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Abstract

In the last few years, Extreme Value Theory (EVT) has gained increased importance in
modeling extreme observations in all social sciences. This is especially true in finance, since
EVT is a tool used to consider probabilities associated with extreme and rare events with

catastrophic consequences, as happened in the Sub-prime crisis in 2007.

To model extreme observations, we use two different statistical distribution families in this
thesis: Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD).

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the
monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500
indices to the theoretical GEV and GPD distributions. We have applied two approaches of
extreme value theory, the Block Maxima and the Peaks Over Threshold (POT) approach, as
well as the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the
distribution parameter estimation and the non-parametric approach of the Hill estimator.

As a result of the application, we have seen that in the GEV distribution application, our data
was well represented by the Fréchet and Weibull distributions. On the other hand, in the GPD
distribution, using the parametric approach MLE, our data was mostly well represented by the
Exponential and Beta distributions. However, applying the GPD using the non-parametric
approach of the Hill estimator for the tail index, we have seen that the monthly maximum

returns of our indices are well represented by the Pareto distribution.

JEL Classification: C13, C14.

Key Words: Extreme Value Theory, Generalized Extreme Value (GEV), Generalized Pareto
Distribution (GPD), Stock Market Returns.



Resumo

Nos Ultimos anos, a Teoria de Valores Extremos (TVE) tem ganho uma importancia crescente
no estudo de observagdes extremas em todas as ciéncias. Isto é especialemente verdade em
finangas, uma vez que a TVE é uma ferramenta utilizada para analisar as probabilidades
associadas a eventos extremos e raros com consequéncias catastroficas, como a crise do Sub-
Prime em 2007.

Para modelar observacbes extremas, usamos duas familias de distribuicdo estatisticas:
Distribuicdo Generalizada de Valores Extremos (GEV) e a Distribuicdo Generalizada de
Pareto (GPD).

Nesta tese, a TVE foi utilizada para investigar e ajustar a distribuicdo empirica dos retornos
maximos e minimos mensais dos indices bolsistas FTSE 100, NIKKEI 225 e do S&P500 as
ditribuicdes teoricas da GEV e GPD.

Aplicamos duas abordagens na aplicacdo da TVE, o método do Block Maxima e o método
dos excessos de nivel (POT), onde para a estimacdo dos parametros da distribuicdo
recorremos ao metodo paramétrico da Maxima Verosimilhanga, bem como ao método néo-

paramétrico através do estimador Hill.

Como resultado do estudo empirico na aplicacdo da GEV, verificamos que as séries sdo bem
representadas pela distribuicdo de Fréchet e Weibull. Por outro lado, na aplicagdo da GPD,
utilizando a abordagem paramétrica para o calculo dos pardmetros da distribuicdo, as séries
sdo bem representadas pelas distribuicdes exponencial e Beta. No entanto, a aplicacdo do
GPD utilizando a abordagem nédo-paramétrica, verificou-se que a série dos retornos maximos

mensais dos indices sdo bem representados pela distribuicéo de Pareto.

Classificacdo JEL: C13, C14.

Palavras-chave: Teoria de Valores Extremos, Distribuicdo Generalizada de Valores

Extremos, Distribuicdo Generalizada de Pareto, Retornos de Mercados de Capitais.
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Executive Summary

The last years have been characterized by significant instabilities in financial markets. This
has led to numerous criticisms about the existing risk management systems and motivated the
search for more appropriate methodologies able to deal with rare events with catastrophic
consequences, as happened in 1929 with the Great Depression crisis and the Sub-prime crisis

in 2007 which originated the biggest crisis since the Great Depression.

The typical question one would like to answer is: If things go wrong, how wrong can they
go? Then the problem is how to model the rare phenomena. The answer can be found in the
Extreme value theory (EVT), which provides a strong theoretical foundation on which we can
build statistical models describing extreme events. One important example of an extreme
event is the convulsion in financial markets that shows that asset prices can display extreme
movements beyond those captured by the normal distribution. One of the solutions to deal

with this problem is the Extreme Value Theory.

To model extreme observations using Extreme Value Theory (EVT), we can use two different
statistical distribution families: Generalized Extreme Value (GEV) and Generalized Pareto
Distribution (GPD).

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the
monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500
indices to the theoretical GEV and GPD distributions.

We apply two approaches of extreme value theory, the Block Maxima and the Peaks Over
Threshold (POT) approach, as well as the parametric approach of the Maximum Likelihood
Estimate Method (MLE) for the distribution parameter estimation and the non-parametric

approach of the Hill estimator.

We can say that the goal is to try understanding which theoretical GEV and GPD distributions
better fit our data, monthly maximum and minimum return series of the FTSE 100, NIKKEI
225 and S&P500.
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1. Introduction

In the last few years, Extreme Value Theory (EVT) has gained increased importance in
modeling extreme observations in all social sciences (e.g. hydrology). This is especially true
in finance, since EVT is a tool used to consider probabilities associated with extreme and thus
rare events. Assessing the probability of rare and extreme events is an important issue in the
risk management of financial portfolios and EVT provides the solid fundamentals needed for

the statistical modeling of such events and the computation of extreme risk measures.

EVT is useful in modeling the impact of crashes or situations of extreme stress on investor

portfolios.

To model extreme observations, we use two different statistical distribution families in this
thesis: Generalized Extreme Value (GEV) distribution, which has the Gumbel, Fréchet and
Weibull distributions as particular cases; and Generalized Pareto Distribution (GPD)

distributions, which has the Exponential, Pareto and Beta distributions as particular cases.

In this thesis, EVT methods are used to investigate and fit the empirical distribution of the
monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500
indices to the theoretical GEV and GPD distributions. We apply two approaches of extreme
value theory to our data, the Block Maxima and the Peaks Over Threshold (POT), as well as
the parametric approach of the Maximum Likelihood Estimate Method (MLE) for the

distribution parameter estimation and the non-parametric approach of the Hill estimator.

For the application of the methodology, we use a diversity of tools such as the R
Programming Language with an extRemes toolkit, as well as the Easy Fit 5.5 Professional

Software and the EViews Software.

This thesis is organized as follows: Section 2 presents a literature review, section 3 provides
EVT’s theoretical background, section 4 provides an empirical study and results, section 5
provides conclusions and section 6 provides some final comments and future directions of our

work and research.
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2. Literature Review

The last years have been characterized by significant instabilities in financial markets. This
has led to numerous criticisms about the existing risk management systems and motivated the
search for more appropriate methodologies able to deal with rare events with catastrophic
consequences, as happened in 1929 with the Great Depression crisis; Oil crises in 1973 and
1979; the dot-com crisis in 2000 and the Sub-prime crisis in 2007 which originated the

biggest crisis since the Great Depression.

The typical question one would like to answer is: If things go wrong, how wrong can they go?
Then the problem is how to model the rare phenomena that lie outside the range of available
observations. In such a situation it seems essential to rely on a well founded methodology.
Extreme value theory (EVT) provides a strong theoretical foundation on which we can build
statistical models describing extreme events.

One of the first papers that dealt with extreme value problems dates back to 1709, when
Nicholas Bernoulli discussed the mean of the largest distance among points lying at random
on a line. The notion of the distribution of the largest value is more modern, and it was first
introduced by von Bortkiewicz (1922).

In the next year VVon Mises (1923) evaluated the expected value of this distribution, and Dodd
(1923) calculated its median, also studying some non-normal related distributions.

The period of the 1920s and 1930s was an important period in which several authors wrote
papers dealing with practical applications of extreme value statistics in distributions of human
lifetimes, strength of materials, flood analysis and seismic analysis.

One of these works, proposed and developed by Fréchet (1927), was the analysis of
asymptotic distribution of the largest values. Fréchet identified one possible limit distribution
could only be one of three types, and the independent analysis of Fisher and Tippet (1928) for
the same problem released the paper which is considered the foundation of EVT and showed
that the distribution of normalized maxima can only be one of three types: type | or Fréchet,
type Il or Weibull and type Il or Gumbel. Von Mises (1936) presented some simple and
useful sufficient conditions for the weak convergence of the larger order statistic for each of
the three types of limiting distributions given earlier by Fischer and Tippett (1928). Gnedenko

(1943) presented the foundations for extreme value theory providing necessary and sufficient
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conditions for Fischer and Tippett’s “three types theorem”, the sufficient conditions for the
weak convergence of the extreme order statistics. Mejzler (1949), Marcus and Pinsky (1969)
and de Haan (1970, 1971) refined the work of Gnedenko.

One of the empirical applications in this period was the paper of Weibull (1939) on
metallurgical failures. This paper led Gumbel (1941, 1958) to propose a statistical
methodology for studying extremes based on fitting the extreme value distributions to data
consisting of maxima or minima of some random process over a fixed block or interval of
time. Contemporary methods derived from this early work involve fitting block maxima and
minima with the generalized extreme value (GEV) distribution, which combines Fisher-

Tippett and Gnedenko’s three types of distributions into a single, three-parameter distribution.

In 1955 Jenkinson proposed the Generalized Extreme Value distribution (GEV), with the
three asymptotic distributions mentioned before as particular cases. As important as GEV, we
have the Generalized Pareto Distribution (GPD). While both distributions model extreme
events, GEV fits maximum (minimum) from blocks of data through Block Maxima Method
(Fisher and Tippett Theorem, 1928), while GPD fits exceedances over high threshold u
through Peaks Over Threshold (POT) method (Pickands, Balkema-de-Haan Theorem, 1975).
A pioneer in the applications of POT was Pickands (1975), who showed that excesses over a
high threshold, follow asymptotically a generalized Pareto distribution. By taking into
account all exceedances over (shortfalls below) an appropriately high (low) threshold, these
methods make more efficient use of data by incorporating information on all extreme events

in any given block rather than only the maximum among them.

From the three parameters of both GEV and GPD, u, ¢ and & are the location, scale and shape
parameters, respectively. The parameter & is of particular relevance because it is closely
related to the tail heaviness of the distributions. Although with Block Maxima the definition
of extreme observation is straightforward, that is not the case of POT method, on which a
threshold u (or alternatively, the choice of the number of g extreme observations) has to be
considered. Some authors have shown how the threshold selection influences the parameter
estimation, among them Smith (1987), Coles and Tawn (1994, 1996), Embrechts et al. (1997)
and Davidson and Smith (1990).

The most popular estimator for the tail index is the Hill (1975) estimator. However, due to the
weaknesses of the Hill estimator, some alternative estimators have been proposed in the

literature. Beirlant et al. (1996), for instance, suggest an optimal threshold choice by

3
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minimizing bias-variance of the model, whereas DuMouchel (1983) and Chavez-Demoulin
(1999) suggest the use of 10 percent of the sample to estimate the parameters of the
distribution. For the latter threshold selection, Chavez-Demoulin and Embrechts (2004)
provide a sensitivity analysis which shows that small changes in threshold u have nearly no
impact on the estimation results. Mendes and Lopes (2004) suggest a procedure to fit by
quasi-maximum likelihood a mixture model where the tails are GPD and the center of the
distribution is normal. Bermudez and Turkman (2001) suggest an alternative method of

threshold estimation by choosing the number of upper order statistics.

Other approaches are quantile-quantile plot and mean excess function (Embrechts et al.,
1997). The Pickands (1975) estimator has also been mentioned frequently and Dekkers and de
Haan (1989) showed the consistency and asymptotic normality of this estimator. However,
the Pickands estimator is highly sensitive to the number of q statistics used and its asymptotic
variance is large. Refinements to this estimator have been proposed by Falk (1994), Alves
(1995), Drees (1995), Yun (2000, 2002) and Castillo and Hadi (1997). Dekkers et al. (1989)
presented the moment estimator.

Another advance was presented in Gomes and Martins (2002), where a tail estimator is
developed through a maximum likelihood approach based on scaled log-spacing. There has
been some promising work on using bootstrap methods to determine the optimal number of
upper order statistics (Danielsson and de Vries, 1997), but further validation of such methods

is still required.

In regards to estimation methods, the most widely used is the Maximum Likelihood Estimation
Method (MLE). Smith (1985) described such method in detail, providing its numerical
solvency and validity of properties (efficiency, invariance under changes of the data in
location and scale and extendibility to various regression models) for & > 0.5. Hosking and
Wallis (1987) derived a simple method of moments which works unless & < 0.5. They also
apply a variant with probability weighted moments (PWM). Castillo and Hadi (1997)
proposed an elemental percentile method (EPM) that does not impose any restrictions on the
value of &, whereas Coles and Powell (1996) applied Bayesian methods. According to the
extensive simulation studies by Matthys and Beirlant (2003), maximum likelihood provides

the best estimator for & > 0, whereas EPM is preferred if & is estimated to be less than zero.

Within the GEV context, the testing problem of the so-called Gumbel hypothesis (Ho: & = 0)
has received much attention in the literature. The correct choice of the GEV is very important,

4
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since the three types differ considerably in their right tails. Authors who studied this matter in
detail include Van Montfort (1970), Bardsley (1977), Otten and Van Montfort (1978), Tiago
de Oliveira (1981), Gomes (1982), Tiago de Oliveira (1984), Tiago de Oliveira and Gomes
(1984), Hosking (1984), Marohn (1994), Wang et al. (1996) and Marohn (2000). Somehow
related to this matter are goodness-of-fit tests for the Gumbel model, studied by Stephens
(1976, 1977 and 1986).

