stands for size, and L stands for
length.

Definition 1. NNR Metric (Number of Navigated Relationships): Measures the total number of nav-
igated relationships in an expression. Relationships are only counted once, even if they are navigated
multiple times.

Definition 2. NANMetric (Number of Attributes referred through Navigations): Counts the number
of attributes referred through navigations.

Definition 3. WNO Metric (Weighted Number of referred Operations through navigations): Mea-
sures the sum of weighted operations (where the weight is defined by the number of in/out parameters,
including the return type) mentioned through navigations.

Definition 4. NNC Metric (Number of Navigated Classes): Measures the number of classes, associa-
tion classes or interfaces referred through navigations.

Definition 5. WNM Metric (Weighted Number of Messages): This metric is defined as the sum of
weighted messages (where the number of parameters defines the weight) present in an expression.

10

2.4. IMPACT OF SYNTAX HIGHLIGHTING ON PROGRAM COMPREHENSION

Definition 6. NPT Metric (Number of Parameters whose Types are classes defined in the class dia-
gram): This metric is mainly used in pre-and post-conditions, and it counts the number of di↵erent
classes and interfaces used as in/out parameters or result.

Definition 7. NUCA Metric (Number of Utility Class Attributes used): Measures the number of
utility classes’ attributes used in an expression. Attributes that belong to the same utility class are
only counted once, even if they are referred multiple times.

Definition 8. NUCO Metric (Number of Utility Class Operations used): This metric definition is
similar to the NUCA metric, but instead of attributes, it considers operations.

Definition 9. DNMetric (Depth of Navigations): Measures the maximum depth of a navigation tree,
where the root node represents the class name of the contextual instance (self). For each navigation
that starts from self, we create a branch that connects to a new node, which represents the navigated
class. A new tree is created if a navigation contains a collection operation defined in terms of new
navigation(s), and it is connected to the original tree through a “definition connection”.

Definition 10. WNN Metric (Weighted Number of Navigations): This metrics is defined as the sum
of weighted navigations presented in an expression, where the weight is defined by the level on which
the operation is used in an expression.

Definition 11. WCO Metric (Weighted Number of Collection Operations): Measures the sum of
weighted collection operations, where the weight is defined by the level on which the operation is used
in an expression.

Later in this document (subsection 4.2.1), we present the results of our investigation on
the influence of these metrics on undergraduate students’ success/failure when answering
OCL questionnaires. As a contribution of this dissertation, we decided to include a plugin
for the USE tool2 that allows modelers to evaluate OCL expressions and get the calculated
complexities given by these metrics. The implementation details for the OCL Complexity
Plugin are described in section 3.2.

2.4 Impact of syntax highlighting on program comprehension

In the context of this dissertation, it is not only crucial to understand what a↵ects the compre-
hensibility of UML class diagrams and OCL expressions, but also to investigate the e↵ort that
has been made to improve program comprehension. The tasks of understanding and maintain-
ing software systems are greatly influenced by the levels of readability and comprehensibility
of programs. These can be a↵ected by many factors, including naming scheme, indentation,
commenting, and documentation. This section focuses on relevant research findings regarding
the impact of syntax highlighting in program readability and comprehension. Several text
editors include this feature, which allows text to be displayed in multiple colors and fonts,
depending on how it is categorized. This enables the distinction between di↵erent types of
text without a↵ecting the behavior of the code. Figure 2.4 shows the same code snippet with

2USE - Available: https://sourceforge.net/p/useocl/wiki/ Accessed: 2020-11-28

11

https://sourceforge.net/p/useocl/wiki/

CHAPTER 2. RELATED WORK

and without syntax highlighting. On the right side, the essential keywords, e.g., while or print,
and the comment are easily detected, compared to the rest of the code as they are displayed in
di↵erent colors.

Figure 2.4: Same code snippet with (right) and without (left) syntax highlighting [16]

Initial studies were mainly concerned with the e↵ect of colors on program comprehension
to facilitate the learning process and increase developers’ productivity, as most tools were only
available in black and white. Rambally [12] studied the e↵ect of two color schemes on pro-
gram comprehension when compared to a version of the same program presented in black
and white: Colour-scheme-A used di↵erent colors for code blocks, e.g., loops and condition-
als; Colour-scheme-B used di↵erent colors to identify statements and functions, e.g., I/O (In-
put/Output), decision and declaration statements, and variable binding. From a sample of 44
intermediate-level (novice) and 35 senior-level (expert) programming students, results showed
that, in general, both groups could better understand programs when using Colour-scheme-B.
An exciting note mentioned in this experiment is that the participants subjectively favored
Colour-scheme-A as the easiest to understand, even though results supported Colour-scheme-B
as the most e↵ective for completing the given comprehension tasks.

Several years after this research, Sarkar [16] evaluated the impact of syntax coloring on
program comprehension time, using ten graduate computer science students. Even though the
small number of participants threatens the experiment’s validity, it showed that assignments
were solved remarkably faster when using syntax highlighting. The author collected the par-
ticipants’ sessions with an eye-tracking device and discerned that syntax highlighting directed
participants’ focus on smaller code regions (see Figure 2.5). In some cases, even some keywords
were ignored completely, as seen in Figure 2.6 (the numbers represent the order in which the
fixations occurred). Another interesting remark taken from this investigation is that the benefits
of syntax highlighting in novice programmers are significantly more relevant when compared
to experienced programmers, which might indicate that it is a useful feature when learning a
certain language, but less important for using it.

An important aspect when using syntax highlighting is to decide which features to include
and how to code them. It is essential to determine which is the most e�cient way to display
certain information, e.g., choosing to use color X over Y for a specific category of information, or
selecting a background color instead of text color. Mehta and Zhu [11] focus on the e↵ect of col-
ors (red and blue) on cognitive task performance. They start by describing the theory defended
by color experts, which states that people create specific associations to colors depending on
the repeated situations they experience with that color: red is an intensive color, generally
associated with errors or dangers, while blue is mostly associated with calmness, peace, and
tranquillity. This research shows that distinct colors o↵er di↵erent benefits, and choosing the

12

2.5. OCL TOOLS

Figure 2.5: Fixation heatmap for the same code snippet with (right) and without (left) syntax
highlighting [16]

Figure 2.6: Gaze plot for the same code snippet with (right) and without (left) syntax highlight-
ing [16].

right one depends on the nature of the task. As red primarily activates an avoidance motivation,
it is best suited to enhance performance on detail-oriented tasks. On the other hand, blue
activates an approach motivation, which is more beneficial for creative tasks.

In summary, previous research shows that visual coding hints through syntax highlighting
can improve program comprehension and consequently reduce the time needed to complete a
given task, especially for novice developers. As many distinct features can be used (e.g., color
and font size), it is essential to understand the di↵erent e↵ects they provoke on people to be
able to choose the appropriate one depending on the desired outcome. As one of the main goals
of this dissertation is to soften OCL’s learning curve, we developed a second plugin for USE,
this time providing syntax highlight to the elements of a UML class diagram referenced by an
OCL expression. The implementation details for the OCL Highlight Plugin are presented in
section 3.1, and the experiments of its success are described in subsection 4.3.

2.5 OCL tools

There are currently several OCL tools available, either freely or for commercial use, that assist
modelers in developing, analyzing, and maintaining systems. It is necessary to investigate
their main functionalities to understand what this dissertation can o↵er to the current body of
knowledge. Toval et al. [19] defined a set of features found desirable when working with OCL
and presented a comparison of the main characteristics (shown in Table 2.2) of the existing
tools. In the meantime, some of them received updates (for example, to support newer versions
of OCL), some had their development canceled or were integrated into other systems, and other
tools emerged. For our topic, we are mainly interested in the available features of the two most
common OCL tools, which are USE (UML-based Specification Environment), and Eclipse OCL3.

3Eclipse OCL - Available: https://projects.eclipse.org/projects/modeling.mdt.ocl Accessed: 2020-11-
28

13

https://projects.eclipse.org/projects/modeling.mdt.ocl

CHAPTER 2. RELATED WORK

Table 2.2: Main OCL tools characteristics (based on [19])

Analysis Communication Features Dynamic
validation

Syntatic
analysis Model-independent

Guided support
for constraint
development

Invariant
validation

Type
checking

With connection
to model

Code generation
from OCL

specifications

Consistent checking
of contraints

Insertion of
OCL expressions*

Pre- and
post-conditions

validation

* Includes three possibilities: imported from a UML model, imported from an
independent file or manually introduced.

