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Abstract  

In the last few years, Extreme Value Theory (EVT) has gained increased importance in 

modeling extreme observations in all social sciences.  This is especially true in finance, since 

EVT is a tool used to consider probabilities associated with extreme and rare events with 

catastrophic consequences, as happened in the Sub-prime crisis in 2007.  

 

To model extreme observations, we use two different statistical distribution families in this 

thesis: Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD).  

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 

indices to the theoretical GEV and GPD distributions. We have applied two approaches of 

extreme value theory, the Block Maxima and the Peaks Over Threshold (POT) approach, as 

well as the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the 

distribution parameter estimation and the non-parametric approach of the Hill estimator. 

As a result of the application, we have seen that in the GEV distribution application, our data 

was well represented by the Fréchet and Weibull distributions. On the other hand, in the GPD 

distribution, using the parametric approach MLE, our data was mostly well represented by the 

Exponential and Beta distributions. However, applying the GPD using the non-parametric 

approach of the Hill estimator for the tail index, we have seen that the monthly maximum 

returns of our indices are well represented by the Pareto distribution. 
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Resumo  

Nos últimos anos, a Teoria de Valores Extremos (TVE) tem ganho uma importância crescente 

no estudo de observações extremas em todas as ciências. Isto é especialemente verdade em 

finanças, uma vez que a TVE é uma ferramenta utilizada para analisar as probabilidades 

associadas a eventos extremos e raros com consequências catastróficas, como a crise do Sub-

Prime em 2007.  

Para modelar observações extremas, usamos duas famílias de distribuição estatísticas:  

Distribuição Generalizada de Valores Extremos (GEV) e a Distribuição Generalizada de 

Pareto (GPD).  

Nesta tese, a TVE foi utilizada para investigar e ajustar a distribuição empírica dos retornos 

maximos e minimos mensais dos índices bolsistas FTSE 100, NIKKEI 225 e do S&P500 às 

ditribuições teóricas da GEV e GPD.  

Aplicamos duas abordagens na aplicação da TVE, o método do Block Maxima e o método 

dos excessos de nível (POT), onde para a estimação dos parâmetros da distribuição 

recorremos ao método paramétrico da Máxima Verosimilhança, bem como ao método não-

paramétrico através do estimador Hill. 

Como resultado do estudo empírico na aplicação da GEV, verificamos que as séries são bem 

representadas pela distribuição de Fréchet e Weibull. Por outro lado, na aplicação da GPD, 

utilizando a abordagem paramétrica para o cálculo dos parâmetros da distribuição, as séries 

são bem representadas pelas distribuições exponencial e Beta. No entanto, a aplicação do 

GPD utilizando a abordagem não-paramétrica, verificou-se que a série dos retornos máximos 

mensais dos índices são bem representados pela distribuição de Pareto. 
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Executive Summary 

The last years have been characterized by significant instabilities in financial markets. This 

has led to numerous criticisms about the existing risk management systems and motivated the 

search for more appropriate methodologies able to deal with rare events with catastrophic 

consequences, as happened in 1929 with the Great Depression crisis and the Sub-prime crisis 

in 2007 which originated the biggest crisis since the Great Depression. 

The typical question one would like to answer is:  If things go wrong, how wrong can they 

go? Then the problem is how to model the rare phenomena. The answer can be found in the 

Extreme value theory (EVT), which provides a strong theoretical foundation on which we can 

build statistical models describing extreme events. One important example of an extreme 

event is the convulsion in financial markets that shows that asset prices can display extreme 

movements beyond those captured by the normal distribution. One of the solutions to deal 

with this problem is the Extreme Value Theory. 

To model extreme observations using Extreme Value Theory (EVT), we can use two different 

statistical distribution families: Generalized Extreme Value (GEV) and Generalized Pareto 

Distribution (GPD).  

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 

indices to the theoretical GEV and GPD distributions.  

We apply two approaches of extreme value theory, the Block Maxima and the Peaks Over 

Threshold (POT) approach, as well as the parametric approach of the Maximum Likelihood 

Estimate Method (MLE) for the distribution parameter estimation and the non-parametric 

approach of the Hill estimator. 

We can say that the goal is to try understanding which theoretical GEV and GPD distributions 

better fit our data, monthly maximum and minimum return series of the FTSE 100, NIKKEI 

225 and S&P500. 
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1.  Introduction 

In the last few years, Extreme Value Theory (EVT) has gained increased importance in 

modeling extreme observations in all social sciences (e.g. hydrology).  This is especially true 

in finance, since EVT is a tool used to consider probabilities associated with extreme and thus 

rare events. Assessing the probability of rare and extreme events is an important issue in the 

risk management of financial portfolios and EVT provides the solid fundamentals needed for 

the statistical modeling of such events and the computation of extreme risk measures.  

EVT is useful in modeling the impact of crashes or situations of extreme stress on investor 

portfolios.  

To model extreme observations, we use two different statistical distribution families in this 

thesis: Generalized Extreme Value (GEV) distribution, which has the Gumbel, Fréchet and 

Weibull distributions as particular cases; and Generalized Pareto Distribution (GPD) 

distributions, which has the Exponential, Pareto and Beta distributions as particular cases.  

In this thesis, EVT methods are used to investigate and fit the empirical distribution of the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 

indices to the theoretical GEV and GPD distributions. We apply two approaches of extreme 

value theory to our data, the Block Maxima and the Peaks Over Threshold (POT), as well as 

the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the 

distribution parameter estimation and the non-parametric approach of the Hill estimator. 

For the application of the methodology, we use a diversity of tools such as the R 

Programming Language with an extRemes toolkit, as well as the Easy Fit 5.5 Professional 

Software and the EViews Software. 

This thesis is organized as follows: Section 2 presents a literature review, section 3 provides 

EVT‟s theoretical background, section 4 provides an empirical study and results, section 5 

provides conclusions and section 6 provides some final comments and future directions of our 

work and research. 
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2. Literature Review 

The last years have been characterized by significant instabilities in financial markets. This 

has led to numerous criticisms about the existing risk management systems and motivated the 

search for more appropriate methodologies able to deal with rare events with catastrophic 

consequences, as happened in 1929 with the Great Depression crisis; Oil crises in 1973 and 

1979; the dot-com crisis in 2000 and the Sub-prime crisis in 2007 which originated the 

biggest crisis since the Great Depression. 

The typical question one would like to answer is: If things go wrong, how wrong can they go? 

Then the problem is how to model the rare phenomena that lie outside the range of available 

observations. In such a situation it seems essential to rely on a well founded methodology. 

Extreme value theory (EVT) provides a strong theoretical foundation on which we can build 

statistical models describing extreme events.  

One of the first papers that dealt with extreme value problems dates back to 1709, when 

Nicholas Bernoulli discussed the mean of the largest distance among points lying at random 

on a line. The notion of the distribution of the largest value is more modern, and it was first 

introduced by von Bortkiewicz (1922). 

In the next year Von Mises (1923) evaluated the expected value of this distribution, and Dodd 

(1923) calculated its median, also studying some non-normal related distributions. 

The period of the 1920s and 1930s was an important period in which several authors wrote 

papers dealing with practical applications of extreme value statistics in distributions of human 

lifetimes, strength of materials, flood analysis and seismic analysis. 

One of these works, proposed and developed by Fréchet (1927), was the analysis of 

asymptotic distribution of the largest values. Fréchet identified one possible limit distribution 

could only be one of three types, and the independent analysis of Fisher and Tippet (1928) for 

the same problem released the paper which is considered the foundation of EVT and showed 

that the distribution of normalized maxima can only be one of three types: type I or Fréchet, 

type II or Weibull and type III or Gumbel. Von Mises (1936) presented some simple and 

useful sufficient conditions for the weak convergence of the larger order statistic for each of 

the three types of limiting distributions given earlier by Fischer and Tippett (1928). Gnedenko 

(1943) presented the foundations for extreme value theory providing necessary and sufficient 
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conditions for Fischer and Tippett‟s “three types theorem”, the sufficient conditions for the 

weak convergence of the extreme order statistics.  Mejzler (1949), Marcus and Pinsky (1969) 

and de Haan (1970, 1971) refined the work of Gnedenko.  

One of the empirical applications in this period was the paper of Weibull (1939) on 

metallurgical failures. This paper led Gumbel (1941, 1958) to propose a statistical 

methodology for studying extremes based on fitting the extreme value distributions to data 

consisting of maxima or minima of some random process over a fixed block or interval of 

time. Contemporary methods derived from this early work involve fitting block maxima and 

minima with the generalized extreme value (GEV) distribution, which combines Fisher-

Tippett and Gnedenko‟s three types of distributions into a single, three-parameter distribution. 

In 1955 Jenkinson proposed the Generalized Extreme Value distribution (GEV), with the 

three asymptotic distributions mentioned before as particular cases. As important as GEV, we 

have the Generalized Pareto Distribution (GPD). While both distributions model extreme 

events, GEV fits maximum (minimum) from blocks of data through Block Maxima Method 

(Fisher and Tippett Theorem, 1928), while GPD fits exceedances over high threshold u 

through Peaks Over Threshold (POT) method (Pickands, Balkema-de-Haan Theorem, 1975). 

A pioneer in the applications of POT was Pickands (1975), who showed that excesses over a 

high threshold, follow asymptotically a generalized Pareto distribution. By taking into 

account all exceedances over (shortfalls below) an appropriately high (low) threshold, these 

methods make more efficient use of data by incorporating information on all extreme events 

in any given block rather than only the maximum among them.  

From the three parameters of both GEV and GPD, μ, σ and ξ are the location, scale and shape 

parameters, respectively. The parameter ξ is of particular relevance because it is closely 

related to the tail heaviness of the distributions. Although with Block Maxima the definition 

of extreme observation is straightforward, that is not the case of POT method, on which a 

threshold u (or alternatively, the choice of the number of q extreme observations) has to be 

considered. Some authors have shown how the threshold selection influences the parameter 

estimation, among them Smith (1987), Coles and Tawn (1994, 1996), Embrechts et al. (1997) 

and Davidson and Smith (1990). 

The most popular estimator for the tail index is the Hill (1975) estimator. However, due to the 

weaknesses of the Hill estimator, some alternative estimators have been proposed in the 

literature. Beirlant et al. (1996), for instance, suggest an optimal threshold choice by 
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minimizing bias-variance of the model, whereas DuMouchel (1983) and Chavez-Demoulin 

(1999) suggest the use of 10 percent of the sample to estimate the parameters of the 

distribution. For the latter threshold selection, Chavez-Demoulin and Embrechts (2004) 

provide a sensitivity analysis which shows that small changes in threshold u have nearly no 

impact on the estimation results. Mendes and Lopes (2004) suggest a procedure to fit by 

quasi-maximum likelihood a mixture model where the tails are GPD and the center of the 

distribution is normal. Bermudez and Turkman (2001) suggest an alternative method of 

threshold estimation by choosing the number of upper order statistics.  

Other approaches are quantile-quantile plot and mean excess function (Embrechts et al., 

1997). The Pickands (1975) estimator has also been mentioned frequently and Dekkers and de 

Haan (1989) showed the consistency and asymptotic normality of this estimator. However, 

the Pickands estimator is highly sensitive to the number of q statistics used and its asymptotic 

variance is large. Refinements to this estimator have been proposed by Falk (1994), Alves 

(1995), Drees (1995), Yun (2000, 2002) and Castillo and Hadi (1997). Dekkers et al. (1989) 

presented the moment estimator.  