The tests therein considered are based on Empirical Distribution Function (EDF) -statistics
such as Kolmogorov, Cramér-Von-Mises and Anderson-Darling statistics. The hypothesis of
nullity of & has also been tested in the POT setup. Considering the papers related with this
testing problem, we mention Van Montfort and Witter (1985), Gomes and Von Montfort
(1986) and more recently Brilhante (2004).

Further developments on the extreme value theory include serially dependent observations
provided that the dependence is weak (Berman, 1964 and Leadbetter, 1939) and extension
from univariate to multivariate analysis. In different fields of application like finance, it is
important to be able to model joint extreme events such as large losses in several stock returns
or large changes in several rates, simultaneously. The first works were presented by de Haan
and Resnick (1977), followed by Tawn (1988) for bivariate extremes and later Coles and
Tawn (1991). Recent work has been developed by de Haan and Ferreira (2006) and Beirlant
et al. (2004).

Despite the extensive literature review, it is still possible to mention some additional
references for general knowledge of the theory. Castillo (1988) has successfully updated
Gumbel (1958) and presented many statistical applications of extreme value theory with
emphasis on engineering. Galambos (1978, 1987), Tiago de Oliveira (1984), Resnick (1987)
and Leadbetter et al. (1983) presented elaborated treatments of the asymptotic theory of
extremes. Related approaches with application to insurance are to be found in Beirlant et al.
(1996), Reiss and Thomas (1997) and the references therein. Interesting case studies using up
to date EVT methodology are McNeil (1997) and Resnick (1997). The various steps needed
to perform a quantile estimation within the above EVT context are reviewed in de Haan et al.
(1994) as well as in McNeil and Saladin (1997), where a simulation study is also to be found.
Embrechts et al. (1997) give a detailed overview of the EVT as a risk management tool.
Muller et al. (1998) and Pictet et al. (1998) studied the probability of exceedances and

compare them with GARCH models for the foreign exchange rates. Recently, McNeil and
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Frey (2000) and Chavez-Demoulin at al. (2004) address the use of EVT for the estimation of

the conditional distribution for non-stationary financial series.

To end this literature review, it is important to mention that nowadays extreme value theory is
well established in many fields of modern science, engineering, insurance and finance.
Recently, numerous research studies have analyzed the extreme variations that financial
markets are subject to, mostly because of currency crises, stock market crashes and large
credit defaults, where it is possible to include this thesis. The tail behavior of financial time
series distribution has, among others, been discussed in Koedijk et al. (1990), Dacorogna et
al. (1995), Loretan and Phillips (1994), Longin (1996, 2004), Danielsson and de Vries (2000),
Kuan and Webber (1998), Straetmans (1998), McNeil (1999), Jondeau and Rockinger (1999),
Klauppelberg (1999), Neftci (2000), McNeil and Frey (2000), Gencay et al. (2003b) and
Tolikas and Brown (2006). In Longin (1996), where the author presents a study of extreme
stock market price movements, using data from the New York Stock Exchange for the period
1885 — 1990, the author empirically shows that the extreme returns of the New York Stock
Exchange follow a Fréchet distribution. Another example is the paper from Tolikas and
Brown (2006), where the authors use the Extreme Value Theory (EVT) to investigate the
asymptotic distribution of the lower tail of daily returns in the Athens Stock Exchange (ASE)
over the period 1986 to 2001. In terms of empirical findings, they discovered that the
Generalized Logistic (GL) distribution provides an adequate description of the ASE index
daily returns minima. Its asymptotic convergence was found to be relatively stable, especially
when large selection intervals were used. This is an important finding since current EVT
applications in finance focus exclusively on either the GEV or GPD distributions. These
implications for investors could be important since the GL is fatter tailed than its GEV and

GPD counterparts, which implies higher probabilities of the extremes occurring.

The next section introduces a theoretical background of EVT - Extremes Values Theory, the

different approaches and the different parameter estimation methods.
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3. Theoretical Background

This section introduces the EVT — Extreme value theory and its reasoning. EVT can be
understood as a theory that provides methods for modeling extremal events. Extremal events
are the observations that take values from the tail of the probability distribution. EVT
provides the tools to estimate the parameters of a distribution of the tails through statistical

analysis of the empirical data.

One important example is the finance field, where EVT can be applied. The convulsion in
financial markets has been evidence that asset prices can display extreme movements beyond
those captured by the normal distribution. In the literature, one of the solutions to deal with

this situation at that point is the Extreme Value Theory.

However, before starting EVT, it is important to mention some properties of the financial
data. In particular, it is by now well-known that returns on financial assets typically exhibit
higher than normal kurtosis as expressed by both higher peaks and fatter tails than can be

found in normal distribution.
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Figure 1:  Asset returns distribution versus normal distribution

In figure 1, the red graph (Fat Tailed PDF) refers to the returns of a financial asset. The
graphic tells us that the probabilities that normal distribution assigns to extreme events (tail
events) are less than is required. In other words, the tails of the normal distribution are too

thin to address the extreme losses or gains, assuming normality will lead to systematic
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underestimation of the riskiness of an asset and increase the chance of having a hit. Thus, in
order to get rid of such kind of problems, tails of the distribution must be modeled. This can

be done by using EVT.

Within the EVT context, there are three approaches to modeling the extremal events: the first
one for directly modeling the distribution of maximum/minimums returns named Block
Maxima, the second one for modeling the exceedances of a particular estimated threshold
named Peak-Over-Threshold (POT), and the third one denominated Peaks-Over-Random-
Threshold (PORT).

The Block Maxima, which is used for the largest observations that are collected from large
samples of identically and distributed observations (i.i.d), is a method that provides a model
that may be appropriate for the monthly or annual maximum/minimums of such samples. The
second method is the Peaks-Over-Threshold, which is used for all large observations that
exceed a high threshold. They are considered to be the most useful methods for practical
applications because of their more efficient use of the data on extreme values. The third
method is the most recent of all and it is denominated Peaks-Over-Random-Threshold, which

is a small variant of POT, where the threshold is a random variable.

When modeling the maxima/minima of a random variable, extreme value theory follows the
same fundamental role as the central limit theorem follows when modeling sums of random

independent variables. In both cases, the theory tells us what the limiting distributions are.

3.1 The Block Maxima Approach

Let’s consider a random variable representing monthly maximum/minimum returns, which
takes in successive periods. These selected observations constitute the extreme events, also
called block (or per period) maxima/minima. In figure 2, the observations X,, X;, X, and X,

represent the block maxima for four periods of three observations each®.

8

1 Theoretical background formulas are presented for only the maximum returns, since we can obtain the formulas for the minimum returns

with the opposite: Hy(r) = Min(ry,...,r,) = -Max (-ry,...,-ry)
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Figure 2: Block-maxima graph

The block maxima method is the traditional method used to analyze data with seasonality, as
for instance, hydrological data. However, the threshold method uses data more efficiently, and

for that reason, seems to have become the method of choice in recent applications.

According to the theorems of Fisher and Tippett (1928) and Gnedenko (1943), regardless of
the specific distribution, the appropriately scaled maxima converge to one of three possible
limit laws (parametric distributional forms). Under certain conditions, a standardized form of
the three limit laws is called the generalized extreme value (GEV) distribution. Additionally,
as is explained below by the theorems of Balkema and de Haan (1974) and Pickands (1975),
the distribution function of the excesses above a high threshold converges to the generalized
Pareto distribution (GPD).

Therefore, the block maxima model can be presented under a single family which is known as
the generalized extreme value (GEV) distribution. The theory deals with the convergence of
maxima, that is, the limit law for the maxima. To illustrate this, suppose that rt,t=1,...,n,isa

sequence of independent and identically distributed (i.i.d) observations with distribution
function H(x)=Pr{rt <x}, not necessarily known, and let the sample maximum be denoted by

Mp = max {ry,...,rn} where n > 2, and R denote the real line. More generally, the generalized
extreme value distribution (GEV) represented by H:(x) describes the limiting distribution of
suitably normalized maxima. The random variable X may be replaced by (X — u)/c to obtain a
standard GEV with a distribution function that is specified as shown below, where y, ¢ and &

are the location, scale and shape parameters, respectively.



How to deal with Extreme Observations in Empirical Finance

The function H can belong to one of the three standard extreme value distributions:

0, Xx<0
Fréchet: ®a(x)= a>0 M
exp(_ X“”) x>0

exp—(— X)a, x<0
Weibull : Wa(x) = a>0 ()

1, x>0

Gurmbel : A(x) = exp(—exp)fx, xeR 3)

However, instead of having three functions, Jenkinson (1955) and Von Mises (1954)
suggested the following distribution:

-1

—(1+&) ¢ :
ex if £&+0
()= P (a)

—X
exp & it ¢=0

This generalization, known as the generalized extreme value (GEV) distribution, is obtained
by setting & = o™ > 0 for the Fréchet distribution, & = —a < 0 for the Weibull distribution
and by interpreting the Gumbel distribution as the limit case for £ = 0. (Note that o refers to

the tail index, which is the inverse of the shape parameter, which is defined as a. = £7).

The shapes of the probability density functions for the standard Fréchet, Weibull and Gumbel

distributions are given in figure 3.

10
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GEV distribution

- \Neibull
---- Frechet
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Figure 3:  Densities for the Fréchet, Weibull and Gumbel functions

We observe that the Fréchet distribution has a polynomial decaying tail and therefore suits
heavy-tailed distributions well. The exponentially decaying tails of the Gumbel distribution
characterize thin-tailed distributions. Finally, the Weibull distribution is the asymptotic

distribution of finite endpoint distributions.

As in general it is not possible to know in advance the type of limiting distribution of the
sample maxima, the generalized representation is particularly useful when maximum
likelihood estimates have to be computed. Moreover, the standard GEV defined in (4) is the
limiting distribution of normalized extremes, given that in practice the true distribution of the

returns is not known, and as a result, we used the three parameter specifications

:| — o, ,u—g { £<0

He.on (X)= He (X'“j xeD, D = {] -, 4o [ £=0 ()

O
O
-—, +® 0
Mf+ {b

of the GEV, which is the limiting distribution of the normalized maxima.

The class of distribution of H(x) where the Fisher-Tippett theorem holds is quite large. One
of the conditions is that H(x)has to be in the domain of attraction of the Fréchet distribution

(§ > 0), which in general holds for the financial time series. Gnedenko (1943) shows that if

the tail of H(x) decays like a power function, then it is in the domain of attraction of the
11
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Fréchet distribution. The class of distributions whose tails decay like a power function is large

and includes Pareto, Cauchy, Student-t, which are the well-known heavy-tailed distributions.
3.2 Peaks-Over-Threshold Approach (POT)

The second approach focuses on the realizations exceeding a given (high) threshold. The
observations X, X,, X,, Xs, X, and X, in the figure 4, all exceed the threshold u and constitute

extreme events.

Figure 4:  Excesses over a threshold p graph.

In general, we are not only interested in the maxima/minima of observations, but also in the
behavior of large observations that exceed a high threshold. One method of extracting
extremes from a sample of observations,ri, t = 1, 2,..,n with a distribution function
F(x): Pr{rtSX}is to take exceedances over a deterministic predetermined high-threshold u
(figures 4 and 5). Exceedances of a threshold u occur whenr: > u foranytint=1,.., n. An

excess over u is defined by y =ri—u.

e e e

Fir) / Fiv) //

Figure 5:  Distribution Function and Distribution Over Threshold

12
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Given a high threshold u, the probability distribution of excess values of r: over threshold u is
defined by

Fu(y)=Pr{r—u<y|r>u} (6)

This represents the probability that the value of r exceeds the threshold u by at most an

amount y given that r exceeds the threshold u. This conditional probability may be written as

P{r-u<y, r>u} F(y+u)-F(u)

Fu = -
() P(r >u) 1-F(u) -
Since x =y + u for r > u, we have the following representation:
F(x)=[1-F(u)]Fu(y)+F(u) (8)

Notice that this representation is valid only for r >u.

A theorem due to Balkema and de Haan (1974) and Pickands (1975) shows that for
sufficiently high threshold u, the distribution function of the excesses may be approximated

by GPD, because as the threshold gets large, the excess Fu(y) converges to the GPD.

The GPD in general is defined as

e

1(1+§X_uj if <=0
Geou(X) = o 9)

1-exp " if£=0

With
[u,0], if £>0

10
X< {u,u—%}, if £<0 (10

13
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Where ¢ and & are the scale and shape parameters, respectively. There is a simple relationship
between the standard GPD G¢ (x) and H:(x) such that G (x)= 1+log H:(x) if log H:(x) > -1.

The GPD embeds a number of other distributions; the & (shape parameter) determines the
original distribution. When u=0 and 6 = 1, and & > 0, the tail of the distribution function F of
x decays like a power function x™“¢. In this case, F belongs to a family of heavy-tailed
distributions that includes, among others, the Pareto, log-gamma, Cauchy and t-distributions;
it takes the form of the ordinary Pareto distribution. This particular case is the most relevant

for financial time-series analysis, since it is a heavy-tailed distribution.

For & = 0, the tail of F decreases exponentially, and belongs to a class of medium-tailed

distributions that includes the normal, exponential, gamma and log-normal distributions.

Finally, for & <0, the underlying distribution F is characterized by a finite right endpoint,

whose class of short-tailed distributions includes the uniform and beta distributions.

The shapes of the probability density functions for the standard Beta, Pareto and Exponential

distributions are given in figure 6.

