

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2021-12-07

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Hamad, M., Conti, C., Almeida, A. M. de., Nunes, P. & Soares, L. D. (2021). SLFS: Semi-supervised
light-field foreground-background segmentation. In 2021 Telecoms Conference (ConfTELE). Leiria:
IEEE.

Further information on publisher's website:
10.1109/ConfTELE50222.2021.9435461

Publisher's copyright statement:
This is the peer reviewed version of the following article: Hamad, M., Conti, C., Almeida, A. M. de.,
Nunes, P. & Soares, L. D. (2021). SLFS: Semi-supervised light-field foreground-background
segmentation. In 2021 Telecoms Conference (ConfTELE). Leiria: IEEE., which has been published in
final form at https://dx.doi.org/10.1109/ConfTELE50222.2021.9435461. This article may be used for
non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ConfTELE50222.2021.9435461

SLFS: Semi-supervised Light-field Foreground-
background Segmentation

Maryam Hamad
Instituto Universitário de

Lisboa (ISCTE-IUL),
Instituto de

Telecomunicações,
Lisboa, Portugal

maryam.hamad@lx.it.pt

Caroline Conti
Instituto Universitário de

Lisboa (ISCTE-IUL),
Instituto de

Telecomunicações,
Lisboa, Portugal

caroline.conti@lx.it.pt

Ana Maria de Almeida
Instituto Universitário de

Lisboa (ISCTE-IUL),
ISTAR, Lisboa, Portugal,

CISUC-Center for
Informatics and Systems

of the University of
Coimbra

ana.almeida@iscte-iul.pt

Paulo Nunes
Instituto Universitário de

Lisboa (ISCTE-IUL),
Instituto de

Telecomunicações,
Lisboa, Portugal

paulo.nunes@lx.it.pt

Luís Ducla Soares
Instituto Universitário de

Lisboa (ISCTE-IUL),
Instituto de

Telecomunicações,
Lisboa, Portugal

lds@lx.it.pt

Abstract—Efficient segmentation is a fundamental problem
in computer vision and image processing. Achieving accurate
segmentation for 4D light field images is a challenging task due
to the huge amount of data involved and the intrinsic
redundancy in this type of images. While automatic image
segmentation is usually challenging, and because regions of
interest are different for different users or tasks, this paper
proposes an improved semi-supervised segmentation approach
for 4D light field images based on an efficient graph structure
and user’s scribbles. The recent view-consistent 4D light field
superpixels algorithm proposed by Khan et al. is used as an
automatic pre-processing step to ensure spatio-angular
consistency and to represent the image graph efficiently. Then,
segmentation is achieved via graph-cut optimization.
Experimental results for synthetic and real light field images
indicate that the proposed approach can extract objects
consistently across views, and thus it can be used in applications
such as augmented reality applications or object-based coding
with few user interactions.

Keywords—light field segmentation, foreground-background
segmentation, superpixels, graph-cut, semi-supervised
segmentation

I. INTRODUCTION
When humans look at images, their brains can easily

classify the objects in the scene by distinguishing the object’s
borders and understand the content. However, this task is
much harder for computers which consider the scene as an
array of pixels. To analyze the scene and understand its
content by identifying meaningful objects, computers
typically must start by applying image segmentation, which is
the process of partitioning an image into smaller parts with
homogenous properties. In computer vision, there are low-
level, mid-level and high-level image segmentation
techniques depending on the semantic meanings of the
resulting segments. Basically, low-level image segmentation
divides the image into smaller regions automatically with
similar visual characteristics, such as color or depth, but not
necessarily with a semantic meaning, and it can be used as a
pre-processing step for object tracking or image editing [1],
[2]. Mid-level image segmentation divides the image into a
smaller number of larger regions (i.e., objects), it may be
assisted with user interaction, however, it does not have
semantic labels for the objects [3]. In addition to the mid-level
segmentation output, the high-level image segmentation, can
be assisted with high-level knowledge or learning process to

Fig. 1. Example of the proposed segmentation approach: a) a reference
image with user's foreground and background scribbles; b) the segmented
object based on the scribbles.

obtain semantic meaning for the objects (e.g., a car, a flower,
etc.) [4], which is out of this paper’s scope. In this paper, a
combination of low-level image segmentation and user
scribbles are considered to obtain mid-level (e.g., foreground-
background segmentation) without having pre-defined
semantic labels for the objects.