Another advance was presented in Gomes and Martins (2002), where a tail estimator is 

developed through a maximum likelihood approach based on scaled log-spacing. There has 

been some promising work on using bootstrap methods to determine the optimal number of 

upper order statistics (Danielsson and de Vries, 1997), but further validation of such methods 

is still required. 

In regards to estimation methods, the most widely used is the Maximum Likelihood Estimation 

Method (MLE). Smith (1985) described such method in detail, providing its numerical 

solvency and validity of properties (efficiency, invariance under changes of the data in 

location and scale and extendibility to various regression models) for ξ > 0.5. Hosking and 

Wallis (1987) derived a simple method of moments which works unless ξ < 0.5. They also 

apply a variant with probability weighted moments (PWM).  Castillo and Hadi (1997) 

proposed an elemental percentile method (EPM) that does not impose any restrictions on the 

value of ξ, whereas Coles and Powell (1996) applied Bayesian methods. According to the 

extensive simulation studies by Matthys and Beirlant (2003), maximum likelihood provides 

the best estimator for ξ > 0, whereas EPM is preferred if ξ is estimated to be less than zero. 

Within the GEV context, the testing problem of the so-called Gumbel hypothesis (H0: ξ = 0) 

has received much attention in the literature. The correct choice of the GEV is very important, 
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since the three types differ considerably in their right tails. Authors who studied this matter in 

detail include Van Montfort (1970), Bardsley (1977), Otten and Van Montfort (1978), Tiago 

de Oliveira (1981), Gomes (1982), Tiago de Oliveira (1984), Tiago de Oliveira and Gomes 

(1984), Hosking (1984), Marohn (1994), Wang et al. (1996) and Marohn (2000). Somehow 

related to this matter are goodness-of-fit tests for the Gumbel model, studied by Stephens 

(1976, 1977 and 1986). 

The tests therein considered are based on Empirical Distribution Function (EDF) -statistics 

such as Kolmogorov, Cramér-Von-Mises and Anderson-Darling statistics. The hypothesis of 

nullity of ξ has also been tested in the POT setup. Considering the papers related with this 

testing problem, we mention Van Montfort and Witter (1985), Gomes and Von Montfort 

(1986) and more recently Brilhante (2004). 

Further developments on the extreme value theory include serially dependent observations 

provided that the dependence is weak (Berman, 1964 and Leadbetter, 1939) and extension 

from univariate to multivariate analysis. In different fields of application like finance, it is 

important to be able to model joint extreme events such as large losses in several stock returns 

or large changes in several rates, simultaneously.  The first works were presented by de Haan 

and Resnick (1977), followed by Tawn (1988) for bivariate extremes and later Coles and 

Tawn (1991). Recent work has been developed by de Haan and Ferreira (2006) and Beirlant 

et al. (2004). 

Despite the extensive literature review, it is still possible to mention some additional 

references for general knowledge of the theory. Castillo (1988) has successfully updated 

Gumbel (1958) and presented many statistical applications of extreme value theory with 

emphasis on engineering. Galambos (1978, 1987), Tiago de Oliveira (1984), Resnick (1987) 

and Leadbetter et al. (1983) presented elaborated treatments of the asymptotic theory of 

extremes. Related approaches with application to insurance are to be found in Beirlant et al. 

(1996), Reiss and Thomas (1997) and the references therein. Interesting case studies using up 

to date EVT methodology are McNeil (1997) and Resnick (1997). The various steps needed 

to perform a quantile estimation within the above EVT context are reviewed in de Haan et al. 

(1994) as well as in McNeil and Saladin (1997), where a simulation study is also to be found. 

Embrechts et al. (1997) give a detailed overview of the EVT as a risk management tool. 

Muller et al. (1998) and Pictet et al. (1998) studied the probability of exceedances and 

compare them with GARCH models for the foreign exchange rates. Recently, McNeil and 
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Frey (2000) and Chavez-Demoulin at al. (2004) address the use of EVT for the estimation of 

the conditional distribution for non-stationary financial series. 

To end this literature review, it is important to mention that nowadays extreme value theory is 

well established in many fields of modern science, engineering, insurance and finance. 

Recently, numerous research studies have analyzed the extreme variations that financial 

markets are subject to, mostly because of currency crises, stock market crashes and large 

credit defaults, where it is possible to include this thesis. The tail behavior of financial time 

series distribution has, among others, been discussed in Koedijk et al. (1990), Dacorogna et 

al. (1995), Loretan and Phillips (1994), Longin (1996, 2004), Danielsson and de Vries (2000), 

Kuan and Webber (1998), Straetmans (1998), McNeil (1999), Jondeau and Rockinger (1999), 

Kläuppelberg (1999), Neftci (2000), McNeil and Frey (2000), Gençay et al. (2003b) and 

Tolikas and Brown (2006).  In Longin (1996), where the author presents a study of extreme 

stock market price movements, using data from the New York Stock Exchange for the period 

1885 – 1990, the author empirically shows that the extreme returns of the New York Stock 

Exchange follow a Fréchet distribution. Another example is the paper from Tolikas and 

Brown (2006), where the authors use the Extreme Value Theory (EVT) to investigate the 

asymptotic distribution of the lower tail of daily returns in the Athens Stock Exchange (ASE) 

over the period 1986 to 2001. In terms of empirical findings, they discovered that the 

Generalized Logistic (GL) distribution provides an adequate description of the ASE index 

daily returns minima. Its asymptotic convergence was found to be relatively stable, especially 

when large selection intervals were used. This is an important finding since current EVT 

applications in finance focus exclusively on either the GEV or GPD distributions. These 

implications for investors could be important since the GL is fatter tailed than its GEV and 

GPD counterparts, which implies higher probabilities of the extremes occurring. 

The next section introduces a theoretical background of EVT - Extremes Values Theory, the 

different approaches and the different parameter estimation methods. 
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3. Theoretical Background 

This section introduces the EVT – Extreme value theory and its reasoning.  EVT can be 

understood as a theory that provides methods for modeling extremal events. Extremal events 

are the observations that take values from the tail of the probability distribution. EVT 

provides the tools to estimate the parameters of a distribution of the tails through statistical 

analysis of the empirical data. 

One important example is the finance field, where EVT can be applied. The convulsion in 

financial markets has been evidence that asset prices can display extreme movements beyond 

those captured by the normal distribution. In the literature, one of the solutions to deal with 

this situation at that point is the Extreme Value Theory. 

However, before starting EVT, it is important to mention some properties of the financial 

data. In particular, it is by now well-known that returns on financial assets typically exhibit 

higher than normal kurtosis as expressed by both higher peaks and fatter tails than can be 

found in normal distribution. 

 

Figure 1: Asset returns distribution versus normal distribution 

 

In figure 1, the red graph (Fat Tailed PDF) refers to the returns of a financial asset. The 

graphic tells us that the probabilities that normal distribution assigns to extreme events (tail 

events) are less than is required. In other words, the tails of the normal distribution are too 

thin to address the extreme losses or gains, assuming normality will lead to systematic
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with the opposite: Hn(r) = Min(r1,...,rn) = -Max (-r1,…,-rn) 

 

underestimation of the riskiness of an asset and increase the chance of having a hit. Thus, in 

order to get rid of such kind of problems, tails of the distribution must be modeled. This can 

be done by using EVT.  

Within the EVT context, there are three approaches to modeling the extremal events: the first 

one for directly modeling the distribution of maximum/minimums returns named Block 

Maxima, the second one for modeling the exceedances of a particular estimated threshold 

named Peak-Over-Threshold (POT), and the third one denominated Peaks-Over-Random-

Threshold (PORT).  

The Block Maxima, which is used for the largest observations that are collected from large 

samples of  identically and  distributed observations (i.i.d), is a method that provides a model 

that may be appropriate for the monthly or annual maximum/minimums of such samples. The 

second method is the Peaks-Over-Threshold, which is used for all large observations that 

exceed a high threshold. They are considered to be the most useful methods for practical 

applications because of their more efficient use of the data on extreme values. The third 

method is the most recent of all and it is denominated Peaks-Over-Random-Threshold, which 

is a small variant of POT, where the threshold is a random variable.  

When modeling the maxima/minima of a random variable, extreme value theory follows the 

same fundamental role as the central limit theorem follows when modeling sums of random 

independent variables. In both cases, the theory tells us what the limiting distributions are. 

3.1 The Block Maxima Approach 

Let‟s consider a random variable representing monthly maximum/minimum returns, which 

takes in successive periods. These selected observations constitute the extreme events, also 

called block (or per period) maxima/minima. In figure 2, the observations X2, X5, X7 and X11 

represent the block maxima for four periods of three observations each
1
.  
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Figure 2: Block-maxima graph 

The block maxima method is the traditional method used to analyze data with seasonality, as 

for instance, hydrological data. However, the threshold method uses data more efficiently, and 

for that reason, seems to have become the method of choice in recent applications. 

According to the theorems of Fisher and Tippett (1928) and Gnedenko (1943), regardless of 

the specific distribution, the appropriately scaled maxima converge to one of three possible 

limit laws (parametric distributional forms).  Under certain conditions, a standardized form of 

the three limit laws is called the generalized extreme value (GEV) distribution. Additionally, 

as is explained below by the theorems of Balkema and de Haan (1974) and Pickands (1975), 

the distribution function of the excesses above a high threshold converges to the generalized 

Pareto distribution (GPD).  

Therefore, the block maxima model can be presented under a single family which is known as 

the generalized extreme value (GEV) distribution. The theory deals with the convergence of 

maxima, that is, the limit law for the maxima. To illustrate this, suppose that  tr , t =1,...,n, is a 

sequence of independent and identically distributed (i.i.d) observations with distribution 

function    xrxH t  rP , not necessarily known, and  let the sample maximum be denoted by 

Mn = max {r1,…,rn} where n  2, and   denote the real line. More generally, the generalized 

extreme value distribution (GEV) represented by Hξ(x) describes the limiting distribution of 

suitably normalized maxima. The random variable X may be replaced by (X – μ)/σ to obtain a 

standard GEV with a distribution function that is specified as shown below, where μ, σ and ξ 

are the location, scale and shape parameters, respectively.   
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The function H can belong to one of the three standard extreme value distributions: 
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However, instead of having three functions, Jenkinson (1955) and Von Mises (1954) 

suggested the following distribution: 
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This generalization, known as the generalized extreme value (GEV) distribution, is obtained 

by setting ξ = 1 
 > 0 for the Fréchet distribution, ξ = 1  < 0 for the Weibull distribution 

and by interpreting the Gumbel distribution as the limit case for ξ = 0. (Note that α refers to 

the tail index, which is the inverse of the shape parameter, which is defined as α = ξ
-1

). 

The shapes of the probability density functions for the standard Fréchet, Weibull and Gumbel 

distributions are given in figure 3. 

(1) 

(2) 

(3) 

(4) 
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Figure 3: Densities for the Fréchet, Weibull and Gumbel functions  

We observe that the Fréchet distribution has a polynomial decaying tail and therefore suits 

heavy-tailed distributions well. The exponentially decaying tails of the Gumbel distribution 

characterize thin-tailed distributions. Finally, the Weibull distribution is the asymptotic 

distribution of finite endpoint distributions. 

As in general it is not possible to know in advance the type of limiting distribution of the 

sample maxima, the generalized representation is particularly useful when maximum 

likelihood estimates have to be computed. Moreover, the standard GEV defined in (4) is the 

limiting distribution of normalized extremes, given that in practice the true distribution of the 

returns is not known, and as a result, we used the three parameter specifications  
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of the GEV, which is the limiting distribution of the normalized maxima.  

