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Abstract: 

When algorithms create personas from social media data, the personas can become noxious via automatically including 
toxic comments. To investigate how users perceive such personas, we conducted a 2 × 2 user experiment with 496 
participants that showed participants toxic and non-toxic versions of data-driven personas. We found that participants 
gave higher credibility, likability, empathy, similarity, and willingness-to-use scores to non-toxic personas. Also, gender 
affected toxicity perceptions in that female toxic data-driven personas scored lower in likability, empathy, and similarity 
than their male counterparts. Female participants gave higher perceptions scores to non-toxic personas and lower 
scores to toxic personas than male participants. We discuss our results’ implications for designing data-driven personas. 
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1 Introduction 

Personas, which originate from Cooper’s Cooper (1999) work in the human-computer interaction (HCI) 
community, are fictitious people that describe core users or customers of a software system, product, or 
service. Organizations use personas to support user-centered activities (Anvari, Richards, Hitchens, & Tran, 
2019) in software development, design, marketing, health informatics, and other fields (Aoyama, 2005; 
Holmgard, Green, Liapis, & Togelius, 2018; LeRouge, Ma, Sneha, & Tolle, 2013; Miaskiewicz & Kozar, 
2011; Minichiello, Hood, & Harkness, 2018). Because personas aggregate users or customers under one 
“type”, decision makers can consider the persona’s needs and wants in design processes (Grudin, 2006; 
Pruitt & Grudin, 2003) and communicate these needs and wants to others in the organization (Blomquist & 
Arvola, 2002; Nielsen, 2002; Nielsen & Hansen, 2014). 

Even though organizations widely use personas and become well established in research, manually creating 
personas suffers from several shortcomings (e.g., slowness, small sample sizes, poor objectivity, high costs, 
and unstable user behavior over time) (Chapman & Milham, 2006; Jung, Salminen, & Jansen, 2019; 
Salminen, Jansen, An, Kwak, & Jung, 2019a; Salminen, Jansen, An, Kwak, & Jung, 2018b). To address 
these challenges, researchers have developed methodologies for creating data-driven personas (An, Kwak, 
Jung, Salminen, & Jansen, 2018a; An, Kwak, Salminen, Jung, & Jansen 2018b; McGinn & Kotamraju, 2008; 
Molenaar, 2017; Salminen et al., 2018e; Zhang, Brown, & Shankar, 2016). The availability of social media 
user data and advances in data science algorithms and Web technologies have promulgated data-driven 
personas (DDPs) (Salminen, Guan, Chowdhury, & Jansen, 2020b). These DDPs typically contain various 
information about the users that they portray (see Figure 1), such as quotes from social media that users 
interpret as reflecting a persona’s opinions and attitudes. Quotes represent essential information in persona 
profiles (Nielsen, Hansen, Stage, & Billestrup, 2015) and influence how persona users form impressions 
about a persona (Salminen et al., 2019b; Salminen, Jung, An, Kwak, & Jansen, 2018c; Salminen et al., 
2018d). 

Advances in persona creation and particularly the fact that many actors create DDPs from social media user 
data have increased the probability that toxic comments will appear in data-driven personas (Salminen et 
al., 2018c; Salminen et al., 2018d). “Toxic” refers to comments that one writes with harmful intent and that 
usually attack a person or group (Kocoń et al., 2021; Salminen et al., 2018a). Toxic comments pose a 
problem because algorithms automatically enrich DDPs with these social media comments (Mijač, Jadrić, 
& Ćukušić, 2018). Even when one relies on sophisticated algorithms (Pamungkas, Basile, & Patti, 2021), 
without human supervision, toxic quotes may appear in personas depending on the data source (Fortuna, 
Soler-Company, & Wanner, 2021). These toxic quotes may negatively affect . For instance, toxic quotes 
may: 

• Reduce user empathy towards a persona—a key benefit associated with using personas for 
design in the first place (Nielsen, 2019). 

• Risk drawing users’ attention away from more relevant information for the task at hand 
(e.g., learning about the online audience segment (Salminen et al., 2019b)). 

• Contaminate a persona. When algorithms create personas from user data that involves social 
media comments, the toxicity of these comments can pass into the persona profile. 
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Figure 1. Persona Profiles Typically Contain Quotes that Describe the Persona’s Attitudes and Opinions 
(See Black Box in the Middle) 

The news vertical is one of the most prominent domains exposed to online toxicity. News and media 
channels face major toxic backlash due to reporting political, religious, and other controversial stories (Kittur, 
Chi, & Suh, 2009; Salminen et al., 2018a; Salminen, Sengün, Corporan, Jung, & Jansen, 2020). As such, 
news constitutes an extremely challenging domain for generating DDPs. Therefore, in this study, we 
particularly focus on the online news context, create DDPs from a news channel’s data, and experiment 
how persona users perceive these personas when they include toxic and non-toxic quotes. 

Creating DDPs from social media data differs drastically to creating them via traditional qualitative methods 
wherein creators have precise control over the content they select or create for personas. In DDPs, 
algorithms pick the quotes without considering the impact they may have on persona user perceptions. The 
choices that algorithms make pose a particularly vexing issue for personas generated for organizations 
whose content contains much toxicity. Examples, among others, include online news channels that toxic 
comments regularly target (Mejova, Zhang, Diakopoulos, & Castillo, 2014; Salminen et al., 2018a). 

However, despite these possible negative side effects, research has not empirically investigated the impact 
that toxic social media quotes have on persona user perceptions. We require quantitative research to 
validate the impact that toxic persona quotes have on user perceptions since organizations increasingly 
automate persona creation (Mijač et al., 2018; Salminen et al., 2020b). In this study, we address this need 
by examining the following research question (RQ): 

RQ:  How do toxic text quotes affect how users perceive personas? 

To address this question, we conducted an experimental user study in which we exposed participants to 
two DDPs: one with toxic quotes and the other with non-toxic quotes. We discuss our work’s implications 
for persona creators and designers using personas generated from online social media data. 