Although image segmentation is usually considered as a
challenging problem, certain conditions can make it even
harder, such as overlapping between objects with poor
contrast or the huge amount of data, as in the 4D Light Field
(LF) images, specifically when pixels are used as graph nodes.
4D LF images can be obtained by an array of cameras or by a
single camera equipped with a special microlens array in front
of the sensor or a moving camera gantry to capture different
viewpoint images at different times. LF images record not
only the intensity of light but also the angular direction of light
rays [5]. The resulting 4D LF image, which can have a very
large number of pixels, can be interpreted as a 2D array of 2D
views and parametrized as 𝐿(𝑥, 𝑦, 𝑢, 𝑣) where 𝑥, 𝑦 are the
spatial geometry of pixels in each view and 𝑢, 𝑣 are the
angular geometry of views. The 2D views are obtained from
slightly different perspectives. While the 4D LF images
contain a huge number of pixels, the similarity between pixels
in different views can be used to reduce the computational
complexity [1]. Furthermore, one of the most important
advantages of 4D LF imaging is that it inherently includes
depth information in its structure, which can be used in
clustering and label propagation. In general, when traditional
2D segmentation is applied to 4D LF images, the information
from adjacent views is not considered to resolve object
occlusions, thus resulting in inconsistent segmentation across
views. In order to cope with these challenges, the 4D LF image
structure should be adequately considered. Various LF
segmentation techniques have been proposed in the literature
[3], [6]–[10]. However, most 4D LF segmentation techniques
are either time-consuming, not interactive, not proposed for
full consistent 4D LF segmentation or relying on accurate
depth estimation.

a b

This work was funded by FCT/MCTES through national funds and
when applicable co-funded by EU funds under the project
UIDB/50008/2020.

To overcome the existing limitations and because the
regions of interest are different for different users or tasks, an
improved interactive Semi-supervised 4D LF Foreground-
background Segmentation (SLFS) solution is proposed (see
Fig. 1). This approach can be widely applied in object-based
LF coding, augmented reality applications, or object
extraction. Similar concepts to the segmentation algorithm
proposed in [9], such as the graph-based image segmentation
and the graph-cut optimization technique are used in this
paper. However, different superpixel algorithm (i.e., the state-
of-the-art View Consistent Light Field Superpixel (VCLFS)
[10]) is exploited as graph nodes, enabling a dramatic
reduction in the size of the graph and to effectively propagate
the segmentation consistently across views, without the need
for extra accurate depth estimation algorithm.

The remainder of the paper is organized as follows:
Section II briefly reviews the related work on 4D LF image
segmentation available in the literature; Section III describes
the proposed approach in detail; Section IV evaluates the
SLFS performance through a series of experimental results;
Section V concludes the paper with some final remarks and
proposes directions for future work.

II. RELATED WORK
Image segmentation is a fundamental task in computer

vision, and it has been attracting the attention of researchers
for many years. Several image segmentation solutions for 2D
images have already been proposed, however, only a few
solutions have been proposed to tackle the 4D LF challenges,
such as the huge amount of data and the need for ensuring the
segmentation consistency across views. For low-level image
segmentation, 4D LF superpixels/superrays have been
proposed in [1], [8], [10] and can be used to enhance LF
editing tasks (e.g., by propagating the edits into a 4D LF
superpixel instead of a single pixel). For the case of mid-level
image segmentation, Wanner et al. [3] proposed the first
variational framework for multi-label segmentation, where the
color and disparity cues of input seeds are used to train a
machine learning classifier (i.e., random forest) that is used to
predict the label of each pixel. However, the segmentation is
not performed on the full 4D data (only the central view is
segmented), the authors mentioned that the optimization step
can take ~5 minutes on a modern GPU if applied for all views.
Mihara et al. [6] improved Wanner’s approach by building a
graph in 4D space with spatial and angular neighbors and then
using graph-cut for multi-label segmentation. Due to the huge
number of graph nodes and the high computational time, only
a fraction of the LF views (i.e., 5×5) were considered in the
experiments. To reduce the graph size, Hog et al. [7] proposed
a novel graph representation that utilizes the ray bundle (i.e.,
a set of all rays describing the same 3D scene point) as a graph
node and exploited the redundancy in the LF data, decreasing
the running time of the Markov Random Field (MRF)
optimization and achieving entire 4D LF views segmentation.
However, their approach depends on quite accurate depth
estimation on all the views, thus, inaccurate individual depth
maps greatly increase the running time and decrease the
segmentation coherence. Additionally, the segmentation
results can be very sensitive to the noise in real LF images.

It has been proven the efficiency of achieving mid-level
and high-level segmentation based on low-level (e.g.,
superpixel) segmentation [2]. Lv et al. [9] recently proposed a
novel hypergraph representation for 4D LF multi-label

segmentation by exploiting the superpixels proposed in [8] as
hypernodes to reduce the graph size. However, Lv et al.’s
approach relies on superpixel segmentation that requires depth
estimation from extra algorithm, hence, it can be time-
consuming. Additionally, it is not as accurate for real LF
images as for the synthetic LF images due to the lack of
accurate estimated depth map. Our approach is different from
the recent work in [9], by replacing the used superpixels and
simplifying the graph structure and size. Our approach is
designed to interactively extract foreground from background
similar to the recent work in 2D images [2], however, the
segmentation is applied for all 4D LF data to achieve effective
interactive segmentation of user’s region of interest.