The class of distribution of  xH  where the Fisher-Tippett theorem holds is quite large. One 

of the conditions is that  xH has to be in the domain of attraction of the Fréchet distribution 

(ξ > 0), which in general holds for the financial time series. Gnedenko (1943) shows that if 

the tail of  xH  decays like a power function, then it is in the domain of attraction of the 

(5) 
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Fréchet distribution. The class of distributions whose tails decay like a power function is large 

and includes Pareto, Cauchy, Student-t, which are the well-known heavy-tailed distributions. 

3.2 Peaks-Over-Threshold Approach (POT) 

The second approach focuses on the realizations exceeding a given (high) threshold. The 

observations X1, X2, X7, X8, X9 and X11 in the figure 4, all exceed the threshold u and constitute 

extreme events. 

 

Figure 4: Excesses over a threshold μ graph. 

In general, we are not only interested in the maxima/minima of observations, but also in the 

behavior of large observations that exceed a high threshold. One method of extracting 

extremes from a sample of observations, tr , t = 1, 2,...,n with a distribution function 

   xrxF t  rP is to take exceedances over a deterministic predetermined high-threshold u 

(figures 4 and 5). Exceedances of a threshold u occur when tr  > u for any t in t = 1,..., n. An 

excess over u is defined by y = ir – u. 

 

Figure 5: Distribution Function and Distribution Over Threshold 
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Given a high threshold u, the probability distribution of excess values of tr over threshold u is 

defined by 

   rP |Fu y r u y r u     

This represents the probability that the value of r exceeds the threshold u by at most an 

amount y given that r exceeds the threshold u. This conditional probability may be written as  
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Since x = y + u for r  > u, we have the following representation:  

       1 uF x F u F y F u                            

Notice that this representation is valid only for r u . 

A theorem due to Balkema and de Haan (1974) and Pickands (1975) shows that for 

sufficiently high threshold u, the distribution function of the excesses may be approximated 

by GPD, because as the threshold gets large, the excess  Fu y converges to the GPD.  

The GPD in general is defined as                             

 

 

1/

, ,

/

1 0

1 0

1

exp

u

x u

if
G x

if

x u


 












 



 

 

  


 
 

   

With       

 

 

(9) 

 , , 0

, , 0

u if

x
u u if








  


  
  

 

(8) 

(6) 

(7) 

 (10) 



How to deal with Extreme Observations in Empirical Finance 

 

14 

 

Where σ and ξ are the scale and shape parameters, respectively. There is a simple relationship 

between the standard GPD Gξ (x) and Hξ(x) such that Gξ (x)= 1+log Hξ(x) if log Hξ(x) > -1. 

The GPD embeds a number of other distributions; the ξ (shape parameter) determines the 

original distribution. When u = 0 and σ = 1, and ξ > 0, the tail of the distribution function F of 

x  decays like a power function 1/x  . In this case, F belongs to a family of heavy-tailed 

distributions that includes, among others, the Pareto, log-gamma, Cauchy and t-distributions; 

it takes the form of the ordinary Pareto distribution. This particular case is the most relevant 

for financial time-series analysis, since it is a heavy-tailed distribution. 

For ξ = 0, the tail of F decreases exponentially, and belongs to a class of medium-tailed 

distributions that includes the normal, exponential, gamma and log-normal distributions. 

Finally, for ξ <0, the underlying distribution F is characterized by a finite right endpoint, 

whose class of short-tailed distributions includes the uniform and beta distributions. 

The shapes of the probability density functions for the standard Beta, Pareto and Exponential 

distributions are given in figure 6. 

 

Figure 6: Densities for the Beta, Pareto and Exponential functions  

The importance of the Balkema and de Haan (1974) and Pickands (1975) results is the fact 

that the distribution of excesses may be approximated by the GPD by choosing ξ and setting a 

high threshold u. The GPD model can be estimated by using the parametric methods, 

explained below.  
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3.3 Peaks-Over-Random Threshold Approach (PORT) 

Another method, and the most recent one, is denominated Peaks-Over-Random-Threshold 

(PORT).  It is a semi-parametric method that is a small variant of POT, a method which is 

conditioned by a random threshold.  

As we do not have an accurate choice of the threshold level, this new method introduces a 

new approach to dealing with this problem. Theory tells us that the threshold level should be 

high in order to satisfy the Pickands-Balkema-de Haan theorem, but the higher the threshold, 

the fewer observations are left for the estimation of the parameters of the tail distribution 

function.  

In this method, any inference concerning the tail of the underlying distribution is based 

exclusively on the observations above a random threshold. This method compares with the 

alternative method of the number of observations that exceed a given high increasing 

deterministic level u, an approach named POT method. 

Recently, Neves et al. (2006) and Neves and Fraga Alves (2007) have introduced two testing 

procedures that are based on the sample observations above a random threshold, procedures 

that consist in a reformulation of the asymptotic properties of the Hasofer and Wang (1992) 

test statistic.  

 

3.4 Parameter Estimation Methods 

In this section we explain the statistical parameter estimation of the distributions. Two 

approaches are considered. The first one, where the parameters of the distribution, including 

the tail index, are directly estimated by classical methods such as the maximum likelihood 

estimate method (MLE), is named the parametric approach. The second, where no parametric 

distribution is assumed for the extremes, is named the non-parametric approach. 

3.4.1. The parametric approach 

The parametric approach assumes that maximum/minimum returns selected over a given 

period are exactly drawn from the extreme value distribution given by GEV (see formula 4), 

or alternatively, that those positive/negative return exceedances under or above a given 

threshold are exactly drawn from the distribution given by the GPD formula (see formula 9).  
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With either definition of extremes, the asymptotic distribution contains three parameters:  μ, σ 

and ξ for extremes defined as maximum/minimum returns selected from a period containing n 

returns.  

Under the assumption that the limit distribution holds, the maximum likelihood method gives 

unbiased and asymptotically normal estimators. The system of non-linear equations can be 

solved numerically using the Newton–Raphson iterative method. Both distributions are 

parameterized by the scale, location and shape parameters with the same interpretation in both 

cases. This method maximizes the likelihood function over the location, scale and shape 

parameters:  μ, σ and ξ.  

In practice, with MLE the parameters of the extreme value distributions can be estimated with 

different values of the number of returns contained in the selection period n (for 

maximum/minimum returns) and alternatively, with different values of the threshold μ (for 

positive/negative return exceedances). 

 

Mathematically, this solves the general formula presented below: 
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The estimates of μ, σ and ξ – say ̂ , ̂  and ̂  – are taken to be those values which maximize 

the likelihood L.  

However, this methodology presents some limitations. Maximum likelihood methods perform 

better when tails are thicker, providing greater observations exceeding the threshold. Any 

weaknesses in these assumptions directly affect the significance of the results. Jansen and de 

Vries (1991) show that in the Fréchet domain of attraction this includes most distributions of 

financial returns. Maximum likelihood methods are consistent, but not the most efficient. 

Therefore, in some situations we should use parametric methods that are alternatives to the 

Maximum Likelihood Estimate Method (MLE), such as the method of Probability Weight 

Moments (PWM).  However, in this thesis we focus only on the first one. 

(11) 
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3.4.2. The non-parametric approach 

The parametric approach method assumes that the parameters are drawn exactly from the 

extreme value distribution. However, the non-parametric approach assumes that estimator for 

the shape parameter ξ, which do not assume that the observations of extremes follow exactly 

the extreme value distribution, have been developed by Pickands (1975) and Hill (1975).  

Pickands’s estimator is given by 

1 2 1
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where (R‟t)t = 1, N is the series of returns ranked in an increasing order and q is an integer 

depending on the total number of returns contained in the database n. Pickands‟s estimator is 

consistent if q increases at a suitably rapid pace with n. Pickands’s statistic is asymptotically 

normally distributed with mean ξ and variance ξ
2
.  

Hill’s estimator is given by 
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Where 1' NR   denotes decreasing order statistics of the series and q  denotes the q th  

smallest order statistic of n observations included in the calculation of the shape parameter. 

Intuitively the Hill index measures the distance with which the average extreme observation 

exceeds a specific threshold.  

However, the Hill estimator has some weaknesses. Dekkers and De Haan (1990), who take 

into account the sensitivity of the Hill index to the initial tail size, propose an extension to the 

Hill estimator incorporating its second moment.  
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Where ξ Hill 1 is the standard Hill estimate defined in equation (12) and  
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The authors prove the consistency and normality of ξ Dekkers.  

In summary, the problem consists of choosing the correct method to obtain the correct value 

for the tail index parameter. As largely discussed in the extreme value theory literature, the 

choice of its value is a critical issue. The origin of this problem comes from the fact that the 

database contains a finite number of maximum/minimum return observations; the number of 

extreme returns, q, used for the estimation of the model is finite.  

On one hand, choosing a high value for q leads to few observations of extreme returns and 

implies inefficient parameter estimates with large standard errors. On the other hand, 

choosing a low value for q leads to many observations of extreme returns but induces biased 

parameter estimates as observations not belonging to the tails are included in the estimation 

process.  

This sensitive tradeoff can be dealt with in a variety of ways, as was described above. 

However, in recent years new approaches have been developed.  One of them is when the 

levels at which the tail index begins to plateau is in some sense the „optimal‟ choice of n 

where it is no longer as sensitive to individual observations. Other approaches to making this 

choice include the quantile–quantile plot, regression methods (Huisman et al., 2000) and the 

subsample bootstrap (Danielsson and de Vries 2001). 
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4.  Empirical Application 

In this section we proceed to the application of the GEV and GPD distributions to our 

database, which is composed of the monthly maximum and minimum returns of the 

FTSE100, NIKKEI225 and S&P500 indices. The goal is to fit our maximum and minimum 

return series to the GEV and GPD distributions.  

There will be a description of the methodology that we adopted, an empirical analysis of our 

database, and finally, the application of the GEV and GPD distributions. 

4.1 Methodology 

In this thesis, we applied some of the theory presented above, such as the Block Maxima and 

POT approaches.  We also applied parameter estimation methods such as the MLE method, 

which uses a parametric approach, and the Hill estimator, which uses a non-parametric 

approach. The goal is to fit our maximum and minimum return series to the GEV and GPD 

distributions.  

For the application of the methodology, we used a diversity of tools such as the language R 

with an extRemes toolkit, whose outputs and code can be seen in the  appendix. Another tool 

that we used was the Easy Fit 5.5 Professional Software, which is a powerful tool in terms of 

graphs. Finally, we used the EViews Software.  

The data consist of the monthly maximum and minimum log returns from the FTSE100, 

NIKKEI225 and S&P500 indices. The monthly maximum and minimum refers to the 

maximum and minimum return, extracted from the daily log return, in each month for each 

index.  

In terms of log return series, assuming that tP  is the closing value on day t, continuous daily 

logarithmic returns are given by: 

tR  
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The data that we considered were downloaded from the Yahoo Finance webpage. The period 

under analysis for the S&P 500 index is from January 3, 1950 to March 11, 2011. The FTSE 

(16) 
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100 index corresponds to a period between February 4, 1984 and March 11, 2011, and the 

NIKKEI 225 index corresponds to the period between January 4, 1984 and March 11, 2011.  

4.2 Empirical Results 

In this section, we proceed to an exploratory data analysis, followed by the application of the 

Block Maxima and POT approaches. 

To start, tables 1, 2 and 3 show the summary statistics of the daily log returns and monthly 

maximum (Max) and minimum (Min) log return series of the FTSE100, NIKKEI 225 and 

S&P500 indices.  

