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Abstract—Efficient segmentation is a fundamental problem 
in computer vision and image processing. Achieving accurate 
segmentation for 4D light field images is a challenging task due 
to the huge amount of data involved and the intrinsic 
redundancy in this type of images. While automatic image 
segmentation is usually challenging, and because regions of 
interest are different for different users or tasks, this paper 
proposes an improved semi-supervised segmentation approach 
for 4D light field images based on an efficient graph structure 
and user’s scribbles. The recent view-consistent 4D light field 
superpixels algorithm proposed by Khan et al. is used as an 
automatic pre-processing step to ensure spatio-angular 
consistency and to represent the image graph efficiently. Then, 
segmentation is achieved via graph-cut optimization. 
Experimental results for synthetic and real light field images 
indicate that the proposed approach can extract objects 
consistently across views, and thus it can be used in applications 
such as augmented reality applications or object-based coding 
with few user interactions. 

Keywords—light field segmentation, foreground-background 
segmentation, superpixels, graph-cut, semi-supervised 
segmentation 

I. INTRODUCTION 
When humans look at images, their brains can easily 

classify the objects in the scene by distinguishing the object’s 
borders and understand the content. However, this task is 
much harder for computers which consider the scene as an 
array of pixels. To analyze the scene and understand its 
content by identifying meaningful objects, computers 
typically must start by applying image segmentation, which is 
the process of partitioning an image into smaller parts with 
homogenous properties. In computer vision, there are low-
level, mid-level and high-level image segmentation 
techniques depending on the semantic meanings of the 
resulting segments. Basically, low-level image segmentation 
divides the image into smaller regions automatically with 
similar visual characteristics, such as color or depth, but not 
necessarily with a semantic meaning, and it can be used as a 
pre-processing step for object tracking or image editing [1], 
[2]. Mid-level image segmentation divides the image into a 
smaller number of larger regions (i.e., objects), it may be 
assisted with user interaction, however, it does not have 
semantic labels for the objects [3]. In addition to the mid-level 
segmentation output, the high-level image segmentation, can 
be assisted with high-level knowledge or learning process to

             
Fig. 1. Example of the proposed segmentation approach: a) a reference 
image with user's foreground and background scribbles; b) the segmented 
object based on the scribbles. 

obtain semantic meaning for the objects (e.g., a car, a flower, 
etc.) [4], which is out of this paper’s scope. In this paper, a 
combination of low-level image segmentation and user 
scribbles are considered to obtain mid-level (e.g., foreground-
background segmentation) without having pre-defined 
semantic labels for the objects.  

Although image segmentation is usually considered as a 
challenging problem, certain conditions can make it even 
harder, such as overlapping between objects with poor 
contrast or the huge amount of data, as in the 4D Light Field 
(LF) images, specifically when pixels are used as graph nodes. 
4D LF images can be obtained by an array of cameras or by a 
single camera equipped with a special microlens array in front 
of the sensor or a moving camera gantry to capture different 
viewpoint images at different times. LF images record not 
only the intensity of light but also the angular direction of light 
rays [5]. The resulting 4D LF image, which can have a very 
large number of pixels, can be interpreted as a 2D array of 2D 
views and parametrized as 𝐿(𝑥, 𝑦, 𝑢, 𝑣)  where 𝑥, 𝑦  are the 
spatial geometry of pixels in each view and 𝑢, 𝑣  are the 
angular geometry of views. The 2D views are obtained from 
slightly different perspectives. While the 4D LF images 
contain a huge number of pixels, the similarity between pixels 
in different views can be used to reduce the computational 
complexity [1]. Furthermore, one of the most important 
advantages of 4D LF imaging is that it inherently includes 
depth information in its structure, which can be used in 
clustering and label propagation. In general, when traditional 
2D segmentation is applied to 4D LF images, the information 
from adjacent views is not considered to resolve object 
occlusions, thus resulting in inconsistent segmentation across 
views. In order to cope with these challenges, the 4D LF image 
structure should be adequately considered. Various LF 
segmentation techniques have been proposed in the literature 
[3], [6]–[10]. However, most 4D LF segmentation techniques 
are either time-consuming, not interactive, not proposed for 
full consistent 4D LF segmentation or relying on accurate 
depth estimation.  
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To overcome the existing limitations and because the 
regions of interest are different for different users or tasks, an 
improved interactive Semi-supervised 4D LF Foreground-
background Segmentation (SLFS) solution is proposed (see 
Fig. 1). This approach can be widely applied in object-based 
LF coding, augmented reality applications, or object 
extraction. Similar concepts to the segmentation algorithm 
proposed in [9], such as the graph-based image segmentation 
and the graph-cut optimization technique are used in this 
paper. However, different superpixel algorithm (i.e., the state-
of-the-art View Consistent Light Field Superpixel (VCLFS) 
[10]) is exploited as graph nodes, enabling a dramatic 
reduction in the size of the graph and to effectively propagate 
the segmentation consistently across views, without the need 
for extra accurate depth estimation algorithm. 

