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Resumo 

Esta dissertação investiga a relação entre a dimensão de uma empresa e a volatilidade das ações. 

Partindo de uma base sólida de conhecimentos que indicam a existência de um fator dimensão 

em Banz (1981) e Reinganum (1981), testamos dois temas conexos. Inicialmente, se a 

assimetria na volatilidade das rendibilidades está associada ao tamanho da empresa e ao setor 

em que opera. Posteriormente, a existência de efeitos de repercussão entre empresas com 

elevado e baixo valor de mercado. Ao comparar diferentes modelos ARCH, descobrimos que 

boas e más notícias geram impactos distintos na volatilidade, já que as especificações 

assimétricas são superiores ao modelo GARCH simétrico. Os resultados mostram ainda que 

esta dinâmica é mais significativa em grandes empresas, mas que pode variar conforme o setor. 

Este estudo revela também um elevado co-movimento entre grandes e pequenas empresas, já 

que ambas demonstram dinâmicas similares na volatilidade e uma forte correlação, 

especialmente em períodos de forte instabilidade financeira. Desta forma, através de um 

GARCH multivariado, acabamos por confirmar um comportamento assimétrico não só na 

volatilidade, mas também na correlação. Os modelos ARCH implementados modelam a 

volatilidade dos retornos do índice S&P500, do índice Russel 2000 e dos respetivos sectores 

para o período 2006-2020. 
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Abstract 

This dissertation explores the relationship between firm size and equity volatility. Working 

from a solid ground that indicates the existence of a size effect in Banz (1981) and Reinganum 

(1981), we test two related topics. At first, whether an asymmetric effect in returns’ volatility 

is linked to firm size and firm’s industrial sector. Secondly, the existence of spillover effects 

between large and small market capitalization firms. By comparing different ARCH type 

models, we find that good and bad news have different impacts on volatility, as the asymmetric 

specifications outperform the symmetric GARCH model. In addition, our empirical results 

show that such dynamic is stronger in large-cap firms, but it may vary according to the firm’s 

sector. This study also signals a strong co-movement between large and small firms, as both 

display a similar dynamic in volatility and a strong correlation, especially in periods of financial 

turmoil. Using multivariate GARCH models, we end up unveiling an asymmetric behaviour not 

only in volatility but also in conditional correlation. All ARCH type models are employed to 

the returns’ volatility of S&P500 Index, Russel 2000 Index, and their respective industry sectors 

over the 2006-2020 period. 
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1. Introduction 

 

The interest in market volatility and correlation between assets derives from its impact on 

capital investment decisions, as a deeper understanding of the major components of risk enables 

investors to make better decisions.  

As ever, when undertaking those same decisions, individuals/institutions face the 

intertemporal risk-return trade-off – i.e. the potential return for a given investment is directly 

linked to the level of risk that the investor can bear. This trading principle depends on numerous 

factors, being Banz (1981) and Reinganum (1981) the first to suggest firm size as a determinant 

factor of this, and to understand the important role firm size plays in Financial Economics. 

Small firms are presumed to be riskier than large firms, as in the overall the available 

information disclosed by small firms is minimal and insufficient. Furthermore, they cannot 

benefit from economies of scale and inevitably operate with higher production costs, their 

securities are less liquid than large firms securities, and yet, unlike larger firms which go 

through a continuous growing process they are in their early days, the time at usually most of 

the firms tend to fail (Ben-Zion & Shalit, 1975). 

The high number of papers about the topic revealed that these distinctive features between 

different-sized firms materialize in distinct behaviours. Those differences became evident when 

comparing how firms with a different market capitalization perform in terms of risk-adjusted 

returns, how their stock volatility moves throughout time, and how the volatility transmission 

between those firms helps or not to infer their future dynamics. 

For instance, when comparing risk-adjusted returns, several authors proved the existence 

of a size effect, with the small-sized firms performing higher risk-adjusted returns than the 

larger firms. Others showed that this size effect is no longer valid, and some even suggested the 

reverse, with stock returns of large firms outperforming stock returns of small-sized firms 

(Asness et al., 2018; Horowitz, Loughran & Savin, 2000; Dimson & Marsh, 1999). 

In terms of volatility dynamics, multiple papers evince a negative relation between stock 

returns and changes in returns volatility. Some studies suggest that this observation impacts 

more strongly on small-sized firms than large firms, and others indicate otherwise. (Chelley‐

Steeley & Steeley, 1996; Dzieliński, Rieger, & Talpsepp, 2018). 

For the volatility transmission between different-sized firms, authors once more came up 

with different results. Some suggested that the volatility of large stocks is relevant in predicting 
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the future dynamics of smaller firms but not the inverse (Harris & Pisedtasalasai, 2006), 

whereas others identified a bidirectional relation (Hasan & Francis, 1998).  

Therefore, and considering this extensive existing literature, we intend to investigate 

volatility dynamics across different-sized firms. This study extends previous literature on two 

subjects. 

Firstly, and unlike previous literature that is mainly focused on such comparison, we extend 

that research and analyse now not only for large and small firms but also for dynamics across 

different industry sectors. For this purpose, the Global Industry Classification Standard (GICS) 

is considered. This constitutes a valuable investment mechanism to capture the 

comprehensiveness, extent, and evolution of sectors and industries. To the end of this study, we 

analyse the index sectors of Standard & Poor’s 500 (S&P500) and Russel 2000 (RUT) traded 

during the 2006-2020 period. The first index comprises the performance of large market 

capitalization equities, and the latter concerns small-capitalization firms. The industry sectors 

evaluated are the Consumer Discretionary, Consumer Staples, Energy, Financials, Health, 

Industrials, Information Technology, Materials, and Utilities. Additionally, we will also 

investigate for spillover effects between the S&P500 and RUT Indexes. For this topic, we will 

implement a recent class of models which preserves the simple representation of univariate 

GARCHs with an easy to compute the correlation estimator, the Dynamic Conditional 

Correlation models. 

Secondly, and for both subjects, we exhibit here results that cover the dramatic 

transformation experienced in financial markets during the Coronavirus Pandemic, therefore 

presenting relevant insights for those interested in improving their expertise on stock market 

volatility and in predicting future values of this. 

To address the Asymmetric Volatility Phenomenon, we will model the return series with 

an ARMA structure. Given its homoskedasticity limitation, and to conclude about the return’s 

conditional volatility behaviour, we will incorporate GARCH statistical processes. The 

concerned model is the Asymmetric Power GARCH (APARCH) of Ding, Granger, and Engle 

(1993), a powerful statistical process that includes seven specific cases as restrictions of 

parameters of the model itself. Among them, we have the GARCH of Bollerslev (1986) which 

considers that positive and negative shocks have the same impact on volatility and the GJR-

GARCH that incorporates an asymmetric coefficient. 

For the Spillover Effects topic, we will extend the univariate framework to a multivariate 

GARCH approach. We will test two specifications, the Dynamic Conditional Correlation 

(DCC) model from Engle and Sheppard (2001) and the Asymmetric Dynamic Conditional 
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Correlation (A-DCC) model from Cappiello, Engle, and Sheppard (2006), an expansion of the 

former that allows for conditional asymmetries in correlation dynamics.  

For the several GARCH models under analysis, we consider the Student’s t for the 

conditional distribution of the errors, thus following the proposal in Bollerslev (1987), when he 

inferred from previous papers that returns are frequently well described by a unimodal 

symmetric distribution with fatter tails than the Normal. 

The achieved results will contribute to a deeper understanding in diverse fields of Finance 

such as portfolio management, where an improved comprehension of volatility spillovers will 

be valuable for portfolio managers, institutions, and investors throughout the stocks’ selection 

procedure and the asset allocation process; research, for individuals interested in the study of 

equity markets; financial applications and risk management, as a better understanding of 

volatility dynamics will be crucial in option pricing and value-at-risk models that are built from 

volatility forecasts; among many others. 

The remainder of the proposal is laid out as follows. Section 2 describes the existing 

literature of the two main topics addressed here, the asymmetric volatility phenomenon and 

spillover effects between large and small firms. Section 3 details the models to be used 

throughout this dissertation and describes the numerous statistical tests to be implemented. 

Section 4 reports the empirical results obtained from modelling index returns volatility and 

correlation, using the specifications described in Section 3. 
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2. Literature Review 

 

Over time, intellectuals have been working hard to attest and contribute to the efforts devolved 

before theirs by proposing new methods, suggesting different views, and bringing new topics 

into discussion. 

During these years, a substantial number of studies covering multiple fields such as 

profitability, diversification, technological innovation, and capital markets have revealed that 

incorporating a firm size variable can be decisive, leading authors to attain better results on 

repeated occasions. The first studies on the subject were developed by Banz (1981) and 

Reinganum (1981). They identified a size effect, with small firms presenting substantially 

higher risk-adjusted returns than large firms over a long period. Afterwards, many other pundits 

published papers indicating the existence of this size effect, raising several explanations for the 

occurrence of such phenomenon, namely Roll (1981), Reinganum (1982), Stoll and Whaley 

(1983), among others. 

The interest in this phenomenon has persisted to this day, with numerous studies following 

such findings and contributing to the better comprehension we have today.  

Nonetheless, authors have demonstrated that previous notions on the topic are not as 

straightforward as we believed, presenting in more recent times different results for the size 

effect phenomenon. Meeting prior observations, Asness et al. (2018) found evidence of an 

effective and stable size premium after controlling key variables like profitability, stability, 

growth, and safety. Likewise, Acharya and Pedersen (2005) detected that size matters since 

small companies face more liquidity risk, which requires higher expected returns. However, 

some indicated that the tendency in stock returns of small firms to outperform the returns of 

larger firms is unwarranted (Horowitz, Loughran, & Savin, 2000). Others, as Dimson and 

Marsh (1999) and Al-Rjoub et al. (2005), even presented results for a reversal in the size effect 

phenomenon, with larger firms displaying substantially higher risk-adjusted returns than 

smaller companies. 

Although, despite this intensive and continuous work on the subject, there are still multiple 

nuances that few have explored yet, namely the relationship between firm size and returns’ 

volatility, the stock volatility’s behaviour across different industry sectors, and the transmission 

mechanisms between large and small firms. 

 



 

6 
 

2.1. Asymmetric Volatility Phenomenon on Different-Sized Firms 

 

Previous studies from Black (1976) and Christie (1982) documented that, on average, distinct 

shocks impact differently on return volatility, as volatility tends to fall in response to “good 

news” and rise in response to “bad news”. According to their empirical studies, this asymmetry 

can be explained, at least in part, through the financial leverage concept, named as leverage 

effect. When the firm’s equity value decreases, the weight of debt in the firm capital structure 

increases, ceteris paribus. Therefore, leaving the equity holders in a riskier position, as senior 

securities rank above common stock at the distribution of the firm’s income and in case of 

bankruptcy.  

Besides the leverage effect, which is not strong enough to be fully accountable for an 

asymmetry in conditional variance, Campbell and Hentschel (1992) proposed a volatility 

feedback hypothesis. They argued that a large piece of news (good or bad) increases the future 

expected volatility, which in turn increases the required rate of stock’s return and subsequently 

leads to a decline in stock price. The difference is that in the case of negative news, the volatility 

effect amplifies the impact of bad news. 