III. PROPOSED LIGHT FIELD SEGMENTATION APPROACH
In order to achieve foreground-background 4D LF image

segmentation, the proposed approach consists of four major
steps (see Fig. 2):

A. LF superpixel extraction

In contrast to the widely used 2D superpixel algorithms,
such as Simple Linear Iterative Clustering (SLIC) in [11],
which divide an image into smaller clusters with similar visual
appearance and spatial geometry, 4D LF image segmentation
algorithms need to consider the depth information to extract
consistent 4D LF superpixels. From the few proposed 4D LF
superpixel algorithms, the state-of-the-art VCLFS algorithm
is used in our proposed algorithm for the following reasons.
Firstly, the VCLFS algorithm does not require an external
depth estimation algorithm, since it implicitly estimates the
disparity by computing the slopes of Epipolar Plane Image
(EPI) lines for all LF views [10]. Secondly, the occluded
objects where the foreground and background lines are
intersected in the EPI are considered in the VCLFS algorithm
and properly detected to prevent wrong segmentation. Finally,
it outperforms other LF superpixel algorithms, notably [8],
that is used in the recent 4D LF multi-label segmentation
algorithm [9], in terms of boundary adherence, view
consistency and running time [10], which is important for later
foreground and background segmentation.

The VCLFS algorithm consists of three major steps: i) line
extraction from the EPIs of central horizontal and vertical
views of a 4D LF image; ii) occlusion-aware EPI
segmentation; and iii) spatio-angular clustering by projecting
the EPI segments of the central views into the central view and
firstly clustering the central view using K-means algorithm,
where the CIELAB color space, position and disparity are
used. Afterward, the clustering labels are propagated across
all views based on the EPI segments and disparity. After
superpixels are extracted, the texture is characterized by using
histograms of the superpixels’ intensities. To compute the
histograms, the image is converted to the Hue, Saturation and
Value (HSV) color space first. The HSV color space is
designed to approximate the human vision perception and it is
widely used for image analysis and segmentation [12]. To
achieve luminance invariance, the value channel is not
considered, and the histogram is computed using only the hue
and saturation channels. For each superpixel, a 2D histogram
of hue and saturation values is computed. Each superpixels’
histogram is normalized by dividing it by its sum. The
obtained superpixels and the corresponding histograms will be
used in the next step to create the graph representation.

Fig. 2. Overview of the proposed SLFS algorithm: step 1) LF superpixels are extracted using the VCLFS algorithm; step 2) a graph is created using superpixels
as graph nodes; step 3) scribbles are inserted by the user to initially label foreground and background superpixels; step 4) a graph-cut optimization is performed
to the central view and propagated to the entire 4D LF views to iteratively achieve interactive foreground-background segmentation.

B. Graph creation

Since our goal is to improve the 4D LF segmentation, the
theory of graphs can be applied similarly to what has been
done for 2D image segmentation. However, in the context of
the 4D LF segmentation, several algorithms used a graph
representation of the 4D LF image by representing each pixel
as a graph node [6]. Due to the huge size of a LF image, the
number of resulting graph nodes is also massive, leading to a
high computational complexity not suitable for 4D LF
interactive applications. In contrast, the hypergraph concept
which is conceptually defined and used in [9] is similarly used
in our approach and significantly reduces the graph size by
defining the extracted 4D LF superpixels as graph nodes,
however, we did not consider the angular neighbors or the
multiple-target nodes as in [9]. Generally, a hypergraph is one
type of graph representation that uses a set of nodes as one
hypernode as well as the connected edges between two
hypernodes as one hyperedge (see Fig. 3). Additionally, the
hypergraph is coarsened into a planar graph by considering all
corresponding superpixels across views as one hypernode.

In our graph representation, a planar graph is created on
the central view superpixels and conceptually represented a
hypergraph, where each hypernode in the central view graph
includes all corresponding superpixels across views. The
central view is chosen for two reasons: i) in dense 4D LF
images, there is only a slight shifting across views and
according to the Lambertian assumption, the 3D point of the
scene is corresponding to a straight line in the EPI [10]. Thus,
most superpixels in the central view having corresponding
superpixels in all LF views with small disparities; and ii) the
user is usually interested in segmenting frontal objects instead
of small occluded objects. The corresponding superpixels
across views are computed in the VCLFS by changing the
spatial position of the central view superpixels based on the
angular location of the view and the superpixels’ disparities,
and it assigns a same numeric label to the corresponding
superpixels. The final segmentation will be propagated by
assigning the corresponding superpixels across views, the
same foreground or background labels as central view
superpixels. In Fig. 3, a simplified hypergraph illustration is
shown. In the red rectangle, there is an edge between two
superpixels, similarly, the red edge exists in all 4D LF views
in Fig. 3. The hypernodes 𝑆! , 𝑆" can be shown in the two circles
below and connected with a hyperedge. In order to represent a
graph, we need to define the edges between the graph nodes

1 The Delaunay algorithm finds a subdivision of a set of points into a non-
overlapping set of triangles, such that no point is inside the circumcircle of
any triangle.

and compute their weights. Since superpixels’ shapes are
irregular in most situations, the Delaunay Triangles algorithm1
[13] is used to find the graph edges between neighboring
superpixels’ centroids. The Delaunay algorithm provided in
the open-source Python library Sci-Py [14], [15] is used here.