Data FTSE 100 - Daily FTSE 100 - Min FTSE 100 - Max 

Observations 6807 324 324 

 Mean 0.0002 -0.0191 0.0189 

 Median 0.0006 -0.0161 0.0150 

 Maximum 0.0938 -0.0045 0.0938 

 Minimum -0.1303 -0.1303 0.0057 

 Std. Dev. 0.0112 0.0126 0.0117 

 Skewness -0.3850 -3.4470 2.8954 

 Kurtosis 11.7930 24.6915 14.8249 

        

 Jarque-Bera 22097.09 6993.67 2340.40 

 Probability 0.0000 0.0000 0.0000 
Table 1: FTSE 100 Explanatory data analysis 

 

Data NIKKEI225 - Daily NIKKEI225 - Min NIKKEI225 - Max 

Observations 6684 327 327 

 Mean 0.0000 -0.0254 0.0256 

 Median 0.0004 -0.0231 0.0218 

 Maximum 0.1323 -0.0036 0.1323 

 Minimum -0.1614 -0.1614 0.0062 

 Std. Dev. 0.0146 0.0164 0.0158 

 Skewness -0.2214 -2.8612 2.6781 

 Kurtosis 11.2980 20.0629 15.1732 

        

 Jarque-Bera 19231.05 4412.97 2409.92 

 Probability 0.0000 0.0000 0.0000 
Table 2: NIKKEI 225 Explanatory data analysis 

 



How to deal with Extreme Observations in Empirical Finance 

 

21 

 

Data S&P500 - Daily S&P500 – Min S&P500 – Max 

Observations 15396 735 735 

 Mean 0.0003 -0.0165 0.0167 

 Median 0.0005 -0.0137 0.0144 

 Maximum 0.1096 -0.0018 0.1096 

 Minimum -0.2290 -0.2290 0.0029 

 Std. Dev. 0.0097 0.0136 0.0100 

 Skewness -1.0577 -6.7697 2.8213 

 Kurtosis 32.1044 88.7136 18.4995 

        

 Jarque-Bera 546263.20 230610.30 8332.26 

 Probability 0.0000 0.0000 0.0000 
Table 3:  S&P 500 Explanatory data analysis 

 

Looking at table 1, it is possible to see that in the daily return the stock index FTSE100 has a 

mean of 0.02% and a standard deviation of 1.12%, with a maximum of 9.38% and a minimum 

of -13.03%. In terms of the maximum returns, the series has a mean of 1.89% and a standard 

deviation of 1.17%, with a maximum return of 9.38% and a minimum of 0.57%. In the 

minimum return FTSE 100, the series has a mean of -1.91% with a standard deviation of 

1.26%, and a maximum of -0.45% and a minimum of -13.03%. 

In the other stock index, the NIKKEI 225, we can see that in the daily return the series has a 

mean of 0.00% and a standard deviation of 1.46%, with a maximum of 13.23% and a 

minimum of -16.14%. In terms of the maximum returns, we can see that the series has a mean 

of 2.56% and a standard deviation of 1.58%, with a maximum return of 13.23% and a 

minimum of 0.62%. In the minimum return of the NIKKEI 225, the series has a mean of -

2.54% with a standard deviation of 1.64%, a maximum of -0.36% and a minimum of -

16.14%. 

In the last stock index, the S&P 500, in terms of daily return the index has a mean of 0.03% 

and a standard deviation of 0.97%, with a maximum of 10.96% and a minimum of -22.90%. 

In terms of the maximum returns, it has a mean of 1.67% and a standard deviation of 1.00%, 

with a maximum return of 10.96% and a minimum of 0.29%. Finally, the minimum S&P 500 

return has a mean of -1.65% with a standard deviation of 1.36%, a maximum of -0.18% and a 

minimum of -22.90%. 
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On the other hand, these tables show that the kurtosis and skewness values are very different 

from 3 and 0, respectively, for the distribution to be considered a normal distribution. 

However, in addition to this method, another way to prove the normality of a distribution is 

the Jarque-Bera (JB) test, which depends on the skewness and kurtosis estimates. Based on 

the JB test, it is possible to conclude if the normality assumption is rejected or not, depending 

on the probability associated with the test. If it is lower than 0.05 (the default significance 

level assumed for all tests in this thesis), we reject the null and the normality assumption; 

otherwise, we can admit the normality based on the considered sample. 















onDistributiNormalH

onDistributiNormalH

TestJB

1

0

 

For the FTSE 100, NIKKEI 225 and S&P 500 series we can see that daily log returns and the 

monthly maximum and minimum log return series distributions do not follow a normal 

distribution, because in all cases we reject the null hypothesis in the JB test, as a consequence 

of the associated probability of the JB test being lower than 0.05.  

In the figures below, it is possible to see that none of the histograms of the daily log returns 

and the monthly maximum and minimum log returns of the FTSE 100 (figures 7 – 9), 

NIKKEI 225 (figures 10-12) and S&P 500 (figures 13 – 15) seem to follow the normal 

distribution, which is confirmed by the rejection of the null hypothesis in the JB test. 

In the figures below it is also possible to see and analyze the graph of the adjust close of the 

FTSE 100 (figure 16), NIKKEI 225 (figure 20) and S&P 500 (figure 24), as well as the daily 

log return and the monthly maximum and minimum returns graphs. 

 

(17) 
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Figure 7: FTSE 100 Daily Returns 

Histogram 

 

Figure 8: FTSE 100 Max Returns 

Histogram 

 

Figure 9: FTSE 100 Min Returns 

Histogram 

 

Figure 10: NIKKEI 225 Daily Returns 

Histogram 

 

Figure 11: NIKKEI 225 Max Returns 

Histogram 

 

Figure 12: NIKKEI 225 Min Returns 

Histogram 
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Figure 13: S&P 500 Daily Returns 

Histogram 

 

Figure 14: S&P 500 Max Returns Histogram 

 

 

Figure 15: S&P 500 Min Returns Histogram 

 

Figure 16: FTSE 100 Adjust Close    

 

 

Figure 17: FTSE 100 Daily Return 

 

 

Figure 18: FTSE 100 Monthly Maximum 

Return 
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Figure 19: FTSE 100 Monthly Minimum 

Return 

 

 

Figure 20: NIKKEI 225 Adjust Close 

 

 

Figure 21: NIKKEI 225 Daily Return 

 

 

Figure 22: NIKKEI 225 Monthly Maximum 

Return 

 

 

Figure 23: NIKKEI 225 Monthly Minimum 

Return 

 

Figure 24: S&P 500 Adjust Close 
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Figure 25: S&P 500 Daily Return 

 

 

Figure 26: S&P 500 Monthly Maximum 

Return 

 

 

Figure 27: S&P 500 Monthly Minimum 

Return 
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4.3 Fitting the GEV Distribution 

In this section we will determine which one of the extreme value distributions is more 

appropriate for modeling the monthly maximum/minimum returns of the FTSE 100, NIKKEI 

225 and S&P500 indices under analysis, applying the GEV distribution using the MLE 

parametric approach. 

We start with the LR test (Likelihood Ratio test) and the Log-Likelihood value for each of the 

series.  

Based on the LR test, it is possible to conclude if the Gumbel distribution assumption is 

rejected or not, depending on the probability associated with the test. If it is lower than 0.05, 

we reject the null and the Gumbel distribution assumption; otherwise, we can admit the 

Gumbel distribution based on the considered sample. 















onDistributiGumbelH

onDistributiGumbelH

TestLR

1

0

 

 Likelihood Ratio Test p-value Negative Log-likelihood 

FTSE100 -Max Return 65.42 6.051E-16 -1125.03 

FTSE100 -Min Return 603.54 2.850E-133 -1064.76 

NIKKEI 225 -Max Return 30.51 3.318E-08 -993.17 

NIKKEI 225 -Min Return 512.95 1.443E-113 -956.08 

S&P 500 -Max Return 56.84 4.734E-14 -2564.37 

S&P 500 -Min Return 1995.90 0.000E+00 -2426.38 
Table 4: LR Test and Log-Likelihood Results - GEV 

 

For a LR test, we reject the null hypothesis.  This means that we do not assume that the series 

follows a Gumbel process. Therefore, we can conclude that none of the maximum/minimum 

return series have been generated by a Gumbel distribution. This means that for the 

considered series, only the Fréchet or Weibull particular cases of the more general GEV 

distribution remain. 

Studying each series individually now, and starting with the monthly maximum and minimum 

series of the FTSE 100 index, using the MLE, we found the optimal values for the parameter 

estimates, which we present next: 

(18) 
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 Obs. MLE Stand. Error 

FTSE100 -Max Return 324     

Location  - μ   0.0136 0.0003 

Scale  - σ   0.0054 0.0002 

Shape  - ξ   0.3146 0.0511 

FTSE100 -Min Return 324     

Location  - μ   -0.0201 0.0000 

Scale  - σ   0.0125 0.0000 

Shape  - ξ   -0.8015 0.0000 
Table 5: FTSE 100 Maximum/Minimum Parameters - GEV 

 

For the FTSE 100 maximum returns, we conclude that the Fréchet distribution (a common 

result in empirical finance) seems to be the most appropriate to describe that kind of data, as 

the shape (ξ) estimate is higher than zero. Consequently, we can conclude that FTSE 100 

maximum return empirical distribution has fat tails. The larger the estimate values for the 

shape parameter, the more fat-tailed the distribution. We can see the representation of the 

distribution in figure 30. 

For the maximum return series, the Probability Plot (PP) (figure 28) and the Quantile Plot 

(QQ) (figure 29) seem to confirm that the data has been generated by the Fréchet distribution, 

as the points are near the straight line. In both graphs we are comparing the returns series 

(data) against the Fréchet distribution.  

For the FTSE 100 minimum returns, it is possible to see that we have a Weibull distribution, 

because the shape estimate (ξ) is lower than zero. We can see the histogram with the Weibull 

density function in figure 34. 

For the minimum return series, we can see in the Probability Plot (PP) (figure 32) that the 

series could be generated by a Weibull process, since the graph is approximately linear. On 

the other hand, the Quantile - Quantile Plot (QQ) (figure 33) confirms the PP plot, since the 

observed data (series) tend to concentrate around the straight line, which confirm the Weibull 

goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution 

against the theoretical Weibull distribution.  

Therefore, in terms of monthly maximum and minimum FTSE 100 series, we can admit the 

series have been generated by Fréchet and Weibull process distributions, respectively.
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Figure 28: FTSE100 Max Return Fréchet 

Probability Plot 

 

Figure 29: FTSE100 Max Return Fréchet 

Quantile Plot 

 

Figure 30:  FTSE100 Max Return Density 

Plot 

 

Figure 31:  FTSE100 Max Return Density 

Plot II 

 

Figure 32: FTSE100 Min Return Weibull 

Probability Plot 

 

Figure 33: FTSE100 Min Return Weibull 

Quantile Plot 

 

Figure 34: FTSE100 Min Return Density 

Plot 

 

Figure 35: FTSE100 Min Return Density 

Plot II 
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Now analyzing the monthly maximum and minimum return series of the NIKKEI 225 index, 

we found the optimal values for the parameter estimates, which we present next: 

 Obs. MLE Stand. Error 

NIKKEI 225 -Max Return 327     

Location  - μ   0.0183 0.0006 

Scale  - σ   0.0087 0.0004 

Shape  - ξ   0.2251 0.0508 

NIKKEI 225 -Min Return 327     

Location  - μ   -0.0278 0.0000 

Scale  - σ   0.0166 0.0000 

Shape  - ξ   -0.6799 0.0051 
Table 6: NIKKEI 225 Maximum/Minimum Parameters - GEV 

 

For the NIKKEI 225 maximum returns, we conclude that the Fréchet distribution seems to be 

the most appropriate to describe that kind of data, as the shape (ξ) estimate is higher than 

zero. Therefore, we can conclude that NIKKEI 225 maximum return empirical distribution 

has fat tails. We can see the representation of the distribution in figure 38. 