Given these findings of asymmetric behaviour in the conditional variance, some authors 

stepped forward and related this to the firm size, unveiling the existence of a “firm size” effect. 

On the one hand, we have pundits that identified stronger evidence of asymmetric volatility in 

small capitalization companies than in larger ones (Chelley‐Steeley & Steeley, 1996; Henry & 

Sharma, 1999), presenting a result consistent with investors’ expectations that shocks in small 

firms are more uncertain. On the other hand, we have authors as Dzieliński, Rieger, and 

Talpsepp (2018), who proved that stocks under a higher level of attention (typically large firms) 

exhibit a larger asymmetry in volatility. Their research suggests that an asymmetry in volatility 

is related to the quantity of coverage. According to them, bad news about a small firm might be 

noticed by investors, but bad news about a large company are likely to generate far greater 

attention. This greater coverage will lead investors to receive more conflicting information, 

especially in bad times, which will further increase volatility in the case of large companies. 

Their empirical research is grounded in previous literature of Andrei and Hasler (2015), who 

found out that asymmetry in volatility is driven by asymmetric attention. According to them, in 

the case of inattentive investors or investors that receive less information, the new information 

is only gradually assimilated into stock prices, as the learning process is slow. In contrast, 

vigilant investors immediately absorb new information into prices.   
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The study of such dynamics does not end right then and there. Future papers raised the 

question of how those different-sized firms behave among distinct industry groups. This 

question is a consequence of increasing economic integration and ongoing corporate 

globalization, that gradually remove country and regional factors from the decision process 

(Cavaglia, Brightman & Aked, 2000). Ferreira and Gama (2005) identified that overall industry 

risk already dominates the world and country risk, thus adverting for the prominent role that 

industry factors play in investment strategy and the need to take them into account. 

In order to arrive to previous results, the conditional variance of stock returns was broadly 

represented by the GARCH family of statistical processes. Engle (1982) was the first to 

introduce this new class of stochastic processes, the Autoregressive Conditional 

Heteroscedastic (ARCH) processes. The original ARCH model was developed to improve the 

existing models, replacing the previous assumption of constant volatility for conditional 

volatility. Since then, its popularity has significantly increased, and numerous specifications 

have been introduced. The GARCH processes demonstrate a good capacity to estimate 

appropriate volatility forecasts, meet the main stylized facts for asset returns, and yet, the 

estimation of the model parameters is quite efficient. 

Within this family, the Generalized ARCH of Bollerslev (1986), more specifically the 

GARCH (1,1), has become the most popular ARCH specification. The GARCH model is a 

generalization of the original ARCH in Engle (1982) that allows for past conditional variances 

in the current conditional variance equation. Taylor (2011) claims that the popularity of 

GARCH (1,1) can be easily explained. Firstly, this specification is easy to estimate as it includes 

only four estimates. Furthermore, it accounts for the main stylized facts of daily returns. At last, 

it produces volatility forecasts with similar accuracy to the ones generated from more complex 

specifications. 

However, and as evidenced in Hansen and Lunde (2005), the GARCH (1,1) has revealed 

not being able to capture the asymmetric behaviour of returns volatility in financial markets, 

with this specification being outperformed by others that can accommodate it. 

Empirical studies by Nelson (1991) and Glosten, Jagannathan, and Runkle (1993) showed 

that it is crucial to consider an asymmetric coefficient in financial time series models. In order 

to account for it, an immensity of univariate GARCH specifications have been proposed: the 

Exponential GARCH (EGARCH) model of Nelson (1991), the GJR-GARCH of Glosten, 

Jagannathan, and Runkle (1993), the Threshold ARCH (TARCH) model of Zakoian (1994), the 

Asymmetric Power Autoregressive Conditional Heteroscedasticity (APARCH) of Ding, 

Granger, and Engle (1993), among many others. 
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The APARCH model is a unique specification that will assume a primary role in this 

dissertation.  This specification encompasses seven other special cases (among them the 

GARCH, GJR, and TARCH) and allows the power of conditional variance equation to be 

estimated from the data. It was proposed in Ding, Granger, and Engle (1993), while 

investigating the long memory property of returns - i.e., when returns distant in time display 

high autocorrelation between them. In line with previous results, they identified a lower serial 

correlation between stock market returns than between absolute returns. They found out that 

power transformations of absolute returns (|𝑟𝑡|𝑑) have substantial high correlations up to 100 

lags, proving that stock returns have long-term memory. According to their study, the largest 

autocorrelation is observed for values of d close to 1. From this evidence, they tested if other 

models could also generate a similar pattern to the autocorrelation in stock market returns, and 

it is rather interesting that they do. 

 

2.2. Spillover Effects between Large and Small Firms 

 

In addition to those findings, events of price and volatility transmission emerged. Over time, 

numerous studies have investigated the spillover effects between developed and emerging stock 

markets, among major asset classes, between different sectors and industries, and within some 

regions (Li & Giles, 2015; Liow, 2015; Elyasiani et al., 2015). These studies found evidence of 

spillover effects from the US market to emerging stock markets, pointed out equity as the main 

contributor of spillover effects among major asset classes, and showed strong linkages between 

different industries. However, the study of spillover effects between different-sized firms has 

not received that much attention. 

Lo and MacKinlay (1990) and Boudoukh, Richardson and Whitelaw (1994) were among 

the first to conduct studies on this topic, revealing the existence of cross effects among different-

sized firms. Interestingly, a number of those studies demonstrated that such cross-correlations 

are asymmetric, with the returns of large firms being used to explain the return of small firms, 

but not the inverse (Mech, 1993). 

Subsequently, Conrad, Gultekin, and Kaul (1991) identified the existence of this same 

asymmetry in the volatility’s predictability. They found that shocks to large firms are important 

in predicting the future volatility of small firms, whereas shocks to small firms have no impact 

on the future large firms’ conditional variance. According to them, this asymmetry in volatility 
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spillovers is consistent with a market in which the prices of large stocks react to new 

information immediately, and the prices of small stocks respond with a lag. 

More recently, Harris and Pisedtasalasai (2006) reached the same conclusion. They 

wondered how much transmission mechanisms tell us about market efficiency and argued that 

this information needs to be considered in financial applications determined from volatility 

estimates such as portfolio optimization, pricing, value-at-risk models, and hedging strategies. 

Nevertheless, some authors did not attain the same results. Hasan and Francis (1998) found 

evidence of volatility spillovers between different-sized firms, but in contrast to previous 

literature, their results showed a symmetry in the predictability of volatilities. According to the 

authors, their analysis from monthly collected data captures more of the dynamics among firms 

than previous studies grounded on weekly data. 

To investigate these transmissions of volatility, Engle and Sheppard (2001) introduced the 

Dynamic Conditional Correlation (DCC) model. The DCC is a multivariate specification with 

conditional variance and correlation where the conditional covariance is decomposed into 

conditional standard deviations and a time-varying correlation matrix, so that univariate and 

multivariate dynamics are dissociated. They were pioneers in developing a class of multivariate 

GARCH models capable of estimating large time-varying covariance matrices, as until recently 

practitioners used to assume a constant correlation in their studies. The DCC model meets the 

conclusions of most empirical tests carried out to verify such assumption, with pundits 

demonstrating that correlation increases in periods of high volatility and that autocorrelation’s 

magnitude and persistence are affected by volatility (Billio, Caporin, & Gobbo, 2006). In 

essence, this parametrization congregates the simple interpretation and empirical success of 

univariate GARCH models, with ease to compute and interpret the dynamic correlation 

estimator. 

In the meantime, multiple studies identified an asymmetric pattern in the cross-correlation 

between large and small firms. According to Yu and Wu (2001), this asymmetry may be 

explained through a group of economic factors such as market frictions, lagged information 

transmission, and institutional interest. Nevertheless, they found additional evidence suggesting 

that a large part of this asymmetric pattern may in fact be attributed to the differential quality 

of information between large and small companies. Large companies display a higher 

sensitivity of stock prices to market information and an increased quality of cash flows 

information. 

To account for this issue, Cappiello, Engle, and Sheppard (2006) proposed an alternative 

multivariate GARCH model, the Asymmetric Generalized Dynamic Conditional Correlation 



 

10 
 

(AG-DCC). Unlike the original model, this specification permits now for a conditional 

asymmetry in volatility and correlation. According to its authors, this is an extension of the 

standard DCC-GARCH along two dimensions: to allow for asset-specific news and smoothing 

parameters, and conditional asymmetries in correlations. In their literature, authors show the 

importance of this new model by displaying empirical results that unveil an asymmetric 

dynamic in equity returns’ conditional correlation, with this model performing better than all 

symmetric specifications. 

Further in this dissertation, we will describe and implement the statistical models above-

mentioned, reaching a better comprehension of volatility dynamics and transmission 

mechanisms between large and small firms. 
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3. Methodology 

 

In this dissertation, we address two main topics: the asymmetric volatility phenomenon on 

distinct capitalization firms and the existence of spillover effects between the S&P500 and RUT 

Indexes. 

 

3.1 Asymmetric Volatility Phenomenon  

 

An asymmetric dynamic in returns’ volatility will be tested through two complementary 

approaches: an in-sample and an out-of-sample methodology. Whereas the in-sample fit of a 

model is appreciated by practitioners, as it works well in numerous situations and helps them 

to acquire theoretical insights on the topics of interest, the latter allows them to evaluate the 

out-of-sample predictive power of the models. 

In the out-of-sample methodology, the data is split into a training set for initial parameter 

estimation and model selection, and a validation set to evaluate the forecasts of one-day-ahead 

volatility. 

In this paper, the first nine years will be considered as the training set (roughly 2500 

observations), while the last four years will correspond to the validation set (approximately 

1000 observations). Hence, we follow the insights of Hansen and Timmermann (2012), who 

recommend practitioners to adopt a broad out-of-sample period to strengthen the power of the 

forecast evaluation test.  

To compare the models proposed, we will implement the Likelihood Ratio Test for the in-

sample results and the Harvey-Newbold (HN) Test for the out-of-sample analysis. Before their 

implementation, there are still multiple steps to go through. 

 

3.1.1 Normality and Stationarity in Index Returns 

 

The importance of fitting the data under scrutiny with the right curve is quite significant, as it 

leads us to achieve more realistic results. To find the distribution that closer describes the data, 

we will test the normality of all observations. 

The Jarque-Bera test is valid for large samples, testing the index returns normality through 

a simple computation and an asymptotically efficient procedure (Jarque & Bera, 1987). 
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The test statistic is asymptotically distributed as 𝜒(2)
2 , and defined from the estimates of 

Skewness (√𝑏1
̂

 ) and Kurtosis (𝑏2̂): 

 

 

𝐽𝐵 = 𝑛 ∗ (
(√𝑏1
̂

)2

6
+

(𝑏2̂ − 3)
2

24
) 

 

(1) 

where √𝑏1
̂

 = 𝜇3̂/𝜇2
3/2̂

 and 𝑏2̂ = 𝜇4̂/𝜇2
2̂. 

For a 𝛼 significance level, the null hypothesis (normality in index returns) is rejected if JB 

> 𝜒(2)
2 (𝛼). 