GP distribution

0.8 1 “‘- — BE'la
k) ---- Pareto
-—-= Exponential

0.6
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0.2 1

Probability density function

0.0 1

Figure 6:  Densities for the Beta, Pareto and Exponential functions

The importance of the Balkema and de Haan (1974) and Pickands (1975) results is the fact
that the distribution of excesses may be approximated by the GPD by choosing & and setting a
high threshold u. The GPD model can be estimated by using the parametric methods,

explained below.

14
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3.3 Peaks-Over-Random Threshold Approach (PORT)

Another method, and the most recent one, is denominated Peaks-Over-Random-Threshold
(PORT). It is a semi-parametric method that is a small variant of POT, a method which is

conditioned by a random threshold.

As we do not have an accurate choice of the threshold level, this new method introduces a
new approach to dealing with this problem. Theory tells us that the threshold level should be
high in order to satisfy the Pickands-Balkema-de Haan theorem, but the higher the threshold,
the fewer observations are left for the estimation of the parameters of the tail distribution

function.

In this method, any inference concerning the tail of the underlying distribution is based
exclusively on the observations above a random threshold. This method compares with the
alternative method of the number of observations that exceed a given high increasing

deterministic level u, an approach named POT method.

Recently, Neves et al. (2006) and Neves and Fraga Alves (2007) have introduced two testing
procedures that are based on the sample observations above a random threshold, procedures
that consist in a reformulation of the asymptotic properties of the Hasofer and Wang (1992)

test statistic.

3.4 Parameter Estimation Methods

In this section we explain the statistical parameter estimation of the distributions. Two
approaches are considered. The first one, where the parameters of the distribution, including
the tail index, are directly estimated by classical methods such as the maximum likelihood
estimate method (MLE), is named the parametric approach. The second, where no parametric
distribution is assumed for the extremes, is named the non-parametric approach.

3.4.1. The parametric approach

The parametric approach assumes that maximum/minimum returns selected over a given
period are exactly drawn from the extreme value distribution given by GEV (see formula 4),
or alternatively, that those positive/negative return exceedances under or above a given

threshold are exactly drawn from the distribution given by the GPD formula (see formula 9).

15
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With either definition of extremes, the asymptotic distribution contains three parameters: y, o
and & for extremes defined as maximum/minimum returns selected from a period containing n

returns.

Under the assumption that the limit distribution holds, the maximum likelihood method gives
unbiased and asymptotically normal estimators. The system of non-linear equations can be
solved numerically using the Newton—Raphson iterative method. Both distributions are
parameterized by the scale, location and shape parameters with the same interpretation in both
cases. This method maximizes the likelihood function over the location, scale and shape

parameters: u, ¢ and &.

In practice, with MLE the parameters of the extreme value distributions can be estimated with
different values of the number of returns contained in the selection period n (for
maximum/minimum returns) and alternatively, with different values of the threshold p (for

positive/negative return exceedances).

Mathematically, this solves the general formula presented below:

{U/&+1) 1
j X exp —i(l+§Xi_ﬂj (11)

o

L<u,a,:>=1nr”[[1+§ s
(e

O i=1

The estimates of 4, o and & —say 2, 6 and & — are taken to be those values which maximize

the likelihood L.

However, this methodology presents some limitations. Maximum likelihood methods perform
better when tails are thicker, providing greater observations exceeding the threshold. Any
weaknesses in these assumptions directly affect the significance of the results. Jansen and de
Vries (1991) show that in the Fréchet domain of attraction this includes most distributions of
financial returns. Maximum likelihood methods are consistent, but not the most efficient.
Therefore, in some situations we should use parametric methods that are alternatives to the
Maximum Likelihood Estimate Method (MLE), such as the method of Probability Weight

Moments (PWM). However, in this thesis we focus only on the first one.

16
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3.4.2. The non-parametric approach

The parametric approach method assumes that the parameters are drawn exactly from the
extreme value distribution. However, the non-parametric approach assumes that estimator for
the shape parameter &, which do not assume that the observations of extremes follow exactly
the extreme value distribution, have been developed by Pickands (1975) and Hill (1975).

Pickands’s estimator is given by

(12)

§Pickands=—I12|n( R ”—q+1—R n—2q+1j
n

R'n72q+1—R'n—4q+1

where (R’() = 1, N IS the series of returns ranked in an increasing order and q is an integer
depending on the total number of returns contained in the database n. Pickands’s estimator is
consistent if q increases at a suitably rapid pace with n. Pickands’s statistic is asymptotically

normally distributed with mean & and variance &2,

Hill’s estimator is given by

@i”:(ilj(i(ln R'a-1—INR"n-q) (13)

- i=1

Where R'n-1 denotes decreasing order statistics of the series and ¢ denotes the qth

smallest order statistic of n observations included in the calculation of the shape parameter.
Intuitively the Hill index measures the distance with which the average extreme observation

exceeds a specific threshold.

However, the Hill estimator has some weaknesses. Dekkers and De Haan (1990), who take
into account the sensitivity of the Hill index to the initial tail size, propose an extension to the

Hill estimator incorporating its second moment.

_ s 10, (§Hi||1)2 "
fDekkers—ng +1 2 (1 {{:Hi”z }J (14)

Where & i1 1S the standard Hill estimate defined in equation (12) and

s 2 S[I0R, R (15)

g-1)=

17
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The authors prove the consistency and normality of & pekers.

In summary, the problem consists of choosing the correct method to obtain the correct value
for the tail index parameter. As largely discussed in the extreme value theory literature, the
choice of its value is a critical issue. The origin of this problem comes from the fact that the
database contains a finite number of maximum/minimum return observations; the number of

extreme returns, g, used for the estimation of the model is finite.

On one hand, choosing a high value for g leads to few observations of extreme returns and
implies inefficient parameter estimates with large standard errors. On the other hand,
choosing a low value for g leads to many observations of extreme returns but induces biased
parameter estimates as observations not belonging to the tails are included in the estimation

process.

This sensitive tradeoff can be dealt with in a variety of ways, as was described above.
However, in recent years new approaches have been developed. One of them is when the
levels at which the tail index begins to plateau is in some sense the ‘optimal’ choice of n
where it is no longer as sensitive to individual observations. Other approaches to making this
choice include the quantile—quantile plot, regression methods (Huisman et al., 2000) and the
subsample bootstrap (Danielsson and de Vries 2001).

18
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4. Empirical Application

In this section we proceed to the application of the GEV and GPD distributions to our
database, which is composed of the monthly maximum and minimum returns of the
FTSE100, NIKKEI225 and S&P500 indices. The goal is to fit our maximum and minimum
return series to the GEV and GPD distributions.

There will be a description of the methodology that we adopted, an empirical analysis of our

database, and finally, the application of the GEV and GPD distributions.

4.1 Methodology

In this thesis, we applied some of the theory presented above, such as the Block Maxima and
POT approaches. We also applied parameter estimation methods such as the MLE method,
which uses a parametric approach, and the Hill estimator, which uses a non-parametric
approach. The goal is to fit our maximum and minimum return series to the GEV and GPD

distributions.

For the application of the methodology, we used a diversity of tools such as the language R
with an extRemes toolkit, whose outputs and code can be seen in the appendix. Another tool
that we used was the Easy Fit 5.5 Professional Software, which is a powerful tool in terms of

graphs. Finally, we used the EViews Software.

The data consist of the monthly maximum and minimum log returns from the FTSE100,
NIKKEI225 and S&P500 indices. The monthly maximum and minimum refers to the
maximum and minimum return, extracted from the daily log return, in each month for each

index.

In terms of log return series, assuming that P: is the closing value on day t, continuous daily

logarithmic returns are given by:

R = m[ P j (16)
Pt-1

The data that we considered were downloaded from the Yahoo Finance webpage. The period
under analysis for the S&P 500 index is from January 3, 1950 to March 11, 2011. The FTSE
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100 index corresponds to a period between February 4, 1984 and March 11, 2011, and the

NIKKEI 225 index corresponds to the period between January 4, 1984 and March 11, 2011.

4.2 Empirical Results

In this section, we proceed to an exploratory data analysis, followed by the application of the

Block Maxima and POT approaches.

To start, tables 1, 2 and 3 show the summary statistics of the daily log returns and monthly
maximum (Max) and minimum (Min) log return series of the FTSE100, NIKKEI 225 and

S&P500 indices.

Observations 6807 324 324
Mean 0.0002 -0.0191 0.0189
Median 0.0006 -0.0161 0.0150
Maximum 0.0938 -0.0045 0.0938
Minimum -0.1303 -0.1303 0.0057
Std. Dev. 0.0112 0.0126 0.0117
Skewness -0.3850 -3.4470 2.8954
Kurtosis 11.7930 24.6915 14.8249
Jarque-Bera 22097.09 6993.67 2340.40
Probability 0.0000 0.0000 0.0000
Table 1: FTSE 100 Explanatory data analysis
Observations 6684 327 327
Mean 0.0000 -0.0254 0.0256
Median 0.0004 -0.0231 0.0218
Maximum 0.1323 -0.0036 0.1323
Minimum -0.1614 -0.1614 0.0062
Std. Dev. 0.0146 0.0164 0.0158
Skewness -0.2214 -2.8612 2.6781
Kurtosis 11.2980 20.0629 15.1732
Jarque-Bera 19231.05 4412.97 2409.92
Probability 0.0000 0.0000 0.0000

Table 2: NIKKEI 225 Explanatory data analysis
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Observations 15396 735 735
Mean 0.0003 -0.0165 0.0167
Median 0.0005 -0.0137 0.0144
Maximum 0.1096 -0.0018 0.1096
Minimum -0.2290 -0.2290 0.0029
Std. Dev. 0.0097 0.0136 0.0100
Skewness -1.0577 -6.7697 2.8213
Kurtosis 32.1044 88.7136 18.4995
Jarque-Bera 546263.20 230610.30 8332.26
Probability 0.0000 0.0000 0.0000

Table 3:

S&P 500 Explanatory data analysis

Looking at table 1, it is possible to see that in the daily return the stock index FTSE100 has a
mean of 0.02% and a standard deviation of 1.12%, with a maximum of 9.38% and a minimum
of -13.03%. In terms of the maximum returns, the series has a mean of 1.89% and a standard
deviation of 1.17%, with a maximum return of 9.38% and a minimum of 0.57%. In the
minimum return FTSE 100, the series has a mean of -1.91% with a standard deviation of
1.26%, and a maximum of -0.45% and a minimum of -13.03%.

In the other stock index, the NIKKEI 225, we can see that in the daily return the series has a
mean of 0.00% and a standard deviation of 1.46%, with a maximum of 13.23% and a
minimum of -16.14%. In terms of the maximum returns, we can see that the series has a mean
of 2.56% and a standard deviation of 1.58%, with a maximum return of 13.23% and a
minimum of 0.62%. In the minimum return of the NIKKEI 225, the series has a mean of -
2.54% with a standard deviation of 1.64%, a maximum of -0.36% and a minimum of -
16.14%.

In the last stock index, the S&P 500, in terms of daily return the index has a mean of 0.03%
and a standard deviation of 0.97%, with a maximum of 10.96% and a minimum of -22.90%.
In terms of the maximum returns, it has a mean of 1.67% and a standard deviation of 1.00%,
with a maximum return of 10.96% and a minimum of 0.29%. Finally, the minimum S&P 500
return has a mean of -1.65% with a standard deviation of 1.36%, a maximum of -0.18% and a

minimum of -22.90%.
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On the other hand, these tables show that the kurtosis and skewness values are very different
from 3 and 0, respectively, for the distribution to be considered a normal distribution.
However, in addition to this method, another way to prove the normality of a distribution is
the Jarque-Bera (JB) test, which depends on the skewness and kurtosis estimates. Based on
the JB test, it is possible to conclude if the normality assumption is rejected or not, depending
on the probability associated with the test. If it is lower than 0.05 (the default significance
level assumed for all tests in this thesis), we reject the null and the normality assumption;

otherwise, we can admit the normality based on the considered sample.

Ho = Normal Distributi on
JB Test = (17)
H1= Normal Distribution

For the FTSE 100, NIKKEI 225 and S&P 500 series we can see that daily log returns and the
monthly maximum and minimum log return series distributions do not follow a normal
distribution, because in all cases we reject the null hypothesis in the JB test, as a consequence
of the associated probability of the JB test being lower than 0.05.

In the figures below, it is possible to see that none of the histograms of the daily log returns
and the monthly maximum and minimum log returns of the FTSE 100 (figures 7 — 9),
NIKKEI 225 (figures 10-12) and S&P 500 (figures 13 — 15) seem to follow the normal

distribution, which is confirmed by the rejection of the null hypothesis in the JB test.

In the figures below it is also possible to see and analyze the graph of the adjust close of the
FTSE 100 (figure 16), NIKKEI 225 (figure 20) and S&P 500 (figure 24), as well as the daily

log return and the monthly maximum and minimum returns graphs.
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Figure 20:  NIKKEI 225 Adjust Close
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4.3 Fitting the GEV Distribution

In this section we will determine which one of the extreme value distributions is more
appropriate for modeling the monthly maximum/minimum returns of the FTSE 100, NIKKEI
225 and S&P500 indices under analysis, applying the GEV distribution using the MLE
parametric approach.

We start with the LR test (Likelihood Ratio test) and the Log-Likelihood value for each of the

series.

Based on the LR test, it is possible to conclude if the Gumbel distribution assumption is
rejected or not, depending on the probability associated with the test. If it is lower than 0.05,
we reject the null and the Gumbel distribution assumption; otherwise, we can admit the
Gumbel distribution based on the considered sample.