The remainder of the paper is organized as follows: 
Section II briefly reviews the related work on 4D LF image 
segmentation available in the literature; Section III describes 
the proposed approach in detail; Section IV evaluates the 
SLFS performance through a series of experimental results; 
Section V concludes the paper with some final remarks and 
proposes directions for future work. 

II. RELATED WORK 
Image segmentation is a fundamental task in computer 

vision, and it has been attracting the attention of researchers 
for many years. Several image segmentation solutions for 2D 
images have already been proposed, however, only a few 
solutions have been proposed to tackle the 4D LF challenges, 
such as the huge amount of data and the need for ensuring the 
segmentation consistency across views. For low-level image 
segmentation, 4D LF superpixels/superrays have been 
proposed in [1], [8], [10] and can be used to enhance LF 
editing tasks (e.g., by propagating the edits into a 4D LF 
superpixel instead of a single pixel). For the case of mid-level 
image segmentation, Wanner et al. [3] proposed the first 
variational framework for multi-label segmentation, where the 
color and disparity cues of input seeds are used to train a 
machine learning classifier (i.e., random forest) that is used to 
predict the label of each pixel. However, the segmentation is 
not performed on the full 4D data (only the central view is 
segmented), the authors mentioned that the optimization step 
can take ~5 minutes on a modern GPU if applied for all views. 
Mihara et al. [6] improved Wanner’s approach by building a 
graph in 4D space with spatial and angular neighbors and then 
using graph-cut for multi-label segmentation. Due to the huge 
number of graph nodes and the high computational time, only 
a fraction of the LF views (i.e., 5×5) were considered in the 
experiments. To reduce the graph size, Hog et al. [7] proposed 
a novel graph representation that utilizes the ray bundle (i.e., 
a set of all rays describing the same 3D scene point) as a graph 
node and exploited the redundancy in the LF data, decreasing 
the running time of the Markov Random Field (MRF) 
optimization and achieving entire 4D LF views segmentation. 
However, their approach depends on quite accurate depth 
estimation on all the views, thus, inaccurate individual depth 
maps greatly increase the running time and decrease the 
segmentation coherence. Additionally, the segmentation 
results can be very sensitive to the noise in real LF images.  

It has been proven the efficiency of achieving mid-level 
and high-level segmentation based on low-level (e.g., 
superpixel) segmentation [2]. Lv et al. [9] recently proposed a 
novel hypergraph representation for 4D LF multi-label 

segmentation by exploiting the superpixels proposed in [8] as 
hypernodes to reduce the graph size. However, Lv et al.’s 
approach relies on superpixel segmentation that requires depth 
estimation from extra algorithm, hence, it can be time-
consuming. Additionally, it is not as accurate for real LF 
images as for the synthetic LF images due to the lack of 
accurate estimated depth map. Our approach is different from 
the recent work in [9], by replacing the used superpixels and 
simplifying the graph structure and size. Our approach is 
designed to interactively extract foreground from background 
similar to the recent work in 2D images [2], however, the 
segmentation is applied for all 4D LF data to achieve effective 
interactive segmentation of user’s region of interest. 