2 Related Literature 

2.1 User Perceptions of (Data-driven) Personas 

Researchers in HCI have repeatedly discovered that  (Chapman & Milham, 2006; Friess, 2012; Matthews, 
Judge, & Whittaker, 2012). However, little quantitative research has examined how individuals perceive 
personas (Marsden & Pröbster, 2019; Pröbster, Hermann, & Marsden, 2019). Typically, previous studies 
have examined persona use via case studies (Faily & Flechais, 2011; Jansen, Van Mechelen, & Slegers, 
2017), ethnography (Friess, 2012), usability (Long, 2009), or other qualitative means. 

For example, Friess (2012) investigated persona adoption among designers. Long (2009) employed 
usability heuristics to measure persona use effectiveness. Anvari et al. (2019) and Anvari and Richards 
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(2016) studied how personas support learning outcomes. Researchers have conducted experimental 
evaluations more rarely; examples include LeRouge et al. (2013) and Ma and LeRouge (2007), who 
compared personas against user profiles, and Salminen et al. (2020), who compared personas against an 
analytics system. 

Research has shown that user perceptions are critical for deploying and using personas in real organizations 
and use cases. Important perceptions that such work has mentioned include perceptions about credibility 
(Matthews et al., 2012), accuracy (Chapman & Milham, 2006), trust (Blomquist & Arvola, 2002), sense of 
immersion and (Nielsen, 2019), a persona’s personality traits (Anvari et al., 2017; Anvari, Richards, 
Hitchens, & Babar, 2015), and a persona’s perceived usefulness for the task at hand (Cooper, 1999; 
Salminen et al., 2018b). Also, prior research has established that persona perceptions vary individually and 
involve varied and subjective interpretations due to designers' different backgrounds and personal 
experiences (Hill et al., 2017; Marsden & Haag, 2016; Salminen et al., 2018d). 

When researchers consider personas as targets of individuals’ perceptions, they can logically contrast 
persona perception with person perception, a concept from social psychology (Grudin, 2006) that refers to 
a “general tendency to form impressions of other people” (Psychology Research and Reference, 2018)). 
The beliefs that individuals attribute to others can relate to looks, demographics, behaviors, dispositions, 
and other features (Ambady & Rosenthal, 1992). According to this premise, we define persona perception 
as a multi-dimensional perceptional construct that comprises fundamental beliefs that individuals intuitively 
associate with personas. Thus, the way in which people perceive and use personas depends on their 
idiosyncratic experiences. 

Moreover, the above premise denotes a departure from the assumption that one should solely evaluate 
personas by measuring their accuracy in a technical sense (Chapman & Milham, 2006). Instead, we focus 
on how users perceive personas as people (Grudin, 2006). Nonetheless, we highlight the need for both 
validation types. Researchers should verify personas for accuracy (i.e., the extent to which they represent 
underlying data faithfully) (Chapman & Milham, 2006). We need studies that evaluate personas based on 
how individuals perceive different persona designs and types (Marsden & Haag, 2016). Prior work in the 
HCI community has examined both aspects to a limited degree, but we focus on the latter in this research. 

Perceptions are fundamental when researchers use algorithms to create DDPs (Eslami, Krishna Kumaran, 
Sandvig, & Karahalios, 2018). Specifically, because researcher draw quotes from automatically from the 
content the persona has most engaged with (An et al., 2018a) (e.g., social media comments on news 
articles) the personas’ toxicity is associated with the content’s comments. The higher the share of toxic 
comments, the more likely the toxic quotes will “contaminate” the persona in the perceptual sense. Note 
that we presume here that “most users are not toxic”, but some toxic comments (perhaps even one) can 
make the person appear toxic. This notion resembles the reputation-spoiling effect (Parveen, Jaafar, & 
Ainin, 2015), which refers to how one bad egg can spoil the whole basket, or, more generally, the halo 
effect, which describes how positive impressions about an individual in one area influences people to view 
the individual positively in other areas (e.g., as competent, skillfull, or successful) (Nisbett & Wilson, 1977). 
In contrast, people could view a toxic persona as all around “bad”. While prior work has hinted at this risk 
associated with personas and their quotes (Salminen et al., 2018d), we could locate no previous empirical 
studies that has investigated such an effect. 

As we discuss in Section 1, the toxic comments in DDPs can have several side effects, such as making it 
harder for users to relate to a persona to contaminating persona perceptions. Toxic comments may affect 
how designers perceive the persona, which may make the whole persona toxic in their eyes. The toxic 
comments can also draw attention away from other persona information designers should use for the 
decision-making task. Previous research has alluded to these effects (Nielsen et al., 2017; Salminen et al., 
2019b; Salminen et al., 2018d), but we lack empirically rigorous evidence on either. Thus, researchers need 
to examine how one can detect toxic comments for personas created from social media data (Salminen et 
al., 2019a). 

2.2 Hypothesis Development 

We consider five relevant hypotheses for detecting changes in persona user perceptions when manipulating 
a persona’s toxicity, which we explain below. 

Likability refers to the tendency for someone to be liked by other people. It represents  a notable concept in 
person perception literature (Reysen, 2005) since it affects the interactions between people. In particular, a 
persona’s likeability may affect people’s interest in the persona profile (Salminen, Jung, Santos, & Jansen, 
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2019d). Studies in social psychology have tended to show a negative association between likability and 
aggression and mental abuse (Kanekar, Bulsara, Duarte, & Kolsawalla, 1981). We expect that toxic quotes 
make a persona less likable as they demonstrate destructive attitudes. Hence, we propose: 

H1: Users like toxic personas less than non-toxic personas. 

Empathy refers to a feeling of understanding and compassion (Singer & Klimecki, 2014) and represents a 
crucial advantage when using personas for design (Marsden, Pröbster, Haque, & Hermann, 2017b; Nielsen 
& Hansen, 2014). Many believe that empathy drives motivation and purpose. In theory, empathetically 
understanding a persona helps designers to keep user needs in mind during design processes (Nielsen & 
Hansen, 2014). In social psychology, studies have shown that hostility (cf. toxicity) toward someone 
decreases one’s empathy for that person (Wispé, 1986). We expect that there is a similar effect for 
personas, and toxic quotes reduce the sense of Empathy toward the persona. Hence, we propose: 

H2: Users empathize less with toxic personas than with non-toxic personas. 