USE is one of the pioneering OCL tools. It was initially developed in Java by Mark Richters
as a dissertation project at the University of Bremen [5]. It is freely distributed under GPLv2
(GNU General Public License version 2.0), and the latest version, USE 6.0.0, was released in
September 2020. Main functionalities include syntactic analysis, type checking, dynamic vali-
dation of invariants and pre-and post-conditions, and consistency checking. USE’s core feature
is to validate specifications that consist of UML class diagrams and OCL expressions (invariants
and pre-and post-conditions), which can be e↵ective when helping modelers and developers in
early development stages. It is also important to refer that USE allows the connection with UML
models, made through a specific file (.use). Additional functionalities include an evaluation
browser, which allows users to introduce OCL expressions manually (see Figure 2.7) and debug
them (see Figure 2.8), as it generates an Abstract Syntax Tree (AST) from the input text that
is evaluated against the model and returns either a syntax error or the result of the given ex-
pression; and highlighting of the coverage of the expressions in a class diagram (see Figure 2.9).
As a last remark, this tool allows third parties to contribute with additional functionalities
through plugins. These three features are the most significant in this dissertation’s context, as
they provide the basis for the development of the OCL Highlight Plugin, which highlights class
diagram elements when evaluating OCL expressions in the evaluation browser.

Figure 2.7: USE: Expression evaluation (Royal and Loyal example from [20])

14

2.5. OCL TOOLS

Figure 2.8: USE: Evaluation browser (Royal and Loyal example from [20])

Figure 2.9: Class diagram view with coverage (Royal and Loyal example from [20])

As mentioned above, Eclipse OCL is also a relevant tool to analyze, as it is becoming the
most popular OCL tool [19]. It is part of the Eclipse Modeling Project, which focuses on support-
ing model-driven development by presenting a consolidated set of modeling frameworks, tools,
and standards implementations. It enables editing, refactoring, code generation, execution, and
interactive debugging of OCL constraints, in the context of a class model. The dynamic input
and evaluation of OCL expressions can not only be made on the OCL console (see Figure 2.10)
but also using the Java Application Programming Interface (API). It also provides a debugger
tool (see Figure 2.11), which includes syntax highlighting with error indications, quick fixes,
and content assist. Unfortunately, the available documentation does not mention highlighting
on the UML class diagram, which is the most critical topic of this dissertation.

Both tools o↵er modelers a wide variety of useful functionalities. Still, none provides
dynamic highlighting of UML class diagram elements present in OCL expressions, which we
believe can soften this language’s learning curve. For our research topic, USE is the most
relevant tool as it provides the basis for highlighting on the UML class diagram.

15

CHAPTER 2. RELATED WORK

Figure 2.10: EclipseOCL: OCL console

Figure 2.11: EclipseOCL: OCL debugger

16

C
h
a
p
t
e
r33 3

Prototypes

Contents
3.1 OCL Highlight Plugin . 20

3.2 OCL Complexity Plugin . 27

This chapter presents the requirements, design, and implementation of the two proposed pro-
totypes, from a broader perspective of the component diagram to a detailed description of the
implementation details. Section 3.1 concerns the OCLHighlight Plugin, followed by Section 3.2,
where the OCL Complexity Plugin is described.

17

[This page has been intentionally left blank]

As mentioned in previous sections, in this dissertation we propose a tool-based learning
feature, dubbed ”OCL Highlight Plugin”, and an investigation feature, entitled ”OCL Complex-
ity Plugin”, reified as plugins to the USE tool. Both plugins use the same components provided
by USE, as presented in the component diagram in Figure 3.1. The concrete implementation of
each plugin is described in detail in the following sections.

Figure 3.1: OCL Highlight Plugin and OCL Complexity Plugin: component diagram

To make use of these plugins, users should download the corresponding .jar files (available
in each of the corresponding GitHub1 repositories indicated below) and place it in the plugins
folder of USE’s installation. After restarting USE, two new buttons will show up (see Figure 3.2):
clicking on the red marker icon opens the OCL Highlight Plugin, and the green ruler icon will
pop-up the OCL Complexity Plugin window. The user should then import a .usefile with the
definition of the model and a .soil file with its instantiation (objects). Creating a class diagram
view is an additional step to make use of the highlight feature.

Figure 3.2: OCL Highlight Plugin (red marker) and OCL Complexity Plugin (green ruler) icons

1GitHub - Available: https://github.com/ Accessed: 2020-11-28

19

https://github.com/

CHAPTER 3. PROTOTYPES

3.1 OCL Highlight Plugin

The purpose of the OCL Highlight Plugin is to allow the user to highlight UML class diagram
elements referenced in an OCL expression. These elements include classes, attributes, opera-
tions, and relationships. By using intense colors to emphasize the mentioned elements while
coloring the rest in lighter colors, we aim to focus the user’s attention on the components that
are relevant to the expression under study.

Since USE already includes a coverage option to highlight the UML class diagram elements
accessed by each invariant, pre-and post-condition, or query operation, the starting point for
our work was already in place, speeding up the prototyping phase. The coverage given by USE
can be seen in a discriminate way (using the elements browser to select a specific query) or
in an integrated manner (displaying all the defined queries at the same time). The highlight
proposed in this thesis is presented dynamically, whereas in USE (Gogolla et al. [6, 7]) it is
defined as static (structural coverage when the model is compiled).

3.1.1 Requirements

A set of technical and functional requirements is described for this plugin, stating the main
functionalities and some optional yet desired operations that improve its usability. As a techni-
cal requirement, it was defined that the plugin should be compatible with USE, meaning that
the user can access its functionalities when working with this tool. In regards to functional
requirements, the primary use case is that a user can insert OCL expressions and request the
system to highlight its elements on a class diagram. As non-essentials requirements, it was
stated that the user could reset the highlighting of the class diagram in order to visualize it as it
was initially (default colors defined by USE). It was also suggested that the user could configure
the colors of the highlight for each specific element of a class diagram (class, enum, attribute,
operation, rolename, and edge). The di↵erent use cases defined for this plugin are shown in a
use case diagram (Figure 3.3), and typical usage is presented in an activity diagram (Figure 3.4).

Figure 3.3: OCL Highlight Plugin: use case diagram

20

3.1. OCL HIGHLIGHT PLUGIN

Figure 3.4: OCL Highlight Plugin: activity diagram

21

CHAPTER 3. PROTOTYPES

3.1.2 Design

In this subsection, we describe the design of the plugin. Figure 3.5 presents the class diagram,
whereas Figure 3.6 shows the package diagram.

Figure 3.5: OCL Highlight Plugin: class diagram

22

3.1. OCL HIGHLIGHT PLUGIN

Figure 3.6: OCL Highlight Plugin: package diagram

The implementation of this plugin consisted of the development of the five classes described
below:

(1) OCLHighlightPlugin: Main class of the OCL Highlight Plugin. This class defines the
id used to identify the plugin. The attribute of this class is shown in Table 3.1.

Table 3.1: OCL Highlight Plugin: OCLHighlightPlugin class attributes

Attribute Description

String PLUGIN_ID Id used to identify the plugin

(2)OCLHighlightExtent: This is the plugin action class. It provides the action which will
be performed if the corresponding Plugin Action Delegate is called. In this case, the action
consists of displaying the panel EvalOCLDialog (with highlight functionality). This class has no
attributes.

(3) HighlightExpressionVisitor: This is the expression visitor class, which implements the
methods from the interface ExpressionVisitor (available in USE), coloring the visited classes of a
given OCL expression. The attributes of this class are shown in Table 3.2.

Table 3.2: OCL Highlight Plugin: HighlightExpressionVisitor class attributes

Attribute Description

ClassDiagramData classDiagramData Encapsulates all elements present
in a class diagram

OCLHighlightConfigDialog configDialog Dialog for configuring highlight colors

23

CHAPTER 3. PROTOTYPES

(4) EvalOCLDialog: This class extends the functionalities of JDialog2, defining the aspect
and actions for entering and evaluating OCL expressions (see Figure 3.7), including the creation
of text components, labels, and buttons (and their respective action). The attributes of this class
are shown in Table 3.3.

Figure 3.7: OCL Highlight Plugin: panel

Table 3.3: OCL Highlight Plugin: EvalOCLDialog class attributes

Attribute Description

MSystem fSystem Defines the system, including
state and functionality

JTextArea fTextIn Text area that captures the
expressions introduced by the user

JTextArea fTextOut
Text area that displays the results
of the evaluation of the expressions
from fTextIn

Evaluator evaluator Evaluates expressions

JButton btnEval Button that triggers the evaluator

List<ClassDiagramView> classDiagrams List of the available class diagrams

OCLHighlightConfigDialog configDialog Dialog for configuring highlight colors

ChangeListener sessionChangeListener Listener that configures the
session of the fSystem

(5)OCLHighlightConfigDialog: A dialog for configuring highlight colors. Similar to Eval-
OCLDialog, this class extends the functionalities of JDialog (see Figure 3.8), and defines a set
of default colors that can be customized by the user. The attributes of this class are shown in
Table 3.4.