III. PROPOSED LIGHT FIELD SEGMENTATION APPROACH 
In order to achieve foreground-background 4D LF image 

segmentation, the proposed approach consists of four major 
steps (see Fig. 2): 

A. LF superpixel extraction 

In contrast to the widely used 2D superpixel algorithms, 
such as Simple Linear Iterative Clustering (SLIC) in [11], 
which divide an image into smaller clusters with similar visual 
appearance and spatial geometry, 4D LF image segmentation 
algorithms need to consider the depth information to extract 
consistent 4D LF superpixels. From the few proposed 4D LF 
superpixel algorithms, the state-of-the-art VCLFS algorithm 
is used in our proposed algorithm for the following reasons. 
Firstly, the VCLFS algorithm does not require an external 
depth estimation algorithm, since it implicitly estimates the 
disparity by computing the slopes of Epipolar Plane Image 
(EPI) lines for all LF views [10]. Secondly, the occluded 
objects where the foreground and background lines are 
intersected in the EPI are considered in the VCLFS algorithm 
and properly detected to prevent wrong segmentation. Finally, 
it outperforms other LF superpixel algorithms, notably [8], 
that is used in the recent 4D LF multi-label segmentation 
algorithm [9], in terms of boundary adherence, view 
consistency and running time [10], which is important for later 
foreground and background segmentation. 

The VCLFS algorithm consists of three major steps: i) line 
extraction from the EPIs of central horizontal and vertical 
views of a 4D LF image; ii) occlusion-aware EPI 
segmentation; and iii) spatio-angular clustering by projecting 
the EPI segments of the central views into the central view and 
firstly clustering the central view using K-means algorithm, 
where the CIELAB color space, position and disparity are 
used. Afterward, the clustering labels are propagated across 
all views based on the EPI segments and disparity. After 
superpixels are extracted, the texture is characterized by using 
histograms of the superpixels’ intensities. To compute the 
histograms, the image is converted to the Hue, Saturation and 
Value (HSV) color space first. The HSV color space is 
designed to approximate the human vision perception and it is 
widely used for image analysis and segmentation [12]. To 
achieve luminance invariance, the value channel is not 
considered, and the histogram is computed using only the hue 
and saturation channels. For each superpixel, a 2D histogram 
of hue and saturation values is computed. Each superpixels’ 
histogram is normalized by dividing it by its sum. The 
obtained superpixels and the corresponding histograms will be 
used in the next step to create the graph representation. 



 

 
Fig. 2. Overview of the proposed SLFS algorithm: step 1) LF superpixels are extracted using the VCLFS algorithm; step 2) a graph is created using superpixels 
as graph nodes; step 3) scribbles are inserted by the user to initially label foreground and background superpixels; step 4) a graph-cut optimization is performed 
to the central view and propagated to the entire 4D LF views to iteratively achieve interactive foreground-background segmentation.

B. Graph creation 

Since our goal is to improve the 4D LF segmentation, the 
theory of graphs can be applied similarly to what has been 
done for 2D image segmentation. However, in the context of 
the 4D LF segmentation, several algorithms used a graph 
representation of the 4D LF image by representing each pixel 
as a graph node [6]. Due to the huge size of a LF image, the 
number of resulting graph nodes is also massive, leading to a 
high computational complexity not suitable for 4D LF 
interactive applications. In contrast, the hypergraph concept 
which is conceptually defined and used in [9] is similarly used 
in our approach and significantly reduces the graph size by 
defining the extracted 4D LF superpixels as graph nodes, 
however, we did not consider the angular neighbors or the 
multiple-target nodes as in [9]. Generally, a hypergraph is one 
type of graph representation that uses a set of nodes as one 
hypernode as well as the connected edges between two 
hypernodes as one hyperedge (see Fig. 3). Additionally, the 
hypergraph is coarsened into a planar graph by considering all 
corresponding superpixels across views as one hypernode. 