Additionally, we test the time series stationarity. To that end, the Augmented version of the 

Dickey-Fuller test will be considered. Whereas the original version is built on a simple 

autoregression that can cause the errors to be autocorrelated, the Augmented Dickey-Fuller 

(ADF) test allows us to clean up any serial correlation by including lagged terms. In this 

analysis, the number of lagged terms to incorporate in the ADF statistical test are determined 

by minimizing a given Information Criteria. 

To attain accurate results, we must choose the most appropriate specification from the class 

of models investigated by Dickey and Fuller (1979): 

  

∆𝑦𝑡 =  γ𝑦𝑡−1 + ∑ 𝛽𝑗∆𝑦𝑡−𝑗+1 

𝑝

𝑗=2

+ 휀𝑡 

∆𝑦𝑡 = 𝛽0 + 𝛽1t +  γ𝑦𝑡−1 + ∑ 𝛽𝑗∆𝑦𝑡−𝑗+1 

𝑝

𝑗=2

+ 휀𝑡 

∆𝑦𝑡 = 𝛽0 + 𝛽1t +  γ𝑦𝑡−1 + ∑ 𝛽𝑗∆𝑦𝑡−𝑗+1 

𝑝

𝑗=2

+ 휀𝑡 

 

(2) 

 

(3) 

 

(4) 

The first model is not a plausible case to describe the stock returns since it is hard to believe 

that the analysed data was generated by a process where 𝛽0 = 0. Moreover, there is no evidence 

of stock returns exhibiting a deterministic trend, thus model (3) is also not an option. Therefore, 

by a process of elimination, the ADF test will be implemented including an intercept in linear 

regression. 
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The ADF test assumes the following hypothesis: 

 
 

{
   H0: γ = 0 

      H1: γ < 0   
 

 
 

Under the null hypothesis, we test if the series contains a unit root – i.e., if the time series 

is non-stationarity. In the case of rejecting the null hypothesis, there is statistical evidence of 

stationarity in the time series. 

 

3.1.2 Conditional Mean 

 

To reach a greater understanding of the time series, we will model the daily returns through an 

Autoregressive Moving Average (ARMA) process. This statistical process presents a good 

specification for the conditional mean equation, based on past realizations. The ARMA(p,q) 

model incorporates p autoregressive terms and q lagged moving-average terms, as defined 

below: 

  
 

 𝑦𝑡 =  𝜇 +  𝜑1𝑦𝑡−1 + . . . + 𝜑𝑝𝑦𝑡−𝑝  +  휀𝑡  + 𝜃1휀𝑡−1 + . . . + 𝜃𝑞휀𝑡−𝑞 (5) 

 

where 𝑦𝑡−𝑖 is a return at time 𝑡 − 𝑖 and 휀𝑡 is a white noise process. 

The coefficients 𝜑1,…, 𝜑𝑝 reveal how 𝑦𝑡 is related to its past values 𝑦𝑡−1,…, 𝑦𝑡−𝑝, and the 

coefficients 𝜃1,…, 𝜃𝑞 reveal how 𝑦𝑡 is related to past random shocks. 

In order to find the accurate conditional mean equation of each time series, two 

autocorrelation functions are considered: Total Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF). 

While Pure Autoregressive models are characterised by an ACF that decays towards zero 

and a PACF with p statistically significant spikes, the Pure Moving Average processes is 

recognized by an ACF with q statistically significant lags and a PACF that tails off towards 

zero. In an ARMA(p,q) model, the order of each term is extracted from the PACF and ACF, 

with the former decaying after lag p and the latter after lag q (Enders, 2015). 

Lastly, after estimating the respective models, we will confirm whether those were able to 

capture the correlation embodied in each time series, thus testing if the residuals present no 
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autocorrelation. To this end, we implement the Portmanteau Test suggested in Ljung and Box 

(1978), the Ljung-Box test: 

 
�̃� = 𝑛(𝑛 + 2) ∑

𝜌𝑘
2

𝑛 − 𝑘

𝑚

𝑘=1

 

 

 

(6) 

 

where n is the number of observations, m is the number of lags in the null hypothesis, and 𝜌𝑘 

is the autocorrelation at lag k. 

For a 𝛼 significance level, we reject the null hypothesis if �̃� > 𝜒1−𝛼,𝑚
2 , where: 

 

{
     H0: 𝜌1 = . . . = 𝜌𝑚 = 0 

   H1: ∃𝜌𝑗 ≠ 0                  

 

If the null hypothesis is rejected, there is statistical evidence of serial correlation. Otherwise, 

the time series was generated by a non-autocorrelated process. 

 

3.1.3 Conditional Heteroscedasticity 

 

Considering that homoscedasticity is implied in the conditional distribution of ARMA 

processes, we test for the existence of a very common feature in financial returns, the existence 

of conditional heteroscedasticity.  

For this purpose, we apply the Lagrange Multiplier (LM) test proposed in Engle (1982), 

which effectively allows us to test for the existence of autoregressive conditional 

heteroscedastic (ARCH) effects. 

Considering that the squared residual is regressed on a constant and q lagged values: 

 

 

𝑒𝑡
2 = �̂�0 + ∑ �̂�𝑖𝑒𝑡−𝑖

2

𝑞

𝑖=1

+ 𝑢𝑡 

 

(7) 

This test contemplates the following hypothesis: 

 

{
H0: α0 = α1 =. . . . = αm = 0    

  H1: ∃ αj ≠ 0, for  j = 1, 2, … , m 
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The null hypothesis states the absence of an ARCH effect. Hence, if this is rejected, there 

is statistical evidence of conditional heteroscedasticity in residuals of the ARMA process.  

 

3.1.4 Univariate Conditional Heteroscedasticity Models 

 

To characterize the time-varying volatility, a common feature in economic and financial data, 

the ARCH Model and an extension of this, the GARCH Model, were introduced. Despite 

describing some significant features such as volatility clustering and heavy tails, there are others 

that neither of them can accommodate. Among them, the asymmetric dynamic in returns 

volatility. 

Since these two were built, and in an attempt to account for additional features, numerous 

GARCH models and variants of these have been proposed. For the purpose of this study, we 

consider three of those specifications, confronting symmetric and asymmetric dynamics in 

volatility.  

In here, all specifications are estimated through the Maximum Likelihood Method. The lag 

length of the models will be restricted to p = q = 1, following the research of Hansen and Lunde 

(2005). They were able to empirically demonstrate that models with more lags rarely 

outperform the (1,1) specification. 

 

3.1.4.1 Asymmetric Power Autoregressive Conditional Heteroskedasticity Model 

(APARCH)  

 

The model considered is the Asymmetric Power GARCH (APARCH) of Ding, Granger, and 

Engle (1993). This model encompasses seven other special cases as restrictions of parameters 

of the model itself. Unlike GJR and GARCH specifications, it allows the power (𝛿) of the 

heteroscedasticity equation to be estimated from the data under review. When considering this 

transformation, individuals can linearize otherwise non-linear models. 

Then, when considering a linear regression: 

 

 

𝑦𝑡 = 𝛽𝑥𝑡  +  𝑢𝑡 

𝑢𝑡 = 휀𝑡𝜎𝑡 

 

(8) 
 

(9) 

where 𝑦𝑡 is the dependent variable and 𝑥𝑡 a vector with explanatory variables. 
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The APARCH structure is as follows: 

 

 

𝜎𝛿
𝑡 =  ω + ∑ 𝛼𝑖(|𝑢𝑡−𝑖|  − γ𝑖𝑢𝑡−𝑖)

𝛿 +

𝑝

𝑖=1

 ∑ 𝛽𝑗𝜎𝛿
𝑡−𝑖

𝑞

𝑗=1

 

 

 

(10) 

 

 

where,   ω > 0, 𝛿 > 0, 𝛼𝑖 ≫ 0 for 𝑖 = 1, . . . , 𝑝, 𝛽𝑗 ≫ 0 for 𝑗 = 1, . . . , 𝑞,  

−1 < γ𝑖 < 1 for 𝑖 = 1, . . . , 𝑝 

 

      

     

 

The APARCH model encompasses the following special cases: 

1) The Engle’s ARCH(p) if 𝛿 = 2, γ𝑖 = 0 for  𝑖 = 1, . . . , 𝑝 , and  𝛽𝑗 = 0 for 𝑗 = 1, . . . , 𝑞. 

2) The GARCH model of Bollerslev, when restricting 𝛿 = 2 and γ𝑖 = 0, for  𝑖 = 1, . . . , 𝑝. 

3) The Taylor/Schwert’s GARCH, if consider 𝛿 = 1 and γ𝑖 = 0, for  𝑖 = 1, . . . , 𝑝. 

4) The GJR GARCH model of Glosten, Jagannathan, and Runkle, when 𝛿 = 2. 

5) The TARCH model of Zakoian, by restricting 𝛿 = 1 and  𝛽𝑗 = 0, for  𝑖 = 1, . . . , 𝑞. 

6) The Higgins and Bera’s NARCH model, if γ𝑖 = 0 for 𝑖 = 1, . . . , 𝑝 , and  𝛽𝑗 = 0 for 𝑗 =

1, . . . , 𝑞.  

7) The Log-ARCH model of Geweke and Pantula, when 𝛿 → 0. 

 

3.1.4.2 Generalized Autoregressive Conditional Heteroskedasticity Model (GARCH)  

 

To analyse for a symmetric dynamic in returns volatility, we test for the most applied ARCH 

specification in empirical research, the GARCH model. Bollerslev (1986) proposed a more 

comprehensive specification than the original ARCH model, where the conditional variance 

depends on the q most recent squared residuals and p latest conditional variances. 

The GARCH model is one of the seven special cases encompassed in the APARCH model, 

and defined as: 

 𝜎2
𝑡 =  ω + ∑ 𝛼𝑖𝑢𝑡−𝑖

2

𝑝

𝑖=1

+ ∑ 𝛽𝑖𝜎𝑡−𝑖
2

𝑞

𝑖=1

 (11) 

 

 

where, 

 

 

 

ω > 0, 𝛼𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑞 and 𝛽𝑗 ≥ 0 for 𝑗 = 1, . . . , 𝑝 

∑ 𝛼𝑖

𝑝

𝑖=1

+ ∑ 𝛽𝑗

𝑞

𝑗=1

 <  1 
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These constraints guarantee that the conditional variance is not negative, and the process is 

stationary. 

 

3.1.4.3 GJR-GARCH Model 

 

Conversely, to analyse asymmetric volatility movements (when positive and negative shocks 

have a different impact on the returns’ volatility), we consider the APARCH and GJR-GARCH 

models. The latter is also a special case of the APARCH model when we restrict 𝛿 to 2, and: 

 

 

𝛼𝑖
∗ = 𝛼𝑖(1 − γ𝑖)

2 

γ𝑖
∗ =  4𝛼𝑖γ𝑖 

 

(12) 
 

(13) 

 

Glosten, Jagannathan, and Runkle (1993) demonstrated that the standard GARCH is 

misspecified. In view of improving this original model, they developed the GJR-GARCH that 

incorporates an asymmetric coefficient in the conditional variance (γ𝑖
∗). The model is defined 

as follows: 

 

𝜎2
𝑡 =  ω + ∑ 𝛼𝑖

∗𝑢𝑡−𝑖
2 +

𝑝

𝑖=1

∑ 𝛽𝑗𝜎𝑡−𝑖
2

𝑞

𝑗=1

 +  ∑ γ𝑖
∗𝑢𝑡−𝑖

2 𝐼𝑡−𝑖

𝑝

𝑖=1

 

 

 

(14) 

 

 

Asymmetry is incorporated in the GJR-GARCH model by weighting 𝑢𝑡−𝑖
2  differently for 

positive and negative residuals, through the indicator variable: 

 

 

𝐼𝑡 = {
1, if  𝑢𝑡 < 0

    0, otherwise  
 

 
 

3.1.5 Likelihood Ratio Test 

 

To determine which model better fits the data for in-sample evidence, we measure their 

goodness of fit by confronting the two special cases against the unrestricted model, the 

APARCH. 