Similarity refers to the experienced identification between a persona and its designer. Booth’s (2008) 
findings imply that similarity to a persona may help individuals internalize its needs (Nielsen & Hansen, 
2014; Pruitt & Grudin, 2003). Social psychologists have found that individuals are less likely to identify with 
people they perceive negatively (Rentsch & Woehr, 2004). Adopting this idea, we expect toxicity to reduce 
users’ perceived similarity with personas. Hence, we propose: 

H3: Users perceive toxic personas as less similar to themselves than non-toxic personas. 

Willingness to use (WTU) refers to individuals’ willingness to use a persona and represents a critical user 
perception since it dictates whether users actually use personas rather than forget about them after their 
creation (Rönkkö, Hellman, Kilander, & Dittrich, 2004). In the persona context, WTU relates to a person’s 
willingness to learn more about a persona (Nielsen, Nielsen, Stage, & Billestrup, 2013), especially given the 
task at hand. Findings in social psychology show that hostile people drive people away rather than pull them 
in (Morris, Leung, & Iyengar, 2004). We expect that participants have less interest in learning about toxic 
personas. Hence, we propose: 

H4: Users are less willing to use toxic personas than non-toxic personas. 

Credibility refers to [what] and represents a notable challenge for persona use as users may perceive non-
credible personas as abstract and unrealistic (Chapman & Milham, 2006; Matthews et al., 2012). Research 
has not established how toxicity affects personas’ perceived credibility. However, toxicity may lessen the 
extent to which users perceive personas as credible due to the halo effect (NIsbett & Wilson, 1977). 
According to this idea, we hypothesize that users consider toxic personas less credible due to a general 
negative spillover effect. Hence, we propose: 

H5: Users perceive toxic personas as less credible than non-toxic personas. 

Overall, we can consider the five perceptions that the hypotheses address as positive impressions about 
personas (Salminen et al., 2020d). According to this idea, empirically derived persona perceptions can help 
designers design “good” (as in desirable and socially acceptable) personas. For example, a high willingness 
to use would be a desirable perception toward a persona as the persona would face less resistance from 
designers (Nielsen, 2004). As personas often face adoption barriers (Matthews et al., 2012; Rönkkö, 2005; 
Rönkkö et al., 2004), investigating users’ attitudes towards different persona designs and information 
content can be impactful. 

In addition to the above five hypotheses, we measure the effect of gender (both for personas and 
participants) as previous research on personas has shown that gender stereotypes may matter for persona 
perceptions (Hill et al., 2017; Marsden, Hermann, & Pröbster, 2017s). Notably, personas may reinforce 
existing gender stereotypes (Marsden & Haag, 2016) (Spiliotopoulos, Margaris, & Vassilakis, 2020). Users’ 
perceptions might relate to a persona’s gender, their own gender, or the interaction of the two (Salminen, 
Jung, Santos, Kamel, & Jansen, 2021). In this study, we expect the effect that personas’ toxicity has on 
user perceptions to vary by persona gender and participant gender. Hence, we propose: 

H6: The effect that persona toxicity has on user perceptions to varies by a) persona gender and b) 
user gender. 

At first glance, the hypotheses may appear trivial in the sense that one might naturally expect people to 
negatively experience toxic personas. Nevertheless, having this preconception might result in fallacious 
implications for designing personas. Even though it would seem like toxicity would decrease positive user 
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perceptions, for the sake of scientific inquiry, we should test the actual effects before drawing any 
conclusions because people often act and respond in unexpected ways (Harris, Spengler, & Gollery, 2016). 
Moreover, we have some specific grounds to expect alternative yet plausible outcomes. For example, users 
might still empathize with a toxic persona if they consider the persona to be misguided or in pain. In this 
case, users could disagree with a persona’s views but still acknowledge that such views exist. Also, users 
could perceive toxic personas as more credible if they generally believe that social media involves many 
toxic people (and, thus, that toxic personas would be realistic). Moreover, if users agree with the content in 
a toxic message, they might feel more (and not less) similar to the toxic personas. Thus, in all, these 
hypotheses involve more complexity than first glance might suggest. 

3 Methodology 

First, we generated social media personas from the user data from an online news and media organization. 
Second, we manipulated these baseline personas’ toxicity to create “toxic” and “non-toxic” personas. Third, 
we investigated how users reacted to these (non-)toxic personas. We explain our methodology in more 
detail in Sections 3.1 to 3.7 below. 

3.1 Generation of Baseline Data-driven Personas 

As we mention in Section X, data-driven personas (Jansen, Jung, Chowdhury, & Salminen, 2021a; Jansen, 
Jung, Chowdhury, & Salminen, 2021b; McGinn & Kotamraju, 2008) have become increasingly popular due 
to benefits relative to manual persona creation and due to the potential that “personified big data” provides 
(Stevenson & Mattson, 2019). While many methods to create DDPs exist, in this study, we employed 
automatic persona generation (APG), an interactive and state-of-the-art system to create DDPs (An et al., 
2018a, 2018b) to generate personas from data that represented real online user audience segments. From 
the generated personas we generated, we chose two personas, one male and one female (see Figure 2). 
We chose these personas to allow for variation in gender but to keep age constant (Jiri is 30 and Kayla is 
32). 

 

Figure 2. The Two Data-driven Personas We Chose for the Study 

To provide background information to readers, we briefly explain how APG works to generate data-driven 
personas. Jung, Salminen, An, Kwak, and Jansen (2018a), Jung, Salminen, Kwak, An, and Jansen (2018b), 
and An et al. (2018a, 2018b) describe the algorithmic procedures in more technical detail. Overall, APG 
generates personas from quantitative user data via the following steps: 

• Step 1: create an interaction matrix with videos as columns, demographic user groups as rows, 
and the view count of each group for each video as matrix elements. 

• Step 2: apply non-negative matrix factorization (NMF) (Lee & Seung, 1999) to the interaction 
matrix to discern p latent video-viewing behaviors (where p is a hyper-parameter that we set). 