H o = Gumbel Distributi on
LR Test = (18)
H1 = Gumbel Distribution

Likelihood Ratio Test p-value Negative Log-likelihood
FTSE100 -Max Return 65.42| 6.051E-16 -1125.03
FTSE100 -Min Return 603.54| 2.850E-133 -1064.76
NIKKEI 225 -Max Return 30.51| 3.318E-08 -993.17
NIKKEI 225 -Min Return 512.95( 1.443E-113 -956.08
S&P 500 -Max Return 56.84| 4.734E-14 -2564.37
S&P 500 -Min Return 1995.90( 0.000E+00 -2426.38

Table 4: LR Test and Log-Likelihood Results - GEV

For a LR test, we reject the null hypothesis. This means that we do not assume that the series
follows a Gumbel process. Therefore, we can conclude that none of the maximum/minimum
return series have been generated by a Gumbel distribution. This means that for the
considered series, only the Fréchet or Weibull particular cases of the more general GEV

distribution remain.

Studying each series individually now, and starting with the monthly maximum and minimum
series of the FTSE 100 index, using the MLE, we found the optimal values for the parameter

estimates, which we present next:
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Obs. MLE Stand. Error
FTSE100 -Max Return 324
Location - pu 0.0136 0.0003
Scale -o 0.0054 0.0002
Shape - ¢ 0.3146 0.0511
FTSE100 -Min Return 324
Location - -0.0201 0.0000
Scale -o 0.0125 0.0000
Shape - ¢ -0.8015 0.0000

Table 5: FTSE 100 Maximum/Minimum Parameters - GEV

For the FTSE 100 maximum returns, we conclude that the Fréchet distribution (a common
result in empirical finance) seems to be the most appropriate to describe that kind of data, as
the shape (&) estimate is higher than zero. Consequently, we can conclude that FTSE 100
maximum return empirical distribution has fat tails. The larger the estimate values for the
shape parameter, the more fat-tailed the distribution. We can see the representation of the

distribution in figure 30.

For the maximum return series, the Probability Plot (PP) (figure 28) and the Quantile Plot
(QQ) (figure 29) seem to confirm that the data has been generated by the Fréchet distribution,
as the points are near the straight line. In both graphs we are comparing the returns series

(data) against the Fréchet distribution.

For the FTSE 100 minimum returns, it is possible to see that we have a Weibull distribution,
because the shape estimate (&) is lower than zero. We can see the histogram with the Weibull

density function in figure 34.

For the minimum return series, we can see in the Probability Plot (PP) (figure 32) that the
series could be generated by a Weibull process, since the graph is approximately linear. On
the other hand, the Quantile - Quantile Plot (QQ) (figure 33) confirms the PP plot, since the
observed data (series) tend to concentrate around the straight line, which confirm the Weibull
goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution

against the theoretical Weibull distribution.

Therefore, in terms of monthly maximum and minimum FTSE 100 series, we can admit the

series have been generated by Fréchet and Weibull process distributions, respectively.
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Now analyzing the monthly maximum and minimum return series of the NIKKEI 225 index,

we found the optimal values for the parameter estimates, which we present next:

Obs. MLE Stand. Error
NIKKEI 225 -Max Return 327
Location - p 0.0183 0.0006
Scale -o 0.0087 0.0004
Shape - § 0.2251 0.0508
NIKKEI 225 -Min Return 327
Location - pu -0.0278 0.0000
Scale -o 0.0166 0.0000
Shape - ¢ -0.6799 0.0051

Table 6: NIKKEI 225 Maximum/Minimum Parameters - GEV

For the NIKKEI 225 maximum returns, we conclude that the Fréchet distribution seems to be
the most appropriate to describe that kind of data, as the shape (§) estimate is higher than
zero. Therefore, we can conclude that NIKKEI 225 maximum return empirical distribution

has fat tails. We can see the representation of the distribution in figure 38.

For the maximum return series, the Probability Plot (PP) (figure 36) and the Quantile Plot
(QQ) (figure 37) seem to confirm that the data has been generated by the Fréchet distribution,
as the points are near the straight line. In both graphs we are comparing the returns series

(data) against the Fréchet distribution.

For the NIKKEI 225 minimum returns, it is possible to see that we have a Weibull
distribution, because the shape estimate (&) is lower than zero (5 = -0.67366). We can see the

histogram with the Weibull density function in figure 42.

For the minimum return series, we can see in the Probability Plot (PP) (figure 40) that the
series could be generated by a Weibull process, since the graph is approximately linear. On
the other hand, the Quantile - Quantile Plot (QQ) (figure 41) confirms the PP plot, since the
observed data (series) tend to concentrate around the straight line, which confirm the Weibull
goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution

against the theoretical Weibull distribution.

Consequently, in terms of monthly maximum and minimum NIKKEI 225 series, we can
admit the series have been generated by Fréchet and Weibull process distributions,

respectively, as happened with the monthly maximum and minimum FTSE 100.
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To finish the GEV distribution application, we now proceed to the study of the maximum and
minimum series of the S&P 500 index. Using the MLE, we found the optimal values for the

parameter estimates, which we present next:

Obs. MLE Stand. Error
S&P 500 -Max Return 735
Location - pu 0.0122 0.0002
Scale -o 0.0057 0.0002
Shape -¢ 0.1864 0.0301
S&P 500 -Min Return 735
Location - -0.0182 0.0000
Scale -o 0.0119 0.0000
Shape - ¢ -0.7223 0.0000

Table 7: S&P 500 Maximum/Minimum Parameters - GEV

For the S&P 500 maximum returns, we conclude that the Fréchet distribution (a common
result in empirical finance) seems to be the most appropriate to describe that kind of data, as
the shape (&) estimate is higher than zero. Therefore, we can conclude that S&P 500
maximum return empirical distribution has fat tails. The larger the estimate values for the
shape parameter, the more fat-tailed the distribution. We can see the representation of the

distribution in figure 46.

For the maximum return series, the Probability Plot (PP) (figure 44) and the Quantile Plot
(QQ) (figure 45) seem to confirm that the data has been generated by the Fréchet distribution,
as the points are near the straight line. In both graphs we are comparing the returns series

(data) against the Fréchet distribution.

To finish the application of GEV distribution, for the S&P 500 minimum returns, it is possible

to see that we have a Weibull distribution, because the shape estimate (&) is lower than zero

(é =-0.69958). We can see the histogram with the Weibull density function in figure 50.

For the minimum return series, we can see in the Probability Plot (PP) (figure 48) that the
series could be generated by a Weibull process, since the graph is approximately linear. On
the other hand, the Quantile - Quantile Plot (QQ) (figure 49) confirms the PP plot, since the
observed data (series) tend to concentrate around the straight line, which confirm the Weibull
goodness-of-fit. In both graphs we are comparing the series (data) empirical distribution

against the theoretical Weibull distribution.
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In conclusion, for monthly maximum and minimum S&P 500 series, as happens with the
FTSE 100 and NIKKEI 225 series, we can admit the series have been generated by Fréchet
and Weibull process distributions, respectively.
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After fitting the GEV distribution to all our maximum and minimum series, and in accordance
to the shape estimates, we can conclude that the maximum return series are well represented
by the Fréchet distribution. This was already expected due to the fact that the same conclusion
was reached by other studies in financial research related to maximum and minimum returns,
as the financial series normally follows this distribution. However, the surprise happens in the
minimum return series which follows the Weibull distribution instead of the Fréchet

distribution.

As we already applied the GEV distribution, in the next section, we will apply the GPD

distribution to the same database.

4.4 Fitting the GPD

In this section we will consider the GPD distribution to model the monthly maximum and
minimum returns of the FTSE 100, NIKKEI 225 and S&P500 indices, applying the POT
approach, considering a random threshold (u) of 1%, 2.5% and 5%, and using the MLE
parametric method to estimate the parameters.

To start we compute the LR test (Likelihood Ratio test) and the Log-Likelihood value for
each of the series, where in the null we assume the monthly maximum/minimum returns have

been generated by an exponential distribution:

H o = Exponential Distribution

LR Test= {Hl # Exponential Distribution (19)
Likelihood Ratio Test | p-value | Negative Log-likelihood
2.3773 0.1231 -988.1627
FTSE100 - Max Return 4.5286 0.0333 -198.4939
12.0860 0.0005 -29.4550
13.5067 0.0002 -306.8009
FTSE100 - Min Return 174.2542 0.0000 -1003.6751
290.0608 0.0000 -911.2157

Table 8: FTSE 100 LR Test and Log-Likelihood Results - GPD

For the LR test (significance level of 5%), we cannot assume the series have been generated
by an exponential distribution when we reject the null hypothesis. In the case of the monthly

maximum and minimum FTSE 100 series, we do not reject the null hypothesis for the FTSE
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100 maximum return with a threshold (u) of 1%, so we can consider the exponential

distribution to represent the returns.

For the FTSE 100 monthly maximum return with a threshold of 2.5% and 5%, as well as the
minimum return FTSE 100 (all thresholds), we reject the null hypothesis, since the probability
associate is lower than 0.05. Consequently, the series do not follow an exponential

distribution.

Analyzing the monthly maximum return series of the FTSE 100 index and using the MLE, the

estimates for the parameters are presented next:

FTSE100 - Max Return | Nr. Exce. (a) MLE Std. Err.

278

Scale -0 0.0097 0.0008

Shape - ¢ 0.0792 0.0568
58

Scale -0 0.0083 0.0020

Shape -¢ 0.3751 0.2198
8

Scale -0 0.0508 0.0000

Shape -¢ -1.1588 0.0010

(a) Nr. Exceedances of threshold
Table 9: Maximum FTSE 100 Parameters - GPD

For the FTSE 100 maximum return with a threshold of 1%, we have already seen that we can
assume the series follows an exponential distribution, with a scale estimate (o) equal to

0.0097 and a shape estimate (§) equal to 0.0792. If we now consider the same series with a
threshold of 2.5%, as the estimate for the shape parameter (&) is higher than zero (f =

0.3751), we can assume the returns have been generated by a Pareto distribution. Finally, in
considering a 5% threshold, we have seen that the series does not follow an exponential
distribution, and as the shape parameter (§) is lower than zero, we can assume the returns have

been generated by a a beta distribution.

For the FTSE 100 monthly maximum return, threshold of 1% and 2.5%, we can see in figures

52 and 53 the exponential and Pareto distribution, respectively, for each series.
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Figure 52:  FTSE 100 Max Return Density Plot for a threshold of 1 % - Exponential Distribution
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Figure 53: FTSE 100 Max Return Density Plot for a threshold of 2.5% - Pareto Distribution

Analyzing the monthly minimum return series of the FTSE 100 index and using the MLE, the

estimates for the parameters are presented next:

FTSE100 - Min Return | Nr. Exce. (a) MLE Std. Err.
58
Scale -o 0.0033 0.0000
Shape -¢ -0.5657 0.0317
258
Scale -0 0.0190 0.0000
Shape - € -0.9241 0.0000
315
Scale -0 0.1827 0.0000
Shape - € -4.0156 0.0000

(a) Nr. Exceedances of threshold
Table 10:  Minimum FTSE 100 Parameters - GPD
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As we presented above for the FTSE 100 monthly minimum return (all thresholds), we reject

the null hypothesis in the LR test, so the series do not follow an exponential distribution.

Looking more specifically at the series, and considering all thresholds, as the shape estimate
(&) is lower than zero for all, we can assume that the returns have been generated by a beta
distribution, for a threshold of 1%, 2.5% and 5%.

Therefore, in terms of monthly maximum and minimum FTSE 100 series, we can admit the
maximum series with a threshold of 1% have been generated by an exponential distribution
and with a threshold of 2.5% generated by a Pareto distribution. Finally, we can admit that the
maximum series with a threshold of 5% and the minimum series (all thresholds) have been

generated by a Beta distribution.

In now analyzing the LR (Likelihood Ratio test) results for the NIKKEI 225 monthly
maximum and minimum return (table 11), we do not reject the null hypothesis for the
NIKKEI 225 maximum series (all thresholds). Consequently, we can consider the exponential

distribution to represent the maximum returns.

For the NIKKEI 225 monthly minimum return, for all thresholds (1%, 2.5% and 5%), we
reject the null hypothesis, as the probability associate is lower than 0.05. Therefore, the series

do not follow an exponential distribution.

Likelihood Ratio Test | p-value | Negative Log-likelihood
0.7986 0.3715 -944.9793

NIKKEI 225 -Max
1.4025 0.2363 -409.0120

Return

1.3433 0.2465 -55.9751
. 15.4013 0.0001 -166.7374

NIKKEI 225 -Min
Return 72.6604 0.0000 -732.6747
207.2326 0.0000 -893.4935

Table 11:  NIKKEI 225 LR Test and Log-Likelihood Results - GPD
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Analyzing the monthly maximum return series of the NIKKEI 225 index, using the MLE, the

estimates for the parameters are presented next:

NIKKEI 225 - Max Return | Nr. Exce. (a) MLE Std. Err.
306
Scale -0 0.0174 0.0012
Shape - € -0.0374 0.0403
127
Scale -o 0.0135 0.0016
Shape - € 0.0862 0.0816
19
Scale -o 0.0134 0.0057
Shape - € 0.3701 0.3801

(a) Nr. Exceedances of threshold
Table 12: Maximum NIKKEI 225 Parameters - GPD

As was already mentioned, for the NIKKEI 225 monthly maximum return, for all thresholds
(1%, 2.5% and 5%), we do not reject the null hypothesis. Therefore, we can consider the
exponential distribution to represent the maximum returns, with a negative estimate parameter
shape (&) for the 1% threshold (figure 54) and positive estimate parameter (§) for the other
two (figures 55 and 56).
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Figure 54: NIKKEI 25 Max Return Density Plot for a threshold of 1% - Exponential Distribution
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In now analyzing the NIKKEI 225 monthly minimum return, considering all thresholds, we

can assume that the minimum returns have been generated by a Beta distribution, as the shape

estimate (&) is lower than zero.