2Package javax.swing - Available: https://docs.oracle.com/javase/7/docs/api/javax/swing/

package-summary.html Accessed: 2020-11-28

24

https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html

3.1. OCL HIGHLIGHT PLUGIN

Figure 3.8: OCL Highlight Plugin: highlight color configuration panel

Table 3.4: OCL Highlight Plugin: OCLHighlightConfigDialog class attributes

Attribute Description

Color CLASS_COLOR, ENUM_COLOR,
ATTRIBUTE_COLOR, OPERATION_COLOR,
ROLENAME_COLOR, EDGE_COLOR

Default color for classes, enums,
attributes, operations, rolenames, and
edge, respectively

JColorChooser classColorChooser, enumColorChooser,
attributeColorChooser, operationColorChooser,
rolenameColorChooser, edgeColorChooser

Color choosers for classes, enums,
attributes, operations, rolenames, and
edge, respectively

3.1.3 Implementation

The OCL Highlight Plugin was developed in Java 83 as an extension for USE. This plugin
implements a new OCL evaluation dialog, which resembles the one already available in the tool,
o↵ering highlighting of elements in UML class diagrams when users evaluate OCL expressions.
The OCL expressions are parsed and evaluated using a Visitor pattern4, which inherits the
functionalities from the interface ExpressionVisitormade available by USE. After the evaluation,
the corresponding UML diagram elements (such as classes and properties) are highlighted,
using a di↵erent color than the one provided as default (allowing them to stand out from the
rest of the components). Since the API provided by the original tool did not always expose
methods and properties to customize the class diagram components, it was crucial to make the
necessary changes using reflection5. The concrete implementation of this plugin is available on
Github6, and a short demo video is accessible on Youtube7.

3Java 8 - Available: https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

Accessed: 2020-11-28
4Visitor pattern - Available: https://sourcemaking.com/design_patterns/visitor Accessed: 2020-11-28
5Reflection - Available: https://www.oracle.com/technetwork/articles/java/javareflection-1536171.

html Accessed: 2020-11-28
6OCL Highlight Plugin repository - Available: https://quasarresearchgroup.github.io/useOCLhighlight/

Accessed: 2020-11-28
7OCL Highlight Plugin demo - Available: https://www.youtube.com/watch?v=ZVBQ7O5BFi8&t=16s Accessed:

2020-11-28

25

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://sourcemaking.com/design_patterns/visitor
https://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
https://www.oracle.com/technetwork/articles/java/javareflection-1536171.html
https://quasarresearchgroup.github.io/useOCLhighlight/
https://www.youtube.com/watch?v=ZVBQ7O5BFi8&t=16s

CHAPTER 3. PROTOTYPES

3.1.4 Highlighting examples

As examples of the plugin’s behavior, Expressions 3.1 and 3.2 illustrate two distinct highlighting
results, using the Royal and Loyal model [20].

Expression 1: This expression exemplifies how to get the balance of TAP’s points, which
is an instance of ProgramPartner. The corresponding highlighting is illustrated in Figure 3.9.
The highlighted element are: ProgramPartner class, which represents TAP; the navigation from
ProgramPartner to Service (rolename deliveredServices), and the Service class; and the navigation
from Service to Transaction (rolename transaction), and the class Transaction. In this expression,
we want to collect the sum of points (property) of a Transaction. If a Transaction is of type
Earning, the points are counted positively. If not, they are counted negatively. Both Earning and
points of Transaction are also highlighted.

1 TAP.deliveredServices.transactions

2 ->collect(t | if(t.oclIsTypeOf(Earning))
3 then t.points else - t.points endif)

4 ->sum

Listing 3.1: OCL expression 1

Figure 3.9: OCL Highlight Plugin: expression 1

Expression 2: This expression exemplifies how to get the number of non-Silver services
provided by TAP in the participating Loyalty Programs. The corresponding highlight is illus-
trated in Figure 3.10. The highlighted elements are: ProgramParner, which again represents

26

3.2. OCL COMPLEXITY PLUGIN

TAP; the navigation between ProgramPartner and LoyaltyProgram (rolename programs), and
LoyaltyProgram class; the navigation between LoyaltyProgram and ServiceLevel (rolename levels),
and the class ServiceLevel; the level (property) of the class ServiceLevel and its corresponding
type (ColorType enum); the navigation from ServiceLevel to Service (rolename availableServices),
and the class Service.

1 TAP.programs.levels

2 ->select(l | l.level <> #Silver)

3 .availableServices ->size

Listing 3.2: OCL expression 2

Figure 3.10: OCL Highlight Plugin: expression 2

3.2 OCL Complexity Plugin

The second and last plugin presented in this thesis is the OCL Complexity Plugin. As our
investigation required to study and analyze several OCL complexity metrics (described in
Section 2.3), we decided to provide them as a plugin to allow users to evaluate expressions’
complexity in an automated manner.

27

CHAPTER 3. PROTOTYPES

3.2.1 Requirements

This plugin shares the technical requirement with the previous one, meaning that it should be
compatible with USE. Regarding functional requirements, we defined that the user should be
able to insert OCL expressions, request it’s computation and display of the corresponding com-
plexity. To improve usability, we stated that it should be possible to clear the given expression,
allowing the user to insert a new one quickly. Additionally, we specified that there should be a
panel with a brief explanation of each of the implemented metrics to help the user understand
the results of the computation. The di↵erent use cases defined for this plugin are shown in a use
case diagram (Figure 3.11), and a typical usage is presented in an activity diagram (Figure 3.12).

Figure 3.11: OCL Complexity Plugin: use case diagram

3.2.2 Design

In this subsection, we describe the design of the plugin. Figure 3.13 presents the class diagram
of the implemented system, whereas Figure 3.14 shows the package diagram. The implementa-
tion of this plugin consisted of the development of the eight classes and two interfaces described
below:

(1) OCLComplexityPlugin: Main class of the OCL Complexity Plugin. This class defines
the id used to identify the plugin. The attribute of this class is shown in Table 3.5.

Table 3.5: OCL Complexity Plugin: OCLComplexityPlugin class attributes

Attribute Description

String PLUGIN_ID Id used to identify the plugin

(2) OCLComplexityExtent: This is the plugin action class. It provides the action which
will be performed if the corresponding Plugin Action Delegate is called. In this case, the action
consists of displaying the panel (with the complexity calculation functionality). This class has
no attributes.

28

3.2. OCL COMPLEXITY PLUGIN

Figure 3.12: OCL Complexity Plugin: activity diagram

29

CHAPTER 3. PROTOTYPES

Figure 3.13: OCL Complexity Plugin: class diagram

30

3.2. OCL COMPLEXITY PLUGIN

Figure 3.14: OCL Complexity Plugin: package diagram

(3) OCLComplexityHelpDialog: A dialog that displays a short description of each metric.
This class extends the functionalities of JDialog, with no additional attributes.

(4) ExpressionComplexityVisitor: This is the expression visitor class, which implements
the methods from the interface ExpressionVisitor (available in USE), calculating the complexity
of the expression. The attributes of this class are shown in table 3.6.

Table 3.6: OCL Complexity Plugin: ExpressionComplexityVisitor class attributes

Attribute Description

Stack<MOperation> operationStack Stack that controls the navigation
on nested operations.

IComplexityMetric metric Processes the calculation of metrics.

(5) EvalOCLDialog: This class extends the functionalities of JDialog, defining the aspect
and actions for entering and evaluating OCL expressions (see Figure 3.15), including the cre-
ation of text components, labels, and buttons (and their respective actions). The attributes of
this class are shown in Table 3.7.

(6)DNNode: This class represents a node in the navigation tree. The attributes of this class
are shown in table 3.8.

(7) ComplexityMetricResult: This class encapsulates the result of the di↵erent complexity
metrics for an expression. The interface IComplexityMetricResult defines the methods of this
class, and the attributes are shown in table 3.9.

(8)ComplexityMetric: This class calculates and stores the result of the di↵erent complexity
metrics for an expression. The methods of this class are provided by the interface IComplexity-
Metric, and the attributes are shown in table 3.10.