For the maximum return series, the Probability Plot (PP) (figure 36) and the Quantile Plot 

(QQ) (figure 37) seem to confirm that the data has been generated by the Fréchet distribution, 

as the points are near the straight line. In both graphs we are comparing the returns series 

(data) against the Fréchet distribution.  

For the NIKKEI 225 minimum returns, it is possible to see that we have a Weibull 

distribution, because the shape estimate (ξ) is lower than zero ( ̂ = -0.67366). We can see the 

histogram with the Weibull density function in figure 42. 

For the minimum return series, we can see in the Probability Plot (PP) (figure 40) that the 

series could be generated by a Weibull process, since the graph is approximately linear. On 

the other hand, the Quantile - Quantile Plot (QQ) (figure 41) confirms the PP plot, since the 

observed data (series) tend to concentrate around the straight line, which confirm the Weibull 

goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution 

against the theoretical Weibull distribution.  

Consequently, in terms of monthly maximum and minimum NIKKEI 225 series, we can 

admit the series have been generated by Fréchet and Weibull process distributions, 

respectively, as happened with the monthly maximum and minimum FTSE 100. 
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Figure 36: NIKKEI 225 Max Return Fréchet 

Probability Plot 

 

Figure 37: NIKKEI 225 Max Return Fréchet 

Quantile Plot 

 

Figure 38: NIKKEI 225 Max Return Density 

Plot 

 

Figure 39: NIKKEI 225 Max Return Density 

Plot II 

 

Figure 40: NIKKEI 225 Min Return Weibull 

Probability Plot 

 

Figure 41: NIKKEI 225 Min Return Weibull 

Quantile Plot 

 

Figure 42: NIKKEI 225 Min Return Density 

Plot 

 

Figure 43: NIKKEI 225 Min Return Density 

Plot
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To finish the GEV distribution application, we now proceed to the study of the maximum and 

minimum series of the S&P 500 index. Using the MLE, we found the optimal values for the 

parameter estimates, which we present next: 

 Obs. MLE Stand. Error 

S&P 500 -Max Return 735     

Location  - μ   0.0122 0.0002 

Scale  - σ   0.0057 0.0002 

Shape  - ξ   0.1864 0.0301 

S&P 500 -Min Return 735     

Location  - μ   -0.0182 0.0000 

Scale  - σ   0.0119 0.0000 

Shape  - ξ   -0.7223 0.0000 
Table 7: S&P 500 Maximum/Minimum Parameters - GEV 

 

For the S&P 500 maximum returns, we conclude that the Fréchet distribution (a common 

result in empirical finance) seems to be the most appropriate to describe that kind of data, as 

the shape (ξ) estimate is higher than zero. Therefore, we can conclude that S&P 500 

maximum return empirical distribution has fat tails. The larger the estimate values for the 

shape parameter, the more fat-tailed the distribution. We can see the representation of the 

distribution in figure 46. 

For the maximum return series, the Probability Plot (PP) (figure 44) and the Quantile Plot 

(QQ) (figure 45) seem to confirm that the data has been generated by the Fréchet distribution, 

as the points are near the straight line. In both graphs we are comparing the returns series 

(data) against the Fréchet distribution. 

To finish the application of GEV distribution, for the S&P 500 minimum returns, it is possible 

to see that we have a Weibull distribution, because the shape estimate (ξ) is lower than zero 

( ̂  = -0.69958). We can see the histogram with the Weibull density function in figure 50. 

For the minimum return series, we can see in the Probability Plot (PP) (figure 48) that the 

series could be generated by a Weibull process, since the graph is approximately linear. On 

the other hand, the Quantile - Quantile Plot (QQ) (figure 49) confirms the PP plot, since the 

observed data (series) tend to concentrate around the straight line, which confirm the Weibull 

goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution 

against the theoretical Weibull distribution.  
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In conclusion, for monthly maximum and minimum S&P 500 series, as happens with the 

FTSE 100 and NIKKEI 225 series, we can admit the series have been generated by Fréchet 

and Weibull process distributions, respectively. 
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Figure 44: S&P 500 Max Return Fréchet 

Probability Plot 

 

Figure 45: S&P 500 Max Return Fréchet 

Quantile Plot 

 

Figure 46: S&P 500 Max Return Density 

Plot 

 

Figure 47: S&P 500 Max Return Density 

Plot 

 

Figure 48: S&P 500 Min Return Probability 

Plot 

 

Figure 49: S&P 500 Min Return Quantile 

Plot 

 

Figure 50: S&P 500  Min Return Density 

Plot 

 

Figure 51: S&P 500 Min Return Density Plot 
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After fitting the GEV distribution to all our maximum and minimum series, and in accordance 

to the shape estimates, we can conclude that the maximum return series are well represented 

by the Fréchet distribution. This was already expected due to the fact that the same conclusion 

was reached by other studies in financial research related to maximum and minimum returns, 

as the financial series normally follows this distribution. However, the surprise happens in the 

minimum return series which follows the Weibull distribution instead of the Fréchet 

distribution. 

As we already applied the GEV distribution, in the next section, we will apply the GPD 

distribution to the same database.  

4.4 Fitting the GPD  

In this section we will consider the GPD distribution to model the monthly maximum and 

minimum returns of the FTSE 100, NIKKEI 225 and S&P500 indices, applying the POT 

approach, considering a random threshold (u) of 1%, 2.5% and 5%, and using the MLE 

parametric method to estimate the parameters.  

To start we compute the LR test (Likelihood Ratio test) and the Log-Likelihood value for 

each of the series, where in the null we assume the monthly maximum/minimum returns have 

been generated by an exponential distribution:  

0

1

H Exponential Distribution
LR Test

H Exponential Distribution


 


 

   Likelihood Ratio Test p-value Negative Log-likelihood 

FTSE100 - Max Return 

Threshold = 0.01 2.3773 0.1231 -988.1627 

Threshold = 0.025 4.5286 0.0333 -198.4939 

Threshold = 0.05 12.0860 0.0005 -29.4550 

FTSE100 - Min Return 

Threshold = 0.01 13.5067 0.0002 -306.8009 

Threshold = 0.025 174.2542 0.0000 -1003.6751 

Threshold = 0.05 290.0608 0.0000 -911.2157 
Table 8: FTSE 100 LR Test and Log-Likelihood Results - GPD 

 

For the LR test (significance level of 5%), we cannot assume the series have been generated 

by an exponential distribution when we reject the null hypothesis. In the case of the monthly 

maximum and minimum FTSE 100 series, we do not reject the null hypothesis for the FTSE 

(19) 
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100 maximum return with a threshold (u) of 1%, so we can consider the exponential 

distribution to represent the returns.  

For the FTSE 100 monthly maximum return with a threshold of 2.5% and 5%, as well as the 

minimum return FTSE 100 (all thresholds), we reject the null hypothesis, since the probability 

associate is lower than 0.05. Consequently, the series do not follow an exponential 

distribution. 

Analyzing the monthly maximum return series of the FTSE 100 index and using the MLE, the 

estimates for the parameters are presented next: 

FTSE100 - Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 278     

Scale  - σ   0.0097 0.0008 

Shape  - ξ   0.0792 0.0568 

Threshold = 0.025 58     

Scale  - σ   0.0083 0.0020 

Shape  - ξ   0.3751 0.2198 

Threshold = 0.05 8     

Scale  - σ   0.0508 0.0000 

Shape  - ξ   -1.1588 0.0010 

(a) Nr. Exceedances of threshold    
Table 9: Maximum FTSE 100 Parameters  - GPD 

 

For the FTSE 100 maximum return with a threshold of 1%, we have already seen that we can 

assume the series follows an exponential distribution, with a scale estimate (σ) equal to 

0.0097 and a shape estimate (ξ) equal to 0.0792.  If we now consider the same series with a 

threshold of 2.5%, as the estimate for the shape parameter (ξ) is higher than zero ( ̂  = 

0.3751), we can assume the returns have been generated by a Pareto distribution. Finally, in 

considering a 5% threshold, we have seen that the series does not follow an exponential 

distribution, and as the shape parameter (ξ) is lower than zero, we can assume the returns have 

been generated by a a beta distribution. 

For the FTSE 100 monthly maximum return, threshold of 1% and 2.5%, we can see in figures 

52 and 53 the exponential and Pareto distribution, respectively, for each series. 
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Figure 52: FTSE 100 Max Return Density Plot for a threshold of 1 % - Exponential Distribution 

 

 

Figure 53: FTSE 100 Max Return Density Plot for a threshold of 2.5% - Pareto Distribution 

 

Analyzing the monthly minimum return series of the FTSE 100 index and using the MLE, the 

estimates for the parameters are presented next: 

FTSE100 - Min Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 58     

Scale  - σ   0.0033 0.0000 

Shape  - ξ   -0.5657 0.0317 

Threshold = 0.025 258     

Scale  - σ   0.0190 0.0000 

Shape  - ξ   -0.9241 0.0000 

Threshold = 0.05 315     

Scale  - σ   0.1827 0.0000 

Shape  - ξ   -4.0156 0.0000 

(a) Nr. Exceedances of threshold    
Table 10: Minimum FTSE 100 Parameters - GPD 
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As we presented above for the FTSE 100 monthly minimum return (all thresholds), we reject 

the null hypothesis in the LR test, so the series do not follow an exponential distribution. 

Looking more specifically at the series, and considering  all  thresholds, as the shape estimate  

(ξ)  is  lower than zero for all, we can assume that the returns have been generated by a beta 

distribution, for a threshold of 1%, 2.5% and 5%. 

Therefore, in terms of monthly maximum and minimum FTSE 100 series, we can admit the 

maximum series with a threshold of 1% have been generated by an exponential distribution 

and with a threshold of 2.5% generated by a Pareto distribution. Finally, we can admit that the 

maximum series with a threshold of 5% and the minimum series (all thresholds) have been 

generated by a Beta distribution. 

In now analyzing the LR (Likelihood Ratio test) results for the NIKKEI 225 monthly 

maximum and minimum return (table 11), we do not reject the null hypothesis for the 

NIKKEI 225 maximum series (all thresholds). Consequently, we can consider the exponential 

distribution to represent the maximum returns.  

For the NIKKEI 225 monthly minimum return, for all thresholds (1%, 2.5% and 5%), we 

reject the null hypothesis, as the probability associate is lower than 0.05. Therefore, the series 

do not follow an exponential distribution. 

   Likelihood Ratio Test p-value Negative Log-likelihood 

NIKKEI 225 -Max 
Return 

Threshold = 0.01 0.7986 0.3715 -944.9793 

Threshold = 0.025 1.4025 0.2363 -409.0120 

Threshold = 0.05 1.3433 0.2465 -55.9751 

NIKKEI 225 -Min 
Return 

Threshold = 0.01 15.4013 0.0001 -166.7374 

Threshold= 0.025 72.6604 0.0000 -732.6747 

Threshold= 0.05 207.2326 0.0000 -893.4935 
Table 11: NIKKEI 225 LR Test and Log-Likelihood Results - GPD 
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Analyzing the monthly maximum return series of the NIKKEI 225 index, using the MLE, the 

estimates for the parameters are presented next: 

NIKKEI 225 - Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 306     

Scale  - σ   0.0174 0.0012 

Shape  - ξ   -0.0374 0.0403 

Threshold = 0.025 127     

Scale  - σ   0.0135 0.0016 

Shape  - ξ   0.0862 0.0816 

Threshold = 0.05 19     

Scale  - σ   0.0134 0.0057 

Shape  - ξ   0.3701 0.3801 

(a) Nr. Exceedances of threshold    
Table 12: Maximum NIKKEI 225 Parameters - GPD 

 

As was already mentioned, for the NIKKEI 225 monthly maximum return, for all thresholds 

(1%, 2.5% and 5%), we do not reject the null hypothesis.  Therefore, we can consider the 

exponential distribution to represent the maximum returns, with a negative estimate parameter 

shape (ξ) for the 1% threshold (figure 54) and positive estimate parameter (ξ) for the other 

two (figures 55 and 56).    