Fig. 3. The hypergraph representation where all corresponding superpixels
across views are represented as one hypernode as in 𝑆!	𝑎𝑛𝑑		𝑆". The red lines
represent edges between two neighboring superpixels and, similarly, all
corresponding edges between two hypernodes are represented as one
hyperedge.

To create the graph 𝐺 and perform graph-cut optimization
to achieve foreground and background segmentation, the LF
superpixels are used as nodes of the graph. Furthermore, two
target nodes are added to the graph, for the foreground 𝑇#
(source node) and the background 𝑇$ (sink node), respectively
(see Fig. 2). The maximum flow from the source to the sink is
determined by the bottleneck (i.e., the edges minimum cut).
Additionally, two different edge types are defined: i) target
edges (i.e., the edges between the superpixel and the target
nodes); and ii) neighboring edges (i.e., edges between spatially
neighboring superpixels). After defining the types of the nodes
and edge, we build a graph 𝐺 = (𝜈, 𝜀) of the central view,
where 𝜈 represents both superpixels and target nodes, and 𝜀
represents edges between nodes. Each edge between
superpixels is weighted by comparing the adjacent histograms
using average Kullback-Leibler Divergence (KLD) [16] to
compute the relative difference between histograms as in (1):

𝒲1𝑆! , 𝑆"2 = 𝒲1𝑆" , 𝑆!2 =	
λ − %

&
6∑ 𝐻!(𝑥) log 6

'!())
'"())

< +) ∑ 𝐻"(𝑥) log >
'"())

'!())
?) <, (1)

where 	𝐻!(𝑥) and 𝐻"(𝑥) are, respectively, the hue and
saturation 2D histograms of spatially adjacent superpixels 𝑆!
and 𝑆" in the central view (as a complexity tradeoff in this

Foreground

Background

Step 1: LF superpixel
extraction

Step 2: graph creation Step 3: user scribbles
insertion

Step 4: graph cut
image segmentation

Fig. 3. The hypergraph representation where all corresponding superpixels
across views are represented as one hypernode as in !!	#$%		!". The red lines
represent edges between two neighboring superpixels and, similarly, all
corresponding edges between two hypernodes are represented as one
hyperedge.

scribbles are labeled either foreground or background,
according to the scribble’s label, and utilized as initial seeds to
label unlabeled superpixels in the graph-cut step, where the
cumulative foreground and cumulative background
histograms are used. When user scribbles are inserted, graph
target edges between labeled superpixels and target nodes are
generated. Considering a superpixel under foreground
scribbles, the edge weights between superpixel node *# and
the target nodes ,# and ,$ represent the self-penalty C+ (i.e.,
the cost of labelling each superpixel as either foreground or
background) as in (2) and (3):

 C,#1,#2 = C,!(0) = 0	, (2)

 C,#(,$) = C,!(1) = W-.), (3)

where C,#1,#2 is the edge weights between the foreground
labeled superpixel and ,# (labeled as zero), and C,#(,$) is the
edge weights between the foreground labeled superpixel and
,$ (labeled as one). A small value is assigned for foreground
target edge if the superpixel is under foreground scribbles,
while a high value is assigned for the background target edge
to increase the self-penalty. In our experiments we fixed
W-.)	to 100 as a high value. The same approach is used for
superpixels under background scribbles.

D. Graph-cut image segmentation

Generally, image segmentation can be formulated as the
minimization of an energy cost function with two additive
terms: i) the self-penalty (a.k.a data cost); and ii) the
neighboring penalty (a.k.a smooth cost). Self-penalty
represents the cost of labelling each superpixel as either
foreground or background. Furthermore, the neighboring
penalty ensures that neighboring superpixels are smooth and
penalizes neighbors that have different labels.