To this end, the Likelihood Ratio (LR) test is implemented. It compares the maximised 

value of the Log-Likelihood function between two nested models: the unrestricted model (𝐿𝑢) 

and the restricted case (𝐿𝑟). 
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The LR test statistic is asymptotically Chi-squared distributed, where m equals the number 

of restrictions imposed for each special case. The LR test is defined as: 

 

 

LR = −2(𝐿𝑟 − 𝐿𝑢) ~ 𝜒(𝑚)
2  

(15) 

 

In the null hypothesis, the LR test states that the special case is a better fit for the data than 

the unrestricted model. It is rejected for a test statistic higher than a Chi-squared percentile with 

m degrees of freedom, a percentile that will vary according to the 𝛼 significance level 

considered (Brooks, 2019).  

 

3.1.6 Harvey-Newbold Test 

 

To assess the out-of-sample predictability, we implement the HN test. This constitutes a test for 

Equal Predictive Ability, thus following the indication in Hansen (2005).  

Harvey and Newbold (2000) proposed a test for multiple forecast encompassing. The HN 

test compares competing forecasts by testing whether one forecast encompasses the others - i.e. 

the inferior forecasts do not contain any useful information not already present in the superior 

forecast. 

To test the null hypothesis that one forecast encompasses the others, we consider 

(𝑓1𝑡 , . . . , 𝑓𝐾𝑡) as K competing forecasts and 𝐴𝑡 as the Actual Quantity, with: 

 

  𝑒1𝑡 =  𝜆1(𝑒1𝑡 − 𝑒2𝑡) + 𝜆2(𝑒1𝑡 − 𝑒3𝑡)+. . . . +𝜆𝐾−1(𝑒1𝑡 − 𝑒𝐾𝑡) + 휀𝑡 (16) 
 

 

where 𝑒𝑖𝑡 = 𝐴𝑡 − 𝑓𝑖𝑡, 휀𝑡 is the error of the combined forecast, and 0 ≤ 𝜆𝑖 ≤ 1. 

 

The null hypothesis that 𝑓1 encompasses 𝑓2, . . . , 𝑓𝐾 is: 

      H0:  𝜆1 = 𝜆2 = ⋯ = 𝜆𝐾−1 = 0  

The regression-based test for multiple forecast encompassing is an F-test of the joint 

significant parameters in 𝑒𝑖𝑡. The regression (16) can be written in general form as: 

 

 
𝑦𝑡 =  𝑋𝑡

′𝛽 + 휀𝑡 (17) 
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where 𝑦𝑡 =  𝑒1𝑡, 𝛽 = [𝜆1 𝜆2 . . . 𝜆𝐾−1]′, 𝑎𝑛𝑑 𝑋𝑡 = [(𝑒1𝑡 − 𝑒2𝑡)(𝑒1𝑡 − 𝑒3𝑡). . . (𝑒1𝑡 − 𝑒𝐾𝑡)]′ 

Nonetheless, Harvey and Newbold (2000) strongly recommend the implementation of the 

Modified Diebold-Mariano-Type Test (𝑀𝑆∗) in practical applications, given its good size and 

reasonable power in large samples. They modified the original version to test for forecast 

encompassing, with the test statistic taking the form:  

 

 

𝑀𝑆∗ =  (𝐾 − 1)−1(𝑛 − 1)−1(𝑛 − 𝐾 + 1)�̅�′�̂�−1�̅� 

 

(18) 

 

where �̅� = [�̅�1 �̅�2 . . . �̅�𝐾−1]′, �̅�𝑖 = 𝑛−1 ∑ 𝑑𝑖𝑡, 𝑑𝑖𝑡 = 𝑒1𝑡(𝑒1𝑡 − 𝑒𝑖+1,𝑡) and �̂� is the sample 

covariance matrix. 

For the test statistic (18), we consider 𝐹𝐾−1,𝑛−𝐾+1 critical values. 

 

3.2 Spillover Effects 

 

Over time, volatility moves together across assets and markets. At sometimes closer, other times 

farthest, but the recognition of such characteristic through a Multivariate model is an 

opportunity to extend our knowledge and enhance the decision process. 

In this paper, index returns are first modelled into a VAR framework. Furthermore, to 

address the time-varying correlations we expand the univariate analysis to a multivariate 

approach. To this end, we consider two Multivariate GARCH models of conditional variances 

and correlations, thus modelling conditional variances and correlations separately. 

 

3.2.1 Vector Autoregressive Models (VAR) 

 

Among the existent multivariate stochastic processes and given the VAR’s resemblance with 

ordinary regression models, it turns to be the most applied model in practice. The VAR(p) 

model captures the linear interdependencies among multiple time series and is described by: 

 

 

𝑦𝑡 = 𝑣 + 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 휀𝑡 
 

(19) 

 

where 𝑦𝑡 =  (𝑦1𝑡, . . . , 𝑦𝐾𝑡)′ is a k-vector of stationary variables; 𝑣, 𝐴1, . . . , 𝐴𝑝 are matrices of 

coefficients to be estimated; and 휀𝑡 is a vector of innovations. 
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To implement a VAR framework, the time series must be stationary. To that end, the 

analysis is conducted using daily returns instead of index prices, thereby only capturing short-

run dependencies between each time series. 

The diagnostic testing will be implemented again, this time at a multivariate level. To test 

for normality in index returns, we implement the multivariate Jarque-Bera test. Moreover, to 

conclude about the model’s stability, we implement the CUSUM test based on recursive 

residuals (Brown, Durbin & Evans, 1975). Through the multivariate Portmanteau (asymptotic) 

test, we can assess for serially correlated errors, and finally, we run the multivariate ARCH-

LM test to study for the presence of conditional heteroscedasticity. 

This model will be used to investigate and describe the relationship between the two return 

time series under analysis. For that purpose, we implement the Pairwise Granger Causality test.  

 

3.2.2 Dynamic Conditional Correlation (DCC) Model  

 

To determine the DCC GARCH parameters, we follow a two-stage procedure. Firstly, we 

estimate the univariate GARCH models for each index individually, and subsequently, using 

the transformed residuals of this first stage, we estimate the parameters of the dynamic 

correlation. 

The time varying correlation matrix (𝑅𝑡) is the following: 

 

 

with, 

 

where, 

 

 

 

 

 

 

𝑅𝑡 = 𝑄𝑡
∗−1𝑄𝑡𝑄𝑡

∗−1 

𝑄𝑡 = (1 − 𝑎 − 𝑏)�̅� + 𝑎휀𝑡−1휀𝑡−1
𝑇 + 𝑏𝑄𝑡−1 

 

𝑄𝑡
∗ is a diagonal matrix with the square root of the diagonal elements in 𝑄𝑡. 

The parameters a and b are conditioned to guarantee non-negativity and 

stationarity. 

휀𝑡 are the disturbances standardized by their conditional standard deviation. 

�̅�  equals 𝐸[휀𝑡휀𝑡
𝑇].  It is the unconditional covariance matrix of the 휀𝑡. 

 

 

(20) 

 

(21) 

 

 

 

 

 

 

 

 

 

 

Additionally, to ensure that 𝑅𝑡 is positive definite, we must guarantee that 𝑄𝑡 is positive 

definite. 
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The determined model is used to estimate the conditional covariance. The covariance 

matrix (𝐻𝑡) is decomposed into a time-varying conditional standard deviation matrix (𝐷𝑡) from 

the univariate GARCH models, and a time varying correlation matrix, 𝑅𝑡: 

 

 

 

 

𝐻𝑡 ≡ 𝐷𝑡𝑅𝑡𝐷𝑡 

ℎ𝑖,𝑡 = 𝛼𝑖,0 + ∑ 𝛼𝑖,𝑞

𝑄𝑖

𝑞=1

𝑟𝑖,𝑡−𝑞
2 + ∑ 𝛿𝑖,𝑝

𝑃𝑖

𝑝=1

ℎ𝑖,𝑡−𝑝 

 

(22) 

 

(23) 

 

where ℎ𝑖,𝑡 are the elements in the diagonal matrix 𝐷𝑡 for i = 1,2, …, n, and in accordance with 

the non-negativity and stationarity restrictions of the GARCH specification.  

To guarantee that 𝐻𝑡 is positive definite, the starting value of 𝑄𝑡 (𝑄0) has to be positive 

definite. Additionally, two sufficient conditions for 𝑄𝑡 to be positive definite and stationary is 

to attain non-negative values of 𝑎 and 𝑏, and that 𝑎2 + 𝑏2 < 1. 

From the covariance matrix, we infer the predictability of volatility between distinct market 

capitalization firms. 

 

3.2.3 Asymmetric Dynamic Conditional Correlation (A-DCC) Model 

 

The A-DCC is a special case of the AG-DCC model, where original parameter matrices are 

replaced by scalars. To estimate such specification, we will adopt a two-stage procedure 

identical to the one presented in section 3.2.2, for the DCC-GARCH model. Hence, after 

estimating the several univariate GARCH models, the standardized residuals are used to 

estimate the correlation parameters. The difference between the two specifications is in the 

correlation evolution equation implemented in the second stage of the A-DCC’s estimation, 

considering now: 

 

 

where, 

 

𝑄𝑡 = (�̅� − 𝑎2�̅� − 𝑏2�̅� − 𝑔2�̅�) + 𝑎2휀𝑡−1휀𝑡−1
𝑇 + 𝑔2𝑛𝑡−1𝑛𝑡−1

𝑇 + 𝑏2𝑄𝑡−1 

 

𝑛𝑡 = 𝐼[휀𝑡 < 0] ∘ 휀𝑡 

�̅� = 𝐸[𝑛𝑡𝑛𝑡
𝑇] 

(24) 

 

 

 

A sufficient condition for 𝑄𝑡 to be positive definite is that (�̅� − 𝑎2�̅� − 𝑏2�̅� − 𝑔2�̅�) is 

positive semi-definite, with 𝑎2 + 𝑏2 + 𝛿𝑔2 < 1 for 𝛿 = maximum eigenvalue [�̅�−1/2�̅��̅�−1/2]. 
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This modification of the original DCC model was proposed in Cappiello, Engle, and 

Sheppard (2006), incorporating now two additional dimensions: asset-specific news and 

smoothing parameters, and a conditional asymmetry in the correlation dynamics. 

 

3.3 Information Criteria 
 

Along the several stages of this study, numerous decisions are based on a given Information 

Criteria. Hence, the choice of which Criteria to consider is of major importance. 