In our graph representation, a planar graph is created on 
the central view superpixels and conceptually represented a 
hypergraph, where each hypernode in the central view graph 
includes all corresponding superpixels across views. The 
central view is chosen for two reasons: i) in dense 4D LF 
images, there is only a slight shifting across views and 
according to the Lambertian assumption, the 3D point of the 
scene is corresponding to a straight line in the EPI [10]. Thus, 
most superpixels in the central view having corresponding 
superpixels in all LF views with small disparities; and ii) the 
user is usually interested in segmenting frontal objects instead 
of small occluded objects. The corresponding superpixels 
across views are computed in the VCLFS by changing the 
spatial position of the central view superpixels based on the 
angular location of the view and the superpixels’ disparities, 
and it assigns a same numeric label to the corresponding 
superpixels. The final segmentation will be propagated by 
assigning the corresponding superpixels across views, the 
same foreground or background labels as central view 
superpixels. In Fig. 3, a simplified hypergraph illustration is 
shown. In the red rectangle, there is an edge between two 
superpixels, similarly, the red edge exists in all 4D LF views 
in Fig. 3. The hypernodes 𝑆! , 𝑆" can be shown in the two circles 
below and connected with a hyperedge. In order to represent a 
graph, we need to define the edges between the graph nodes 

 
1 The Delaunay algorithm finds a subdivision of a set of points into a non-
overlapping set of triangles, such that no point is inside the circumcircle of 
any triangle. 

and compute their weights. Since superpixels’ shapes are 
irregular in most situations, the Delaunay Triangles algorithm1 
[13] is used to find the graph edges between neighboring 
superpixels’ centroids. The Delaunay algorithm provided in 
the open-source Python library Sci-Py [14], [15] is used here. 

 
Fig. 3. The hypergraph representation where all corresponding superpixels 
across views are represented as one hypernode as in 𝑆!	𝑎𝑛𝑑		𝑆". The red lines 
represent edges between two neighboring superpixels and, similarly, all 
corresponding edges between two hypernodes are represented as one 
hyperedge. 

To create the graph 𝐺 and perform graph-cut optimization 
to achieve foreground and background segmentation, the LF 
superpixels are used as nodes of the graph. Furthermore, two 
target nodes are added to the graph, for the foreground 𝑇# 
(source node) and the background 𝑇$ (sink node), respectively 
(see Fig. 2). The maximum flow from the source to the sink is 
determined by the bottleneck (i.e., the edges minimum cut). 
Additionally, two different edge types are defined: i) target 
edges (i.e., the edges between the superpixel and the target 
nodes); and ii) neighboring edges (i.e., edges between spatially 
neighboring superpixels). After defining the types of the nodes 
and edge, we build a graph 𝐺 = (𝜈, 𝜀) of the central view, 
where 𝜈 represents both superpixels and target nodes, and 𝜀 
represents edges between nodes. Each edge between 
superpixels is weighted by comparing the adjacent histograms 
using average Kullback-Leibler Divergence (KLD) [16] to 
compute the relative difference between histograms as in (1): 

𝒲1𝑆! , 𝑆"2 = 𝒲1𝑆" , 𝑆!2 =	
λ − %

&
6∑ 𝐻!(𝑥) log 6

'!())
'"())

< +) ∑ 𝐻"(𝑥) log >
'"())

'!())
?) <, (1)  

where 	𝐻!(𝑥)  and 𝐻"(𝑥)  are, respectively, the hue and 
saturation 2D histograms of spatially adjacent superpixels 𝑆! 
and 𝑆"  in the central view (as a complexity tradeoff in this 
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Fig. 3. The hypergraph representation where all corresponding superpixels 
across views are represented as one hypernode as in !!	#$%		!". The red lines 
represent edges between two neighboring superpixels and, similarly, all 
corresponding edges between two hypernodes are represented as one 
hyperedge.  

scribbles are labeled either foreground or background, 
according to the scribble’s label, and utilized as initial seeds to 
label unlabeled superpixels in the graph-cut step, where the 
cumulative foreground and cumulative background 
histograms are used. When user scribbles are inserted, graph 
target edges between labeled superpixels and target nodes are 
generated. Considering a superpixel under foreground 
scribbles, the edge weights between superpixel node *#  and 
the target nodes ,# and ,$ represent the self-penalty C+ (i.e., 
the cost of labelling each superpixel as either foreground or 
background) as in (2) and (3): 

 C,#1,#2 = C,!(0) = 0	,  (2)  

 C,#(,$) = C,!(1) = W-.), (3)  

where C,#1,#2 is the edge weights between the foreground 
labeled superpixel and ,# (labeled as zero), and C,#(,$) is the 
edge weights between the foreground labeled superpixel and 
,$ (labeled as one). A small value is assigned for foreground 
target edge if the superpixel is under foreground scribbles, 
while a high value is assigned for the background target edge 
to increase the self-penalty. In our experiments we fixed 
W-.)	to 100 as a high value. The same approach is used for 
superpixels under background scribbles. 