NIKKEI 225 - Min Return | Nr. Exce. (a)| MLE Std. Err.

33

Scale -o 0.0060 0.0000

Shape - € -0.9359 0.0197
[Threshold=0.025 | 189

Scale - o 0.0162 0.0000

Shape - ¢ -0.7527 0.0055
[Threshold=0.05 | 305

Scale - o 0.1077 0.0000

Shape - € -2.3213 0.0000

(a) Nr. Exceedances of threshold

Table 13:  Minimum NIKKEI 225 Parameters - GPD
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Consequently, in terms of monthly maximum and minimum NIKKEI 225 series, we can
admit the maximum series (all thresholds) have been generated by an exponential distribution.
On the other hand, we can assume that the returns in the minimum series (all thresholds) have

been generated by a beta distribution, as the shape estimate (§) is lower than zero for all
thresholds.

To finish the GPD distribution application, we now analyze the LR (Likelihood Ratio test)
results for the S&P 500 monthly maximum and minimum return (Table 14). Since we do not
reject the null hypothesis for the S&P500 maximum series (all thresholds), we can consider

the exponential distribution to represent the maximum returns.

For the S&P500 monthly minimum return, for all thresholds (1%, 2.5% and 5%), we reject
the null hypothesis, as the probability associate is lower than 0.05. Therefore, the series do
not follow an Exponential distribution.

Likelihood Ratio Test | p-value | Negative Log-likelihood

0.7079 0.4001 -2058.1463

S&P 500 -Max Return 1.9681 0.1606 -346.3881
0.0023 0.9615 -20.3554

41.5227 0.0000 -979.8349

S&P 500 -Min Return 442.8829 0.0000 -2395.6007
1112.9300 0.0000 -2251.1191

Table 14:  S&P 500 LR Test and Log-Likelihood Results - GPD

Analyzing the monthly maximum return series of the S&P 500 index, using the MLE, the

estimates for the parameters are presented next:

S&P 500 - Max Return | Nr. Exce. (a) MLE Std. Err.
562
Scale - o 0.0092 0.0005
Shape - € 0.0281 0.0352
|Threshold =0.025 | 98
Scale - o 0.0094 0.0013
Shape - ¢ 0.1285 0.1078
[Threshold=0.05 | 7
Scale - o 0.0208 0.0163
Shape - ¢ -0.0339 0.6941

(a) Nr. Exceedances of threshold
Table 15:  Maximum S&P 500 Parameters - GPD
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As was already mentioned, for the S&P 500 monthly maximum return, for all thresholds (1%,

2.5% and 5%), we do not reject the null hypothesis.

As a result, we can consider the

exponential distribution to represent the maximum returns, with a positive estimate parameter

shape (&) for the 1% and 2.5% thresholds (figures 57 and 58) and a negative estimate
parameter (&) for the 5% threshold (figure 59).

Figure 57:

Figure 58:
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As we presented above for the S&P 500 monthly minimum return (all thresholds), we reject
the null hypothesis in the LR test. Therefore, the series do not follow an exponential

distribution.

In looking more specifically at the series, considering all thresholds, we can assume that the
returns have been generated by a Beta distribution, for a threshold of 1%, 2.5% and 5%, as the

shape estimate (&) is lower than zero for all (Table 16).

S&P 500 - Min Return | Nr. Exce. (a) MLE Std. Err.
i 197
Scale -o 0.0047 0.0000
Shape - ¢ -0.5694 0.0061
635
Scale -o 0.0201 0.0000
Shape - ¢ -0.8668 0.0000
719
Scale -o 0.0721 0.0000
Shape - ¢ -1.4958 0.0006

(a) Nr. Exceedances of threshold
Table 16:  Minimum S&P 500 Parameters - GPD

Consequently, in terms of monthly maximum and minimum S&P 500 series, we can admit the
maximum series (all thresholds) have been generated by an exponential distribution. On the
other hand, we can assume that the returns in the minimum series (all thresholds) have been

generated by a Beta distribution, as the shape estimate (&) is lower than zero.

After applying the GPD distribution to monthly maximum and minimum returns of the FTSE
100, NIKKEI 225 and S&P500 indices, using the POT approach with a random threshold
level of 1%, 2.5% and 5%, for the positive (maximum returns) and negative (minimum
returns) tail, we can assume, in accordance to the shape estimates, that the maximum and
minimum returns series are well represented mostly by the exponential distribution or by the
Beta distribution. The only exception was in the FTSE 100 monthly maximum return with a
threshold of 2.5%, which is well represented by the Pareto distribution.

This is a result that we were not expecting, since the Pareto distribution is the most common
distribution for financial series, as we can see in other studies in financial research related to
maximum and minimum returns. Because of this, it is a result that could be studied in more

detail in future research.
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However, one of the possible reasons for this result was the random threshold that we chose.
As largely discussed in the extreme value theory literature, this value assumes a huge
importance for two main reasons. The first one is the fact that choosing a high value for the
threshold leads to few extreme observations and implies inefficient parameter estimates. The
second reason is the fact that choosing a low value for the threshold level leads to many
observations of extreme observations, but induces biased parameter estimates as observations

not belonging to the tails are included in the estimation process.

For this reason, in this thesis we proceed to a calculation of the Hill estimator to optimize the

tradeoff between bias and inefficiency. This process is presented in the next section.
4.5 Non-parametric approach — Hill’s estimator

After we applied the POT approach using the parametric approach, this is the MLE method
for the calculation of the parameters and choosing a random threshold. Now we proceed to
the calculation of the Hill estimator, which is a non-parametric approach. This means that
although we have tried several thresholds to apply the GPD distribution, we will now proceed

to the calculation of the Hill estimator to obtain a threshold.

In this section we will consider the GPD distribution to model the monthly maximum returns
of the FTSE 100, NIKKEI 225 and S&P500 indices, applying the POT approach. For the
threshold parameter we consider the values obtained from Hill’s estimator.

The Hill estimator is defined in formula (13). The number of g upper statistics to be
considered should be chosen from the region where the line is roughly horizontal, which
means stability around a constant for & Despite the simplicity of the Hill’s estimator
calculation, it has some weaknesses. This means that it presents some sensitivity to the initial

tail size, or initial threshold, and therefore to the number of extreme observations.

Based on the results that we get from the Hill Plots, (figures 60 - 62) for the monthly
maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices, we should choose the
values for g around 84; 85 and 175, respectively. The corresponding value of shape parameter

would be approximately 0.35; 0.25 and 0.2, as it is possible to see in the figures below.
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Figure 60: FTSE 100 Max Return — Hill Estimator
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Figure 61: NIKKEI 225 Max Return — Hill Estimator
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Figure 62: S&P 500 Max Return — Hill Estimator
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To start, and as we did in the POT approach above, we compute the LR test (Likelihood Ratio
test) and the Log-Likelihood value for each of the series, where in the null we assume the

monthly maximum returns have been generated by an exponential distribution:

H o = Exponential Distribution
H1= Exponential Distribution

LR Test ={ (20)

FTSE100 -Max Return | Likelihood Ratio Test p-value Negative Log-likelihood

8.4317 0.0037 -299.2261
Table 17: FTSE 100 LR Test and Log-Likelihood Results — GPD (Hill Estimator)

For the LR test (significance level of 5%), we cannot assume the series have been generated
by an exponential distribution when we reject the null hypothesis. For the FTSE 100 monthly
maximum returns with a threshold of 2.22%, we reject the null hypothesis, as the probability
associate is lower than 0.05. Consequently, the series do not follow an exponential

distribution.

Analyzing the monthly maximum return series of the FTSE 100 index and using the MLE, the
estimates for the parameters are presented next:

FTSE100 -Max Return | Nr. Exce. (a) MLE Std. Err.
‘d 84

Scale - o 0.0072 0.0013
Shape -¢ 0.3679 0.1605

(a) Nr. Exceedances of threshold
Table 18:  Maximum FTSE 100 Parameters - GPD (Hill Estimator)

As we have already seen, the FTSE 100 maximum return series do not follow an exponential

distribution. Considering the estimated parameters, as the estimate for the shape parameter
(&) is higher than zero (& = 0.3679), we can assume the returns have been generated by a

Pareto distribution.
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Figure 63: FTSE 100 Max Return Density: Hill Estimator - Pareto Distribution

In now analyzing the LR (Likelihood Ratio test) results for the NIKKEI 225 monthly
maximum returns (Table 19), we do not reject the null hypothesis. Therefore, we can assume

that the series follow an exponential distribution.

NIKKEI 225 -Max Return | Likelihood Ratio Test | p-value | Negative Log-likelihood

3.1614| 0.0754 -159.4130
Table 19: NIKKEI 225 LR Test and Log-Likelihood Results — GPD (Hill Estimator)

Analyzing the monthly maximum return series of the NIKKEI 225 index, using the MLE, the

estimates for the parameters are presented next:

NIKKEI 225 -Max Return | Nr. Exce. (a) MLE Std. Err.
‘d 50

Scale - o 0.0119 0.0025
Shape -¢ 0.2466 0.1705

(a) Nr. Exceedances of threshold
Table 20:  Maximum NIKKEI 225 Parameters - GPD (Hill Estimator)

As we presented above for the NIKKEI 225 monthly maximum return, we do not reject the
null hypothesis in the LR test. Consequently, the series do follow an exponential distribution,

with a positive estimate parameter shape.
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Figure 64: NIKKEI 225 Max Return Density: Hill Estimator - Exponential Distribution

To finish the GPD distribution application, we now analyze the LR (Likelihood Ratio test)
results for the S&P 500 monthly maximum returns using the non-parametric approach and
calculating the Hill estimator . Since we reject the null hypothesis for the S&P500 maximum

series, the series do not follow an exponential distribution.

S&P 500 -Max Return | Likelihood Ratio Test p-value | Negative Log-likelihood

6.1894 0.0129 -646.8429
Table 21:  S&P 500 LR Test and Log-Likelihood Results — GPD (Hill Estimator)

Analyzing the monthly maximum return series of the S&P 500 index, using the MLE, the

estimates for the parameters are presented next:

‘ S&P 500 -Max Return } Nr. Exce. (a) MLE Std. Err.
176

Scale -o 0.0078 0.0009
Shape - ¢ 0.1830 0.0009

(a) Nr. Exceedances of threshold
Table 22:  Maximum S&P 500 Parameters - GPD (Hill Estimator)

In looking more specifically at estimated parameters, we can assume that the returns have
been generated by a Pareto distribution, as the shape estimate (&) is higher than zero, (figure
65).
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Figure 65: S&P 500 Max Return Density: Hill Estimator - Pareto Distribution

After applying the GPD distribution to the monthly maximum returns of the FTSE 100,
NIKKEI 225 and S&P500 indices, using the Hill estimator, for the positive tail, we can
assume, and in accordance to the shape estimates, that the maximum return series are well
represented mostly by the Pareto distribution. The only exception was in the NIKKEI 225

monthly maximum returns which are well represented by the exponential distribution.

This is a result that we were expecting, since the Pareto distribution is the most common
distribution for the financial series, as we can see in other studies in financial research related

to maximum and minimum returns.

This is a difference to the first approach where we use random thresholds of 1%, 2% and 5%,
and where the monthly maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices

are well represented mostly by the exponential distribution.
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5. Conclusions

In this thesis, EVT methods were used to investigate and fit the empirical distribution of the
monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and S&P500
indices to the theoretical GEV and GPD distributions. We have applied two approaches of
extreme value theory to our data, the Block Maxima and the POT approach, as well as the
MLE method’s parametric approach for the distribution parameter estimation, and the Hill

estimator’s non-parametric approach.

The goal of this thesis was to fit the monthly maximum and minimum return series of the
FTSE 100, NIKKEI 225 and S&P500 indices to the GEV and GPD distributions.

For the application of the methodology we used a diversity of tools such as the R
Programming Language with an extRemes toolkit (the outputs can be found in the appendix),

as well as the Easy Fit 5.5 Professional Software and the EViews Software.

After fitting the GEV distribution to all our maximum and minimum series, we conclude that
the maximum return series are well represented by the Fréchet distribution. This was already
expected due to the same conclusion reached by other studies in financial research related to
maximum and minimum returns, as financial series normally follow this distribution.
However, for the minimum returns we conclude that the series was well represented by the
Weibull distribution instead of the Fréchet distribution.

After applying the GPD distribution to our data, using the POT approach with a random
threshold level of 1%, 2.5% and 5%, for the positive (maximum returns) and negative
(minimum returns) tail, another conclusion was the fact that we can assume that the maximum
and minimum return series are well represented mostly by the exponential distribution or by
the Beta distribution. The only exception was in the FTSE 100 monthly maximum return

with a threshold of 2.5%, which is well represented by the Pareto distribution.