While selecting the number of lag terms to incorporate in the structure identification and in 

the multiple statistical tests, we follow the results in Liew (2004). He concluded that the 

accuracy of each Information Criteria improves as the sample size grows, with the Akaike 

Information Criteria (AIC) outperforming the Bayesian Information Criteria (BIC) for a sample 

size lower than 480 and the other way around for a sample size higher than 480. Thus, as we 

investigate time series with a sample size substantially higher than 480, we will rely on BIC 

results. 
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4. Empirical Study 

 

Our analysis uses price data from all indexes for a period of fourteen years, from 2006 until 

2020. Hence, we analyse the models over a representative time window, including in such range 

the recent period of the Coronavirus pandemic and the 2007-2008 Global Financial Crisis, the 

two periods associated to the highest market volatility values ever registered in the CBOE 

Volatility Index (VIX). 

The data series are collected from a Bloomberg terminal and expressed in US dollars 

(USD). 

The daily adjusted closing prices are converted into daily log returns: 

 

 

r𝑖,𝑡 = ln (
P𝑖,𝑡

P𝑖,𝑡−1
) = ln(P𝑖,𝑡) − ln(P𝑖,𝑡−1) 

 

(25) 

where P𝑖,𝑡 is the closing price of index i at moment t, and t = 1, 2, …, T. 

 

4.1 Graphical Examination of Stock Prices and Index Returns 
 

The best way to start any time series analysis is to plot it against time and evaluate it graphically. 

Thus, the daily adjusted closing prices of the S&P500 and RUT Indexes, and the transformed 

series of daily log returns are presented in Figures 1, 2 and 3, respectively. 

 

 

Figure 1 – Daily Stock Prices from 2006 - 2020 
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During the last fourteen years, the two indexes exhibited similar stock price movements. 

Between the end of 2006 and the end of 2008 both present a downward trend, signalling that 

regardless of the firms’ capitalization value none could escape the 2007-2008 Global Financial 

Crisis. From then on, and in line with the subsequent recover in economic activity, they display 

a marked growing trend, finishing 2020 in historical highs. Nevertheless, in the years in 

between, both suffer significant drops in index levels, with emphasis on the recent Coronavirus 

Pandemic Crisis. Even so, those sharp declines have been followed by a quick and sustained 

rebound, a V-Shaped Recovery, thus not affecting the overall trend. 

A stochastic trend like the one in Figure 1 is a common source of nonstationary, keeping 

us from employing econometric models and investigate for relationships between different time 

series. In order to attain stationary time series, where historical relationships can be generalized 

into the future, we converted closing prices into log returns. 

 

 

Figures 2 and 3 exhibit the S&P500 and RUT index returns. The previous transformation 

fully eliminated the stochastic trend, with observations converging now to a constant value. 

Contrarily to stock prices representation, shocks now seem to be temporary, with their effects 

dissipating over time and time series reverting to a long-term constant level. 

Additionally, it is relevant to note that the daily returns in Figures 2 and 3 exhibit volatility 

clustering, with records of high volatility during and after financial crisis, and low volatility in 

periods of growth and stability. Those observations are thus in line with the existing literature 

in Mandelbrot (1963), where the author argues that large changes tend to be followed by large 

changes, and small changes tend to be followed by small changes. 

Nonetheless, we can find distinctive characteristics between the two indexes. In fact, for 

the period considered, the RUT index seems to present a higher dispersion and appears to vary 
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more than the S&P500. According to the figures above, we can also realise that small firms 

exhibit more extreme returns than large firms.  

To describe volatility clustering and other related effects, we will then employ three 

GARCH specifications. 

 

4.2 Asymmetric Volatility Phenomenon Analysis 
 

4.2.1 Properties of Returns and Preliminary Tests 

 

Table 1 reports preliminary statistics on key features of S&P500 and RUT index returns, whereas 

sector indexes’ results are exhibited in Annex A.  

The mean returns are all close to zero and predominantly positive, exhibiting a positive trend 

in price movements over time. The Energy and Financial Sectors present the lowest mean 

returns, with the former for small firms and the latter for large firms being the exception here, 

exhibiting a negative mean return. On the other hand, the Technological Sector presents the 

highest mean returns in both cases. On average, the returns of small firms exceed the returns of 

large firms, therefore meeting previous expectations of a higher return on small firms to 

compensate the investors for a higher risk. 

Moreover, we addressed the extreme results of index returns rather than focusing only on 

the average. Table 1 shows that all indexes present negative skewness, therefore demonstrating 

a higher frequency of incurring small gains and a few extreme losses. A special reference for 

the Energy and Materials sectors, and large-cap firms of the Industrials sector, since all these 

present more negative extreme returns on the left tail than the remaining sectors. Regarding 

kurtosis, results meet previous expectations of finding leptokurtosis in financial data, with large 

capitalization firms exhibiting more extreme results than small firms.  

Therefore, and it comes as no surprise, the Jarque-Bera Test rejects the normality of the 

returns for every single index in analysis. Due to the characteristics of the empirical distribution, 

namely the leptokurtosis, we will perform the Student’s T distribution to model the conditional 

distribution of the errors. 

Additionally, to guarantee that we can proceed with conditional mean estimation, we tested 

index returns’ stationarity through the ADF test. For that purpose, we considered the “urca” 

package from the RStudio programming language. Empirical results support previous graphical 

evidence by rejecting the null hypothesis for a significance level of 1%, thus indicating clear 
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evidence of stationarity in each time series. Therefore, converting the daily closing prices into 

daily log returns allowed us to remove the stochastic trend observed in Figure 1 and find a 

stationary series that we can work with.  

Afterwards, in order to estimate the autoregressive and moving-average terms that better 

fit the data, we implemented the “auto.arima” function from the “forecast” package, as it 

automatically returns the best ARMA model for a given Information Criteria. After 

incorporating additional terms in the suggested processes, we were able to remove 

autocorrelation from most indexes. The results of the Ljung-Box test, for up to tenth order serial 

correlation in squared returns, are presented in Table 1. As the p-value of each return series is 

higher than a 5% significance level, we do not reject the null hypothesis and consequently verify 

the adequacy of the fit. Nevertheless, there is an exception. In the Financial Sector for large-

cap firms, we were unable to capture all information embodied in the time series. We end up 

rejecting the null hypothesis, even after including additional terms in the conditional mean 

equation. For this case, we decided to proceed with the structure proposed from “auto.arima” 

function, being this the best model according to BIC, no matter the result of the test. 

Lastly, as financial returns present significant evidence of volatility clustering, we 

investigated the squared residual series from each ARMA specification. Figure 4 plots the ACF 

for the squared residual series of the RUT and SP500 indexes. In both, we can visually confirm 

that there are still dependencies left in the data. To accommodate autocorrelation in squared 

returns, we will model indexes’ volatility, thereby allowing for conditional heteroscedasticity. 

 

Figure 2 – ACF of RUT Squared Residuals (on the left), and ACF of SP500 Squared Residuals (on the right) 

 

Additionally, to test for the presence of conditional heteroscedasticity we implemented the 

ARCH LM test. The test statistic results are straightforward and conclusive, they signal the 
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presence of time-varying volatility as the null hypothesis is rejected for a 1% significance level 

and for any given order. Such dynamic will be captured by incorporating a GARCH structure 

in the processes, therefore, an ARMA-GARCH model must be estimated (Curto & Pinto, 2012). 

 

Table 1 – Summary and Diagnostic Statistics of Indexes Returns 

 Russell 2000 Index S&P500 Index 

Mean 0,00022 0,00018 

Median 0,00101 0,00062 

Maximum 0,08860 0,10957 

Minimum -0,12612 -0,09470 

Std. Dev. 0,01670 0,01320 

Skewness -0,356 -0,326 

Kurtosis 8,322 12,916 

Jarque-Bera 3024* 10361* 

ADF  

(intercept) 
-37,828* -39,822* 

Ljung-Box 8,454 8,810 

ARCH-LM 296* 301* 

*  Denote significance at 1% level. 

 

4.2.2 In-Sample Estimation and Empirical Results  

 

Table 2 provides in-sample results for the RUT and S&P500 Indexes, whereas all sector indexes 

results are reported in Annex B. The coefficients from conditional mean equations and the 

GARCH coefficients from conditional variance models are also reported in Table 2. To find 

those estimates, we employed the “rugarch” package from the R programming language. 

Overall, the conditional variance estimates are statistically significant. This is an evidence 

regardless of the GARCH specification considered, thereby matching the LM test results and 

supporting our decision to deal with conditional heteroscedasticity in index returns. 

Large values of 𝛼1 and 𝛽1 increase the conditional variance, but they do so in different 

forms. A larger 𝛼1 means a higher response of conditional volatility to new information, since 

a shock (휀𝑡) has a significant impact on 𝑢𝑡
2 and 𝜎2

𝑡+1. On the other hand, a larger 𝛽1 means a 

stronger autoregressive persistence in conditional variance. 
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In this dissertation, 𝛼1 and 𝛽1 coefficients satisfy the properties of nonnegativity and 

stationarity in the processes, being always equal or higher than 0 and their sum a value below 

1, respectively. Nonetheless, that sum is always close to 1, which signals a significant amount 

of volatility persistence with past volatility strongly affecting current volatility.  

In the GARCH model, 𝛼1 and 𝛽1 estimates are statistically significant. They exhibit 

different dynamics across different capitalization firms and sector indexes. Large firms tend to 

present greater values of 𝛼1 and lower values of  𝛽1, thus suggesting that a market event has a 

greater immediate impact on large-cap firms than small firms. Since the volatility of prices is 

related to the rate of information that reaches the markets (Ross, 1989), a different dynamic 

between large and small firms is consistent with a reality in which the prices of large companies 

react to new information immediately, while the prices of small ones respond with a lag.  

In the APARCH and GJR specifications, all 𝛽1 estimates are statistically significant. Once 

again, we find evidence of a higher autoregressive persistence in small firms’ volatility than in 

larger companies. Therefore, this conclusion can be generalized as it does not depend on a given 

model, it is verified in every GARCH specification. 

In its turn, if we analyse at the sector index level, we understand that such features are more 

evident in some cases than in others. For instance, those characteristics are stronger in 

Consumer Staples and Financial Services, with large firms exhibiting high significant values of 

𝛼1 and lower values of  𝛽1. On the other hand, such dynamics are residual or non-existent in 

the Energy Sector, with shocks impacting equally irrespective of the firms’ capitalization value. 

 

Table 2 – In-Sample Estimation and LR Test Results 

 Russell 2000 Index S&P500 Index 
 APARCH GARCH GJR APARCH GARCH GJR 

c 0,000 0,001* 0,000* 0,000* 0,001* 0,001* 

θ1 -0,058* -0,058* -0,053* -0,063* -0,073* -0,066* 

θ2 0,004 -0,014 -0,010 -0,003 -0,020 -0,013 

θ3 0,010 -0,009 0,006 0,004 -0,020 -0,008 

θ4 -0,027 -0,037 -0,028 -0,003 -0,027 -0,011 

θ5 -0,024 -0,036 -0,034 -0,026# -0,043# -0,037# 

ω 0,000 0,000 0,000 0,000 0,000 0,000 

𝛼1 0,072* 0,094* 0,000 0,105* 0,137* 0,000 

𝛽1 0,923* 0,892* 0,902* 0,899* 0,859* 0,866* 

𝛾1 0,985*  0,153* 0,999*  0,231* 

𝛿1 0,954*   0,917*   

LR  90,35* 28,10*  133,38* 37,79* 

*, # Denote significance at 1% and 5% level, respectively. φi and θi are the conditional mean equation 

parameters. ω, α1, β1, γ1, and δ1 are the conditional variance parameters.  
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By implementing two asymmetric specifications, we intend to investigate if the empirical 

results of Black (1976) and Christie (1982) are still valid, relating them subsequentially to firm 

size and industry sector. 