 

Figure 54: NIKKEI 25 Max Return Density Plot for a threshold of 1% - Exponential Distribution  
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Figure 55: NIKKEI 225 Max Return Density Plot for a threshold of 2.5% - Exponential Distribution  

 

 

Figure 56: NIKKEI 225 Max Return Density Plot for a threshold of 5% - Exponential Distribution  

In now analyzing the NIKKEI 225 monthly minimum return, considering all thresholds, we 

can assume that the minimum returns have been generated by a Beta distribution, as the shape 

estimate (ξ) is lower than zero.  

NIKKEI 225 - Min Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 33     

Scale  - σ   0.0060 0.0000 

Shape  - ξ   -0.9359 0.0197 

Threshold= 0.025 189     

Scale  - σ   0.0162 0.0000 

Shape  - ξ   -0.7527 0.0055 

Threshold= 0.05 305     

Scale  - σ   0.1077 0.0000 

Shape  - ξ   -2.3213 0.0000 

(a) Nr. Exceedances of threshold    
Table 13: Minimum NIKKEI 225 Parameters - GPD 
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Consequently, in terms of monthly maximum and minimum NIKKEI 225 series, we can 

admit the maximum series (all thresholds) have been generated by an exponential distribution. 

On the other hand, we can assume that the returns in the minimum series (all thresholds) have 

been generated by a beta distribution, as the shape estimate (ξ) is lower than zero for all 

thresholds.   

To finish the GPD distribution application, we now analyze the LR (Likelihood Ratio test) 

results for the S&P 500 monthly maximum and minimum return (Table 14).  Since we do not 

reject the null hypothesis for the S&P500 maximum series (all thresholds), we can consider 

the exponential distribution to represent the maximum returns.  

For the S&P500 monthly minimum return, for all thresholds (1%, 2.5% and 5%), we reject 

the null hypothesis, as the probability associate is lower than 0.05.  Therefore, the series do 

not follow an Exponential distribution. 

   Likelihood Ratio Test p-value Negative Log-likelihood 

S&P 500 -Max Return 

Threshold = 0.01 0.7079 0.4001 -2058.1463 

Threshold = 0.025 1.9681 0.1606 -346.3881 

Threshold = 0.05 0.0023 0.9615 -20.3554 

S&P 500 -Min Return 

Threshold =  0.01 41.5227 0.0000 -979.8349 

Threshold =  0.025 442.8829 0.0000 -2395.6007 

Threshold =  0.05 1112.9300 0.0000 -2251.1191 
Table 14: S&P 500 LR Test and Log-Likelihood Results - GPD 

 

Analyzing the monthly maximum return series of the S&P 500 index, using the MLE, the 

estimates for the parameters are presented next: 

S&P 500 - Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 562     

Scale  - σ   0.0092 0.0005 

Shape  - ξ   0.0281 0.0352 

Threshold = 0.025 98     

Scale  - σ   0.0094 0.0013 

Shape  - ξ   0.1285 0.1078 

Threshold = 0.05 7     

Scale  - σ   0.0208 0.0163 

Shape  - ξ   -0.0339 0.6941 

(a) Nr. Exceedances of threshold    
Table 15: Maximum S&P 500 Parameters - GPD 
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As was already mentioned, for the S&P 500 monthly maximum return, for all thresholds (1%, 

2.5% and 5%), we do not reject the null hypothesis.  As a result, we can consider the 

exponential distribution to represent the maximum returns, with a positive estimate parameter 

shape (ξ) for the 1% and 2.5% thresholds (figures 57 and 58) and a negative estimate 

parameter (ξ) for the 5% threshold (figure 59).    

 

Figure 57:  S&P 500   Max Return Density Plot for a threshold of 1% - Exponential Distribution 

  

 

Figure 58: S&P 500 Max Return Density Plot for a threshold of 2.5% - Exponential Distribution 

 

Figure 59: S&P 500 Max Return Density Plot for a threshold of 5% - Exponential Distribution 
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As we presented above for the S&P 500 monthly minimum return (all thresholds), we reject 

the null hypothesis in the LR test.  Therefore, the series do not follow an exponential 

distribution. 

In looking more specifically at the series, considering all thresholds, we can assume that the 

returns have been generated by a Beta distribution, for a threshold of 1%, 2.5% and 5%, as the 

shape estimate (ξ) is lower than zero for all (Table 16). 

S&P 500 - Min Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.01 197     

Scale  - σ   0.0047 0.0000 

Shape  - ξ   -0.5694 0.0061 

Threshold = 0.025 635     

Scale  - σ   0.0201 0.0000 

Shape  - ξ   -0.8668 0.0000 

Threshold = 0.05 719     

Scale  - σ   0.0721 0.0000 

Shape  - ξ   -1.4958 0.0006 

(a) Nr. Exceedances of threshold    
Table 16: Minimum S&P 500 Parameters - GPD 

 

Consequently, in terms of monthly maximum and minimum S&P 500 series, we can admit the 

maximum series (all thresholds) have been generated by an exponential distribution. On the 

other hand, we can assume that the returns in the minimum series (all thresholds) have been 

generated by a Beta distribution, as the shape estimate (ξ) is lower than zero.   

After applying the GPD distribution to monthly maximum and minimum returns of the FTSE 

100, NIKKEI 225 and S&P500 indices, using the POT approach with a random threshold 

level of 1%, 2.5% and 5%, for the positive (maximum returns) and negative (minimum 

returns) tail, we can assume, in accordance to the shape estimates, that the maximum and 

minimum returns series are well represented mostly by the exponential distribution or by the 

Beta distribution.  The only exception was in the FTSE 100 monthly maximum return with a 

threshold of 2.5%, which is well represented by the Pareto distribution. 

This is a result that we were not expecting, since the Pareto distribution is the most common 

distribution for financial series, as we can see in other studies in financial research related to 

maximum and minimum returns. Because of this, it is a result that could be studied in more 

detail in future research.  
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However, one of the possible reasons for this result was the random threshold that we chose. 

As largely discussed in the extreme value theory literature, this value assumes a huge 

importance for two main reasons. The first one is the fact that choosing a high value for the 

threshold leads to few extreme observations and implies inefficient parameter estimates. The 

second reason is the fact that choosing a low value for the threshold level leads to many 

observations of extreme observations, but induces biased parameter estimates as observations 

not belonging to the tails are included in the estimation process.  

For this reason, in this thesis we proceed to a calculation of the Hill estimator to optimize the 

tradeoff between bias and inefficiency. This process is presented in the next section. 

4.5 Non-parametric approach – Hill’s estimator 

After we applied the POT approach using the parametric approach, this is the MLE method 

for the calculation of the parameters and choosing a random threshold.  Now we proceed to 

the calculation of the Hill estimator, which is a non-parametric approach. This means that 

although we have tried several thresholds to apply the GPD distribution, we will now proceed 

to the calculation of the Hill estimator to obtain a threshold. 

In this section we will consider the GPD distribution to model the monthly maximum returns 

of the FTSE 100, NIKKEI 225 and S&P500 indices, applying the POT approach. For the 

threshold parameter we consider the values obtained from Hill´s estimator.  

The Hill estimator is defined in formula (13). The number of q upper statistics to be 

considered should be chosen from the region where the line is roughly horizontal, which 

means stability around a constant for ξ. Despite the simplicity of the Hill‟s estimator 

calculation, it has some weaknesses.  This means that it presents some sensitivity to the initial 

tail size, or initial threshold, and therefore to the number of extreme observations. 

Based on the results that we get from the Hill Plots, (figures 60 - 62) for the monthly 

maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices, we should choose the 

values for q around 84; 85 and 175, respectively. The corresponding value of shape parameter 

would be approximately 0.35; 0.25 and 0.2, as it is possible to see in the figures below. 
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Figure 60: FTSE 100 Max Return – Hill Estimator  

 

Figure 61: NIKKEI 225 Max Return – Hill Estimator 

 

Figure 62: S&P 500 Max Return – Hill Estimator 
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To start, and as we did in the POT approach above, we compute the LR test (Likelihood Ratio 

test) and the Log-Likelihood value for each of the series, where in the null we assume the 

monthly maximum returns have been generated by an exponential distribution:  

 

 

FTSE100 -Max Return Likelihood Ratio Test p-value Negative Log-likelihood 

Threshold = 0.0222 8.4317 0.0037 -299.2261 
Table 17: FTSE 100 LR Test and Log-Likelihood Results – GPD (Hill Estimator) 

 

For the LR test (significance level of 5%), we cannot assume the series have been generated 

by an exponential distribution when we reject the null hypothesis. For the FTSE 100 monthly 

maximum returns with a threshold of 2.22%, we reject the null hypothesis, as the probability 

associate is lower than 0.05. Consequently, the series do not follow an exponential 

distribution. 

Analyzing the monthly maximum return series of the FTSE 100 index and using the MLE, the 

estimates for the parameters are presented next: 

FTSE100 -Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.0222 84     

Scale  - σ   0.0072 0.0013 

Shape  - ξ   0.3679 0.1605 

(a) Nr. Exceedances of threshold    
Table 18: Maximum FTSE 100 Parameters  - GPD (Hill Estimator) 

 

As we have already seen, the FTSE 100 maximum return series do not follow an exponential 

distribution.  Considering the estimated parameters, as the estimate for the shape parameter 

(ξ) is higher than zero ( ̂  = 0.3679), we can assume the returns have been generated by a 

Pareto distribution. 
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Figure 63: FTSE 100 Max Return Density: Hill Estimator - Pareto Distribution 

In now analyzing the LR (Likelihood Ratio test) results for the NIKKEI 225 monthly 

maximum returns (Table 19), we do not reject the null hypothesis. Therefore, we can assume 

that the series follow an exponential distribution. 

NIKKEI 225 -Max Return Likelihood Ratio Test p-value Negative Log-likelihood 

Threshold = 0.0375 3.1614 0.0754 -159.4130 
Table 19: NIKKEI 225 LR Test and Log-Likelihood Results – GPD (Hill Estimator) 

 

Analyzing the monthly maximum return series of the NIKKEI 225 index, using the MLE, the 

estimates for the parameters are presented next: 

NIKKEI 225 -Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.0375 50     

Scale  - σ   0.0119 0.0025 

Shape  - ξ   0.2466 0.1705 

(a) Nr. Exceedances of threshold    
Table 20: Maximum NIKKEI 225 Parameters  - GPD (Hill Estimator) 

 

As we presented above for the NIKKEI 225 monthly maximum return, we do not reject the 

null hypothesis in the LR test.  Consequently, the series do follow an exponential distribution, 

with a positive estimate parameter shape. 
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Figure 64: NIKKEI 225 Max Return Density: Hill Estimator - Exponential Distribution 

To finish the GPD distribution application, we now analyze the LR (Likelihood Ratio test) 

results for the S&P 500 monthly maximum returns using the non-parametric approach and 

calculating the Hill estimator .  Since we reject the null hypothesis for the S&P500 maximum 

series, the series do not follow an exponential distribution. 