To achieve the segmentation, graph-cut optimization is
used, which is effective and handles image segmentation in
terms of energy minimization [9]. The cumulative foreground
and background histograms (8/0 , 8/1) of the superpixels
under the user scribbles are computed separately after the
user’s insertion. In order to assign a label for each unlabeled
superpixel, the KLD is used to compute the relative difference
between cumulative target histograms and the superpixel
histogram as in (4):

!2$",3	56	7# = ∑ 889	56	8:(#) log ';%&	()	%*(<);$(<)
(< 	, (4)

where C,!1,#	=>	$2 is the self-penalty, and 8/0	=>	/1 is
foreground or background cumulative histogram. Suppose L
is a label vector, which includes foreground (0) and
background (1) labels for all the G superpixels	L ∈ 	 {0,1}? .
The energy function is computed by summing the data cost
and smooth costs for assigning label L! to superpixel *!
considering the labels of the neighbors M! 	as in (5) [17]:

E(L) = 	∑ C,!(L!),!∈A +	∑ 01*! , *"2OL! − L"O(!,")∈C! . (5)

Finally, the graph-cut algorithm is applied to minimize the
energy function to obtain the segmented result P as in (6):

 P = arg	min
D
E(L), (6)

where the energy function E(L) is the cost of assigning label
L! to each superpixel *! in the image V	 by summing the data
cost and the smooth cost for each superpixel *! and its
spatially neighboring superpixels *" , where M! is the set of
neighboring superpixels of *! . In our algorithm, we take
advantage of the optimized PyMaxFlow library to apply the
graph-cut that implements the algorithm in [17] for central
view. Since each superpixel in the central view conceptually
represents a hypernode of all self-similar superpixels across
views, the superpixels’ labels from the central view are
propagated to the entire 4D LF views by assigning each
superpixel related to the hypernode to the label of the
superpixel in the central view. The graph-cut optimization is
interactively continued after each user’s scribble insertion of
both foreground and background scribbles, and the
calculation of the cumulative target histograms are updated
until the object segmentation is achieved according to the
user’s decision. Finally, the border’s noise is removed from
the final mask using median filtering with kernel size of
(7 × 7) and simple morphological operation (i.e., opening),
with kernel size of (3 × 3). The used filters may slightly
affect the spatial accuracy, but visually obtain smoother
boundaries and reduce the noise.

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS

4D LF image dataset View resolution
(' ×)) pixels

Number

 of views
Thumbnail

HCI benchmark
dataset [18]:

Papillon, Monasroom,
Still life, Horses and

Buddha

768×768 pixels,

except for
horses:

1024×576 pixels

9×9

EPFL MMSPG LF
images dataset [19]:

Friends 4, Sphynx, and
Sophie and Vincent 3

625×434 pixels 15×15

IV. EXPERIMENTAL RESULTS
To evaluate the proposed approach, we implemented the

proposed SLFS algorithm on a macOS computer with Intel i5
2.3 GHz processor and 8GB LPDDR3 memory. We used both
synthetic 4D LF images [18] and 4D LF data captured with a
Lytro Illum camera [19] as shown in Table I. The algorithm
is implemented using Python programming language and the

u

y

v

x

…

…

……

!!

!"
Hyperedge

Hypernode

Hypergraph

paper, summations are over 20 histogram bins), and λ is a
control parameter that helps in the graph-cut optimization
process (after extensive testing, in our experiments a default
value of 𝜆 = 25 was used since it led to the best subjective
results); this parameter is especially useful in case of very
small or null difference between the superpixel histograms.

C. User scribbles insertion

For semi-supervised interactive segmentation, a user can
insert different scribbles to indicate the region of interest on
the reference view. In this paper, the central view is selected
as a reference view, since almost all views contain central
view content with slight shifting. All superpixels under the
scribbles are labeled either foreground or background,
according to the scribble’s label, and utilized as initial seeds to
label unlabeled superpixels in the graph-cut step, where the
cumulative foreground and cumulative background
histograms are used. When user scribbles are inserted, graph
target edges between labeled superpixels and target nodes are
generated. Considering a superpixel under foreground
scribbles, the edge weights between superpixel node 𝑆# and
the target nodes 𝑇# and 𝑇$ represent the self-penalty 𝐷+ (i.e.,
the cost of labelling each superpixel as either foreground or
background) as in (2) and (3):

 𝐷,#1𝑇#2 = 𝐷,!(0) = 0	, (2)

 𝐷,#(𝑇$) = 𝐷,!(1) = W-.), (3)

where 𝐷,#1𝑇#2 is the edge weights between the foreground
labeled superpixel and 𝑇# (labeled as zero), and 𝐷,#(𝑇$) is the
edge weights between the foreground labeled superpixel and
𝑇$ (labeled as one). A small value is assigned for foreground
target edge if the superpixel is under foreground scribbles,
while a high value is assigned for the background target edge
to increase the self-penalty. In our experiments we fixed
W-.)	to 100 as a high value. The same approach is used for
superpixels under background scribbles.

D. Graph-cut image segmentation

Generally, image segmentation can be formulated as the
minimization of an energy cost function with two additive
terms: i) the self-penalty (a.k.a data cost); and ii) the
neighboring penalty (a.k.a smooth cost). Self-penalty
represents the cost of labelling each superpixel as either
foreground or background. Furthermore, the neighboring
penalty ensures that neighboring superpixels are smooth and
penalizes neighbors that have different labels.