In the GJR specification, the asymmetric coefficient is statistically significant and always 

different from 0, leading us to conclude that the impact of news is asymmetric. To understand 

the sign of such asymmetry, we must recognize that while good news has an 𝛼1 impact on 

volatility, bad news has an 𝛼1 + γ1 impact. In this dissertation, the in-sample results show that 

γ1 is statistically significant and higher than 0. Hence, our results reveal that bad news lead to 

more stock volatility than good news. 

For the APARCH model and regardless of the stock index, the estimate for the asymmetric 

coefficient is also statistically significant and positive. Once more, we meet the expectation of 

financial markets becoming more volatile after a negative shock than a positive one. Therefore, 

our results are in accordance with most previous literature, supporting the existence of an 

asymmetric dynamic in returns volatility. 

Afterwards, and before concluding if such effect is influenced by firm size and its industry 

sector, we will investigate which specification better fits time-varying volatility. 

According to the LR test, the asymmetric models outperform the symmetric GARCH. The 

null hypothesis is rejected in almost all indexes, thus being the special cases a worst fit for the 

data than the APARCH model. There is a single exception here, the GJR specification is 

superior to the unrestricted model in the Utility Sector, but only for large firms. Nonetheless, 

both APARCH and GJR specifications incorporate an asymmetric coefficient which highlights 

the importance of including this additional term in the conditional variance equation. From the 

LR test results, we conclude that APARCH is the model more prone to have generated the data. 

Thus far, we have validated that all firms exhibit an asymmetric behaviour in returns’ 

volatility. However, Table 2 shows that large-capitalization companies tend to be more affected 

by the arrival of bad news than small ones. Here, we meet the expectations of Dzieliński, Rieger, 

and Talpsepp (2018), with firms under a greater level of attention (usually large firms) showing 

a stronger asymmetry in volatility. According to them, this asymmetry in volatility is driven by 

asymmetric attention.  

Despite this generalized behaviour, it is relevant to highlight that dynamics tend to change 

from sector to sector. In the Energy, Financials, Materials, and Utility Sectors, small firms 

exhibit a stronger asymmetric dynamic than larger firms, countering the overall dynamic. 

Moreover, in the Consumer Staples and Health Sectors we have detected an equally strong 

asymmetry regardless of the firm’s capitalization value. 
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Lastly, it is also worth highlighting that the power parameter (𝛿) in the APARCH 

specification is always close to the unity and consequently far from 2. Therefore, a power 

transformation in the conditional heteroscedasticity equation around 1 appears to be a better fit 

for the data, as this specification outperforms the other models in analysis (where 𝛿 equals 2) 

in almost all cases. 

 

4.2.3 Out-of-Sample Estimation and Empirical Results  

 

The out-of-sample methodology is conducted through the HN test, which confronts three 

competing forecasts with the Actual Quantity. The volatility forecasts for each conditional 

variance model are estimated in RStudio, by running a rolling window forecast from the 

“ugarchforecast” function. For the Actual Quantity, and since we are evaluating a variable that 

is unobservable even ex-post, we use an unbiased estimator. For the variable of interest in this 

paper, volatility, the squared return (assuming a zero mean) on an asset over a given period is 

proposed as a conditionally unbiased estimator (Patton, 2011). The comparison between each 

volatility forecast and the squared returns was made after coding the HN test in EViews, a 

statistical package for Windows. 

In Table 3, we present the HN test results and the associated probabilities. For this test 

statistic, we do not reject the null hypothesis for a 1% significance level in sixteen of the twenty 

indexes. In all those cases, the forecasts of GARCH and GJR specifications are inferior to the 

APARCH model forecasts, thereby not providing additional insights apart from those already 

included in the superior forecast. This rejection may also be due to the competing forecasts 

being very similar or a wide variability in the sample. 

However, the null hypothesis is rejected in the Consumer Discretionary sector, 

Technological sector for large-cap firms, and S&P500 Index. In those cases, a combination of 

the GARCH and/or GJR forecasts with those of APARCH will lead to enhanced forecast 

performance. Nevertheless, across those four indexes, the significance level associated to the 

test statistic is still higher in the APARCH specification than in the two special cases. 

Therefore, and with such knowledge in hand, we conclude that APARCH forecasts are 

more likely to encompass GARCH and GJR forecasts than the other way around. 
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Table 3 – Harvey-Newbold Test Results 

Index APARCH GARCH GJR 

RGUSDS                                       15,455 [0,0001] 44,400 [0,0000] 24,986 [0,0000] 

RGUSSS                                                   0,199 [0,6553] 24,938 [0,0000] 8,643 [0,0034] 

RGUSES                                       0,881 [0,3481] 13,442 [0,0003] 6,841 [0,0090] 

RGUSFS                                      0,397 [0,5289] 12,110 [0,0005] 3,345 [0,0677] 

RGUSHS                                       4,114 [0,0428] 53,874 [0,0000] 17,640 [0,0000] 

RGUSPS                                            1,474 [0,2250] 22,606 [0,0000] 9,688 [0,0019] 

RGUSTS                                            6,471 [0,0111] 41,002 [0,0000] 22,331 [0,0000] 

RGUSMS                                                     0,064 [0,8004] 12,541 [0,0004] 2,741 [0,0981] 

RGUSUS                                                    0,774 [0,3791] 10,503 [0,0012] 2,041 [0,1534] 

RUT 2,333 [0,1270] 31,956 [0,0000] 13,896 [0,0002] 

S5COND                                                     9,779 [0,0018] 36,182 [0,0000] 24,540 [0,0000] 

S5CONS                                                     0,512 [0,4746] 13,411 [0,0003] 1,171 [0,2794] 

S5ENRS                                                    2,546 [0,1109] 22,260 [0,0000] 10,761 [0,0011] 

S5FINL                                                   0,186 [0,6662] 7,366 [0,0068] 5,001 [0,0256] 

S5HLTH                                                     2,493 [0,1147] 25,933 [0,0000] 13,849 [0,0002] 

S5INDU                                                     3,095 [0,0788] 15,209 [0,0001] 10,077 [0,0015] 

S5INFT                                                   9,958 [0,0016] 39,127 [0,0000] 26,202 [0,0000] 

S5MATR                                                     4,559 [0,0330] 24,340 [0,0000] 8,557 [0,0035] 

S5UTIL                                                    5,654 [0,0176] 10,264 [0,0014] 5,741 [0,0168] 

S&P500 10,703 [0,0011] 37,794 [0,0000] 31,503 [0,0000] 

 

4.3 Spillover Effects Analysis 

 

4.3.1 Pairwise Granger Causality Test 

 

To study the existence of spillover effects, we extended the already discussed univariate 

analysis to a multivariate model, as the goal now is to establish the relationship between large 

and small firms. 

Firstly, and before proceeding with the correlation analysis, we investigated how much of 

the current S&P500 level can be explained by past values of the RUT and vice versa. It is not 

correct to state that correlation necessarily means causation -i.e. just because two assets are 

correlated it is not implied that they cause one another. In econometrics, there are multiple 

examples where two subjects are closely related, but that in the end, their association turned out 

to be spurious. For a better comprehension of the causality between the pair of return time series 

in analysis, we computed the Pairwise Granger Causality Test using 5 lags (a usual trading 

week) in the regressions: 
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𝑅𝑈𝑇𝑡 = 𝛼0 + 𝛼1𝑅𝑈𝑇𝑡−1 + ⋯ + 𝛼5𝑅𝑈𝑇𝑡−5 + 𝛽1𝑆&𝑃500𝑡−1 + ⋯ + 𝛽5𝑆&𝑃500𝑡−5 

 

(21) 

 

 𝑆&𝑃500𝑡 = 𝛼0 + 𝛼1𝑆&𝑃500𝑡−1 + ⋯ + 𝛼4𝑆&𝑃500𝑡−5 + 𝛽1𝑅𝑈𝑇𝑡−1 + ⋯
+ 𝛽5𝑅𝑈𝑇𝑡−5 

 

(27) 

 

 

 

For both regressions, the results in Table 4 show a p-value lower than a 5% significance 

level, which leads us to reject the null hypothesis. Therefore, there is a feedback effect between 

the two indexes, with the S&P 500 Granger causing the RUT and the RUT Granger causing the 

S&P 500. 

 

Table 4 – Pairwise Granger Causality Test Results 

 F-Test P-value 

H0: S&P500 does not Granger-cause RUT 6,225 0,0000094 

H0: RUT does not Granger-cause S&P500 5,516 0,0000459 

 

After guaranteeing that this relationship is meaningful and the stationarity in index returns 

(in Annex C), we proceeded with VAR model estimation according to BIC.  

 

4.3.2 Diagnostic Testing  

 

Multiple diagnostic tests were computed to conclude about the VAR model’s features. 

The multivariate version of the Jarque-Bera test is applied to the residuals of the VAR 

model estimated. As in the univariate analysis, we reject the null hypothesis of the test-statistic 

for any significance level (see Table 5). Hence, the process is not Multivariate Normal 

distributed. To accommodate fatter tales in the distribution, we will consider the Multivariate 

Student’s T distribution from now on. 

Furthermore, to detect structural changes in linear regression relationships, we implement 

a test from the generalized fluctuation test framework, the CUSUM test based on recursive 

residuals. As the upper and lower critical lines were never exceeded (Figure 5), we conclude 

that the system is stable over time.  
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Figure 3  – CUSUM Test based on Recursive Residuals 

 

Since stability in the VAR process is guaranteed, we proceed with diagnosis and implement 

the asymptotic Portmanteau statistic for testing serial correlation up to the tenth order. 

According to BIC, the number of p terms to include in the VAR model are 2, however, these 

terms were not enough to guarantee the absence of serially correlated disturbances. Therefore, 

as serial correlation is an undesirable characteristic of the model, we successively increased the 

p term’s value during VAR estimation until finding a specification that does not exhibit 

autocorrelation. The test statistic is presented in Table 5 and is associated to a p-value higher 

than a 5% significance level. Since we do not reject the null hypothesis, we verify the adequacy 

of the fit for up to tenth order serially correlated disturbances. 

Lastly, we computed the multivariate ARCH-LM test. Once again, we reject the null 

hypothesis, with the result in Table 5 indicating the existence of time-varying volatility. To 

better comprehend those developments in financial markets, we will introduce the two 

multivariate GARCH models already described in the literature review. 

 

Table 5 – Diagnostic Statistics 

 VAR Model 

Jarque-Bera 22.094* 

Pt.asymptotic 8,0329 

ARCH-LM 2.117* 

* Denote significance at 1% level. 
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4.3.3 DCC and aDCC Model Estimation and Empirical Results  

 

A constant conditional correlation approach was already discarded by practitioners. Therefore, 

we implement here specifications that allow time-varying conditional correlations. 