• Step 3: choose the representative demographic attributes for each behavior by using weights 
from the NMF computation. 

A) Jiri (non-toxic version) B) Kayla (toxic version)
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• Step 4: create the personas by enriching the representative demographic groups for each p 
personas with extra information, such as name, picture, topics of interest, and other attributes. 

To create the personas we used in this research, we used data from an online news channel on YouTube 
that toxic commentators continuously attack (Salminen et al., 2018a). The attacks mainly target the channel 
itself, religious groups, and nationalities. Due to the high prevalence of toxic comments in this news 
channel’s content, the DDPs often seem repulsive and toxic. We reached an agreement with the news and 
media organization to use the data for this research. We collected the dataset using the YouTube Analytics 
API1 and according to YouTube Analytics’ terms of service. The data contained no personally identifiable 
information about individual users apart from the username in the comments (which anyone can publicly 
see on the YouTube website). We do not show these usernames in the generated personas. 

3.2 Toxic Quote Selection and Validation 

We picked the (non-)toxic comments based on manually reviewing the comments in the dataset. One 
researcher identified candidate comments from both types (toxic/non-toxic) and asked the other members 
in the research team to independently assess a given comment as toxic or not. The comments combined 
xenophobia/racism, attacks against the media, and references to aggressive acts that the commenter would 
conduct (see Figure 3). 

 

Figure 3. The Two Personas’ Non-toxic Quotes (a) and Toxic Quotes (b)2 

 
1 See https://developers.google.com/youtube/analytics/  
2 We used real social media comments (although we masked the news company’s name); thus, they reflect the harshness and toxicity 
that occurs in the wild. The supplementary material (see https://www.dropbox.com/s/xkwd2m66nx4joiy/supporting%20material%20-
%20DIS21.zip?dl=0) shows the complete persona profiles. We first chose participants a toxic (or non-toxic) persona (Jiri/Kayla) and 
then a non-toxic (or toxic) persona (Kayla/Jiri).  

very informative,thanx

Al Jazeera!

The saddest thing is

that ordinary Afghan,

European and Russian

citizens are paying the

price for this war. It's

always the people
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fighting that suffer the
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needs to ask as much

questions as he can.

Respect the police

This is an isolated

incident this shouldn't

impact anything

politically going

forward.

Jiri Kayla

(a) (a)(b) (b)

Fuck Obama and his

Muslim apologism

Fuck that cop. Nothing

but a fucking thug.

I SWEAR, I AM GOING

TO CUT THEM IN

HALF WHILE THEY

ARE ALIVE

AJ is the biggiest joke

out there i would rather

take my news from

buzzfeed then from this

crappy one sided news

outlet

Those two men need to

be slowly sliced to

hundreds of pieces

from head to toe and

sold to a market

He handled the ANC

question very aptly.

interesting

perspective
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kong?

This is so horriffic,

tragic... Why my

country doesn't help

these ppl... I'll never

understand. I wish i

could rescue that 15

yr old from the life

she's living

Many women there

are reusing tampons

this made me cry...

oh look...all the fucks i

given ! attention whore

!

This's the last straw.

Constant bullshit on AJ

next there'll be piece

on how how telling kids

at sports day there's no

such thing as winning

and losing is beneficial.

Yawn, what a joke.

Muslim goat fuckers

not welcome in Europe!

FUCK CHINESE

PEOPLE I HOPE

THEY DIE

1. Declare martial law

2. Let the army handle

this scum
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We unanimously agreed on the (non-)toxicity of the candidate comments. Since one can consider toxicity a 
subjective variable, we conducted a manipulation check to ascertain the validity of the chosen comments 
(Hoewe, 2017). We conducted the manipulation check via a crowdsourcing platform (Appen3). Specifically, 
we showed crowd workers each comment and asked them if they found it toxic or not. For the task, we 
defined toxic as follows: “A toxic comment contains hostile or abusive content”. Table 1 shows that that the 
crowd workers labeled presumably toxic comments as toxic (42.3%) and non-toxic comments as non-toxic 
(48.7%). We can attribute the slight deviations from expected values to individual differences in online hate 
interpretation (Salminen, Veronesi, Almerekhi, Jung, & Jansen, 2018f). Nonetheless, the results 
overwhelmingly support the comments we chose. Therefore, we proceeded to manually insert the 
comments into the persona profiles. 

Table 1. Manipulation Check Results (N = 600 Crowd Ratings) 

  Observed 

  Toxic Non-toxic 

Expected 
Toxic 254 (42.3%) 46 (7.7%) 

Non-toxic 8 (1.3%) 292 (48.7%) 

Note: percentage (%) indicates the share of ratings from the total ratings 
The ratios of expected and observed toxic/non-toxic comments indicate that the toxicity levels in crowd ratings matched the 
expectations. Bolded cells indicate values that we expected to be close to 50%. 

3.3 Persona Treatments 

We created two toxic personas that contained toxic quotes and two non-toxic personas that did not contain 
toxic quotes. Overall, we created two versions of two personas, which resulted in four persona treatments 
in total: 1) non-toxic persona 1 (“Jiri”), 2) toxic persona 1, 3) non-toxic persona 2 (“Kayla”), and 4) toxic 
persona 2 (see Figure 2). We kept all information except comment toxicity, name, and gender identical in 
the persona profiles. By varying the gender (male/female), we could investigate gender-specific differences 
that, in general, the person perception literature has found to have an effect on user perceptions (Hill et al., 
2017; Marsden & Haag, 2016). Also, this variation comes at almost no “cost” because a 2 × 2 design always 
requires two different personas. 

3.4 Experiment Design 

We placed the created personas in a 2 × 2 within-subject experiment design. We placed the four treatments 
into four sequences that we created using the survey software. We randomly distributed participants 
between these four sequences in a way that ensured each sequence contain nearly an equal number of 
participants. These choices followed the standard practices in experiment design (Brooks, 2012) that 
researchers have proposed for mitigating possible order and learning effects: 

• Sequence 1: toxic Jiri → non-toxic Kayla (122 participants) 

• Sequence 2: non-toxic Jiri → toxic Kayla (128 participants) 

• Sequence 3: toxic Kayla → non-toxic Jiri (122 participants), and 

• Sequence 4: non-toxic Kayla → toxic Jiri (124 participants). 