To achieve the segmentation, graph-cut optimization is
used, which is effective and handles image segmentation in
terms of energy minimization [9]. The cumulative foreground
and background histograms (𝐻/0 , 𝐻/1) of the superpixels
under the user scribbles are computed separately after the
user’s insertion. In order to assign a label for each unlabeled
superpixel, the KLD is used to compute the relative difference
between cumulative target histograms and the superpixel
histogram as in (4):

𝐷𝑆𝑖"𝑇𝑓	𝑜𝑟	𝑏# = ∑ 𝐻𝐶𝐹	𝑜𝑟	𝐶𝐵(𝑥) log '
𝐻𝐶𝐹	𝑜𝑟	𝐶𝐵(𝑥)

𝐻𝑖(𝑥)
(𝑥 	, (4)

where 𝐷,!1𝑇#	=>	$2 is the self-penalty, and 𝐻/0	=>	/1 is
foreground or background cumulative histogram. Suppose L
is a label vector, which includes foreground (0) and
background (1) labels for all the 𝑁 superpixels	L ∈ 	 {0,1}? .
The energy function is computed by summing the data cost
and smooth costs for assigning label 𝑙! to superpixel 𝑆!
considering the labels of the neighbors 𝒩! 	as in (5) [17]:

E(L) = 	∑ 𝐷,!(𝑙!),!∈A +	∑ 𝒲1𝑆! , 𝑆"2O𝑙! − 𝑙"O(!,")∈𝒩! . (5)

Finally, the graph-cut algorithm is applied to minimize the
energy function to obtain the segmented result 𝒮 as in (6):

 𝒮 = arg	min
D
E(L), (6)

where the energy function E(L) is the cost of assigning label
𝑙! to each superpixel 𝑆! in the image 𝐼	 by summing the data
cost and the smooth cost for each superpixel 𝑆! and its
spatially neighboring superpixels 𝑆" , where 𝒩! is the set of
neighboring superpixels of 𝑆! . In our algorithm, we take
advantage of the optimized PyMaxFlow library to apply the
graph-cut that implements the algorithm in [17] for central
view. Since each superpixel in the central view conceptually
represents a hypernode of all self-similar superpixels across
views, the superpixels’ labels from the central view are
propagated to the entire 4D LF views by assigning each
superpixel related to the hypernode to the label of the
superpixel in the central view. The graph-cut optimization is
interactively continued after each user’s scribble insertion of
both foreground and background scribbles, and the
calculation of the cumulative target histograms are updated
until the object segmentation is achieved according to the
user’s decision. Finally, the border’s noise is removed from
the final mask using median filtering with kernel size of
(7 × 7) and simple morphological operation (i.e., opening),
with kernel size of (3 × 3). The used filters may slightly
affect the spatial accuracy, but visually obtain smoother
boundaries and reduce the noise.

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS

4D LF image dataset View resolution
(𝒙 × 𝒚) pixels

Number

 of views
Thumbnail

HCI benchmark
dataset [18]:

Papillon, Monasroom,
Still life, Horses and

Buddha

768×768 pixels,

except for
horses:

1024×576 pixels

9×9

EPFL MMSPG LF
images dataset [19]:

Friends 4, Sphynx, and
Sophie and Vincent 3

625×434 pixels 15×15

IV. EXPERIMENTAL RESULTS
To evaluate the proposed approach, we implemented the

proposed SLFS algorithm on a macOS computer with Intel i5
2.3 GHz processor and 8GB LPDDR3 memory. We used both
synthetic 4D LF images [18] and 4D LF data captured with a
Lytro Illum camera [19] as shown in Table I. The algorithm
is implemented using Python programming language and the

open-source code for the VCLFS algorithm [20] was used to
extract the 4D LF superpixels. The segmentation results are
presented in Fig. 4 and Fig. 5, for synthetic and real LF
images, respectively. Several parameters can affect the
segmentation result, such as the superpixel size and image
texture complexity. In the VCLFS algorithm, the
segmentation size of 𝑥 will generate average superpixel size
of 𝑥& pixels per superpixel (assuming a square shape) [20]. In
our experiments (see Fig. 4 and Fig. 5), we set the
segmentation size of the VCLFS to 30, to generate an average
superpixel size of 900 pixels. This size of superpixel
generates consistent and accurate segmentations with a
reasonable computational complexity. In Fig. 6, we changed
the size of superpixels to study its effect on segmentation.
Larger sizes make the segmentation faster in terms of graph-
cut optimization. However, it results in inaccurate
segmentation due to the larger clusters that cannot be divided.
On the other hand, smaller sizes result in a more accurate
segmentation, but will increase the graph size and
complexity. In Fig. 6, the segmentation graph-cut takes
around 8	𝑚𝑠, when using VCLFS with a segmentation size of
100, but it takes around 35	𝑚𝑠 and 82	𝑚𝑠 for a segmentation
size of 30 and 15, respectively. According to the image
texture, images with complex texture require more scribbles
than those with non-complex texture. In Fig. 4, the
Monasroom image presents a complex texture requiring more
user scribbles and interaction than in the Papillon image.