This was a result that we were not expecting, since other studies in financial research related
to maximum and minimum returns conclude that the considered series was well represented
by the Pareto distribution. Because of this difference, our result is one that could be studied in
more detail in future research. However, one of the possible reasons for this result was the
random threshold that we chose. The value of the threshold assumes a huge importance, since

choosing a high value for the threshold leads to few extreme observations and implies
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inefficient parameter estimates. On the other hand, choosing a low value for the threshold
level leads to many observations of extreme observations, but induces biased parameter

estimates as observations not belonging to the tails are included in the estimation process.

Due to this reason, we applied the GPD distribution to the monthly maximum returns of the
FTSE 100, NIKKEI 225 and S&P500 indices, using the Hill estimator, for the positive tail,
and in accordance to the shape estimates. The maximum returns series are well represented
mostly by the Pareto distribution. The only exception was in the NIKKEI 225 monthly
maximum return which is well represented by the exponential distribution. This was slightly
different from the first approach, where the maximum return series are well represented

mostly by the exponential distribution.

In conclusion, we have seen that in the GEV distribution application, our data was well
represented by the Fréchet and Weibull distributions. On the other hand, in the GPD
distribution, using the parametric MLE approach, we have seen that our data was mostly well
represented by the exponential and Beta distributions. However, applying the GPD using the
non-parametric Hill estimator approach for the tail index, we have seen that the monthly
maximum returns of the FTSE 100, NIKKEI 225 and S&P500 indices are well represented by

the Pareto distribution.
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6. Final Comments

In terms of future directions for our work and the EVT theory in general, it is possible to
highlight some points. The continuation of this thesis includes the estimation of the extreme
value index using different non-parametric approaches such as the Pickands estimator, the
Dekkers and de Haan estimator, as well as the bootstrap method developed by Danileson &

De Vries (1997), in which the asymptotic mean square error is minimized.

Beyond the calculation of the new non-parametric approaches, an interesting research project
would be the study of the daily or monthly maximum and minimum returns of some indices
using the Generalized Logistic (GL) distribution instead of the GEV and GPD distributions.
Tolikas, K. and Brown, R.A, (2006), show that in the investigation of the asymptotic
distribution of the lower tail for daily returns in the Athens Stock Exchange (ASE) over the
period 1986 to 2001, the Generalized Logistic (GL) distribution provides an adequate
description of the stochastic behavior of the ASE index extreme minima over the period
studied. This research could be important, because the GL distribution is fatter tailed than the
GEV and GPD distributions.

In terms of the future of the EVT, one method that can have importance and developments is
the Peaks-Over-Random-Threshold (PORT) approach. As we do not have an accurate choice
of the threshold level, this new method introduces a new approach to dealing with this
problem. However, there is no unanimity robust algorithm or test that can define the optimal
threshold for this approach.

In conclusion, it is possible that the future of the EVT could be involved in the development
of the PORT approach, and by consequence, the discovery of the optimal threshold. On the
other hand, the EVT could try finding other distributions beyond the GEV and GPD
distributions, which could allow us to manage safety risks and better deal with extreme events

such as financial crises.
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Appendix

In the figures below it is possible to find the outputs from the R Programming

Language, which we obtained from our calculations that support all the conclusions.

The next figure shows the R Programming Language screen and the extremes toolkit
search in the program’s library.

17 RGur- R Console
R File Edit View Misc Packages Windows Help

R wversion 2.13.0 (2011-04-13)

Copyright (C) 2011 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

Platform: i386-pc-mingw32/i386 (32-bit

R iz free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license{)' or 'licence()' for distribution details.

R i=s a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'"help.start()' for an HIML browser interface to help.

Type '"g()' to gquit R.
[Previously saved workspace restored

> library(extRemes

Loading required package: tcltk
Loading Tel/Tk interface ... done
Loading required package: ismev
Loading required package: Lmoments

Package extRemes: For a tutorial and more information go to
nttp://www.isse.ucar.edu/extremevalues/evtk.html
> |
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The next figure shows the R Programming Language screen and the extremes toolkit
opened:

R

Platform: 1386-pc-mingw32/1386 (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution decails.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.
Type 'demo()’ for some demos, 'help()' for on-line help, or
‘help.starc()' for an ETML browser interface to help.

Type 'qg()' to gquit R.
[Previcusly saved workspace restored)

> library (extRemes)

Loading required package: tcltk
Loading Tcl/Tk interface ... done
Loading required package: ismev
Loading required package: Lmoments

Package extRemes: For a tutorial and more information go to
http://www.isse.ucar.edu/excremevalues/evek. html
>

Extremes Toolkit: version 1.62

Fie | Plot | Analyze

The next figures show the data analysis outputs from our data, the monthly maximum
and minimum return series of the FTSE 100, NIKKEI 225 and S&P500 indices.

[1] "Successfully opened file: Daily FTSE.t=xt"
Daily

H 6.807000e+03
mean 2.436750e-04
S5td.Dev. 1.122324e-02
min -1.303000e-01
1 —-5.400000e-03
median 6.000000e-04
Q3 6.400000e-03
max 9.380000e-02
misgsing values 0,000000e+400

Saving workspace (may take a few moments for large workspaces)
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[1] "Succes=sfully opened file: Max and Min FTSE.txt"™
Max Min

N 3 Q0OQ00000 324.00000000
mean 01890278 -0.015%07181
5td.Dev. 01166791 0.01260158

24,
0
0
min 0.00570000 -0.13030000
R1 0.01220000 -0.02340000
median 0.01500000 -0.01€15000
Q3 0.02255000 -0.01140000
max 0.09380000 -0.00450000
missing values 0.00000000 0.00000000

Saving workspace (may take a few moments for large workspaces)

Workspace saved.

[1] "Successfully opened file: daily return.txt"”

DailvReturnNIEEEIZ2S
H 6.684000e403
mean 4.937163e-08
Scd.Dev. 1.481738e-02
min -1.614000e-01
R1 -6.900000e-03
median 4,000000e-04
23 7.300000e-03
max 1.323000e-01
mis=ing values 0.000000e400

Eaving workspace (may take a few moments for large workspaces)

Workspace =sawved.
[1] "Successfully opened file: Max and HMIn.txt"™
Ma= Min

) 327.00000000 327.00000000
mean 02563211 -0.02534832
.01584578 0.01636964

7.
0
Scd.Dev. o]
min 0.00620000 -0.16140000
R1 0.01525000 -0.03120000
median 0.02180000 -0.02310000
Q3 0.03245000 -0.01440000
max 0.13230000 -0.00360000
mis=ing values 0.00000000 0.00000000

Eaving workspace (may take a few moments for large workspaces)

Workspace =sawved.
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[1] "Succes=sfully
H 1
mean 2
5td.Dev. ]
min -2
R1 -4
median 5
R3 4
max 1.
missing values 0O

Saving workspace

Workspace sawved.
[1] "Successfully

o) 7
mean 1
Std.Dev. 9
min 2
RL 1.
median 1
R3 2
max 1
mis=sing wvalues 0.

Saving workspace

Workspace sawved.

opened fil

Daily
.539600e+04
.827358e-04
.T1l6366e-03
.290000e-01
.100000e-03
.000000e-04
.925000e-03
096000e-01
.000000e+00

(may take

opened fil
Max

.350000e+02
.6T724Tee-02
.9B4292e-03
.900000e-03

030000e-02

.440000e-02
.0153000e-02
.0896000e-01

000000e+00

(may take

e: daily.cxt™

a few moments for large workspaces)

e: max and min.tcxt"
Min
735.00000000
-0.01654558
0.01358781
-0.22500000
-0.01925000
-0.01370000
-0.00560000
-0.00180000
0.00000000

a few moments for large workspaces)

The next figures show the GEV and GPD distribution outputs from our data, the

monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and

S&P500 indices.
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GEV fit

Response wvariable: Max
Ho optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments (stationary case) estimates (used to initialize MLE optimization routine):
Location (rm): 0.01360707

Scale (sigma): 0.005448654

Shape (xi): 0.288852

Likelihood ratio test (5% lewel) for xi=0 does not accept Gumbel hypothesis.
likelihood ratio statistic iz 65.42049% > 3.841459 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test is 6.050651e-16
Convergence successfull![1] "Convergence successfull!"™

[1] "Maximum Likelihood Estimates:"
MLE Stand. Err.

MU: (identity) 0.01356 0.00031
SIGMA: (identity) 0.00535 0.00018
Xi: (identity) 0.31464 0.05105

[1] "Megative log-likelihood: -1125.0230232532"

Parameter covariance:
[-1] [r2] [r3]

1,1 9.747275e-08 3.140148e-08 -4.857693e-06

12,1 3.14014E8e-08 3.162810e-08 1.083268e-06

[3,] -4.8576%3e-06 1.083268e-06 2.606549e-03

[1] "Convergence code (2ee help file for optim): O™
NULL
Hogel name: gev.fitcl

GEV fit

Response wvariakle: Min
Ho optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments (stationary case) estimates (used to initialize MLE optimization routine) :
Location (mu): -0.01937543
Scale (sigma): 0.01174781
SBhape (xi): -0.9380378

Likelihood ratio test (5% lewvel) for xi=0 does not accept Gumbel hypothesis.
likelihood ratio statistic is 603.535 > 3.841459 1 df chi-sgquare critical wvalue.

p-value for likelihood-ratio test i= 2.850483e-133
Convergence successfull![l] "Convergence successfull!™

[1] "Maximum Likelihood Estimates:"
MLE Stand. Err.

MI: (identity) -0.02013 bl
SIGMA: (identity) 0.01254 ]
¥i: (identity) -0.80147 0

[1] "Megative log-likelihood: -1064.761159056391"

Parameter covariance:
[r1] [,2] [,3]
1,] 3.995622e-12 -1.123522e-16 -1.549115e-18
2,] -1.123522e-16 3.,995607e-12 -1.584788e-18
[3,] —1.549115e-18 -1.584788e-18 3.995745e-12
[1] "Convergence code (see help file for optim): O"

Model name: gew.fitc2
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EEREEREREEEERF

GEV fit

Response wariable: Max

No optimization method selected. Using "Nelder-Mead™ (use 'help( optim)' for more details)
L-moments (stationary case) estimates (used to initialize MLE optimization routine):
Location (mu): 0.01843403

Scale (=sigma): 0.009063659

Shape (xi): 0.18175&3

Likelihood ratio test (5% lewel) for xi=0 does not accept Gumbel hypothesis.
likelihood ratio statistic is 30.51234 > 3.841459 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test is 3.317504e-08

Convergence successfull![1l] "Convergence successfull!"™

[1] "Maximum Likelihood Estimates:"
MLE Stand. Err.
MU: (identity) 0.01826 0.00056
SIGMA: (identity) 0.00871 0.00041
Xi: (identity) 0.22506 0.05083 I

[1] "Hegative log-likelihood: -993.174705332302"

Farameter covariance:
[r1] [+2] [r3]

1,] =3.085523e-07 1.375824e-07 -3.736467e-08

(2,1 1.375824e-07 1.69589%90e-07 -2.162541e-06

(3,] -9.736467e-06 -2.162541e-06 2.584132e-03

[1] "Convergence code (Zee help file for optim): O"
NULL
Mo?el name: gewv.ficl

EEE R L Pt

GEV fit

Response wvariakle: Min

No optimization method selected. Using "Nelder-Mead"™ (use '"help( optim)' for more details)

L-moments (stationary case) estimates (used to initialize MLE optimization routine) :
Location (rmua): —-0.02704945

Scale (sigma): 0.01612951

Shape (xi): —-0.,7554838

Likelihood ratio test (5% lewvel) for xi=0 does not accept Gumbel hypothesis.,
likelihood ratio statistic is 512.954% > 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratio test is 1.443135e-113

Convergence successfull![l] "Convergence successfnll!"™

[1] "Maximum Likelihood Estimates:"”
MLE Stand. Err.

MU: (identity) -0.02781 0.00000
SIGMA: (identity) 0.01655 0.00000
Xi: (identity) -0.87988 0.00513

[1] "Negative log-likelihood: -956.077570067717"

Parameter covariance:
[+1] [r2] [r3]

1,] 3.996134e-12 -4.377946e-17 -9.089685e-12

[2,] —4.377946e-17 3.996115e-12 -9.442212e-12

[3,] —9.089685e-12 -9.442212e-12 2.632304e-05

[1] "Convergence code (see help file for optim): O
NULL
HDFEl name: gev,.ficz

>
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GEV fit

Response variable: Max
No optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments (stationary case) estimates (used to initialize MLE optimization routine):
Location (mu): 0.0121995&

Scale (=igma): 0.005685543

Shape (xi): 0.1829%9611

Likelihood ratio test (5% lewvel) for xi=0 does not accept Gumbel hypothesis.
likelihood ratio statistic is 56.83743 > 3.841453%9 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test is 4.73371le-14
Convergence successfull![l] "Convergence successfull!™

[1] "Maximum Likelihood Estimates:”
MLE Stand. Err.