We provide detailed information on the participants in Section 3.6. 

3.5 Measurement Items 

To measure the perceptions in our hypotheses, we used the persona perception scale (PPS), an instrument 
designed to gauge (Salminen et al., 2020d). Researchers have previously deployed the PPS in similar 
persona experiments, such as to test the effect that smiling images (Salminen et al., 2019d) and 
explanations in DDPs (Salminen, Santos, Jung, Eslami, & Jansen, 2019e) have on user perceptions. 
Salminen et al. (2020d) validated the PPS, although we also conducted a separate validation analysis here 
(see Section 4.4). We measured four persona perceptions from the PPS with 16 items in total (see Table 
2). 

 
3 https://www.appen.com  
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Table 2. Survey Constructs and Items (Salminen et al., 2020d) 

Construct Reflecting… Items 

Likability …how likable the persona feels. 

I find this persona likable. 
I could be friends with this persona. 
This persona feels like someone I could spend time with. 
This persona is interesting. 

Empathy 
…how well the individual 
emotionally relates to the 
persona. 

I feel like I understand this persona. 
I feel strong ties to this persona. 
I can imagine a day in the life of this persona. 

Similarity 
…how similar the individual feels 
the persona is to him/her. 

This persona feels similar to me. 
The persona and I think alike. 
The persona and I share similar interests. 
I believe I would agree with this persona on most matters. 

WTU 
…how much the individual is 
interested in learning more about 
the persona. 

I would make use of this persona in my task [of creating a YouTube 
video]. 
I would like to know more about this persona. 
I can imagine ways to make use of the persona information in my 
task [of creating the YouTube video]. 
This persona would improve my ability to make decisions about the 
customers it describes. 

Credibility 
…how realistic the persona 
appears. 

The persona seems like a real person. 
I have met people like this persona. 
The picture of the persona looks authentic. 
The persona seems to have a personality. 

We measured the items on a seven-point Likert scale from “strongly disagree” to “strongly agree”. The total score of a construct is 
the average of the scores of its items. 

3.6 Participant Recruitment and Information 

After creating the four treatments, we created four surveys that corresponded to the counterbalanced 
experiment flows using an online survey-creation tool. To collect data, we recruited participants using 
Prolific4, an online survey platform. Previous research, such as persona user studies (Salminen et al., 
2019d, 2019e), has successfully applied Prolific to gauge how people perceive various topics (Palan & 
Schitter, 2018). Furthermore, research has found data collected from Prolific to have suitable reliability for 
research purposes (Palan & Schitter, 2018; Peer, Brandimarte, Samat, & Acquisti, 2017). We applied the 
following sampling criteria in Prolific: age: 23 to 50; nationality: United Kingdom (UK); minimum education 
level: undergraduate; and exclusion: did not participate in any other sequence. 

With these criteria, we identified 5,173 eligible participants. We collected 130 answers for each flow (i.e., 4 
× 125 = 520 answers in total) as we considered this number high enough for statistical analysis while 
remaining in our data-collection budget. We collected the data sequentially and used the platform’s custom 
blacklist feature to exclude participation in more than one flow per user ID. Participants were 36.5 years (SD 
= 7.3) old on average, and 66.5 percent were female. All came from the UK. We focused on U.K. nationals 
since we wanted to 1) ensure that the participants could speak English fluently and 2) mitigate the impact 
of cultural variability that can affect how people interpret toxicity (Salminen et al., 2018f) and perceive 
personas  (Putnam, Kolko, & Wood, 2012). 

3.7 Survey Flow 

First, each participant saw an introduction to the survey that explained what the survey focused on and 
personas (“a persona is defined as a fictive person describing a specific customer group”). Second, we 
explained the content in the shown persona profiles and how we retrieved it. Third, we explained the task 
(“Imagine that you are creating a YouTube video for the target group that the persona you will be shown 
next describes”). Fourth, we showed each participant one of the four treatments and asked them to review 
the information carefully and fill in the PPS questionnaire. To maintain ethical standards (see Appendix 1), 

 
4 https://prolific.ac  
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we informed the participants beforehand that the personas they saw contained some explicit content. 
Participants participated in the experiment on a voluntarily basis and could stop at any time. 

4 Results 

4.1 Data Processing and Analysis Procedure 

After obtaining the answers to the survey, we checked their quality based on an included attention-check 
question (“It’s important that you pay attention to this study. Please select ‘slightly agree’.”). Out of 520 
answers, 19 (3.7%) failed to answer the attention check correctly. Thus, we removed these answers from 
the data. Also, the Prolific system timed out five participants. Therefore, we ended up with 496 qualified 
participants (95.4% of the total answers). For the statistical analysis, we applied repeated-measures mixed 
MANOVA (Hair, Black, Babin, & Anderson, 2009) to determine whether the toxic measurements significantly 
differed between the toxic and non-toxic conditions and whether the persona’s gender influenced these 
differences. We included the participants’ gender as a between-subjects dummy variable. 

4.2 Validity Analysis 

Although earlier research has validated the PPS instrument (Salminen et al., 2020d), we nonetheless 
performed an independent validation using the study sample. The results (see Table 3) showed satisfactory 
convergent validity such that the average variance extracted (AVE) of all constructs exceed 0.50 (Hair et 
al., 2009). Moreover, we found satisfactory discriminant validity, which requires that all pairs of factors’ 
square root of the AVE be equal to or greater than the correlations between these factors and cumulatively 
that the AVE for a given factor be greater than its maximum shared variance (MSV) and average shared 
variance (ASV) (Fornell & Larcker, 1981). Finally, we found satisfactory reliability as the composite reliability 
(CR) indicator exceeded the 0.7 threshold (Fornell & Larcker, 1981).  