D. Graph-cut image segmentation 

Generally, image segmentation can be formulated as the 
minimization of an energy cost function with two additive 
terms: i) the self-penalty (a.k.a data cost); and ii) the 
neighboring penalty (a.k.a smooth cost). Self-penalty 
represents the cost of labelling each superpixel as either 
foreground or background. Furthermore, the neighboring 
penalty ensures that neighboring superpixels are smooth and 
penalizes neighbors that have different labels. 

To achieve the segmentation, graph-cut optimization is 
used, which is effective and handles image segmentation in 
terms of energy minimization [9]. The cumulative foreground 
and background histograms (8/0 , 8/1)  of the superpixels 
under the user scribbles are computed separately after the 
user’s insertion. In order to assign a label for each unlabeled 
superpixel, the KLD is used to compute the relative difference 
between cumulative target histograms and the superpixel 
histogram as in (4): 

!2$",3	56	7# = ∑ 889	56	8:(#) log ';%&	()	%*(<);$(<)
(< 	, (4)  

where C,!1,#	=>	$2  is the self-penalty, and 8/0	=>	/1  is 
foreground or background cumulative histogram. Suppose L 
is a label vector, which includes foreground (0) and 
background (1) labels for all the G superpixels	L ∈ 	 {0,1}? . 
The energy function is computed by summing the data cost 
and smooth costs for assigning label L!  to superpixel *! 
considering the labels of the neighbors M! 	as in (5) [17]: 

E(L) = 	∑ C,!(L!),!∈A +	∑ 01*! , *"2OL! − L"O(!,")∈C! . (5)  

Finally, the graph-cut algorithm is applied to minimize the 
energy function to obtain the segmented result P as in (6): 

 P = arg	min
D
E(L),  (6)  

where the energy function E(L) is the cost of assigning label 
L! to  each superpixel *! in the image V	 by summing the data 
cost and the smooth cost for each superpixel *!  and its 
spatially neighboring superpixels *" , where M!  is the set of 
neighboring superpixels of *! . In our algorithm, we take 
advantage of the optimized PyMaxFlow library to apply the 
graph-cut that implements the algorithm in [17] for central 
view. Since each superpixel in the central view conceptually 
represents a hypernode of all self-similar superpixels across 
views, the superpixels’ labels from the central view are 
propagated to the entire 4D LF views by assigning each 
superpixel related to the hypernode to the label of the 
superpixel in the central view. The graph-cut optimization is 
interactively continued after each user’s scribble insertion of 
both foreground and background scribbles, and the 
calculation of the cumulative target histograms are updated 
until the object segmentation is achieved according to the 
user’s decision. Finally, the border’s noise is removed from 
the final mask using median filtering with kernel size of 
(7 × 7)  and simple morphological operation (i.e., opening), 
with kernel size of (3 × 3). The used filters may slightly 
affect the spatial accuracy, but visually obtain smoother 
boundaries and reduce the noise. 

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS 

4D LF image dataset View resolution 
(' × )) pixels  

Number 

 of views 
Thumbnail 

HCI benchmark 
dataset [18]: 

Papillon, Monasroom, 
Still life, Horses and 

Buddha 

768×768 pixels, 

except for 
horses: 

1024×576 pixels 

9×9 

 

EPFL MMSPG LF 
images dataset [19]: 

Friends 4, Sphynx, and 
Sophie and Vincent 3 

625×434 pixels 15×15 

 

 

IV. EXPERIMENTAL RESULTS 
To evaluate the proposed approach, we implemented the 

proposed SLFS algorithm on a macOS computer with Intel i5 
2.3 GHz processor and 8GB LPDDR3 memory. We used both 
synthetic 4D LF images [18] and 4D LF data captured with a 
Lytro Illum camera [19] as shown in Table I. The algorithm 
is implemented using Python programming language and the 
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paper, summations are over 20 histogram bins), and λ is a 
control parameter that helps in the graph-cut optimization 
process (after extensive testing, in our experiments a default 
value of 𝜆 = 25 was used since it led to the best subjective 
results); this parameter is especially useful in case of very 
small or null difference between the superpixel histograms. 