MI: (identity) 0.0121%8 0.00023
SIGMR: (identity) 0.00366 0.00015
Xi: (identity) 0.18638 0.03008

[1] "Negatiwve log-likelihood: -2564.366886727395"

Parameter covariance:
[r1] [r2] [,3]

1,] ©5.446451e-08 1.848580e-08 -2.122074e-06

2, 1.848580e-08 2.135862e-08 -6.485434e-08

[3,] -2.122074e-06 —-6.485434e-08 9.050537e-04

[1] "Convergence code (see help file for optim): O"
NULL
Mogel name: gev.fitl

ER R b

GEV fit

Response wvariakble: Min

No optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)
L-moments (stationary case) estimates (used to initialize MLE optimization routine):
Location (ma): —-0.01650406

S5cale (sigma): 0.01088485

Shape (xi): -1.009%023

Likelihood ratio test (5% lewvel) for xi=0 does not accept Gumbel hypothesis.
likelihood ratio statistic i=s  1995.,898 > 3.841459 1 df chi-sguare critical value.

p-value for likelihood-ratioc test is 0O

Convergence successfull![l] "Convergence succezssfull!™

[1] "Maximuom Likelihood Estimates:™
MLE Stand. Err.
MU: (identity) -0.01821 0
S5IGMA: (identity) 0.01187 0
Xi: (identity) -0.7222% o]

[1] "Negative log-likelihood: -2426.37652145714"

FParameter covariance:
[,1] [r2] [r3]
1,1 3.9%0077e-12 -2.129956e-16 -4.455367e-18
[2,] -2.129956e-16 3.990021e-12 -4.373545e-18
[3,] -4.455367e-18 -4.373545e-18 3.930315e-12
[1] "Convergence code (see help file for optim): O"
NULL

Model name: gewv.fit2
-~ 1
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HNo optimization method selected. Using "Helder-Mead" (use '"help( optim)' for more details)

L-moments estimates for (stationary) GPD are:

scale: 0.01041136

shape: ©0.0144858497

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for xi=0 does not reject Exponential hypothesis.
likelinood ratioc statistic is 2.37729%94 <« 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratic test i= 0.1231107

Convergence successfull!

[1] "Threshold = 0.01"

[1] "Humber of exceedances of threshold = 278"

[1] "Exceedance rate (per year)= 313.39351851851a"

[1] "Maximum Likelihood Estimates:™

MLE 5td. Err.
Scale (=igma): 0.00871945% 0.0007778748
Shape (xi): 0.079239531 0.05681294%4 I

[1] "Megative log-likelihood: -988.162736748%28"

Parameter covariance:
[e1] [r2]

6.050893e-07 -2.746508e-05

(1,1

[2,] -2.746508e-05 3.22771le-03

[1] "Conwvergence code (see help file for optim): O"
NULL

Model name: gpd.ficl

Model name: gpd.fitlNo optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPD are:

scale: 0.0081l6764

shape: 0.3457766

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% level) for xi=0 does not accept Exponential hypothesis.
likelinhood ratio statistic is 4.528587 > 3.84145% 1 df chi-square critical wvalue.

p-value for likelihood-ratio test is 0.03333314

Convergence successfull!

[1] "Threshold = 0.025"

[1] "Humber of exceedances of threshold = 58"

[1] "Exceedance rate (per year)= 65.3842592552593"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma): 0.008250072 0.002003806
Shape (xi): 0.375148817 0.219756858

[1] "Negative log-likelihood: -198.493882847362"

Parameter covariance:
(1] [r21]
[i,1 4.01523%=-06 -0.0003132063
[2,] -3.132063e-04 0.0482930768
[1] "Convergence code (see help file for optim): 0"
NULL
HModel name: gpd.fitc2
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optimization method selected. Using "Nelder-Mead™ (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPD are:

scal
shap

e: 0.02110654
e: -—-0.,07071844

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
lihood ratio statistic is 12.08604 > 3.841459 1 df chi-sgquare critical wvalue.

like

p—value for likelihood-ratioc test is 0.0005080073

Convergence successfull!

[1]

Scal
Shap

[1]

Far

1,]
[2,]
[1]

"Threshold = 0.05"

"Number of exceedances of threshold = "

"Exceedance rate (per year)= 9.01851851851852™

"Maximum Likelihood Estimates:"™

MLE Std. Err.
e (sigma): 0.0507568 1.999966e-06
e (xi): -1.1588310 9.781363e-04

"Hegative log-likelihood: -232.4550391635451"

ameter covariance:
[,1] [r2]
3.999862e-12 -2.456208e-14
-2.456208e-14 9.567506e-07
"Convergence code (see help file for optim): O™

Ho optimization method selected. Using "Nelder-Mead" (use

L-moments estimates for (stationary) GFD are:
scale: 0.00332619
shape: -0.595691
These L-moments estimators were used as initial parameter estimates.

Likelihood ratioc test (5% lewvel) for xi=0 does not accept
likelihood ratio statistic i=s 13.50665 > 3.841459 1 df

p-value for likelihood-ratio test is 0.0002377194

Convergence successfull!

[1] "Threshold = -0.01"
[1] "Humber of exceedances of threshold = 38"
[1] "Exceedance rate (per year)= 65.3842592592593"
[1] "Maximum Likelihood Estimates:™
MLE 5td. Err.
Scale (sigma): 0.003266919 1.999679e-06
Shape (=xi): -0.565696117 3.16563%e-02
[1] "Negative log-likelihood: -306.800%28401117"

Parameter covariance:

1,1
(2,1
[1]

[r1] [r2]

3.998717e-12 -5.124868e-11

-5.124668e-11 1.002127e-03
"Convergence code (see help file for optim): O"

'help( optim)' for more details)

Exponential hypothesis.
chi-square critical wvalue.
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No optimization method selected. Using "Helder-Mead" (use 'help( optim)' for more details)
L-moments estimates for (stationary) GPD are:

scale: 0.0270818

shape: -1.56328&

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 174.2542 > 3.841459 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test is £.7109%7e-40
Convergence successfull!

[1] "Threshold = -0.025"

[1] "Humbker of exceedances of threshold = 258"

[1] "Exceedance rate (per year)= 2930.847222222222"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma): 0.01895177 1.998975e-08
Shape (xi): -0.92413744 1,89989%97e-06

[1] "Negatiwve log-likelihood: -1003.67508843623"

Parameter covariance:
(.11 (e 2]
[1,] 3.9895902e-12 -1.62819%6e-18
[2,]) -1.628196e-18 3.995%88e-12
[1] "Convergence code (see help file for optim): O™
NULL

HNo optimization method selected. Using "Nelder-Mead™ (use '"help( optim)' for more details)

L-moments estimates for (=tationary) GPD are:

scale: 0.02077798

shape: -0.237387

Theze L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% level) for xi=0 does not reject Exponential hypothesis.
likelihood ratio =statistic is 0.798620% <« 3.84145%9 1 df chi-sgquare critical walue.

p-value for likelihood-ratio test is 0.371506
Convergence successfull!
[1] "Threshold = 0.01"
[1] "Number of exceedances of threshold = 30&"
[1] "Exceedance rate (per year)= 341.7893577981le51"
[1] "Maximum Likelihood Estimates:"
MLE s5tcd. Erx.
Scale (sigma): 0.01738846 0.001201076
Shape (xi}): -0.03742295 0.040330461
[1] "Megative log-likelihood: -944.979332285516"
Parameter covariance:
[,11 [r21
1,] 1.442584e-06 -2.994523e-05
[2,] —-2.994523e-05 1.626546e-03
[1] "Convergence code (see help file for optim): O™

NULL
Model name: gpd.ficl
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Ho optimization method =selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments estimates for (stationary) GEBD are:

scale: 0.01464452

shape: 0.008606658

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% level) for xi=0 does not reject Exponential hypothesis.
likelihood ratio statistic is 1.4024%8 <« 3.84145% 1 df chi-sguare critical walue.

p-value for likelihood-ratio test iz 0.2363058
Convergence successfull!

[1] "Threshold = 0.025"

[1)] "Humber of exceedances of threshold = 127"

[1] "Exceedance rate (per year)= 141.855504587156"

[1] "Maximum Likelihood Estimates:"
MLE Std. Err.

Scale (=sigma): 0.01347421 0.001596%287

Shape (xi): 0.08621541 0.081643%205

[1] "Negative log-likelihood: -409.0113938077"

Parameter covariance:
[,1] [r2]
[1,] 2.550401e-06 -7.860838e-05
[2,] -7.860838e-05 6.66572T7e-03
[1] "Convergence code (see help file for optim): O
HULL
Model name: gpd.fitc2

> No optimization method selected. Using "Nelder-Mead" (use '"help( optim)' for more details)

L-moments estimates for (stationary) GPFD are:

scale: 0.01242843

shape: 0.3793352

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not reject Exponential hypothesis.
likelihood ratioc statistic is 1.343264 « 3.84145% 1 df chi-sguare critical walue.

p-value for likelihood-ratio test is 0.2464593
Convergence successfull!

[1] "Threshold = 0.05"

[1] "Mumber of exceedances of threshold = 13"

[1] "Exceedance rate (per year)= 21.2224770842202"

[1] "Maximum Likelihood Estimates:"™
MLE Std. Err.
Scale (sigma): ©0.01335175 0.005745437
Shape (xi): 0.37010576 0.380106788 I

[1] "MNegative log-likelihood: -55.9750852868811"

Parameter covariance:
[r1] [r2]
1,] 3.301005e-05 -0.001551109
[2,] -1.55110%9=-03 0.144481178
[1] "Convergence code (see help file for optim): O
NULL
Model name: gpd.fitc3
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> Ho optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPD are:

scale: 0.006037898

shape: -1.039%38

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 15.40126 > 3.841459 1 df chi-sgquare critical wvalue.

p-value for likelihood-ratio test is 8.693051e-05

Convergence successfull!

[1] "Threshold = -0.01"

[1] "Number of exceedances of threshold = 33"

[1] "Exceedance rate (per year)= 36.8600917431193"

[1] "Maximum Likelihood Estimates:™

MLE 5td. Err.
Scale (sigma): 0.006021363 1.999825e-06
Shape (xi): -0.935921166 1.973908e-02

[1] "Negative log-likelihood: -166.7373748067397"
Parameter covariance:
[,1] [, 2]
[1,] 3.999299%=-12 -1.544095e-11
[2,] -1.544095e-11 3.896314e-04
[1] "Convergence code (see help file for optim): 0"

Ho optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)
L-moments estimates for (stationary) GPD are:

scale: 0.01567376

shape: -0.6965466

These L-moments estimators were used as initial parameter estimates.

Likelinood ratio test (5% level) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 72.66044 > 3.841459 1 df chi-sguare critical walue.

p—value for likelihood-ratio test is 1.53989%e-17
Convergence successfull!

[1] "Threshold = -0.025"

[1] "Number of exceedances of threshold = 188"

[1] "Exceedance rate (per wyear)= 211.107798165138™

[1] "Maximum Likelihood Estimates:"

MLE 5td. Ezrr.
Scale (sigma): 0.01618281 1.999257e-06
Shape (xi): -0.75273357 5.486682e-03

[1] "Negatiwve log-likelihood: -732.674633605637"

Parameter covariance:
[-1] [r21]
[1,] 3.927027e-12 -6.396114e-12
[2,] -6.396114e-12 3.010367e-05
[1] "Conwvergence code (see help file for optim): O
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No optimization method selected. Using "Nelder-Mead"™ (use '"help( optim)' for more detcails)
L-moments estimates for (stcationary) GFD are:

scale: 0.093983507

shape: -2.616568

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 207.2326 > 3.841459 1 df chi-sgquare critical value.

p—value for likelihood-ratio test iz 5.516484e-47
Convergence successfull!

[1] "Threshold = -0.05"

[1] "Number of exceedances of threshold = 305"

[1] "Exceedance rate (per year)= 340.676605504587"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma): 0.1077104 1.3999073e-06
Shape (xi): -2.3213459 1.999090e-06

[1] "Negative log-likelihood: -893.493484242828"

Parameter covariance:
[,1] [.2]
[1,] 3.996292e-12 -2.565814e-18
[2,] —-2.565814e-18 3.99635%9e-12
[1] "Convergence code (See help file for optim): 0"

Ho optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moment=s escimates for (=tatioconary) GPD are:

scale: 0.0100592&

shape: -0.08427147

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for xi=0 does not reject Exponential hypothesis.
likelihood ratio statistic i= 0.T7078934 <« 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratio test is 0.400144
Convergence successfull!

[1)] "Threshold = 0.01"

[1] "Number of exceedances of threshold = 562"

[1] "Exceedance rate (per wyear)= 279.279591836735"

[1] "Maximum Likelihood Estimates:™

MLE Std. Err.
Scale (=sigma): 0.00918313% 0.000487185
Shape (xi): 0.028061343 0.035243100

[1] "Negative log-likelihood: -2058.14631860531"

Parameter covariance:
[e1] [, 2]
[1,] 2.373493e-07 -1.054351e-05
[2,] -1.054351e-05 1.242076e-03
[1] "Convergence code (see help file for optim): 0"
HULL
Mogel name: gpd.fitl
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> No optimization method selected. Using "Nelder-Mead"™ (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPD are:

scale: 0.009436275

shape: 0.1294785

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for xi=0 doe= not reject Exponential hypothesis.
likelihood ratio statistic is 1.968136 <« 3.841459 1 df chi-sguare critical wvalue.

p—-value for likelihood-ratio test is 0.1606458
Convergence successfull!

[1] "Threshold = 0.025"

[1] "Number of exceedances of threshold = 98"
[1] "Exceedance rate (per year)= 48.7"

[1] "Maximum Likelihood Estimates:"

MLE S5td. Err.
Scale (sigma): 0.009437015 0.001347397
Shape (xi): 0.128494054 0.107773083

[1] "Negative log-likelihood: -346.3B8116887375"

Parameter covariance:
[,1] 2]
[1,] 1.815479%=-06 -9.258213e-05
[2,] -8.258213e-05 1.161504e-02
[1] "Convergence code (see help file for optim): 0"
NULL
Mogel name: gpd.fic2

> No optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)

L-moments estimates for (stationary) GFD are:

scale: 0.01252458

shape: 0.3764434

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not reject Exponential hypothesis.
likelihood ratio statistic is 0.002331815 <« 3.841459% 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test i= 0.961486
Convergence successfull!