To compare our results with the other 4D LF segmentation
algorithms that target multi-label segmentation, we used all
the published segmentation masks in [7]. We were not able to
compare with the recent work in [9] since there is no published
masks or open-source code for the algorithm, additionally,
there is no enough implementation details to reproduce it.
Furthermore, similar work targeting foreground-background
segmentation has been proposed for 2D images [2], and its
comparison here would be unfair due to the 4D LF structure
and propagation consistency. To enable the comparison with
multi-label segmentation, we considered the targeted object
(e.g., the yellow horse in Fig. 7) as a foreground and other
labeled objects as background, hence, binary masks from the
segmentation masks in [7] and the HCI segmentation ground
truth in [18] are generated instead of multi-label masks. The
comparison results are displayed in Table II, we used test
images and their ground truth from the HCI dataset [18].

Fig. 4. SLFS results on the HCI dataset: a) central view with superpixels;
b) user's foreground and background scribbles (blue for background and red
for foreground); c) segmentation mask after graph-cut optimization;
d) the segmented object.

Fig. 5. SLFS results on the EPFL MMSPG dataset: a) central view with
superpixels; b) user's foreground and background scribbles; c) segmentation
mask after graph-cut optimization; d) the segmented object.

Fig. 6. Segmentation results for different superpixel’s sizes:
a) size = 100; b) size = 30; c) size = 15; (larger superpixels may create
inaccurate segmentation results due to the larger cluster that cannot be
divided while very small superpixels improves the accuracy and increases
the graph complexity).

By using the hypergraph concept with the VCLF
superpixels to represent the 4D LF image, a significant
reduction in graph size is achieved. For example, the Buddha
image has 4.77 × 10E pixels, the algorithm in [7] reduced the
graph size to 8.19 × 10F nodes. Additionally, the algorithm
in [9] reduced the graph size to 1.46 × 10G nodes, while our
algorithm reduced the graph size to only 625 nodes with
similar accuracy as in Table II. Additionally, the
segmentation result is consistent across views and adhere to
the object’s boundaries. Fig. 8, shows the consistent
segmentation results, where our results show better visual
consistency in some parts (e.g., the horse’s hoof) compared to
[7]. The VCLFS algorithm takes ~ 250s and ~273s for HCI
and EPFL datasets respectively for superpixels extraction
with superpixel size of 30, the graph-cut for the central view
takes ~35	𝑚𝑠 and the propagation to all LF views takes ~3𝑠.

Fig. 7. Results from different interactive segmentation algorithms for
Horses LF image: a) the state-of-the-art multi-label 4D LF segmentation
result [9]; b) SLFS foreground-background segmentation result.

 a b c d

Pa
pi

llo
n

M
on

as

ro
om

St

ill

Li
fe

B

ud
dh

a

a b c d

Fr
ie

nd
s

4
Sp

hy
nx

So
ph

ie
 a

nd

V
in

ce
nt

 3

a

b

c

b

a

H
or

se
s

TABLE II. ACCURACY RESULTS FOR THE DIFFERENT ALGORITHMS UNDER
ANALYSIS FOR VARIOUS 4D LF TEST IMAGES

 Results of [7] Results of SLFS
Papillon 99.86% 99.66%
Still life 99.89% 99.87%
Horses 99.95% 99.59%
Buddha 99.57% 99.34%
Average 99.82% 99.62%

Fig. 8. Results from different 4D LF segmentation algorithms for Papillon
and Horses 4D LF images. These images are selected to show the consistency
across views where Papillon has uniform colors and Horses has complex
texture. For each image: a red rectaglue on the central image and zoomed
patches from the top-left view, top-right view, bottom-left view and bottom-
right view are shown, however, all the 4D LF views are segmented.

V. FINAL REMARKS
In this paper, an improved interactive 4D LF foreground-

background segmentation solution – SLFS – is proposed and
evaluated. Firstly, the 4D LF superpixels are extracted
efficiently using the VCLFS algorithm. Afterward, a
hypergraph based on superpixels is created. Then, the
segmentation problem is treated as an energy function
optimization where a graph-cut technique is applied to
optimize the segmentation result. Finally, the segmentation
result is propagated to all 4D LF views consistently.

Experimental results were conducted on both real and
synthetic 4D LF images and show the effectiveness of the
proposed approach with comparable results even after the
dramatic reduction in the graph complexity. Additionally, the
experimental results show that the segmentation can be
affected by the superpixel size, the image complexity and the
graph-cut parameters.

The proposed approach can be used in several interesting
applications where object extraction is needed, such as
augmented and mixed reality, and object-based coding. For
future work, the best compromise superpixel size to be used
for this algorithm and the optimal parameters for graph
creation and segmentation could be further optimized and will
be considered. Additionally, the graph structure can be used
for other LF editing applications, such as in inpainting where
the space after object extraction can be filled consistently by
novel pixels in one view and propagated to the 4D LF views.
Furthermore, this algorithm can be further improved to include
the segmentation of the sparse 4D LF images where the nodes
of the large occluded objects are handled particularly in the
graph creation step.