31

CHAPTER 3. PROTOTYPES

Figure 3.15: OCL Complexity Plugin: panel

Table 3.7: OCL Complexity Plugin: EvalOCLDialog class attributes

Attribute Description

MSystem fSystem Defines the system, including
state and functionality

JTextArea fTextIn Text area that captures the
expressions introduced by the user

JTextArea fTextOut
Text area that displays the results
of the evaluation of the expressions
from fTextIn

JButton btnEval Button that triggers the complexity
evaluation

List<ClassDiagramView> classDiagrams List of the available class diagrams

OCLComplexityHelpDialog complexityHelpDialog Dialog showing an explanation of
each complexity metric

ChangeListener sessionChangeListener Listener that configures the
session of the fSystem

Table 3.8: OCL Complexity Plugin: DNNode class attributes

Attribute Description

String className Name of the class represented by the node

int weight Node’s weight

DNNode leftChild Node’s left child

DNNode rightChild Node’s right child

Table 3.9: OCL Complexity Plugin: ComplexityMetricResult class attributes

Attribute Description

int nnr, nan, wno, nnc,
nuca, nuco, wnn, dn, wco Value of each metric

32

3.2. OCL COMPLEXITY PLUGIN

Table 3.10: OCL Complexity Plugin: ComplexityMetric class attributes

Attribute Description

Set<String> navigatedRelationships Set of navigated relationships’ names

Set<String> referredAttributes Set of referenced attributes’ names

int wno Value for the metric WNO

Set<String> navigatedClasses Set of the navigated classes’ names

List<String> utilityClasses
List of available utility classes (we
only considered CalendarDate and
Instant)

Set<String> nuca Set of referenced utility class attributes’
names

Set<String> nuco Set of referenced utility class operations’
names

int wnn Total value of the metric WNN

List<Integer> wnnStack Stack of number of operations per depth
(on the navigation tree)

DNNode dnTree Navigation tree’s root node

Map<Integer, Integer> wcoOperations Map of the total of collection operations
per depth (on the navigation tree)

int wco Total value of the metric WCO

3.2.3 Implementation

Similar to what was described for the OCL Highlight Plugin, this one was also developed in Java
8 as an extension for USE. In this case, the decision to build it for this tool instead of another was
purely based on the fact that we already had the knowledge and experience to build an extra
functionality for it after the development of the first plugin. The plugins share a similar logic
underneath, meaning that they both provide a new evaluation dialog that parses and evaluates
expressions using a Visitor pattern. Instead of highlighting, this one calculates the complexity
metrics of the given expression. The concrete implementation of this plugin is available in
Github8. In this iteration of the plugin, we decided to exclude the metric WNM, as our models
did not include Messages, and NPT since it is mainly used for pre-and post-conditions, which
was not part of the questionnaires.

3.2.4 Metrics collection examples

As examples of plugin’s behavior, Figure 3.16 shows the complexity values for Expression 3.1,
whereas Figure 3.17 presents the values for Expression 3.2 (defined in Subsection 3.1.4).

8OCL Complexity Plugin repository - Available: https://quasarresearchgroup.github.io/

useOCLcomplexity/ Accessed: 2020-11-28

33

https://quasarresearchgroup.github.io/useOCLcomplexity/
https://quasarresearchgroup.github.io/useOCLcomplexity/

CHAPTER 3. PROTOTYPES

Figure 3.16: OCL Complexity Plugin: expression 1

Figure 3.17: OCL Complexity Plugin: expression 2

34

C
h
a
p
t
e
r

44 4

Experiment and Results

Contents
4.1 Experiment 1: the relative di�culty of learning OCL 37

4.2 Experiment 2: assessing OCL comprehension 39

4.3 Experiment 3: on the e↵ect of using the OCL Highlight Plugin 46

In this chapter, we present several studies conducted during our investigation. In Section 4.1,
we explore the di�culty of learning OCL when compared to other subjects of SWEBOK, fol-
lowed by an assessment of the variables that influence students’ performance in OCL question-
naires, presented in Section 4.2. Section 4.3 concludes this chapter with the results of the OCL
Highlight Plugin’s influence in these same questionnaires

35

[This page has been intentionally left blank]

4.1. EXPERIMENT 1: THE RELATIVE DIFFICULTY OF LEARNING OCL

4.1 Experiment 1: the relative di�culty of learning OCL

In this section, we investigate the complexity of learning OCL compared to a set of other Soft-
ware Engineering topics o↵ered in two university courses that together span a full school year.
The courses’ syllabuses were organized according to the following areas of SWEBOK: Software
Requirements, Software Design, Software Construction, Software Testing, Software Mainte-
nance, Software Configuration Management, Software Engineering Management, Software
Engineering Process, Software Engineering Tools and Methods, Software Quality. Although
OCL was taught as part of the Software Design area, it was considered separately in this study.
Other topics were kept in the Software Design area, namely the one of ”Design Patterns”.

After taking each area, learning was assessed through comprehensive questionnaires of
closed true-false questions, through an e-learning system. Data was collected in two consecutive
years, totaling around 150 students enrolled in four computer science-related graduations.1.
Table 4.1 presents descriptive statistics for the grades obtained in OCL and the topics framed
by the SWEBOK knowledge areas. The variability in the number of students per area is due to
the fact that the tests for each subject took place throughout the semester, with some dropouts
over time. Also, Software Requirements was taken only by students of 1 of the four graduations,
and Software Construction was taken only by students of 3 of the four graduations, resulting
in a smaller number of cases compared to the other topics. OCL was the topic where students
obtained the worst grade, on average.

Table 4.1: Descriptive statistics for the learning grades per SWEBOK area

SWEBOK Area N Minimum Maximum Mean Std. Deviation

OCL 156 0,00% 100,00% 50,92% 33,50%

Software Engineering Management 124 0,00% 93,33% 54,23% 22,06%

Software Quality 159 0,00% 94,44% 54,39% 21,03%

Software Requirements 59 5,00% 100,00% 58,12% 21,84%

Software Testing 141 0,00% 100,00% 60,49% 22,063%

Software Configuration Management 133 0,00% 100,00% 61,90% 19,04%

Software Engineering Process 132 0,00% 95,00% 65,15% 14,15%

Software Design 121 0,00% 100,00% 65,74% 22,70%

Software Construction 103 14,29% 100,00% 67,70% 21,93%

Our study is defined as quasi-experiment [9], as we did not extract a random sample from
the population, and we had no control over the factors that could influence the subjects. For
example, if some of the students had another exam the day before, that could have a↵ected their
performance. The sample is characterized as being repeated measures/within-groups, as each
student was submitted to the tests from the di↵erent areas. The independent variable is the
SWEBOK area, each factor being the grade the student had in the corresponding questionnaire
(Software Requirements, Software Design, Software Construction, Software Testing, Software

1The dataset used in this section is made available at https://doi.org/10.5281/zenodo.4166133

37

https://doi.org/10.5281/zenodo.4166133

CHAPTER 4. EXPERIMENT AND RESULTS

Maintenance, Software Configuration Management, Software Engineering Management, Soft-
ware Engineering Process, Software Engineering Tools and Methods, Software Quality), mea-
sured in a scale from 0 to 100. The dependent variable is the grade the students scored in the
OCL questionnaire, measured in the same scale as the IV. The research question is defined as
follows:

RQ1: There is no significant di↵erence between the distribution of grades in OCL compared to
other SWEBOK topics.

We started by performing aOne-Sample Kolmogorov-Smirnov test, with Lilliefors significance
correction. This allowed us to verify if the grades obtained in the di↵erent topics were normally
distributed. The results did not allow us to assume a normal distribution for most areas. Thus, a
Non-parametric Related-Samples Wilcoxon Signed Rank test between the grades obtained in OCL
and the remaining areas (considered separately) was applied. Results are shown in Table 4.2 for
a significance level of 0.05, which leads to the decision of retaining the null hypothesis, meaning
no significant statistical di↵erence between the mean rank of OCL, Software Requirements,
Software Engineering Management, and Software Quality.

Table 4.2: Related-Samples Wilcoxon Signed Rank test results (questionnaire
grades in OCL versus other SWEBOK topics)

SWEBOK Area Test Sign. Decision

Software Requirements .719 Retain null hypot.

Software Design .000 Reject null hypot.

Software Construction .000 Reject null hypot.

Software Testing .011 Reject null hypot.

Software Maintenance .026 Reject null hypot.

Software Configuration Management .000 Reject null hypot.

Software Engineering Management .187 Retain null hypot.

Software Engineering Process .000 Reject null hypot.

Software Engineering Tools and Methods .006 Reject null hypot.

Software Quality .487 Retain null hypot.