Differently from what was adopted in the univariate analysis, in the multivariate case we 

will not split the time series, proceeding now with a full-sample analysis. For that purpose, we 

executed the same summary and preliminary statistics as in the univariate methodology for the 

in-sample part. Once again, the results exhibit no serial correlation but display ARCH effects 

(Annex C). 

The first step of DCC and aDCC model building is to fit a univariate GARCH specification 

to the time series. The empirical results in 4.2.2 showed that the APARCH model outperforms 

the other specifications under analysis. As a result, we consider the APARCH specification 

when modelling the time-varying volatility of S&P500 and RUT indexes. Using the “rmgarch” 

package from R software, we were able to compute the APARCH parameter estimates. The 

ARCH, GARCH, and asymmetric estimates are all statistically significant (Annex D), thus 

validating our decision to have dealt with conditional heteroscedasticity and asymmetric 

volatility in index returns. 

Afterwards, we estimated the two parametrizations of dynamic conditional correlations. In 

both cases, the DCC joint estimates (DCC(a) and DCC(b)) are non-negative and statistically 

different from zero, confirming the time-varying nature of conditional correlations. Hence, we 

meet previous observations of Billio, Caporin, and Gobbo (2006), where they rejected the 

assumption of a constant dynamic in conditional correlations. 

The attained estimates are presented in Table 6. The news term (DCC(a)) shows that the 

DCC model exhibits a more sudden reaction to new information than the asymmetric 

specification. Nevertheless, the latter displays a higher persistence after a market event since 

this specification displays a higher DCC(b) estimate.  

 

Table 6 – Models Estimates and BIC values for DCC and aDCC Parametrizations 
 

DCC(1,1) aDCC(1,1) 

DCC(a) 0,070* 0,055* 

DCC(b) 0,906* 0,909* 

DCC(g)  0,025* 

BIC -14,067 -14,066 

* Denote significance at 1% level. 
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Furthermore, there is evidence of an asymmetric response in correlations to joint bad news 

(both returns being negative), as the asymmetric parameter in the aDCC is statistically 

significant for a 1% significance level. Therefore, the correlation between the S&P500 and RUT 

will be higher after a joint negative shock than after a positive one with the same magnitude.  

Lastly, we computed the half-life for the DCC specification – i.e. the expected time at which 

a shock to correlation is halfway dissipated. For the relationship in analysis, and following the 

approximation suggested in Engle and Sheppard (2001), we find that shocks to correlation are 

highly persistent, with a half-life of almost 29 weeks. 

 

4.3.4 Graphical Examination of Dynamic Conditional Correlations 

 

The estimation of these two multivariate models contributed to an improved comprehension of 

the relationship in analysis. We found evidence of an asymmetry in the correlation between 

large and small firms, but the magnitude of this association is still missing. To better understand 

the degree of this relationship, we extracted the plots of aDCC conditional variances, and DCC 

and aDCC time-varying conditional correlations. The three plots are depicted in Figures 6, 7, 

and 8. 

 
 

Figure 6 – aDCC Conditional Variance (in blue) vs |returns| 

 

From Figure 6, we verify that the two indexes exhibit a similar conditional variance for the 

period in analysis. They tend to record sharp increases in periods of greater uncertainty, as 

during the 2007-2008 Financial Crisis and the peak of Coronavirus Pandemic, and low and 

relatively steady volatility in calm periods. 
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                   Figure 7 – DCC of SP500 and RUT                                  Figure 8 – aDCC of SP500 and RUT 

 

In terms of conditional correlation, the DCC and aDCC specifications display a similar 

behaviour for the 2006-2020 period. The only substantial difference is their absolute values, 

with the DCC model exhibiting a more extensive range of values. In Figure 7, the DCC model’s 

correlation falls below 0.4 and 0.5 during mid-2018 and mid-2020, whereas the aDCC’s 

estimated correlation never dropped below those values for the same periods (Figure 8). 

From Figures 7 and 8, we identify a clear and positive correlation between the two indexes, 

showing that RUT and S&P500 move together over time and strengthening the spillover 

hypothesis tested in this paper. Notice that they signal a strong contagion across the two indexes 

with correlations above 0.8 for much of the time, and an even greater co-movement during 

periods of financial turmoil. Therefore, there is small scope for those interested in a 

diversification strategy. If the goal of an investor is to diversify, that strategy will not be 

successfully reached by incorporating different-sized firms in the same portfolio. 

The estimated correlations unveiled a strong association between the two indexes during 

periods of financial turmoil. For example, after reaching a record peak on 19th February, the 

S&P500 fell to a low of 2,237 by March 23, a decline of 34%. For that same period, the RUT 

experienced an even sharper decline, falling almost 41%. Note that, during this period, the 

correlation between the two indexes increased significantly and was never below 0.93. 

In this dissertation, we were able to demonstrate that during periods of high turbulence is 

recorded a higher correlation than in periods of relative optimism. Thus, in addition to an 

asymmetric dynamic in conditional volatility, we ended up finding that there is also an 

asymmetric response in conditional correlation. Therefore, correlation between the S&P500 

and the RUT may be greater for a downside move than for a positive shock of the same 

magnitude. 
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5. Conclusion 

 

Everyone is exposed to any kind of risk. In this paper, we provide insights acquired throughout 

this study, helping investors to learn more about risk and to avoid costly decisions. 

This dissertation expands previous investigation on the risk-return trade-off topic. It 

follows the empirical research of Banz (1981) and Reinganum (1981), the pioneers in 

understanding the decisive role that firm size takes in Financial Economics. Through the 

analysis of market volatility and correlation dynamics over different-sized firms, we were able 

to improve the awareness of investors regarding risk.  

We examined two well-known indexes for the 2006-2020 period: the S&P500 index, 

considered as a measurement of 500 of the largest firms listed in the USA stock exchanges, and 

the RUT, the most used benchmark of small-capitalization firms.  

For the first topic under review, the existence of an asymmetric volatility phenomenon in 

large and small firms, we additionally investigated for specific dynamics across the sector 

indexes of S&P500 and RUT. Our empirical analysis matches the existing literature of Black 

(1976) and Christie (1982), as we verify that regardless of the firm’s capitalization value and 

sector, companies exhibit an asymmetric dynamic in volatility.  

The in-sample results show that, based on the LR test, the APARCH specification 

outperforms the special cases in study, thus signalling that a model with an asymmetric term is 

a better fit for the data. Furthermore, we identify that overall, large companies are more affected 

by the arrival of bad news than small firms. Hence, we meet the results of Dzieliński, Rieger, 

and Talpsepp (2018), with firms under a greater media coverage (usually large firms) displaying 

a stronger asymmetric dynamic in volatility. They proved that an asymmetry in volatility is a 

result of asymmetric attention, with bad news about large companies generating far more 

attention than bad news about small firms. 

At the sector group level, the results differ from sector to sector. While Consumer 

Discretionary, Industrials and Information Technology follow the overall dynamic, in the 

Energy, Financials, Materials, and Utility sectors the asymmetric behaviour is stronger for small 

companies. At the same time, in Consumer Staples and Health sectors the asymmetric 

behaviour is not related to the capitalization value, the phenomenon is equally strong for large 

and small firms. These results highlight the value of a more detailed analysis at the sector group 

level, as it becomes evident that industry factors play an important role in investment strategy. 



 

38 
 

Regarding the out-of-sample results and according to the HN test, the APARCH forecasts 

are more likely to encompass GARCH and GJR forecasts than otherwise, as they present the 

highest significance levels across all indexes in study. Therefore, the APARCH model is more 

capable to predict the returns’ volatility in financial markets than GJR and/or GARCH 

specifications.  

Lastly, since the current S&P500 level can be explained by past values of RUT and the 

other way around, we found out that there is a meaningful relationship between large and small 

firms. Consequently, to improve our knowledge about this relationship, we implemented a 

multivariate approach. The extension of a univariate framework enabled us to assess the time-

varying correlation and to verify the existence of spillover effects between different-sized firms.  

Our empirical research signals a strong co-movement between RUT and S&P500 indexes. 

The conditional variance of RUT describes a similar dynamic to S&P500’s, and the time-

varying correlation between the two is greater than 0.8 for most of the time. This association 

becomes even stronger during periods of financial turmoil, as conditional variance increases 

significantly and equally for both indexes, and correlation reaches a higher level than during 

periods of positivity and calm in financial markets. In the end, we came up with evidence of an 

asymmetric dynamic not only in volatility but also in conditional correlation. 

In this paper, the empirical research relies on firms incorporated in the USA stock 

exchanges, which can ultimately be interpreted as a limitation. Nevertheless, we follow Ferreira 

and Gama (2005) insights of small country risk in more recent times, a consequence of 

increasing economic integration and corporate globalization. Therefore, an investigation from 

the world’s largest economy can be widely accepted. 

To account for sector risk, we investigated the asymmetric volatility phenomenon over 

different sector groups, but the same was not applied for the study of spillover effects. We 

believe that future research on the topic would be of great interest, allowing us to comprehend 

the transmission mechanisms between the several sectors and the predominant role that some 

might have over the others. Furthermore, implementing GACRH specifications that model 

more than two limiting regimes would be of great interest. The non-application of such models 

is a limitation of this study, explained by the difficulty to find fitting and forecasting methods 

and the complexity to create them. For instance, if future research accommodates an example 

of these, as the Flexible Coefficient GARCH of Medeiros and Veiga (2009), it would be able 

to differentiate the impact of “very good/bad” news from “good/bad” news and still contemplate 

a middle regime for calm periods. This way, we would be closer to understand how volatility 

moves throughout time. 
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In sum, the attained results will have a practical contribution and an updated response for 

multiple fields. For instance, they can be used in multiple financial applications such as option 

pricing, allowing investors to attain an improved estimation. The achieved results can also be 

reckoned in all other applications that rely on volatility forecasts, such as value-at-risk 

measurement. All those applications should consider an asymmetric dynamic in returns’ 

volatility, a different degree of asymmetry between different-sized firms and take into account 

the distinctive features of the firm’s sector under analysis. 