C. User scribbles insertion 

For semi-supervised interactive segmentation, a user can 
insert different scribbles to indicate the region of interest on 
the reference view. In this paper, the central view is selected 
as a reference view, since almost all views contain central 
view content with slight shifting. All superpixels under the 
scribbles are labeled either foreground or background, 
according to the scribble’s label, and utilized as initial seeds to 
label unlabeled superpixels in the graph-cut step, where the 
cumulative foreground and cumulative background 
histograms are used. When user scribbles are inserted, graph 
target edges between labeled superpixels and target nodes are 
generated. Considering a superpixel under foreground 
scribbles, the edge weights between superpixel node 𝑆#  and 
the target nodes 𝑇# and 𝑇$ represent the self-penalty 𝐷+ (i.e., 
the cost of labelling each superpixel as either foreground or 
background) as in (2) and (3): 

 𝐷,#1𝑇#2 = 𝐷,!(0) = 0	,  (2)  

 𝐷,#(𝑇$) = 𝐷,!(1) = W-.), (3)  

where 𝐷,#1𝑇#2 is the edge weights between the foreground 
labeled superpixel and 𝑇# (labeled as zero), and 𝐷,#(𝑇$) is the 
edge weights between the foreground labeled superpixel and 
𝑇$ (labeled as one). A small value is assigned for foreground 
target edge if the superpixel is under foreground scribbles, 
while a high value is assigned for the background target edge 
to increase the self-penalty. In our experiments we fixed 
W-.)	to 100 as a high value. The same approach is used for 
superpixels under background scribbles. 

D. Graph-cut image segmentation 

Generally, image segmentation can be formulated as the 
minimization of an energy cost function with two additive 
terms: i) the self-penalty (a.k.a data cost); and ii) the 
neighboring penalty (a.k.a smooth cost). Self-penalty 
represents the cost of labelling each superpixel as either 
foreground or background. Furthermore, the neighboring 
penalty ensures that neighboring superpixels are smooth and 
penalizes neighbors that have different labels. 

To achieve the segmentation, graph-cut optimization is 
used, which is effective and handles image segmentation in 
terms of energy minimization [9]. The cumulative foreground 
and background histograms (𝐻/0 , 𝐻/1)  of the superpixels 
under the user scribbles are computed separately after the 
user’s insertion. In order to assign a label for each unlabeled 
superpixel, the KLD is used to compute the relative difference 
between cumulative target histograms and the superpixel 
histogram as in (4): 

𝐷𝑆𝑖"𝑇𝑓	𝑜𝑟	𝑏# = ∑ 𝐻𝐶𝐹	𝑜𝑟	𝐶𝐵(𝑥) log '
𝐻𝐶𝐹	𝑜𝑟	𝐶𝐵(𝑥)

𝐻𝑖(𝑥)
(𝑥 	, (4)  

where 𝐷,!1𝑇#	=>	$2  is the self-penalty, and 𝐻/0	=>	/1  is 
foreground or background cumulative histogram. Suppose L 
is a label vector, which includes foreground (0) and 
background (1) labels for all the 𝑁 superpixels	L ∈ 	 {0,1}? . 
The energy function is computed by summing the data cost 
and smooth costs for assigning label 𝑙!  to superpixel 𝑆! 
considering the labels of the neighbors 𝒩! 	as in (5) [17]: 

E(L) = 	∑ 𝐷,!(𝑙!),!∈A +	∑ 𝒲1𝑆! , 𝑆"2O𝑙! − 𝑙"O(!,")∈𝒩! . (5)  

Finally, the graph-cut algorithm is applied to minimize the 
energy function to obtain the segmented result 𝒮 as in (6): 