Table 3. Model Revalidation 

 Correlations 

 CR AVE MSV ASV WTU Credibility Clarity Likability 

WTU 0.926 0.757 0.560 0.397 0.870    

Credibility 0.836 0.565 0.445 0.359 0.631 0.751   

Clarity 0.751 0.513 0.234 0.203 0.484 0.484 0.716  

Likability 0.979 0.938 0.560 0.381 0.748 0.667 0.374 0.969 

Note: the diagonal of the correlation’s matrix indicates the square root of the AVE. 

4.3 Correlations 

We computed the correlations for all variables under study (see Table 4). To do so, we used the mean for 
both toxic and non-toxic personas. As expected, all dependent variables exhibited significant correlations 
between them. 

Table 4. Pearson Correlations for the Dependent Variables 

Variable Likability Empathy Similarity WTU Credibility 

Likability 1 0.685*** 0.760*** 0.581*** 0.496*** 

Empathy  1 0.662*** 0.562*** 0.470*** 

Similarity   1 0.509*** 0.358*** 

WTU    1 0.438*** 

Credibility     1 

Note: *** p < 0.001; ** p < 0.01; * p < 0.05 

4.4 Hypotheses Testing 

We began by analyzing the multivariate tests to identify whether any independent variable exhibited 
significant effects concerning any dependent variable. Researchers typically use the multivariate test before 
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proceeding into the univariate analysis as it deflates type I errors by considering the existing correlations 
between the dependent variables (Hair et al., 2009). All effects were significant except the three-way 
interaction (F(5, 481) = 0.635, p = 0.673), which indicates that we could analyze them with follow-up 
univariate ANOVAs. We show the results in Table 5. 

Table 5. Multivariate Tests (df(error) = 1(481)) 

Independent variable Pillai’s Trace F η2p p-value 

Toxicity 0.743 277.944 0.743 < 0.001 

Toxicity x persona gender 0.064 6.587 0.064 < 0.001 

Toxicity x participant gender 0.069 7.174 0.069 < 0.001 

Toxicity x persona gender x participant gender 0.007 0.635 0.007 0.673 

Note: significant results bolded (a = 0.05). 

We next proceeded into the univariate component of the analysis. The results in Table 6 show significant (p 
< 0.001) differences regarding toxic and non-toxic personas for all perceptions. The non-toxic personas 
scored significantly higher on all the tested perceptions (see Figure 4). Therefore, we found support for all 
five hypotheses. 

Table 6. Univariate Tests for Within-subjects Effects and Interaction Terms with Between-subjects 
Effects (df(error) = 1(485)) 

Independent variable Dependent variable F η2p p-value 

Toxicity 

Likability 1376.717 0.739 <0.001 

Empathy 852.115 0.637 <0.001 

Similarity 789.140 0.619 <0.001 

Willingness to use 504.575 0.510 <0.001 

Credibility 206.484 0.299 <0.001 

Toxicity × persona 
gender 

Likability 23.509 0.046 <0.001 

Empathy 6.558 0.013 0.011 

Similarity 12.096 0.024 0.001 

Willingness to use 3.308 0.007 0.070 

Credibility 0.080 0.000 0.777 

Toxicity × participant 
gender 

Likability 26.560 0.052 <0.001 

Empathy 15.045 0.030 <0.001 

Similarity 19.101 0.038 <0.001 

Willingness to use 29.118 0.057 <0.001 

Credibility 4.498 0.009 0.034 

Toxicity x persona 
gender x participant 

gender 

Likability 1.174 0.002 0.279 

Empathy 0.027 0.000 0.869 

Similarity 0.977 0.002 0.324 

Willingness to use 0.216 0.000 0.642 

Credibility 0.888 0.002 0.346 

Note: significant results bolded (a = 0.05) 
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Figure 4. Differences in Perception Scores between Toxic and Non-toxic Personas5 

Participants liked toxic personas (M = 1.86) less than non-toxic personas (M = 4.59), F(1, 485) = 1376.71, 
p < 0.001. Therefore, we found support for H1. Participants empathized with toxic personas (M = 1.92) less 
than with non-toxic personas (M = 4.16), F(1, 485) = 852.11, p < 0.001. Therefore, we found support for H2. 
Users perceived toxic personas as less similar to themselves (M = 1.59) than non-toxic personas (M = 3.73), 
F(1, 485) = 789.14, p < 0.001. Therefore, we found support for H3. Users were less willing to use toxic 
personas (M = 2.74) than non-toxic personas (M = 4.50), F(1, 485) = 504.56, p < 0.001. Therefore, we found 
support for H4. Users found toxic personas (M = 3.83) less credible than non-toxic personas (M = 4.97), 
F(1, 485) = 206.48, p < 0.001. Therefore, we found support for H5. 

The scores for persona perceptions, when all other variables remained constant, increased as follows when 
comparing toxic to non-toxic personas: likability (+146.78%, p < 0.001), similarity (+134.59%, p < 0.001), 
empathy (+116.67%, p < 0.001), WTU (+64.23%, p < 0.001), and credibility (+29.77%, p < 0.001). Thus, 
the scores for likability, similarity, and empathy were more than double for non-toxic personas relative to 
toxic personas. In turn, WTU and credibility exhibited a more modest but still significant increase. 

Regarding H6, we found two interaction effects regarding the gender variables—one for persona gender 
and the other for participant gender (see Figure 5). First, regarding the toxicity x persona gender interaction: 
female toxic personas scored significantly less on likability (F(1, 485) = 23.509, p < 0.001), empathy (F(1, 
485) = 6.558, p < 0.05), and similarity (F(1, 485) = 12.096, p < 0.01) than the male toxic persona counterpart 
(see Figure 5a). These results indicate that toxicity negatively impacts both personas but that it more 
negatively impacts the female persona. Consistent with this finding, the likability score of the male persona 
had the highest increase (+169.78%): it went from M = 1.82 (toxic) to M = 4.91 (non-toxic). The similarity of 
the male persona had the second highest increase (+154.49%): the average score went from M = 1.56 
(toxic) to M = 3.97 (non-toxic). 