At last, the evidence of transmission mechanisms between large and small firms must be 

considered in portfolio management. The recognition of spillover effects will be extremely 

useful for the stocks’ selection and asset allocation processes, leading investors to look for 

assets that increase the diversification benefit in place of a combination of large and small firms. 
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Annexes 

 

Annex A - Summary and Diagnostic Statistics of Index Sectors’ Returns 
 

Russell 2000 Index 

 RGUSDS RGUSSS RGUSES RGUSFS RGUSHS 

Mean 0,00019 0,00035 -0,00024 0,00007 0,00036 

Median 0,00091 0,00084 0,00071 0,00041 0,00104 

Maximum 0,08352 0,06846 0,18807 0,10913 0,09195 

Minimum -0,13104 -0,08595 -0,18606 -0,16571 -0,08744 

Std. Dev. 0,01778 0,01284 0,02736 0,01859 0,01614 

Skewness -0,336 -0,273 -0,486 -0,200 -0,360 

Kurtosis 7,787 6,537 8,362 11,994 5,793 

Jarque-Bera 2452* 1344* 3115* 8504* 873* 

ADF 

(intercept) 
-36,132* -39,684* -35,725* -40,453* -36,778* 

Ljung-Box 13,028 7,056 15,481 3,059 15,785 

ARCH-LM 269* 336* 294* 398* 280* 

 

Russell 2000 Index 

 RGUSPS RGUSTS RGUSMS RGUSUS 

Mean 0,00018 0,00036 0,00033 0,00015 

Median 0,00093 0,00137 0,00117 0,00051 

Maximum 0,09152 0,08947 0,10606 0,09678 

Minimum -0,12432 -0,11010 -0,14373 -0,09664 

Std. Dev. 0,01802 0,01721 0,01956 0,01301 

Skewness -0,315 -0,251 -0,407 -0,237 

Kurtosis 7,499 6,260 7,708 10,269 

Jarque-Bera 2166* 1142* 2395* 5568* 

ADF 

(intercept) 
-37,040* -36,909* -36,664* -39,492* 

Ljung-Box 7,299 14,622 12,418 10,940 

ARCH-LM 282* 268* 269* 287* 
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S&P500 Index 

  S5COND S5CONS S5ENRS S5FINL S5HLTH 

Mean 0,00030 0,00027 0,00008 -0,00010 0,00029 

Median 0,00090 0,00053 0,00048 0,00050 0,00070 

Maximum 0,12313 0,08835 0,16960 0,17201 0,11713 

Minimum -0,10099 -0,06648 -0,16884 -0,18639 -0,07415 

Std. Dev. 0,01450 0,00922 0,01831 0,02319 0,01126 

Skewness -0,106 -0,004 -0,369 -0,121 -0,081 

Kurtosis 10,709 13,012 14,535 16,266 12,451 

Jarque-Bera 6240* 10516* 14018* 18470* 9373 

ADF 

(intercept) 
-38,139* -40,978* -40,794* -38,363* -39,829* 

Ljung-Box 12,343 5,923 4,756 39,514* 12,221 

ARCH-LM 276* 287* 311* 466* 331* 

 

S&P500 Index 

  S5INDU S5INFT S5MATR S5UTIL 

Mean 0,00020 0,00033 0,00015 0,00011 

Median 0,00070 0,00093 0,00085 0,00086 

Maximum 0,09516 0,11461 0,12473 0,12684 

Minimum -0,09215 -0,09670 -0,12934 -0,08530 

Std. Dev. 0,01439 0,01407 0,01692 0,01213 

Skewness -0,401 -0,078 -0,415 0,240 

Kurtosis 8,716 9,716 9,987 14,628 

Jarque-Bera 3496* 4735* 5194* 14210* 

ADF 

(intercept) 
-37,311* -38,559* -37,560* -39,829* 

Ljung-Box 7,726 14,283 16,252 9,100 

ARCH-LM 283* 298* 275* 278* 
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Annex B – Index Sectors’ In-Sample Estimation and LR Test Results 
 

 RGUSDS RGUSSS RGUSES 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,000* 0,001* 0,000 0,000# 0,001* 0,001* 0,000 0,001# 0,000 

θ1  
   -0,071 -0,080* -0,074*    

θ2  
   -0,034 -0,046# -0,043#    

θ3  
   0,009 0,001 0,001    

θ4  
   -0,013 -0,027 -0,019    

θ5  
   -0,021 -0,032 -0,029    

ω 0,000* 0,000 0,000 0,000* 0,000 0,000 0,000 0,000# 0,000 

𝛼1  0,071* 0,085* 0,017* 0,064* 0,069* 0,000 0,066* 0,085* 0,016 

𝛽1  0,927* 0,906* 0,914* 0,916* 0,914* 0,912* 0,933* 0,907* 0,918* 

𝛾1  0,689*  0,113* 0,999*  0,125* 0,688*  0,103* 

𝛿1  1,108*   1,113*   0,979*   

LR  55,42* 11,98*  69,29* 17,17*  52,37* 17,92* 

 

 RGUSFS RGUSHS RGUSPS 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,000 0,001* 0,000* 0,001 0,001* 0,001# 0,000 0,001* 0,000 

𝜑1 -0,896* -0,913* -0,903* -0,021 -0,031 -0,023 -0,037 -0,037 -0,034 

𝜑2       0,011 0,000 0,003 

𝜑3       0,016 0,003 0,015 

𝜑4       -0,023 -0,032 -0,027 

𝜑5       -0,044# -0,047# -0,047# 

θ1  0,811* 0,818* 0,812*       

θ2  -0,076* -0,093* -0,088*       

θ3  0,003 -0,011 -0,004       

θ4  -0,031 -0,042 -0,032       

θ5  -0,072 -0,079* -0,075*       

θ6 -0,030 -0,049 -0,037       

θ7 0,027 0,009 0,021       

θ8 0,038 0,035 0,038       

ω 0,000 0,000 0,000 0,001 0,000 0,000* 0,000 0,000 0,000 

𝛼1 0,088* 0,101* 0,025 0,072* 0,096* 0,000 0,063* 0,087* 0,000 

𝛽1 0,917* 0,891* 0,899* 0,909* 0,882* 0,882* 0,930* 0,901* 0,916* 

𝛾1 0,699*  0,130* 0,999*  0,158* 0,964*  0,132# 

𝛿1 0,949*   0,908*   1,048*   

LR  70,90* 25,65*  86,63* 22,71*  78,19* 18,44* 
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 RGUSTS RGUSMS RGUSU 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,001# 0,001* 0,001# 0,000 0,001* 0,000 0,000 0,000* 0,000 

𝜑1 -0,037 -0,035 -0,038 -0,493* 0,392* 0,376*    

𝜑2    -0,996* -0,886* -0,889#    

θ1    0,491* -0,402* -0,389* -0,090* -0,092* -0,091* 

θ2    0,999* 0,910* 0,916# -0,009 -0,016 -0,015 

θ3       0,007 -0,001 0,004 

θ4       -0,014 -0,016 -0,016 

θ5       -0,023 -0,027 -0,026 

ω 0,000 0,000# 0,000* 0,000 0,000 0,000 0,000 0,000 0,000 

𝛼1 0,067* 0,086* 0,000 0,051* 0,085* 0,000 0,058* 0,085# 0,002 

𝛽1 0,922* 0,896* 0,894* 0,942* 0,905* 0,930* 0,925* 0,898* 0,922* 

𝛾1 0,991*  0,156* 0,999*  0,116* 0,760*  0,113* 

𝛿1 0,953*   1,180*   1,366*   

LR  78,86* 23,60*  66,32* 12,06*  44,09* 6,50# 

 

 S5COND S5CONS S5ENRS 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,000# 0,001* 0,001* 0,000* 0,001* 0,000* 0,000 0,001* 0,000# 

𝜑1 -0,007 -0,013 -0,008 0,253* -1,819* -0,276* -0,177* 0,008 -0,077 

𝜑2 -0,021 -0,034 -0,029 0,724* -0,964* 0,720* 0,580* 0,744* 0,675 

θ1    -0,329* 1,740* 0,202* 0,122# -0,072 0,016 

θ2    -0,727* 0,807* -0,769* -0,580* -0,741* -0,672# 

θ3    0,064* -0,089* 0,022* 0,010 0,014 0,015 

ω 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 

𝛼1 0,083* 0,110* 0,010 0,074* 0,136* 0,017 0,072* 0,085* 0,014 

𝛽1 0,910* 0,881* 0,888* 0,877* 0,837* 0,850* 0,927* 0,908* 0,920* 

𝛾1 0,872*  0,171* 0,998*  0,187* 0,661*  0,103* 

𝛿1 1,129*   1,379*   1,112*   

LR  78,16* 18,59*  70,92* 21,62*  47,36* 12,95* 

 

 

 

 

 

 

 

 

 

 

 



 

51 
 

 S5FINL S5HLTH S5INDU 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,000# 0,001* 0,000# 0,000* 0,001* 0,001* 0,000# 0,001* 0,000# 

𝜑1    -0,654* -0,566 -0,520 -0,865* -0,888* -0,866* 

𝜑2    -0,185* -0,099 -0,095    

θ1 -0,077* -0,085* -0,079 0,606* 0,506 0,467 0,846* 0,866* 0,847* 

θ2    0,123* 0,029 0,034 -0,021 -0,033 -0,025 

θ3       0,010 -0,013 0,002 

θ4       0,026 0,009 0,022 

ω 0,000 0,000 0,000 0,001 0,000 0,000* 0,000 0,000 0,000 

𝛼1  0,113* 0,139* 0,051* 0,086* 0,116* 0,000 0,068* 0,112* 0,000 

𝛽1  0,897* 0,860* 0,867* 0,900* 0,859* 0,870* 0,916* 0,880* 0,899* 

𝛾1  0,568*  0,157* 0,999*  0,183* 0,999*  0,170* 

𝛿1  1,093*   0,895*   1,286*   

LR  55,48* 13,38*  86,90* 25,81*  95,40* 13,45* 

 

 S5INFT S5MATR S5UTIL 
 APARCH GARCH GJR APARCH GARCH GJR APARCH GARCH GJR 

c 0,001* 0,001* 0,001* 0,000 0,001* 0,000# 0,000* 0,001* 0,000* 

𝜑1 0,093# 0,818* 0,483 -0,031# -0,030 -0,027 -0,611 -0,566 -0,535 

θ1  -0,124* -0,848* -0,514    0,566 0,519 0,487 

θ2        -0,054 -0,054 -0,053 

θ3        -0,034 -0,030 -0,033 

θ4        -0,024 -0,023 -0,025 

θ5       -0,035 -0,041 -0,040 

ω 0,000 0,000 0,000* 0,000 0,000 0,000 0,000 0,000 0,000 

𝛼1  0,088* 0,108* 0,000 0,070* 0,102* 0,007 0,067* 0,092* 0,038 

𝛽1  0,898* 0,879* 0,871* 0,937* 0,893* 0,912* 0,909* 0,894* 0,907* 

𝛾1  0,999*  0,206* 0,892*  0,138* 0,270#  0,069* 

𝛿1  1,075*   0,910*   1,948*   

LR  96,06* 24,57*  73,02* 28,41*  11,78* 0,72 
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Annex C – Full-Sample Summary and Diagnostic Statistics of Index 

Returns 
 

 Russell 2000 Index S&P500 Index 

Mean 0,00026 0,00027 

Median 0,00101 0,00070 

Maximum 0,08976 0,10957 

Minimum -0,15344 -0,12765 

Std. Dev. 0,01651 0,01313 

Skewness -0,675 -0,553 

Kurtosis 11,55 15,917 

Jarque-Bera 11004* 24684* 

ADF  

(intercept) 
-42,716* -45,308* 

Ljung-Box 4,76 5,868 

ARCH-LM 198* 205* 
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Annex D – APARCH Parameter Estimation 
 

 Russell 2000 Index S&P500 Index 

c 0,000* 0,001* 

𝜑1 -0,058* -0,679* 

𝜑2 0,009 -0,042* 

𝜑3 0,011 -0,003 

𝜑4 -0,013 -0,006* 

𝜑5 -0,009 -0,021* 

𝜑6 0,007 -0,025* 

𝜑7 0,020 0 

θ1 0 0,616* 

ω 0,000 0,000* 

𝛼1 0,081* 0,114* 

𝛽1 0,920* 0,892* 

𝛾1 0,933* 0,963* 

𝛿1 0,938* 0,934* 

 