S&P 500 -Max Return Likelihood Ratio Test p-value Negative Log-likelihood 

Threshold = 0.0204 6.1894 0.0129 -646.8429 
Table 21: S&P 500 LR Test and Log-Likelihood Results – GPD (Hill Estimator) 

 

Analyzing the monthly maximum return series of the S&P 500 index, using the MLE, the 

estimates for the parameters are presented next: 

S&P 500 -Max Return Nr. Exce. (a)  MLE   Std. Err. 

Threshold = 0.0204 176     

Scale  - σ   0.0078 0.0009 

Shape  - ξ   0.1830 0.0009 

(a) Nr. Exceedances of threshold    
Table 22: Maximum S&P 500 Parameters  - GPD (Hill Estimator) 

 

 

In looking more specifically at estimated parameters, we can assume that the returns have 

been generated by a Pareto distribution, as the shape estimate (ξ) is higher than zero, (figure 

65).   
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Figure 65: S&P 500 Max Return Density: Hill Estimator - Pareto Distribution 

After applying the GPD distribution to the monthly maximum returns of the FTSE 100, 

NIKKEI 225 and S&P500 indices, using the Hill estimator, for the positive tail, we can 

assume, and in accordance to the shape estimates, that the maximum return series are well 

represented mostly by the Pareto distribution.  The only exception was in the NIKKEI 225 

monthly maximum returns which are well represented by the exponential distribution. 

This is a result that we were expecting, since the Pareto distribution is the most common 

distribution for the financial series, as we can see in other studies in financial research related 

to maximum and minimum returns.  

This is a difference to the first approach where we use random thresholds of 1%, 2% and 5%, 

and where the monthly maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices 

are well represented mostly by the exponential distribution. 
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5. Conclusions 

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 

indices to the theoretical GEV and GPD distributions. We have applied two approaches of 

extreme value theory to our data, the Block Maxima and the POT approach, as well as the 

MLE method´s parametric approach for the distribution parameter estimation, and the Hill 

estimator´s non-parametric approach. 

The goal of this thesis was to fit the monthly maximum and minimum return series of the 

FTSE 100, NIKKEI 225 and S&P500 indices to the GEV and GPD distributions.  

For the application of the methodology we used a diversity of tools such as the R 

Programming Language with an extRemes toolkit (the outputs can be found in the appendix), 

as well as the Easy Fit 5.5 Professional Software and the EViews Software. 

After fitting the GEV distribution to all our maximum and minimum series, we conclude that 

the maximum return series are well represented by the Fréchet distribution. This was already 

expected due to the same conclusion reached by other studies in financial research related to 

maximum and minimum returns, as financial series normally follow this distribution. 

However, for the minimum returns we conclude that the series was well represented by the 

Weibull distribution instead of the Fréchet distribution. 

After applying the GPD distribution to our data, using the POT approach with a random 

threshold level of 1%, 2.5% and 5%, for the positive (maximum returns) and negative 

(minimum returns) tail, another conclusion was the fact that we can assume that the maximum 

and minimum return series are well represented mostly by the exponential distribution or by 

the Beta distribution.  The only exception was in the FTSE 100 monthly maximum return 

with a threshold of 2.5%, which is well represented by the Pareto distribution.  

This was a result that we were not expecting, since other studies in financial research related 

to maximum and minimum returns conclude that the considered series was well represented 

by the Pareto distribution. Because of this difference, our result is one that could be studied in 

more detail in future research.  However, one of the possible reasons for this result was the 

random threshold that we chose. The value of the threshold assumes a huge importance, since 

choosing a high value for the threshold leads to few extreme observations and implies 
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inefficient parameter estimates.  On the other hand, choosing a low value for the threshold 

level leads to many observations of extreme observations, but induces biased parameter 

estimates as observations not belonging to the tails are included in the estimation process.  

Due to this reason, we applied the GPD distribution to the monthly maximum returns of the 

FTSE 100, NIKKEI 225 and S&P500 indices, using the Hill estimator, for the positive tail, 

and in accordance to the shape estimates.  The maximum returns series are well represented 

mostly by the Pareto distribution.  The only exception was in the NIKKEI 225 monthly 

maximum return which is well represented by the exponential distribution. This was slightly 

different from the first approach, where the maximum return series are well represented 

mostly by the exponential distribution.  

In conclusion, we have seen that in the GEV distribution application, our data was well 

represented by the Fréchet and Weibull distributions. On the other hand, in the GPD 

distribution, using the parametric MLE approach, we have seen that our data was mostly well 

represented by the exponential and Beta distributions. However, applying the GPD using the 

non-parametric Hill estimator approach for the tail index, we have seen that the monthly 

maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices are well represented by 

the Pareto distribution. 
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6. Final Comments 

In terms of future directions for our work and the EVT theory in general, it is possible to 

highlight some points. The continuation of this thesis includes the estimation of the extreme 

value index using different non-parametric approaches such as the Pickands estimator, the 

Dekkers and de Haan estimator, as well as the bootstrap method developed by Danileson & 

De Vries (1997), in which the asymptotic mean square error is minimized.  

Beyond the calculation of the new non-parametric approaches, an interesting research project 

would be the study of the daily or monthly maximum and minimum returns of some indices 

using the Generalized Logistic (GL) distribution instead of the GEV and GPD distributions. 

Tolikas, K. and Brown, R.A, (2006), show that  in the investigation of the asymptotic 

distribution of the lower tail for daily returns in the Athens Stock Exchange (ASE) over the 

period 1986 to 2001, the Generalized Logistic (GL) distribution provides an adequate 

description of the stochastic behavior of the ASE index extreme minima over the period 

studied.  This research could be important, because the GL distribution is fatter tailed than the 

GEV and GPD distributions. 

In terms of the future of the EVT, one method that can have importance and developments is 

the Peaks-Over-Random-Threshold (PORT) approach. As we do not have an accurate choice 

of the threshold level, this new method introduces a new approach to dealing with this 

problem. However, there is no unanimity robust algorithm or test that can define the optimal 

threshold for this approach. 

In conclusion, it is possible that the future of the EVT could be involved in the development 

of the PORT approach, and by consequence, the discovery of the optimal threshold. On the 

other hand, the EVT could try finding other distributions beyond the GEV and GPD 

distributions, which could allow us to manage safety risks and better deal with extreme events 

such as financial crises. 

 



How to deal with Extreme Observations in Empirical Finance 

 

53 

 

References 

Alvarado, E., Sandberg, D. V. and Pickford, S.G. (1998). Modeling Large Forest Fires as 

Extreme Events, Journal of Northwest Science 72; 

 

Alves, I.F. (1995). Estimation of the Tail Parameter in the Domain of Attraction of an 

Extremal Distribution, Extreme Value Theory and Application, Journal of Statistical 

Planning and Inference 45(1-2),143-173; 

 

Alves, I.F.(2001). A location invariant Hill-type estimator, Extremes 4:3,199-217; 

 

Alves, I.F. (2007). Acerca de teste estatísticos para valores extremos, Boletim da Sociedade 

Portuguesa de Estatística, Primavera de 2007, 20-26; 

 

Alves, I.F. and Neves, C. (2008). Testing Extreme Value Conditions – An overview and 

recent approaches, REVSTAT - Statistical Journal 6(1), 83-100; 

 

Baesley, W. (1977). A test for distinguishing between extreme value distributions, Journal of 

Hydrology 34(3-4), 377-381; 

 

Bautista, E.A. (2002). A distribuição Generalizada de Valores Extremos no Estudo da 

Velocidade Máxima do Vento em Piracicaba, SP. Tese de Mestrado em Agronomia,Escola 

Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo; 

 

Beirlant, J., Teugels, J. and Vynckier, P. (1997). Practical Analysis of Extreme Value, Journal 

of Insurance: Mathematics and Economics 21(1), 91-92; 

 

Beirlant J. and Matthys G. (2000). Adaptive Threshold Selection in Tail Index Estimation, 

Working Paper, Catholic University Leuven; 

 

Beirlant J. and Matthys G. (2000). Adaptive Threshold Selection in Tail Index Estimation, 

Working Paper, University Center for Statistics - Catholic University Leuven; 

 

Beirlant J. and Matthys G. (2003). Estimating the Extreme value index and High Quantiles 

with Exponential regression Models, Working Paper, Katholieke Universiteit Leuven; 

 

Beirlant J. Goegebeur, Y., Segers, J. and Teugels, J. (2004). Statistics of Extremes: Theory 

and Applications. New York: John Wiley & Sons; 

 

Beirlant.J and et alli. (2006). A goodness-of-fit statistic for Pareto-type behaviour, Journal of 

Computational and Applied Mathematics 186, 99-116; 

 

Berman, S. (1964). Limit theorems for the maximum term in stationary sequences, Annals of 

Mathematical Statistics 35(2), 502-516; 

 

Bermudez, P. Z., Turkman, M.A. and Turkman, K.F. (2001). A predictive approach to tail 

probability estimation, Extremes 4, 295-314; 

Bermudez, P. Z., Turkman, M.A., Turkman, K,F. (2001). A predictive approach to tail 

probability estimation, Extremes 4(4), 295-314; 



How to deal with Extreme Observations in Empirical Finance 

 

54 

 

 

Brilhante, M.F. (2004). Exponentiality versus generalized Pareto – A Resistant and Robust 

Test, REVSTAT - Statistical Journal 2 (1), 1-14; 

 

Byström, H.N.E (2005). Extreme value theory and extremely large electricity price changes, 

International Review of Economics and Finance 14, 41-55; 

 

Castillo, E. (1988). Extreme Value Theory in Engineering. Academic Press, Boston; 

 

Castillo, E. and Hadi, A. (1997). Fitting the Generalized Pareto distribution to Data, Journal 

of the American Statistical Association, 92 (440), 1609-1620; 

 

Chavez – Demoulin, V. (1999). Two Problems in Environmental Statistics: Capture-

Recapture Analysis of smooth Extremal Models. Ph.D. Thesis, Department of Mathematics, 

Swiss Federal Institute of Technology, Lausanne; 

 

Chavez – Demoulin, V. and Embrechts, P. (2004). Smooth Extremal Models in Finance, The 

Journal of Risk and Insurance 71 (2), 183-199; 

 

Chavez – Demoulin V., Davison, A.C. and McNeil, A.J.  (2004). Estimating value-at-risk for 

financial time series: an approach combining self-exciting processes and extreme value 

theory, Working Paper, Swiss Federal Institute of Technology, Lausanne; 

 

Coles, S.G. and Tawn, J.A. (1991). Modelling Extreme Multivariate Events, Journal of the 

Royal Statistical Society 53(2), 377-392; 

 

Coles, S.G. and Tawn, J.A. (1994). Statistical Methods for Multivariate Extremes: An 

application to Structural Design, Journal of the Royal Statistical Society 43, 1-48; 

 

Coles, S.G. and Tawn, J.A. (1996). Modelling Extremes of the Areal rainfall Process, Journal 

of the Royal Statistical Society 58(2), 329-347; 

 

Coles, S.G. and Powell, E.A. (1996). Bayesian methods in extreme value modelling: review 

and new developments. International Statistical Review  64, 119-136; 

 

Cotter, J. (2000). Margin Exceedences for European Stock Index Futures using Extreme 

Value, Working Paper, University College Dublin; 

 

Danielson, J. and de Vries, C. (1997). Beyond the sample: Extreme Quantile and Probability 

Estimation, Working Paper, London School of Economics and Institute of Economics; 