A Friedman ANOVA test confirmed that there is no significant di↵erence between the dis-
tribution of the grades obtained in OCL and the SWEBOK topics of Software Requirements,
Software EngineeringManagement, and Software Quality, �2p(3) = 4.86,⇢ < 0.05 (see Table 4.3).
From this analysis, we conclude that, despite the claims on OCL being challenging to learn,
there are other topics in SWEBOK that reveal similar di�culty. However, as stated in the
objectives section, our investigation is focused on trying to soften the learning curve for OCL.

38

4.2. EXPERIMENT 2: ASSESSING OCL COMPREHENSION

Table 4.3: Related-Samples Friedman ANOVA test (questionnaire grades in OCL versus other
SWEBOK topics)

4.2 Experiment 2: assessing OCL comprehension

The analysis presented in this section is based on the dataset2 containing the data collected
during five di↵erent school years (identified in Figure 4.1, with numbers from 1 to 5). During
these years, more than six hundred students of three di↵erent undergraduate university courses
were given OCL questionnaires (with a limited duration of 40 minutes) built as follows, to
guarantee a true-false answer: the same UML class model with no more than 20 classes (to
fit legibly in a computer screen) was made available to students in advance, and its semantics
explained in detail throughout the semester. On the day of the questionnaire, a large set of
objects and links were given to them right before they start answering the questions. Students
proceeded to instantiate the class model in USE and could make free use of it while answering
the questionnaire. Each of its 10 NL questions (extracted randomly from a large collection, to
prevent cheating) could be answered by formulating a quantitative OCL expression upon the
instantiated model. For instance, in Royal and Loyal the correct answer to ”how many services are
provided by TAP?” would be 42. This would require the students to develop an OCL expression
similar to Expression 4.1. To be considered a correct answer, students had to insert the number
42 in the e-learning platform. Each year, a di↵erent UMLmodel was given: FootballCup on years
1 and 3, AirNova on years 2 and 5, and IULTrain on year 4. Models were created with similar
complexity (comparable number of classes, including utility classes and enumerations) to allow
a fair assessment across the di↵erent school years. As an important note, the OCL Highlight
plugin was introduced to the students on school year 5, not only for learning during the classes
but also as a tool to assist them during the assignments.

1 TAP.programs.levels.availableServices ->size

Listing 4.1: OCL expression 3

2The dataset used in this section is made available at https://doi.org/10.5281/zenodo.4287564

39

https://doi.org/10.5281/zenodo.4287564

CHAPTER 4. EXPERIMENT AND RESULTS

Figure 4.1: Barchart of total answers per school year

Table 4.4 shows a Crosstabs of the percentage of correct answers across the di↵erent years.
Years 3 and 5 have the highest percentage of correct answers, with 50.1% and 54.5% correct an-
swers, respectively. Year 2, despite using the same model as in year 5, showed the smallest value
of correct answers, with just 36.3%. Years 1 and 3 studied the same model (FootballCup), but
results do not show a significant di↵erence (only 4% more correct answers on Year 3, whereas
from year 2 to 5 the di↵erence is 18.2%).

In the following subsections, we present the studies conducted to analyze the influence
of di↵erent metrics on students’ assessments across the years. Both experiments are defined
as quasi-experiments, and the sample characterized as between subjects, as in each year the
students were taught only one model. The independent variable in the first experiment is the
OCL complexity, each factor being the value of the corresponding OCL metric (presented in
Section 2.3), defined as scale. The independent variable in the second experiment is the natural
language complexity, each factor being the value of the corresponding readability formula
(presented in Sub Section 4.2.2, also defined as scale. The dependent variable is the success
of the students in the OCL questionnaire, measured as nominal (0 for incorrect answers, 1 for
correct ones). The research questions are defined as follows:

RQ1: There is no significant correlation between the complexity of OCL expressions, given by
OCL complexity metrics, and the correctness of students’ answers.

RQ2: There is no significant correlation between the complexity of natural language questions,
given by readability formulas, and the correctness of students’ answers.

40

4.2. EXPERIMENT 2: ASSESSING OCL COMPREHENSION

Table 4.4: Crosstabs of answers’ correctness per school year

4.2.1 OCL complexity metrics

As a first attempt, we analyze OCL complexity metrics’ influence on students’ assessments’
success rate. From the dataset described above, we extracted the unique OCL expressions, in
a total of 140, calculating for each of them its complexities with the support of the OCL Com-
plexity Plugin (Section 3.2). Since many metrics were proposed in the literature (Section 2.3),
we executed a variable reduction, to avoid obtaining an overspecified model.

Using a Kolmogorov-Smirnov test (see Table 4.5), we examined the normality of the given
metrics. For NNR, the results indicated that OCL metrics do not follow a normal distribution,
D(140) = .19, p < .05 (other metrics showed similar results).

To evaluate if these metrics can explain the success of students’ answers, and given the
fact that the independent variables (metrics) do not follow a normal distribution, we applied a
Spearman’s rho correlation coe�cient to evaluate their correlation and their e↵ect on the depen-
dent variable (students’ success). Table 4.6 presents the result of this test. Our decision was to
exclude metrics with strong correlation, as they can be used to explain the same results, keeping
the metrics that are more dissimilar (identified in dark blue). The resulting metrics were NAN,
WNO, NUCO, and WCO, as they reveal a greater influence on the dependent variable.

41

CHAPTER 4. EXPERIMENT AND RESULTS

Table 4.5: Kolmogorov–Smirnov test on the normal distribution of OCL complexity metrics

Table 4.6: Spearman’s rho correlation coe�cient of OCL complexity metrics

After reducing from nine to only four metrics, we performed a Linear Regression to assess
the new set’s capability to explain students’ success, as Spearman’s rho can evaluate relative
monotonies whether the models are linear or not. The results of this test are shown in Table 4.7.
A significant regression equation was found F(4, 135) = 4.313, p < .01, R2 = .113, R2adjusted =
.087. The resulting linear model revealed a poor explanatory power on the dependent variable
(students’ success), meaning that there is a monotony relationship, but it is not linear. The
regression coe�cient B = .041 indicated that an increase of one point in NAN corresponded, on
average, to an increase in students’ success of .041 points (analogous analysis to other metrics).

Given the weak results of the first variable reduction, we opted for a Principal Component

42

4.2. EXPERIMENT 2: ASSESSING OCL COMPREHENSION

Table 4.7: Linear Regression using NAN, WNO, NUCO, and WCO to explain the success

Analysis on the initial metrics that resulted in three components with a cumulative explanatory
power of 90.986% (Table 4.8). The weight of each metric on the components can be seen in
Table 4.9. Using a Binary Logistic Regression, we tried to predict students’ success considering
the three extracted components. Di↵erent input methods were tested, including forward and
backward stepwise, but we only achieved poor results with R2 around 3%.

Table 4.8: Principal Component Analysis for OCL metrics

None of the tests described above allowed us to conclude that there is a significant correla-
tion between OCL complexity metrics and students’ success. These results imply that it is not
possible to predict if students will answer correctly or not to a given question, considering the
complexity of the OCL expression that provides with the appropriate answer.

43

CHAPTER 4. EXPERIMENT AND RESULTS

Table 4.9: Component Matrix for the resulting PCA components

4.2.2 Readability metrics

In the previous section, we pursued without success to explain the correctness of students’
answers considering the complexity of the solution, i.e., the OCL expression. In this section, we
investigate if the justification can be found instead in the complexity of the problem, i.e., if the
complexity of the question posed to the students has a significant influence on the responses’
correctness.

To measure the complexity of the questions, we decided to apply several of the available
readability metrics proposed by experts in Literature and Readability over the years [18], which
are available in an online tool named Readable3. For example, for the question ”how many
services are provided by TAP?” each metric’s values are as seen in Table 4.10. For each metric,
the results should be interpreted as follows:

Definition 12. Flesch-Kincaid Grade Level: Readability tests developed by the U.S. Navy that confers
a U.S. grade level score. The higher the score, the higher level of education needed.

Definition 13. Flesch Reading Ease: Similar to the Flesch-Kincaid Grade Level, scoring the text
between 1 and 100 (highest readability score).

Definition 14. Gunning Fog Index: Readability formula that estimates the degree of education
needed to understand a given text, with a scale from 0 to 20. A value of 8 classifies the text as readable
for someone in the eighth grade, and above 17 for a graduate level.

Definition 15. Coleman-Liau Index: Readability formula similar to Flesch-Kincaid Grade Level. It
is most suitable for educational or medical texts.

Definition 16. SMOG Index: ‘Simple Measure of Gobbledygook’ (SMOG) Index measures the num-
ber of years of education a person needs to understand a text.