REFERENCES
[1] M. Hog, N. Sabater, and C. Guillemot, “Superrays for Efficient

Light Field Processing,” IEEE J. Sel. Topics Signal Processing, vol.
11, no. 7, pp. 1187–1199, Oct. 2017.

[2] W. Yu, Z. Hou, P. Wang, X. Qin, L. Wang, and H. Li, “Weakly
supervised foreground segmentation based on superpixel grouping,”
IEEE Access, vol. 6, pp. 12269–12279, Feb. 2018.

[3] S. Wanner, C. Straehle, and B. Goldluecke, “Globally Consistent
Multi-label Assignment on the Ray Space of 4D Light Fields,” in
2013 IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Portland, OR, USA, June 23-28, 2013, pp. 1011–1018.

[4] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
“The One Hundred Layers Tiramisu: Fully Convolutional
DenseNets for Semantic Segmentation,” in 2017 IEEE Computer
Society Conf. on Computer Vision and Pattern Recognition
Workshops, Honolulu, HI, USA, July 21-26, 2017, pp. 1175–1183.

[5] M. Levoy and P. Hanrahan, “Light field rendering,” in 23rd annual
conf. on Computer graphics and interactive techniques, NY, USA,
Aug. 1, 1996, pp. 31–42.

[6] H. Mihara, T. Funatomi, K. Tanaka, H. Kubo, Y. Mukaigawa, and
H. Nagahara, “4D light field segmentation with spatial and angular
consistencies,” in 2016 IEEE International Conf. on Computational
Photography (ICCP), Evanston, IL, USA, May 13-15, 2016, pp. 1–
8.

[7] M. Hog, N. Sabater, and C. Guillemot, “Light Field Segmentation
Using a Ray-Based Graph Structure,” in European Conf. on
Computer Vision (ECCV), Amsterdam, Netherlands, Oct. 8, 2016,
pp. 35–50.

[8] H. Zhu, Q. Zhang, and Q. Wang, “4D Light field superpixel and
segmentation,” in IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, July 21-26, 2017, pp.
6709–6717.

[9] X. Lv, X. Wang, Q. Wang, and J. Yu, “4D Light Field Segmentation
from Light Field Super-pixel Hypergraph Representation,” IEEE
Trans. Vis. Comput. Graph., early access, Mar. 2020, doi:
10.1109/TVCG.2020.2982158.

[10] N. Khan, Q. Zhang, L. Kasser, H. Stone, M. H. Kim, and J.
Tompkin, “View-Consistent 4D Light Field Superpixel
Segmentation,” in IEEE/CVF International Conf. on Computer
Vision (ICCV), Seoul, Korea, Oct. 27-Nov. 2, 2019, pp. 7810–7818.

[11] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC Superpixels Compared to State-of-the-Art Superpixel
Methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11,
pp. 2274–2282, Nov. 2012.

[12] N. A. Ibraheem, M. M. Hasan, R. Z. Khan, and P. K. Mishra,
“Understanding Color Models: A Review,” ARPN J. Sci. Technol.,
vol. 2, no. 3, pp. 265–275, Apr. 2012.

[13] M. de Berg, M. van Kreveld, M. Overmars, and O. C. Schwarzkopf,
“Delaunay Triangulations,” in Computational Geometry, 2nd ed.,
Berlin, Germany: Springer, 2000, pp. 183–210.

[14] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Softw., vol. 22, no.
4, pp. 469–483, Dec. 1996.

[15] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific
computing in Python,” Nat. Methods, vol. 17, no. 3, pp. 261–272,
Mar. 2020.

[16] S. Kullback and R. A. Leibler, “On Information and Sufficiency,”
Ann. Math. Stat., vol. 22, no. 1, pp. 79–86, Mar. 1951.

[17] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–
1137, Sep. 2004.

[18] S. Wanner, S. Meister, and B. Goldlücke, “Datasets and
Benchmarks for Densely Sampled 4D Light Fields,” VMV, vol. 13,
pp. 225–226, Sep. 2013.

[19] M. Rerabek and T. Ebrahimi, “New Light Field Image Dataset,” in
8th International Conf. on Quality of Multimedia Experience
(QoMEX), Lisbon, Portugal, June 6-8, 2016.

[20] N. Khan, Q. Zhang, L. Kasser, H. Stone, M. H. Kim, and J.
Tompkin, “Repository for the ICCV 2019 paper: View-consistent
4D Light Field Superpixel Segmentation, by Khan et al.” [Online].
Available: https://github.com/brownvc/lightfieldsuperpixels.
[Accessed: 30-Mar-2020].

SL
FS

 re
su

lts

R
ef

er
en

ce
 [7

]
re

su
lts