 𝒮 = arg	min
D
E(L),  (6)  

where the energy function E(L) is the cost of assigning label 
𝑙! to  each superpixel 𝑆! in the image 𝐼	 by summing the data 
cost and the smooth cost for each superpixel 𝑆!  and its 
spatially neighboring superpixels 𝑆" , where 𝒩!  is the set of 
neighboring superpixels of 𝑆! . In our algorithm, we take 
advantage of the optimized PyMaxFlow library to apply the 
graph-cut that implements the algorithm in [17] for central 
view. Since each superpixel in the central view conceptually 
represents a hypernode of all self-similar superpixels across 
views, the superpixels’ labels from the central view are 
propagated to the entire 4D LF views by assigning each 
superpixel related to the hypernode to the label of the 
superpixel in the central view. The graph-cut optimization is 
interactively continued after each user’s scribble insertion of 
both foreground and background scribbles, and the 
calculation of the cumulative target histograms are updated 
until the object segmentation is achieved according to the 
user’s decision. Finally, the border’s noise is removed from 
the final mask using median filtering with kernel size of 
(7 × 7)  and simple morphological operation (i.e., opening), 
with kernel size of (3 × 3). The used filters may slightly 
affect the spatial accuracy, but visually obtain smoother 
boundaries and reduce the noise. 

TABLE I. IMAGE DATASETS USED IN THE EXPERIMENTAL RESULTS 

4D LF image dataset View resolution 
(𝒙 × 𝒚) pixels  

Number 

 of views 
Thumbnail 

HCI benchmark 
dataset [18]: 

Papillon, Monasroom, 
Still life, Horses and 

Buddha 

768×768 pixels, 

except for 
horses: 

1024×576 pixels 

9×9 

 

EPFL MMSPG LF 
images dataset [19]: 

Friends 4, Sphynx, and 
Sophie and Vincent 3 

625×434 pixels 15×15 

 

 

IV. EXPERIMENTAL RESULTS 
To evaluate the proposed approach, we implemented the 

proposed SLFS algorithm on a macOS computer with Intel i5 
2.3 GHz processor and 8GB LPDDR3 memory. We used both 
synthetic 4D LF images [18] and 4D LF data captured with a 
Lytro Illum camera [19] as shown in Table I. The algorithm 
is implemented using Python programming language and the 



open-source code for the VCLFS algorithm [20] was used to 
extract the 4D LF superpixels. The segmentation results are 
presented in Fig. 4 and Fig. 5, for synthetic and real LF 
images, respectively. Several parameters can affect the 
segmentation result, such as the superpixel size and image 
texture complexity. In the VCLFS algorithm, the 
segmentation size of 𝑥 will generate average superpixel size 
of 𝑥& pixels per superpixel (assuming a square shape) [20]. In 
our experiments (see Fig. 4 and Fig. 5), we set the 
segmentation size of the VCLFS to 30, to generate an average 
superpixel size of 900 pixels. This size of superpixel 
generates consistent and accurate segmentations with a 
reasonable computational complexity. In Fig. 6, we changed 
the size of superpixels to study its effect on segmentation. 
Larger sizes make the segmentation faster in terms of graph-
cut optimization. However, it results in inaccurate 
segmentation due to the larger clusters that cannot be divided. 
On the other hand, smaller sizes result in a more accurate 
segmentation, but will increase the graph size and 
complexity. In Fig. 6, the segmentation graph-cut takes 
around 8	𝑚𝑠, when using VCLFS with a segmentation size of 
100, but it takes around 35	𝑚𝑠 and 82	𝑚𝑠 for a segmentation 
size of 30 and 15, respectively. According to the image 
texture, images with complex texture require more scribbles 
than those with non-complex texture. In Fig. 4, the 
Monasroom image presents a complex texture requiring more 
user scribbles and interaction than in the Papillon image.  

To compare our results with the other 4D LF segmentation 
algorithms that target multi-label segmentation, we used all 
the published segmentation masks in [7]. We were not able to 
compare with the recent work in [9] since there is no published 
masks or open-source code for the algorithm, additionally, 
there is no enough implementation details to reproduce it. 
Furthermore, similar work targeting foreground-background 
segmentation has been proposed for 2D images [2], and its 
comparison here would be unfair due to the 4D LF structure 
and propagation consistency. To enable the comparison with 
multi-label segmentation, we considered the targeted object 
(e.g., the yellow horse in Fig. 7) as a foreground and other 
labeled objects as background, hence, binary masks from the 
segmentation masks in [7] and the HCI segmentation ground 
truth in [18] are generated instead of multi-label masks. The 
comparison results are displayed in Table II, we used test 
images and their ground truth from the HCI dataset [18].  