3Readable - Available: https://readable.com/ Accessed: 2020-11-28

44

https://readable.com/

4.2. EXPERIMENT 2: ASSESSING OCL COMPREHENSION

Table 4.10: Readability metrics for the given question

Metric Value

Flesch-Kincaid Grade Level 7.4

Flesch Reading Ease 54.7

Gunning Fog Index 14.2

Coleman-Liau Index 6.0

SMOG Index 11.2

Automated Readability Index 2.9

FORCAST Grade Level 11.4

Powers Sumner Kearl Grade 6.5

Rix Readability 6

Lix Readability 36

New Dale-Chall Score 2.6

Spache Score 3.8

Linsear Write 85.7

Definition 17. Automated Readability Index: Similar to the Coleman-Liau Index. The di↵erence in
this metric lies in the fact that it counts characters rather than syllables, and also counts sentences.

Definition 18. FORCAST Grade Level: Readability formula similar to Flesch-Kincaid Grade Level.
Unlike other formulas, it is not designed to run on complete sentences, making it suitable for multiple-
choice quizzes.

Definition 19. Powers Sumner Kearl Grade: Measures the U.S grade level in a similar way as
Flesch-Kincaid Grade Level, using another formula.

Definition 20. Rix and Lix Readability: Two variations of the same readability formula based on
letter counting. Results of the Rix formula can be interpreted using the grade level system. Lix’s
results have a corresponding value in this same scale (the higher the value, the higher the grade level).

Definition 21. New Dale-Chall Score: Measures a text against several words considered familiar, on
a scale from 0 to 10. The lower the value, the easier it is to understand a text.

Definition 22. Spache Score: Similar to New Dall-Chall, but best suited for texts up to fourth-grade
level. It uses a smaller familiar words’ set.

Definition 23. Linsear Write: Readability formula that scores the text on a scale from 0 to 100. The
higher the score, the more simplistic the text is.

Similarly to the OCL complexity metrics, and considering that we were again facing a high
number of variables (total of 13), we decided to assemble a variable reduction. A Kolmogorov-
Smirnov test indicates that the majority of the proposed readability metrics do not follow a
normal distribution, D(140) = .089, p < .05 (for Flesch–Kincaid Grade Level, other metrics

45

CHAPTER 4. EXPERIMENT AND RESULTS

show similar results). After executing a Spearman’s rho correlation coe�cient to evaluate their
correlation, and excluding the metrics with strong correlation, we ended up with a smaller set
containing the Automated Readability Index, Forest Grade Level, New Dale-Chall, and Lensear
Write. Applying a Linear Regression to assess the capability of the resulting metrics to explain
the correctness of the answers, a significant regression equation was found F(4, 135) = 6.311,
p < .001, with an R2 of .158. The resulting linear model revealed once again a poor explanatory
power on the success of the students.

In conclusion, our tests show that neither the complexity of the questions, given by Read-
ability metrics, nor the complexity of the answers, given by OCL complexity metrics, can
explain the students’ success when answering the questionnaires.

4.3 Experiment 3: on the e↵ect of using the OCL Highlight Plugin

In this last section of experiments, we focus on understanding whether the OCL Highlight
Plugin was able to soften the learning curve when studying OCL and therefore produced the
desired e↵ect for which it was intended. Before requesting the students to use the plugin on
their final questionnaires, it was important to have a stable version. The development of the
plugin required several iterations, which allowed for the correction of bugs and the introduction
of “nice-to-have” features, such as highlight colors’ configuration. The feedback on the stability
and usefulness of the plugin was first questioned to experts in the field. After making the
necessary corrections, the students were able to experiment with the plugin during the semester.
On the day of the exam, we collected their answers, and by comparing the results to the ones
obtained in previous school years, we were able to discern the positive impact of the plugin.

4.3.1 Qualitative evaluation: experts

In this subsection, we present the focus group study we conducted to obtain feedback and expe-
riences from UML/OCL experts (teachers) when using the OCL Highlight Plugin to teach OCL
to undergraduate students at the university. This experience followed the available guidelines
on how to plan and run focus groups [10]:

Defining the research problem: The study’ objective was to provide insights into the utility
of the developed plugin to ease the learning of OCL from the perspective of UML/OCL experts
(teachers). Furthermore, we sought to obtain suggestions for improvement and the teachers’
opinions on how students reacted to it.

Selecting the participants: Six teachers from the Department of Computer Science at ISCTE
were invited by e-mail to participate in the focus group discussions. The selected invitees are
Software Engineering experts, and they teach UML and OCL to bachelor students.

Planning and conducting the focus group session: We designed the focus group session to
consist of two parts. In the first part, teachers were asked to individually observe their respective
students during a week of classes, where students were submitted to their first contact with USE

46

4.3. EXPERIMENT 3: ON THE EFFECT OF USING THE OCL HIGHLIGHT PLUGIN

and the plugin. At the end of the week, teachers were invited to attend a one-hour meeting to
discuss their observations and fill out a previously prepared questionnaire about the usefulness
of the plugin and the reaction of students to it.

Analysis: Results in Table 4.11 indicate that UML/OCL experts agreed on the plugin’s use-
fulness and that it helps students understanding how OCL transverses a class diagram. This
assessment showed that students could e�ciently operate with the plugin, as we did not want
to aggravate the di�culty in learning by introducing another element that they would need to
manage. As a last remark, some teachers also referred that students thought that the highlight-
ing was something obvious, which might indicate that it provides a natural integration with
the tool.

4.3.2 Quantitative evaluation: students

As a last set of experiments, we explore the impact of using the plugin on students’ answers.
To consider it a success, we aspire to observe a significant increase in correct answers, when
comparing to previous school years where the courses were given without the plugin. We are
also interested in examining how the duration of the questionnaires was a↵ected. For this
analysis, we only considered the school years 2 and 5 for the reason that they studied the
same model in an attempt to isolate the e↵ect of using di↵erent models. Since the e-learning
platform did not allow to collect the time the students took per question in year 2 (only the
cumulative time of the test was available), we grouped the total of correct answers per test.
Our experiments are defined as quasi-experiments, and the sample characterized as between
subjects, as in year 2 the plugin was not used, but in year 5 it was used. The independent
variable on both experiments is the usage of the plugin, defined as nominal (0 for no plugin,
and 1 representing usage of the plugin). The dependent variable of the first experiment is the
test duration (in seconds), defined as scale. The dependent variable of the second experiment
is the success of the students in the OCL questionnaire, measured as nominal (0 for incorrect
answers, 1 for correct ones). The research questions are defined as follows:

RQ1: There is no significant di↵erence in the time needed to complete the questionnaires when
using and not using the plugin.

RQ2: There is a significant improvement between the grades of the questionnaires where the
plugin was not used compared to the grades when the plugin was used.

On the matter of test duration, a Levene test found that the assumption of homogeneity
of variance between the groups (test duration and usage of the plugin) was violated, p < .01;
therefore we carried out a Two-Tailed Independent Samples T-Test based on unequal variances.
The test duration with plugin (M=2012.91, SD=398.554) may be considered similar when
compared to not using the plugin (M=1942.59, SD=257.579), t=-1.968, p = .05 (Table 4.12).
With a p-value at the limit of rejection, we assume from the calculated average values that the
time consumption is very similar, despite being slightly superior when using the plugin.

A similar analysis was made, this time considering the correct answers. The equality of
variances was met using a Levene test, p > .05. An Independent Samples T-Test for equal variances
showed that the number of correct answers was significantly higher when using the plugin

47

CHAPTER 4. EXPERIMENT AND RESULTS

(M=5.45, SD=2.807) than when not using it (M=3.63, SD=2.879), t=-5.836, p < .05 (Table 4.13).
The di↵erence observed for the number of correct answers can be credited to the plugin, as the
homogeneity of variances is met.

The analyses presented above allow us to conclude that even though there was a slight
increase in the amount of time needed by the students to complete the questionnaires, it was
not significant. On the other hand, the grades (amount of correct answers) revealed a notable
improvement. With these tests, we inferred that using the plugin was proved beneficial to
students when learning OCL and did not introduce an additional e↵ort that would reduce the
speed of response for the questionnaires.

A Chi-Square test of independence confirmed this conclusion, showing that there is a signif-
icant association between using the plugin and the correctness of the answers, �2(1, N = 3420)
= 110.177, p < .01 (Table 4.14). We obtained a similar result when performing the same test
against the whole dataset (years 1 to 5), �2(1, N = 6300) = 80.538, p < .01.