 

Danielson, J. and Morimoto, Y. (2000). Forecasting Extreme Financial Risk: A critical 

Analysis of Practical Methods for the Japanese Market, Monetary and Economic Studies; 

 

Davidson, A. and Smith, R. (1990). Models for Exceedances over High Thresholds, Journal 

of the Royal Statistical Society 52 (3), 393-442; 

de Haan, L., Jansen. D.W., Koedijk, K. and de Vries, C.G. (1994). Safety first portfolio 

selection, extreme value theory and long run asset risks. Extreme value theory and 

applications. (J. Galambos et al., Eds.), Dordrecht; 

 



How to deal with Extreme Observations in Empirical Finance 

 

55 

 

de Haan, L. and Ferreira, A. (2006). Extreme Value Theory: An introduction. Springer; 

 

Dekkers, A.  and de Haan, L. (1989). On the Estimation of the Extreme-Value index and 

Large Quantile Estimation,  Annals of Statistics 17(4), 1795-1832; 

 

Dekkers, A., Einmahl, J. and de Haan, L.  (1989). A Moment Estimator for the Index of an 

Extreme-Value Distribution, Annals of Statistics 17(4), 1833-1855; 

 

Diebold, F., Schuermann, T. and Stroughair, J.  (1988). Pitfalls and Opportunities in the Use 

of Extreme Value theory in Risk Management, Warton Financial Institutions Center – The 

Warton School Working  Paper, University of Pennsylvania; 

 

Dodd, E.L. (1923). The Greatest and Least Variation under General Laws of Error, 

Transactions of the American Mathematical Society 25(4), 525-539; 

  

Drees, H. (1995). Refined Pickands estimators for the extreme value index, Annals of 

Statistics 23 (6), 2059-2080; 

 

Drees, H., Ferreira, A. and de Haan, L. (2000). On maximum likelihood estimation of the 

extreme value index, Working Paper, Saarland University; 

  

Drees, H., de Haan, L. and Li, D. (2006). Approximation to the tail empirical distribution 

function with application to testing extreme value conditions, Journal of Statistical Planning 

and Inference 136, 3498-3538; 

 

DuMouchel, W.H (1983). Estimating the stable index α in order to measure tail thickness: A 

critique, Annals of Statistics 11, 1019-1031; 

 

Embrechtes, P. And Schmidli, H. (1994). Modelling of Extremal Events in Insurance and 

Finance, ZOR - Mathematical Methods of Operational Research 39, 1-34; 

 

Embrechts, P., Klüppelberg, C. and Mikosh, T. (1997). Modelling Extremal events for 

Insurance and Finance. Springer; 

 

Falk, M., (1994). Efficiency of convex combinations of Pickands estimator of the extreme 

value index, Journal of Nonparametric Statistics 4(2), 133-147; 

 

Falk, M., Husler, J. and Reiss, R. (2004). Laws of Small numbers: extremes and Rare Events. 

Birkhäuser; 

 

Gençay, R and Selçuk, F (2005). Overnight borrowing, interest rates and extreme value 

theory, European Economic Review 50, 547-563; 

 

Gilli, M. and Këllezi, E. (2003).An Application of Extreme Value Theory for Measuring 

Risk, Computational Economics 27(1), 1-23; 

Gomes, M.I. and Martins, M.J. (2002). “Asymptotically unbiased” estimators for the tail 

index based on extremal estimation of the second order parameter, Extremes 5, 5-31; 

 

Gomes, M.I.(2007), Memorial da Escola, Boletim da Sociedade Portuguesa 37-51; 

 



How to deal with Extreme Observations in Empirical Finance 

 

56 

 

Gumbel, E.J. (1958). Statistics of Extremes. Columbia University Press, New York; 

 

Hall, A. (2007). Não há caminhos, há que caminhar, Boletim da Sociedade Portuguesa de 

Estatística, Primavera de 2007, 15-19; 

 

Hosking, J. (1984). Modelling persistence in hydrological time series using fractional 

differencing, Water Resources 20, 1898 – 1908; 

 

Hosking, J. (1984). Testing whether the shape parameter is zero in the generalized extreme – 

distribution, Biometrika 71(2), 367-374; 

 

Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985). Estimation of the Generalized Extreme-

Value Distribution by the Method of Probability Weight Moments, Technometrics 27(3), 251-

261; 

 

Hosking, J. and Wallis, J. (1987). Parameter and Quantile estimation for the Generalized 

Pareto Distribution, Technometrics 29(3), 339-349; 

 

Jenkinson, A..F. (1995). The frequency distribution of the annual maximum (or minimum) of 

meteorological elements, Quarterly Journal of the Royal Meteorological Society 81(348), 

158-171; 

 

Klüppelberg, C. (2002). Risk Management with Extreme Value theory, Working Paper, 

Universität München; 

 

Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences, Probability 

Theory and Related Fields 65(2), 291-306; 

 

LeBaron, Blake and Samanta, Ritirupa (2005). Extreme value Theory and Fat Tails in Equity 

Markets, Society for Computational Economics in its series computing in Economics and 

Finance 2005,140; 

 

Lindskog, F. The Mathematics and Fundamental Ideas of Extreme Value Theory, Working 

Paper, Royal Institute of Technology, Stockholm. 

 

Longin.F (2004). The choice of the distribution of asset returns: How extreme value theory 

can help?, Journal of Banking & Finance 29, 1017-1035; 

 

Marohn, F. (1994). On testing the exponential and Gumbel distribution, Working 

Paper,Katholishe Universität Eichstätt; 

 

Marohn, F. (2000). Testing Extreme Value Models. Extremes 3(4), 363-384; 

 

McNeil, A. J. and Saladin, T. (1997). The Peaks Over Threshold Method for estimating High 

Quantiles of Loss distributions, Working Paper, Department Mathematik, ETH Zentrum; 

 

McNeil, A. J. (1997). Estimating the Tails of Loss severity Distributions using Extreme Value 

theory. ASTIN Bulletin 27, 117-137; 

 



How to deal with Extreme Observations in Empirical Finance 

 

57 

 

McNeil, A. J. (1998). Calculating Quantile Risk Measures for Financial return series Using 

Extreme value Theory, Working Paper, Department Mathematik, ETH Zentrum; 

 

McNeil, A. J and Frey, R. (2000). Estimation of tail-related risk measures for heteroskedastic 

financial time series: An Extreme Value Approach, Journal of Empirical Finance 7(3-4), 271-

300; 

 

Muller, U.A., Dacorogna, M. M. and Pictet, O.V. (1998). Heavy Tails in high-frequency 

financial data. In R.J. Adler, R.E. Feldman and M.S., Taqqu (Eds.), A practical guide to 

heavy tails: Statistical techniques and applications. Birkhäuser; 

 

Oliveira.J.T (1990). Perspectivas sobre a Estatística de Extremos. Resultados básicos e 

probelamas em aberto, Working Paper, Conferência expuesta en la Academia; 

  

Otten, A. and Montfort, M. (1978). The power of two tests on the type of distribution of 

extremes. Journal of Hydrology  37(1-2), 195-199; 

 

Pickands III, J. (1975).Statistical Inference Using Extreme Order Statistics. Annals of 

Statistics 3(1), 119-131. 

 

Pictet, O. V.,Dacorogna, M. M. and Muller, U.A. (1998). Hill, bootstrap and jackknife 

estimators for heavy tails, A practical guide to heavy tails: Statistical Techniques and 

applications, 283-310. 

 

Rachev, S. and Mittnik, S. (2000). Stable Paretian Models in Finance. Wiley; 

 

Rachev, S.T., Mittnik, S., Fabozzi, F.J., Focardi, S.M. and Jasic,T. (2007). Financial 

Econometrics: From Basics to Advanced Modeling Techniques. Wiley; 

 

Reiss, R.D., Thomas, M. and Reiss,R.D. (2001). Statistical Analysis of extreme Values:From 

Insurance, Hydrology and Other Fields. Birkhäuser Verlag; 

 

Reiss, R.D.and Cormann, U. (2008). An example of Real-Life Data where the Hill estimator 

is correct. Statistics for Industry and Technology 5, 209-216; 

 

Resnick, S.I. (1997). Discussion of the Danish Data on Large Fire Insurance. ASTIN Bulletin 

27, 139-151; 

 

Resnick, S.I. (1997). Heavy Tail Modelling and Teletraffic Data.  Annals of Statistics 25 (5), 

1805-1869; 

 

Rios, A.S. (2008). Extreme Value Theory: An Application to Capital Markets.  Master Thesis 

in Finance, ISCTE Business School; 

Rootzén, H. and Tajvidi, N. (1997). Extreme Value Statistics and Wind Storm Losses: A Case 

Study, Journal of Insurance: Mathematics and Economics 20(3), 257; 

 

Segers, J.(2002), Generalized Pickands estimators for the Extreme Value Index, Working 

Paper,  Chalmers University of Technology, Gothenburg; 

 



How to deal with Extreme Observations in Empirical Finance 

 

58 

 

Smith, R.L. (1985). Maximum likelihood estimation in a class of non-regular cases, 

Biometrika 72, 67-90; 

 

Smith, R.L. (1987). Estimating Tails of Probability Distributions, Annals of Statistics 15 (3), 

1174-1207; 

 

Smith, R. and Weissman, I. (1994). Estimating the Extremal Index, Journal of the Royal 

Statistical Society 56(3), 515-528; 

 

Stephens, M.A. (1976). Asymptotic results for goodness-of-fit Statistics with unknown 

parameters, Annals of Statistics 4 (2), 357-369; 

 

Stephens, M.A. (1977). Goodness-of-fit for the extreme value distribution, Biometrika 64(3), 

583-588; 

 

Stephens, M.A. (1986). Tests for the exponential distribution. Goodness-of-fit Techniques, 

Marcel Dekker - New York; 

 

Tiago de Oliveira, J. (1984). Bivariate extremes: Statistical choice. In Tiago de Oliveira, J., 

ed. Statistical Extremes and Applications 91-107, Dordrecht; 

 

Tolikas, K. and Brown, R.A. (2006). The Distribution of the Extreme daily Share Returns in 

the Athens Stock Exchange, The European Journal of Finance 12(1), 1-22; 

 

Van Montfort, M.A. (1970). On testing that the distribution of extremes is of type I when type 

II is the alternative, Journal of Hydrology 11(4), 421-427; 

 

Van Montfort, M.A. and Witter, J. V. (1985). Testing exponential against Generalized Pareto 

distribution, Journal of Hydrology 78, 305-315; 

 

Yun, S. (2000). A class of Pickands-type estimators for the extreme value index, Journal of 

Statistical Planning and Inference 83, 113-124; 

 

Yun, S. (2002). On a Generalized Pickands estimator of the extreme value index, Journal of 

Statistical Planning and Inference 102(2), 389-409. 

 

 

 

 

 



How to deal with Extreme Observations in Empirical Finance 

 

59 

 

Appendix 

In the figures below it is possible to find the outputs from the R Programming 

Language, which we obtained from our calculations that support all the conclusions. 

The next figure shows the R Programming Language screen and the extremes toolkit 

search in the program´s library. 
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The next figure shows the R Programming Language screen and the extremes toolkit 

opened: 

 

The next figures show the data analysis outputs from our data, the monthly maximum 

and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 indices. 
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The next figures show the GEV and GPD distribution outputs from our data, the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and 

S&P500 indices. 
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The next figure shows the code to obtain the Hill estimator: 

 

The next figures show the GEV and GPD distribution outputs from our data, the 

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and 

S&P500 indices, using the threshold obtained from the Hill estimator: 
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