 
5 All differences were significant (p < .001). Error bars indicate standard error. 
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Figure 5. Estimated PPS Scores by (a) Persona Gender and (b) Participant Gender (F = Female, M = Male)6 

A second gender effect was the interaction between toxicity × participant gender, which shows that female 
participants tended to give higher scores to non-toxic personas and lower scores to toxic personas than 
male participants. In other words, females tended to exhibit more polarized reactions when contrasting toxic 
and non-toxic personas (see Figure 5b). Most notably, WTU decreased by 46.68 percent (i.e., from M = 
4.67 (non-toxic) to M = 2.49 (toxic)) for female participants, whereas it decreased by only 32.64 percent 
(i.e., from M = 4.32 (non-toxic) to M = 2.91 (toxic)) for male participants. 

Other persona perceptions decreased even more among female participants: likability decreased by 64.6 
percent (12.3% more than for males), similarity decreased by 64.22 percent (13.99% more than for males), 
Empathy decreases by 59.82% (12.21% more than for males), and WTU decreased by 46.62 percent 
(15.79% more than for males). The difference between these perceptions was significantly smaller for the 
male participants than for the female participants, which indicates that persona toxicity affected female users 
more than male users. 

To investigate this effect further, we conducted a cross-interaction analysis for persona gender x participant 
gender to analyze how gender correspondence affected user perceptions. We found that this interaction 
lacked significance (Pillai’s T = 0.007, F(5, 481) = 0.673), which indicates the absence of a “gender-
matching” effect. . 

5 Discussion 

5.1 Research Contribution 

Our empirical analysis confirms the qualitative suggestions in the HCI literature that toxic comments affect 
how users perceive personas (Salminen et al., 2019a; Salminen, Jung, & Jansen, 2019c). Among our most 
significant findings, we found that WTU decreased for toxic personas. Designers need to consider this 
finding since, if they do not want to use the personas they create, persona creation becomes a futile exercise 
(Rönkkö et al., 2004). In particular, we found that users perceive personas without toxic quotes more 
favorably, which suggests that filtering the toxic comments could be helpful when creating personas from 
social media data with many toxic comments. This result held for both males and females, although female 
participants experienced toxic persona quotes more strongly. 

This study offers three main takeaways: 

1) An increase in toxicity in a persona’s comments results in a decrease in all the measured 
persona perceptions 

2) The increase in toxicity affected likability, similarity, and empathy the most. 

3) The increase willingness to use and credibility to a lesser degree. 

 
6 We show only statistically significant differences. Error bars indicate standard error. 
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We find it logical that the affective dimensions of persona perception (likability, similarity, and empathy) 
decreased the most with the toxic quotes since these perceptions deal with how warmly a person thinks 
about a persona. Participants did not think of toxic personas very warmly. 

In other words, individuals might still perceive toxic personas as (somewhat) interesting and credible. This 
finding is associated with the idea of holistic personas (Anvari & Tran, 2013), which postulates that persona 
perception holds subtle patterns (e.g., one can still consider disliked personas interesting for design). The 
weaker effect may indicate that some participants believed toxicity formed part of the persona’s character. 
Overall, 23.6 percent of the participants found the toxic personas to be more or equally credible than non-
toxic personas. 

Finally, gender played a role in toxicity perceptions in several ways. The toxic female personas scored 
significantly less on likability, empathy, and similarity than the toxic male personas, which suggests that 
toxicity harms perceptions about female personas more than perceptions about male personas. Also, female 
participants tended to give higher scores to non-toxic personas and lower scores to toxic personas when 
compared to male participants. That is, toxicity affected female participants’ perceptions more strongly than 
male participants’ perceptions. These results suggest gendered thinking among the participants, which 
concurs with previous research (Hill et al., 2017). In practice, one cannot easily mitigate gendered effects 
in personas’ design since they are ingrained into individuals’ thinking about gender in general (Marsden & 
Haag, 2016). 

5.2 Design Implications 

As for practical implications for persona design and system development, the negative effect that toxic 
quotes had on persona perceptions implies that DDP developers should give special attention to the toxicity 
of persona quotes when using algorithms to generate DDPs from social media data. In particular, they need 
to exercise caution when [doing what?]. 

While we recommend applying toxicity detection when creating personas whose quotes originate from social 
media, we do not mean to imply that designers should delete toxic quotes from persona profiles by default. 
One cannot deal with toxicity simply by applying blind censorship. First, one needs to address whether 
filtering toxicity removes individuals’ freedom of expression (Davidson, Warmsley, Macy, & Weber, 2017). 
That is, do users prone to toxicity have the right to be represented in online news personas? Second, one 
needs to consider accuracy; if people make many toxic comments, should not the journalists using personas 
to understand their audiences be aware of such comments? In other words, do journalists not have the right 
to know the dark side of their audience? 

In a broader sense, the above discussion links to a more prominent theme in efforts to design computational 
systems. That is, how do we use the toxicity classification scores in real systems? Previous HCI research 
contains surprisingly little discussion on this matter even though researchers recognize toxicity as a serious 
issue in many computing systems (Fortuna & Nunes, 2018; Sengün, Salminen, Mawhorter, Jung, & Jansen, 
2019; Türkay, Formosa, Adinolf, Cuthbert, & Altizer, 2020). Therefore, we need community efforts and 
discussion on the normative basis of toxicity management in computing systems: where does the HCI 
community stand on these matters? 

Research also needs to pay more attention to DDP design principles. Namely, a “purist” approach to data-
driven personas would claim that we should present all the truth and nothing but the truth in the personas 
we create. However, does toxicity filtering present a deviation from this rule? Does this rule matter in the 
first place? While we do not claim definite answers to these questions, we raise them as discussion points 
here because the HCI research community must define a position. Under which circumstances, if any, is it 
possible to deviate from the principle that data should drive personas? Toxic content and marginalized 
(fringe) personas present at least two ample cases where this question becomes practically relevant 
(Goodman-Deane et al., 2018; Salminen, Froneman, Jung, Chowdhury, & Jansen, 2020a). Namely, if data 
is centralized around, say, young White people, should we present no Black/Asian/elderly personas? Thus, 
we can see that the design tradeoffs require further thought; each direction offers pros and cons. 