[1] "Threshold = 0.05"

[1] "Humbker of exceedances of threshold = 7"

[1] "Exceedance rate (per year)= 3.47857142857143"

[1] "Maximum Likelihood Estimates:"
MLE 5td. Err.

Scale (sigma): 0.02076846 0.01629644

Shape (xi): -0.03387567 0.69410388

[1] "Megative log-likelihood: -20.3553910480236"

Parameter covariance:
[p1] [,2]
[1,1] 0.0002655738 -0.01003382
[2,] -0.0100338168 0.48178033
[1] "Conwvergence code (see help file for optim): O™
HULL
Mogel name: gpd.fic3
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> No optimization method selected. Using "Helder-Mead" (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPD are:
scale: 0.004738576
shape: -0.6759417
These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratioc statistic is 41.5227 > 3.841455 1 df chi-sgquare critical wvalue.

p-value for likelihood-ratio test is 1.165102e-10
Convergence successfull!

[1] "Threshold = -0.01"

[1] "Number of execeedances of threshold = 187"

[1] "Exceedance rate (per year)= 97.8969%387755102"

[1] "Maximum Likelihood Estimates:"

MLE 5td. Err.
Scale (sigma): 0.004713081 1.9983983e-06
Shape (xi): -0.569394062 6.0544397e-03

[1] "Negative log-likelihood: -979.834522305416"

Parameter covariance:
[r1] [r2]
1,] 3.995932e-12 -6.451906e-12
[2,] -6.451906e-12 3.6656%93e-05
[1] "Convergence code (see help file for optim): 07
NULL

No optimization method selected. Using "Nelder-Mead"™ (use 'help( optim)' for more

L-moments estimates for (stationary) GPFD are:
scale: 0.036813583
shape: -2.016073
These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.

details)

likelihood ratio statistic is 442.8829 > 3.841459 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test is 2.552788e-98
Convergence successfull!

[1] "Threshold = -0.025"

[1] "Number of exceedances of threshold = &35"

[1] "Exceedance rate (per year)= 315.55612244398"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma): 0.02011531 1.997563e-06
Shape (xi): -0.86682241 1.997608e-068

[1] "MNegative log-likelihood: -2395.600673956395"

Farameter covarliance:
[,1] 2]
[1,] 3.990260e-12 -3.914302e-18
[2,) -3.914302e-18 3.990438e-12
[1] "Convergence code (see help file for optim): O
NULL
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No optimization method selected. Using "MNelder-Mead" (use 'help( optim)' for more details)
L-moments estimates for (stationary) GPD are:

scale: 0.24963%9

shape: -6.166808

These L-moments estimators were used as initial parameter estimates.

Likelihood ratioc test (5% lewel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 1112.93 > 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratioc test is §5.111826e-244
Convergence successfull!

[1] "Threshold = -0.05"

[1] "Humber of exceedances of threshold = 718"

[1] "Exceedance rate (per wyear)= 357.298979591837™

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma) : 0.07209925 1.39597697e-06
Shape (xi): —-1.48583509 5.694931e-04

[1] "Megative log-likelihood: -2251.11508502505"

Farameter covariance:
[,1] [,2]
[1,1 3.990793e-12 -7.057877e-13
[2,] -7.057877e-13 3.243224e-07
[1] "Conwvergence code (see help file for optim): 07
NULL

The next figure shows the code to obtain the Hill estimator:

> z<-3can("MaxRe LTHE")

Read 327 items
.0091 0.0108 0.0163 0.0110 0.0225 0.0219 0.0134 0.0191 0.0095 0.0213 0.0110 0.0116& 0.0099 0.0075 0.0099 0.0147 0.0111 0.0103 0.0117 0.0222
.0129 0 .0094 0.0076 0.0083 0.0338 0.0174 0.0179 0.0112 0.0125 0.0243 0.0247 0.0304 0.0146 0.0144 0.0193 0.0173 0.0248 0.0260 0.0175
.0386 0 .02981 0.1078 0.0410 0.0171 0.0548 0.0100 0.0140 0.0139 0.0106 0.0104 0.0158 0.0147 0.0091 0.0087 0.0115 0.0128 0.0154 0.0103
.0133 0 .0086 0.0130 0.0078% 0.0137 0.0152 0.0108 0.0100 0.0125 0.0203 0.0472 0.0375 0.0256 0.0232 0.0193 0.0525 0.0456 0.1243 0.0444
.0438 0 .0180 0.0199 0.0144 0.0132 0.0345 0.0225 0.0265 0.0191 0.0178 0.0469 0.0349 0.0247 0.0211 0.0728 0.0327 0.0291 0.0315 0.0603
.0162 0 .0138 0.0329 0.0157 0.0503 0.0422 0.0127 0.0184 0.0311 0.0116 0.0157 0.0114 0.0202 0.0428 0.0755 0.0226 0.0202 0.0228 0.0148
.0099 0 .0144 0.0135 0.0079 0.0161 0.0352 0.0144 0.0358 0.0278 0.0164 0.0225 0.0608 0.0397 0.0367 0.0225 0.0313 0.0179 0.0371 0.0102
.0148 0. .0131 0.0122 0.0140 0.0222 0.0189 0.0205 0.0200 0.0460 0.0241 0.0217 0.025¢ 0.0336 0.0189 0.0177 0.0152 0.0272 0.0328 0.0766
.0593 0 .0288 0.0246 0.0153 0.0430 0.0331 0.0225 0.0518 0.0599 0.0404 0.0101 0.0247 0.0170 0.0489 0.0305 0.0352 0.0285 0.0187 0.0222
.0299 0 .0209 0.0355 0.0125 0.0162 0.0190 0.0278 0.0236 0.0116 0.0255 0.0205 0.0258 0.0353 0.0423 0.0150 0.0214 0.0722 0.0430 0.0346
.0330 0 .0403 0.0376 0.03%2 0.0308 0.0307 0.0458 0.0574 0.0186 0.0249 0.0345 0.0343 0.0345 0.0322 0.0354 0.0333 0.0231 0.0207 0.0209
.02%0 0 .0216 0.0333 0.0185 0.0311 0.0239 0.0269 0.0311 0.0178 0.0207 0.0206 0.0159 0.0237 0.0276 0.0186 0.0131 0.0199 0.0265 0.0187
.0093 0 .0089 0.0116 0.0221 0.0128 0.0094 0.0165 0.0176 0.0246 0.0190 0.0215 0.0352 0.0292 0.0259 0.0159 0.0196 0.0330 0.0303 0.0203
.0225 0 .0139 0.0129 0.0122 0.0192 0.0172 0.0162 0.0114 0.0141 0.0296 0.0360 0.0162 0.0244 0.0192 0.0402 0.0418 0.0245 0.0412 0.0298
.0293 0 .0369 0.1323 0.0608 0.0508 0.0481 0.0269 0.0503 0.0431 0.0445 0.0212 0.0270 0.0329 0.0194 0.0185 0.0287 0.0377 0.0160 0.0270

] .0319 0.0272 0.0174 0.0231 0.0190 0.0282 0.0179 0.0164 0.0176 0.0122

The next figures show the GEV and GPD distribution outputs from our data, the
monthly maximum and minimum return series of the FTSE 100, NIKKEI 225 and
S&P500 indices, using the threshold obtained from the Hill estimator:
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> Ho optimization method selected. Using "Helder-Mead"™ (use '"help( optim)' for more details)
L-moments estimates for (stationary) GPD are:
scale: 0.007155408

shape: 0.3444531
These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 8.431742 > 3.841459 1 df chi-sgquare critical wvalue.

p-wvalue for likelihood-ratio test is 0.003687269
Convergence successfull!
[1] "Threshold = 0.0222"
[1] "Number of exceedances of threshold = 84"
[1] "Exceedance rate (per year)= 94.69444444438444"
[1] "Maximum Likelihood Estimates:"

MLE 5td. Err.

Scale (sigma): 0.007225312 0.00131235
Shape (xi): 0.367857609 0.16053551

[1] "Megatiwve log-likelihood: -299.226126921109"
Parameter covariance:
[r1] [r2]
(1,1 1.722264e-06 -0.0001359432
[2,] -1.359432e-04 0.0257716503
[1] "Convergence code (see help file for optim): O™
HNULL

Model name: gpd.fitz2s
>

> No optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)
L-moments estimates for (stationary) GPD are:

scale: 0.02285673

shape: -1.50283

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is 148.6803 > 3.841459% 1 df chi-sguare critical wvalue.

p-value for likelihood-ratio test i=s 3.368351e-34
Convergence successfull!

[1] "Threshold = -0.0228"

[1] "Number of exceedances of threshold = 238"

[1] "Exceedance rate (per year)= 2&8.30092582532&"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (=igma): 0.0159878 1.999026e-0&
Shape (xi): -0.8726928 1.999047e-06

[1] "Negatiwve log-likelihood: -953.971955724593"

Parameter covariance:
[,1] (2]
[1,1] 3.996103e-12 -1.398494e-18
[2,] -1.398494e-18 3.996187e-12
[1] "Convergence code (see help file for optim): O"
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No optimization method selected. Using "Nelder-Mead"™ (use 'help( optim)' for more details)
L-moments estimates for (stationary) GPD are:

scale: 0.01168101

shape: 0.2553635

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for =xi=0 does not reject Exponential hypothesis.
likelihood ratio statistic i=s 3.161399 <« 3.841459 1 df chi-sguare critical walue.

p-wvalue for likelihood-ratio test is 0.07539856
Convergence successiull!
[1] "Threshold = 0.0375"
[1] "HNumber of exceedances of threshold = 50"
[1] "Exceedance rate (per year)= 55.848&23853211"
[1] "Maximum Likelihood Estimates:"™
MLE 5td. Err.
Scale (sigma): 0.01185576 0.002548933
Shape (xi): 0.24657163 0.170525589
[1] "Megative log-likelihood: -159.412978790%28"
Farameter covariance:
[r1] [r21]
6.497058e-06 -0.0002666448

(1,1
[2,] -2.666448e-04 0.0290789766
[1] "Convergence code (see help file for optim): O™

No optimization method selected. Using "Nelder-Mead" (use 'help( optim)' for more details)
L-moments estimates for (=stationary) GPD are:

scale: 0.01649261

shape: -0.8315653

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratio statistic is T3.07882 > 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratio test is 1.245741e-17
Convergence successfull!

[1] "Threshold = -0.0239"

[1] "Humber of exceedances of threshold = 172"

[1] "Exceedance rate (per year)= 192.1192&66055048"

[1] "Maximum Likelihood Estimates:"

MLE Std. Err.
Scale (sigma): 0.01527037 1.999315e-06
Shape (xi): -0.74759482 7,540972e-03

[1] "Hegative log-likelihood: -674.6618253287739"

FParameter covariance:
[r1] [r2]
1,] 3.9972682e-12 -1.127541e-11
[2,] -1.127541e-11 5.686636e-05
[1] "Convergence code (see help file for optim): O™
NULL
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Ho optimization method =selected. Using "Nelder-Mead" (use 'help| optim)' for more details)

L-moments estimates for (stationary) GPD are:
scale: 0.007632976
shape: ©0.1955666
These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewel) for =xi=0 doe=s not accept Exponential hypothesis.
likelihood ratio statistic iz 6.189374 > 3.841459 1 df chi-sguare critical walue.

p-value for likelihood-ratio test is 0.01285187

Convergence successfull!

[1] "Threshold = 0.0204"

[1] "Humber of exceedances of threshold = 178"

[1] "Exceedance rate (per vear)= 87.461224489373554"

[1) "Maximum Likelihood Estimates:"

MLE 5td. Err.
Scale (sigma): 0.007762864 0.0008712303
Shape (xi): 0.182989037 0.0807805931

[1] "MNegative log-likelihood: -646.842911626347"

Parameter covariance:
[,1] [r2]
(1,1 7.5%0422e-07 -5.180823e-05
[2,] -5.180823e-05 £8.241116e-03
[1] "Convergence code (see help file for optim): O
NULL

Ho optimization method =selected. Using "Helder-Mead"™ (use 'help( optim)' for more details)

L-moments estimates for (stationary) GPFD are:

scale: 0.0129%910&86

shape: -1.073004

These L-moments estimators were used as initial parameter estimates.

Likelihood ratio test (5% lewvel) for xi=0 does not accept Exponential hypothesis.
likelihood ratic statistic is 187.9828 > 3.84145% 1 df chi-=sguare critical walue.

p-value for likelihood-ratioc test is 8.763125e-43
Convergence successfull!

[1] "Threshold = -0.01&9"

[1] "Mumber of exceedances of threshold = 474"

[1] "Exceedance rate (per year)= 238.0336734£9388"

[1] "Maximom Likelihood Estimates:™

MLE 5td. Err.
Scale (=sigma): 0.00966916%9 1.997911e-06
Shape (xi): -0.638196944 1.873320e-03

[1] "Hegatiwve log-likelihood: -2049.07348841385"

Parameter covariance:
[,1] [,2]
[1,] 3.99165e-12 -1.81709=-12
[2,] -1.81709e-12 3.50833e-06
[1] "Convergence code (see help file for optim): O"
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