                 

   
Fig. 4. SLFS results on the HCI dataset: a) central view with superpixels;  
b) user's foreground and background scribbles (blue for background and red 
for foreground); c) segmentation mask after graph-cut optimization;  
d) the segmented object.  

                                

     
Fig. 5. SLFS results on the EPFL MMSPG dataset: a) central view with  
superpixels; b) user's foreground and background scribbles; c) segmentation 
mask after graph-cut optimization; d) the segmented object. 

           

Fig. 6. Segmentation results for different superpixel’s sizes:  
a) size = 100; b) size = 30; c) size = 15; (larger superpixels may create 
inaccurate segmentation results due to the larger cluster that cannot be 
divided while very small superpixels improves the accuracy and increases 
the graph complexity). 

By using the hypergraph concept with the VCLF 
superpixels to represent the 4D LF image, a significant 
reduction in graph size is achieved. For example, the Buddha 
image has 4.77 × 10E pixels, the algorithm in [7] reduced the 
graph size to 8.19 × 10F nodes. Additionally, the algorithm 
in [9] reduced the graph size to 1.46 × 10G nodes, while our 
algorithm reduced the graph size to only 625 nodes with 
similar accuracy as in Table II. Additionally, the 
segmentation result is consistent across views and adhere to 
the object’s boundaries. Fig. 8, shows the consistent 
segmentation results, where our results show better visual 
consistency in some parts (e.g., the horse’s hoof) compared to 
[7]. The VCLFS algorithm takes ~ 250s and ~273s for HCI 
and EPFL datasets respectively for superpixels extraction 
with superpixel size of 30, the graph-cut for the central view 
takes ~35	𝑚𝑠 and the propagation to all LF views takes ~3𝑠. 

 

 
Fig. 7. Results from different interactive segmentation algorithms for 
Horses LF image: a) the state-of-the-art multi-label 4D LF segmentation 
result [9]; b) SLFS foreground-background segmentation result.
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TABLE II. ACCURACY RESULTS FOR THE DIFFERENT ALGORITHMS UNDER 
ANALYSIS FOR VARIOUS 4D LF TEST IMAGES 

 Results of [7] Results of SLFS 
Papillon 99.86% 99.66% 
Still life 99.89% 99.87% 
Horses 99.95% 99.59% 
Buddha 99.57% 99.34% 
Average 99.82% 99.62% 

 

             
Fig. 8. Results from different 4D LF segmentation algorithms for Papillon 
and Horses 4D LF images. These images are selected to show the consistency 
across views where Papillon has uniform colors and Horses has complex 
texture. For each image: a red rectaglue on the central image and zoomed 
patches from the top-left view, top-right view, bottom-left view and bottom-
right view are shown, however, all the 4D LF views are segmented. 

V. FINAL REMARKS 
In this paper, an improved interactive 4D LF foreground-

background segmentation solution – SLFS – is proposed and 
evaluated. Firstly, the 4D LF superpixels are extracted 
efficiently using the VCLFS algorithm. Afterward, a 
hypergraph based on superpixels is created. Then, the 
segmentation problem is treated as an energy function 
optimization where a graph-cut technique is applied to 
optimize the segmentation result. Finally, the segmentation 
result is propagated to all 4D LF views consistently. 

Experimental results were conducted on both real and 
synthetic 4D LF images and show the effectiveness of the 
proposed approach with comparable results even after the 
dramatic reduction in the graph complexity. Additionally, the 
experimental results show that the segmentation can be 
affected by the superpixel size, the image complexity and the 
graph-cut parameters.  

The proposed approach can be used in several interesting 
applications where object extraction is needed, such as 
augmented and mixed reality, and object-based coding. For 
future work, the best compromise superpixel size to be used 
for this algorithm and the optimal parameters for graph 
creation and segmentation could be further optimized and will 
be considered. Additionally, the graph structure can be used 
for other LF editing applications, such as in inpainting where 
the space after object extraction can be filled consistently by 
novel pixels in one view and propagated to the 4D LF views. 
Furthermore, this algorithm can be further improved to include 
the segmentation of the sparse 4D LF images where the nodes 
of the large occluded objects are handled particularly in the 
graph creation step.  
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