Some individuals who advocate for quantitative persona creation might argue that truthfulness to data—
objectivity—outweighs improvements to user perceptions in importance (Chapman & Milham, 2006). 
Therefore, we find ourselves navigating these two conflicting needs: 1) the need to create truthful personas 
and 2) the need to create non-harmful personas. From a design point of view, designers face a dilemma in 
that, if they make personas “user friendly” by only incorporating non-toxic comments, they steer away from 
social media as it appears in reality. Withholding information on user attitudes can result in information 
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bubbles and echo chambers (Del Vicario et al., 2016). On the one hand, the design goal should not be 
“make likable personas”. On the other hand, (inadvertently) designing harmful personas can increase 
resistance to personas’ use for design. 

Based on our findings, giving users options to filter toxic quotes does seem like an essential feature for 
interactive persona systems. While designing such features goes beyond our scope here, we demonstrate 
a possible implementation in Figure 6. 

 

Figure 6. Hate Filter Functionality7 

Beyond the immediate context of personas in HCI, our research implications deal with how people perceive 
online user profiles with the implication that toxic comments in a user profile lead to an adverse effects on 
user perceptions. Here, we investigated a set of perceptions inspired by the nascent persona perception 
literature, itself inspired by the notion of person perception in social psychology. Further studies could 
measure other perceptions about toxicity impact how users perceive personas (and online profiles in 
general). 

5.3 Limitations and Future Research Directions 

The study has some limitations. First, we focused on persona quotes when manipulating toxicity. However, 
prior studies have shown that persona pictures also influence user perceptions (Hill et al., 2017; Long, 2009; 
Nieters, Ivaturi, & Ahmed, 2007; Salminen et al., 2018d). Therefore, future research could investigate the 
joint and separate impact that pictures have on user perceptions with quotes to better dissect the role that 
various persona information plays in how end users interpret personas overall. Here, we considered the 
persona to be “toxic” if (s)he had toxic quotes, but researchers could experiment with visual imagery (e.g., 
angry faces) to create similar conditions in contexts that reach beyond social media (e.g., researchers could 
test “unhappy customers” or “angry software users”). Further work in this area could explain in more detail 
what makes a persona toxic in end users’ eyes and, thereby, increase our theoretical knowledge about 
persona-user interaction. 

Second, we investigated only completely toxic versus completely non-toxic personas. Future studies could 
persona designs that contain both toxic and non-toxic quotes to varying degrees. Such research could 
determine a “toxicity breaking point” at which toxicity “takes over” users’ perceptions and tilts them in a 
negative direction. For example, a smaller ratio of toxic quotes could possibly not trigger a significant 
backlash in user perceptions if users perceived a persona as a “real person” with negative and positive 
dimensionality. In polarized contexts such as politics, it would be interesting to test how personas of the 
opposite political spectrum would possibly help defuse conflicts, increase understanding, and build bridges 
between people. 

Third, experiments dealing with sensitive topics such as online toxicity may be associated with social 
desirability bias (Fisher, 1993). While such studies may always potentially contain social desirability bias, 
we would argue that the risk becomes more negligible in a platform-mediated anonymous remote user study 
setting (such as our study) relative to an interview study where subjects directly interact with researchers 
because, in the former, subjects anonymously provide answers and do not socially interact with researchers 
in a way that might require them to obfuscate their true opinions. Although we could not find any specific 
study focused on social desirability bias in platform-mediated remote user studies (in fact, we find this 
research question itself interesting), we nonetheless believe that the lack of social interaction between 

 
7 By enabling or disabling the toggle, users can choose to see or not see toxic quotes in the generated persona profile. 
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subjects and researchers creates a setting where social desirability bias poses less concern (i.e., people 
feel confident in expressing their true opinions because they do not fear that others will morally judge them). 

Fourth, while interestingness (item 4) could be associated with likability, cases may exist where one could 
characterize even a repulsive entity as interesting. Nonetheless, the AVE, AVS, CR, and MSV values in 
Table 4 indicate that likability behaved like a valid independent construct. Fifth, we focused on U.K. nationals 
in this study. The internationally high prevalence of toxicity means we need to understand social media 
users’ toxicity beyond Western contexts (Chowdhury et al., 2020). Therefore, we encourage researchers to 
conduct cross-cultural studies that examine users’ toxicity perceptions. Sixth, we measured toxicity as a 
dichotomous variable for parsimony (i.e., maintaining a 2 × 2 experimental design). However, researchers 
have observed toxicity perceptions to involve more fine-grained levels (Chatzakou et al., 2017). Thus, future 
studies could consider toxicity perception as a non-binary variable and perhaps measure it via a Likert scale. 
Finally, we only measured perceptions but not behavioral interactions with the (non-)toxic personas, which 
represents an exciting research direction. 

6 Conclusion 

We obtained empirical results show that toxic quotes in DDPs affect various persona user perceptions 
negatively. Toxic DDPs appeared less likable, less similar to users, and less empathetic. Participants also 
noted less willingness to learn more about toxic DDPs. Non-toxic DDPs, in turn, received a higher level of 
positive impressions from users concerning credibility, likability, empathy, similarity, and willingness to use. 
Our results imply that removing toxic quotes from persona profiles positively affects user perceptions. To 
avoid interference with the DDPs’ truthfulness, we suggest that designers give persona users a choice in 
data-driven persona UI about whether to apply toxicity filtering or not. 
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Appendix 

Ethical questions about using social media data have become more important for researchers in 
computational social science and HCI (Ullmann & Tomalin, 2019). According to the calls to make ethical 
choices more explicit in studies in these fields (Fiesler & Proferes, 2018; Hoffmann & Jonas, 2016), we state 
the following ethical choices that we made in this study: 

• We generated the personas using aggregated, non-personally identifiable information 

• We adhered to the data-collection platform’s terms of service 

• We informed the recruited participants on the content’s explicit nature and acquired their consent 
for participation 

With these choices, we focused on mitigating potential harm to individuals’ privacy and the psychological 
harm that the toxic comments imposed on them. Due to the study’s nature, we could not purposefully block 
the explicit content in the toxic comments. 
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