As the last test, it is crucial to prove that there was no di↵erence between the complexity of
the questions and answers in both years, as that would jeopardize our experiments. Assuming
equal variances between the complexity of the questions in years 2 and 5 (Levene test with
p > .01), a T-Test shows that there was no significant di↵erence between the groups, p > .01
(see Table 4.15). The same test applied to OCL complexity metrics requires a more in-depth
analysis, as the results for each metric are dissimilar (see Table 4.16): assuming equal variances
for NNR, NNC, and DN (Levene test, p > .01), there is no significant di↵erence between both
groups, p > .01; assuming equal variances for NAN (Levene’s test, p > .01), the complexity of
answers in year 2 is significantly higher when compared to year 5, p < .01, t > 0; assuming
unequal variances for WNO, NUCA, and WNN (Levene test, p < .01), there is no significant
di↵erence between groups, p > .01; assuming unequal variances for WCO (Levene test, p < .01),
the complexity of answers in year 2 is again significantly higher than in year 5, p < .01, t > 0.

48

4.3. EXPERIMENT 3: ON THE EFFECT OF USING THE OCL HIGHLIGHT PLUGIN

Table 4.11: Qualitative validation of the OCL Highlight Plugin

Expert

Q1: What is your opinion, as a UM-
L/OCL expert, on the usefulness of
this plugin? Considering that you
have used the tool without the plu-
gin, do you think it can help students
when learning OCL?

Q2: How did the students in your
class(es) react to the plugin? In par-
ticular, the assimilation of the visual
metaphor was easy, that is the corre-
spondence between the textual expres-
sion in OCL and the highlighted ele-
ments in the class diagram?

Expert 1

An indispensable and missing plugin,
so far! While learning OCL, it is critical
to understand the relationship between
the often complex OCL expressions and
related modeling elements defined in a
class diagram – often complex as well.
OCL Highlight plugin delivers a simple,
yet complete, graphical representation
of those relationships, thus facilitating
the understanding and learning of OCL
expressions.

The students quickly understood the
usefulness and ease of use of the plugin.
The visual matching between the OCL
expression and the related modeling el-
ements in the class diagram was consid-
ered very intuitive. The graphical feed-
back also motivated the students to try
out and understand increasingly com-
plex OCL expressions.

Expert 2

I consider that the plugin is of great util-
ity since it illustrates the navigation of
the queries in OCL. It facilitates the un-
derstanding of the expressions, as well
as the understanding of OCL language.

The reaction of the students to the
plugin was something natural as if it
was something obvious that the tool
"painted the way". I took the opportu-
nity of asking them if the path was not
painted in the class diagram would be
more di�cult to understand the seman-
tics of queries, and most students said
yes.

Expert 3

The plugin is extremely important as
students have some di�culties to under-
stand OCL and, more importantly, to
build OCL expressions. This visual in-
sight helps to grasp how OCL operates
over the model.

Yes, they have immediately realized
which parts of the model were involved.

Expert 4

It is a very useful plugin since it helps
the students understand what classes
are being used in each OCL expression.
It introduces traceability and shows a
better insight to the students, making it
easier for them to learn.

Yes, they understood quickly how OCL
expressions worked.

Expert 5

This plugin is mostly a good facilitator
and a really useful tool for the under-
standing of UML/OCL, mainly when
we have class diagrams with a consider-
able size. Especially for students, it can
ease and improve the process of learn-
ing OCL queries.

In class and with this plugin, students
were able to follow the OCL expressions
they were writing by immediately vi-
sualizing the result of those queries in
terms of the used classes, associations
and attributes that were highlighted.
Students accepted the use of this tool re-
ally well, compared with the previous
year, it not only provided a more en-
gaging learning experience for the stu-
dents but also, as a lecturer, it helped to
demonstrate the process of querying.

Expert 6

I believe that, in fact, this plugin can
facilitate the learning of OCL by the
students. The selective visualization al-
lows a greater concentration and e↵ec-
tiveness of the analysis of the pathway
performed by the queries.

The students in my class seemed to as-
similate well the connection between
the path highlighted in the diagram and
the path made by the OCL queries.

49

CHAPTER 4. EXPERIMENT AND RESULTS

Table 4.12: Independent Samples T-Test between test duration and usage of the plugin

Table 4.13: Independent Samples T-Test between the total of correct answers and usage of the
plugin

50

4.3. EXPERIMENT 3: ON THE EFFECT OF USING THE OCL HIGHLIGHT PLUGIN

Table 4.14: Chi-Square test for the association between answer’s correctness and usage of the
plugin

51

CHAPTER 4. EXPERIMENT AND RESULTS

Table 4.15: Independent Samples T-Test between the readability metrics of years 2 and 5

52

4.3. EXPERIMENT 3: ON THE EFFECT OF USING THE OCL HIGHLIGHT PLUGIN

Table 4.16: Independent Samples T-Test between the OCL complexity metrics of years 2 and 5

53

[This page has been intentionally left blank]

C
h
a
p
t
e
r55 5

Conclusions and Future Work

Contents
5.1 Conclusion . 57

5.2 Future work . 57

In this chapter, we present the outcomes of our experiments, including open issues, limitations,
as well as future work directions.

55

[This page has been intentionally left blank]

5.1. CONCLUSION

5.1 Conclusion

This dissertation was triggered by claims made in the literature stating that OCL is di�cult to
learn. We collected data systematically during two consecutive school years, with the help of an
e-learning platform, on the outcome of the learning process of a collection of SWEBOK topics,
from a large set of undergraduate students, through extensive closed questions questionnaires.
OCL appeared in the group of challenging topics, but it did not emerge as the most di�cult
one.

We also performed inferential statistics to identify the cause of students’ success/failure
when learning OCL, based on similar questionnaires to the ones mentioned above, where
students had to translate NL clauses to OCL expressions to answer the questions appropriately.
The explanatory variables that we explored were: (i) the linguistic complexity of the questions
in NL (problem domain), ranked by di↵erent readability formulas calculated using Readable,
and (ii) the complexity of the OCL clauses (solution domain), measured by a set of metrics
proposed in the literature calculated with the help of OCL Complexity Plugin, required to
answer those questions. Neither individually nor in conjunction were the aforementioned
variables able to provide an acceptable explanatory power, as denoted by low R-squared values
in the experiments.

In addition to shedding light on the factors that influence the OCL learning process, we
proposed a tool-based learning feature, dubbed ”OCL Highlight”, reified as a plugin on the
USE tool, which highlights how an OCL clause traverses a UML Class Diagram. We validated
this feature by combining an action-research observation period on more than six hundred
students in lab sessions, with semi-structured interviews whose conclusions were consolidated
by a focus group of experts. We were able to compare students’ success between years where the
plugin was used and the years where it was not available. A full consensus was reached that the
highlighting feature had a positive e↵ect on the OCL learning process, improving the overall
grades without a significant increase in the time needed to complete the OCL questionnaires.

5.2 Future work

With extensive use of the plugin by students in evaluation moments, we were able to corrobo-
rate its utility and confirm that it was beneficial when learning OCL. Nonetheless, we would
like to extend this validation with more tests using di↵erent models with similar complexity.
Future experiments should also control for the origin of students since they were following
three distinct graduations (”Computer Science”, ”Telecommunications and Computer Engineer-
ing” and ”Computer Science and Business Management”). Although the courses’ syllabus has
remained constant during the observation period, variations in students’ background might
have occurred.

Additionally, some improvements to the plugins can be considered. First of all, they have
many internal USE dependencies (as seen in the package diagrams). In a future implementation,
it would be recommended to use a Facade pattern1 to reduce these dependencies and isolate

1Facade pattern - Structural software-design pattern that hides the underlying system complexities by providing
an interface to the client

57

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

changes resulting from USE itself. Second, for the OCL Highlight Plugin we only considered the
utility classes presented in our models. Meaning that if a new model introduced a di↵erent one,
it would not be acknowledged, and therefore, not highlighted in the class diagram. Therefore,
an upcoming iteration should include an automatic mechanism to detect new utility classes.
And last, for the OCL Complexity Plugin the implementation of WNM and NPT metrics was
not included, since they were not relevant for our experiment. A future iteration could consider
this implementation.

58

Bibliography

[1] C. Atkinson and T. Kühne. “Model-driven development: A metamodeling foundation.”
In: IEEE Software 20.5 (Sept. 2003), pp. 36–41. doi: 10.1109/MS.2003.1231149.

[2] L. C. Briand, Y. Labiche, H. D. Yan, and M. Di Penta. “A controlled experiment on the
impact of the object constraint language in UML-based maintenance.” In: Proceedings of
the IEEE International Conference on Software Maintenance, ICSM. 2004, pp. 380–389. doi:
10.1109/ICSM.2004.1357823.

[3] L. C. Briand, Y. Labiche, M. Di Penta, and H. Yan-Bondoc. “An experimental investigation
of formality in UML-based development.” In: IEEE Transactions on Software Engineering
(2005). doi: 10.1109/TSE.2005.105.

[4] M. Gogolla. “Benefits and Problems of Formal Methods.” In: Proceedings of the Reliable
Software Technologies conference (Ada-Europe 2004). Ed. by A. Llamosí and A. Strohmeier.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 1–15. doi: 10.1007/978-3-
540-24841-5_1.

[5] M. Gogolla, F. Büttner, and M. Richters. “USE: A UML-based specification environment
for validating UML and OCL.” In: Science of Computer Programming 69.1-3 (2007), pp. 27–
34. doi: 10.1016/j.scico.2007.01.013.

[6] M. Gogolla, L. Hamann, and F. Hilken. “On Static and Dynamic Analysis of UML and
OCL Transformation Models.” In: Proceedings of the Workshop on Analysis of Model Trans-
formations co-located with ACM/IEEE 17th International Conference on Model Driven Engi-
neering Languages & Systems (MoDELS 2014), Valencia, Spain, September 29, 2014. Ed. by J.
Dingel, J. de Lara, L. Lucio, and H. Vangheluwe. Vol. 1277. CEURWorkshop Proceedings.
CEUR-WS.org, 2014, pp. 24–33.

[7] M. Gogolla, L. Hamann, F. Hilken, and M. Sedlmeier. “Checking UML and OCL Model
Consistency: An Experience Report on a Middle-Sized Case Study.” In: Proceedings of
the 9th International Conference, TAP 2015, Held as Part of STAF 2015, L’Aquila, Italy, July
22-24, 2015. Proceedings. Ed. by J. C. Blanchette and N. Kosmatov. Vol. 9154. Lecture
Notes in Computer Science. Springer, 2015, pp. 129–136. doi: 10.1007/978-3-319-
21215-9_8.

[8] Y.-G. Guéhéneuc. “TAUPE: Towards Understanding program comprehension.” In: Pro-
ceedings of the 2006 conference of the Center for Advanced Studies on Collaborative research
(CASCON’06). New York, New York, USA: ACM Press, 2006, p. 1. doi: 10.1145/1188966.
1188968.

59

https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/ICSM.2004.1357823
https://doi.org/10.1109/TSE.2005.105
https://doi.org/10.1007/978-3-540-24841-5_1
https://doi.org/10.1007/978-3-540-24841-5_1
https://doi.org/10.1016/j.scico.2007.01.013
https://doi.org/10.1007/978-3-319-21215-9_8
https://doi.org/10.1007/978-3-319-21215-9_8
https://doi.org/10.1145/1188966.1188968
https://doi.org/10.1145/1188966.1188968

BIBLIOGRAPHY

[9] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. “Reporting Experiments in Software Engi-
neering.” In: Guide to advanced empirical software engineering. Springer, 2008, pp. 201–
228. doi: 10.1007/978-1-84800-044-5_8.

[10] J. Kontio, L. Lehtola, and J. Bragge. “Using the focus group method in software engineer-
ing: Obtaining practitioner and user experiences.” In: Proceedings of the 2004 International
Symposium on Empirical Software Engineering (ISESE 2004). IEEE, 2004, pp. 271–280. doi:
10.1109/ISESE.2004.1334914.

[11] R. Mehta and R. Zhu. “Blue or red? Exploring the e↵ect of color on cognitive task
performances.” In: Science 323.5918 (Feb. 2009), pp. 1226–1229. doi: 10.1126/science.
1169144. arXiv: arXiv:1106.5958.

[12] G. K. Rambally. “The influence of color on program readability and comprehensibility.”
In: Proceedings of the 17th SIGCSE technical symposium on Computer science education
(SIGCSE’86). Vol. 18. New York, New York, USA: ACM Press, 1986, pp. 173–181. doi:
10.1145/5600.5702.

[13] L Reynoso, M Genero, M Piattini, and E Manso. “Assessing the impact of coupling on
the understandability and modifiability of OCL expressions within UML/OCL combined
models.” In: Proceedings of the 11th IEEE International Software Metrics Symposium (MET-
RICS’05). 2005, 10 pp.–14. doi: 10.1109/METRICS.2005.12.

[14] L. Reynoso, M. Genero, and M. Piattini. “Measuring Ocl Expressions: an Approach
Based on Cognitive Techniques.” In: Metrics for Software Conceptual Models. Imperial
College Press, Distributed by World Scientific Publishing Co., Jan. 2005, pp. 161–206.
doi: 10.1142/9781860946066_0005.

[15] L. Reynoso, E. Manso, M. Genero, and M. Piattini. “Assessing the influence of import-
coupling on OCL expression maintainability: A cognitive theory-based perspective.” In:
Information Sciences 180.20 (2010), pp. 3837–3862. doi: https://doi.org/10.1016/j.
ins.2010.06.028.

[16] A. Sarkar. “The impact of syntax colouring on program comprehension.” In: Proceedings
of the 26th Annual Workshop of the Psychology of Programming Interest Group (PPIG 2015).
Ed. by M. Coles and G. Ollis. Bournemouth, UK: Psychology of Programming Interest
Group, July 2015, pp. 49–58.

[17] B. Selic. “The pragmatics of model-driven development.” In: IEEE Software 20.5 (Sept.
2003), pp. 19–25. doi: 10.1109/MS.2003.1231146.

[18] S. Stajner, R. Evans, C. Orasan, and R. Mitkov. “What can readability measures really tell
us about text complexity?” In: Proceedings of Workshop on natural language processing for
improving textual accessibility (Jan. 2012), pp. 14–22.

[19] A. Toval, V. Requena, and J. L. Fernández. “Emerging OCL tools.” In: Software and
Systems Modeling 2.4 (Dec. 2003), pp. 248–261. doi: 10.1007/s10270-003-0031-0.

[20] J. Warmer and A. Kleppe. The Object Constraint Language Second Edition, Getting Your
Models Ready for MDA, by Jos Warmer and Anneke Kleppe. Vol. 2. Addison-Wesley, 2003,
p. 139. doi: 10.5381/jot.2003.2.6.r1.

60

https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1109/ISESE.2004.1334914
https://doi.org/10.1126/science.1169144
https://doi.org/10.1126/science.1169144
https://arxiv.org/abs/arXiv:1106.5958
https://doi.org/10.1145/5600.5702
https://doi.org/10.1109/METRICS.2005.12
https://doi.org/10.1142/9781860946066_0005
https://doi.org/https://doi.org/10.1016/j.ins.2010.06.028
https://doi.org/https://doi.org/10.1016/j.ins.2010.06.028
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1007/s10270-003-0031-0
https://doi.org/10.5381/jot.2003.2.6.r1

BIBLIOGRAPHY

[21] S. Yusuf, H. Kagdi, and J. I. Maletic. “Assessing the comprehension of UML class dia-
grams via eye tracking.” In: Proceedings of the IEEE International Conference on Program
Comprehension (ICPC’07). 2007. doi: 10.1109/ICPC.2007.10.

[22] A. Zamansky, G. Rodriguez-Navas, M. Adams, and M. Spichkova. “Formal Meth-
ods in Collaborative Projects.” In: Proceedings of the Evaluation of Novel Approaches to
Software Engineering conference (ENASE’2016). 2016, pp. 396–402. doi: 10 . 5220 /

0005937403960402.

61

https://doi.org/10.1109/ICPC.2007.10
https://doi.org/10.5220/0005937403960402
https://doi.org/10.5220/0005937403960402

[This page has been intentionally left blank]

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Motivation and research problem
	Objectives
	Contributions
	Dissertation organization

	Related Work
	Concepts of model-driven development
	Comprehension of UML class diagrams
	Metrics for OCL expressions
	Impact of syntax highlighting on program comprehension
	OCL tools

	Prototypes
	OCL Highlight Plugin
	Requirements
	Design
	Implementation
	Highlighting examples

	OCL Complexity Plugin
	Requirements
	Design
	Implementation
	Metrics collection examples

	Experiment and Results
	Experiment 1: the relative difficulty of learning OCL
	Experiment 2: assessing OCL comprehension
	OCL complexity metrics
	Readability metrics

	Experiment 3: on the effect of using the OCL Highlight Plugin
	Qualitative evaluation: experts
	Quantitative evaluation: students

	Conclusions and Future Work
	Conclusion
	Future work

	Bibliography

