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Base change and K -theory for GL.n/

Sergio Mendes and Roger Plymen

Abstract. Let F be a nonarchimedean local field and let G D GL.n/ D GL.n; F /. Let E=F
be a finite Galois extension. We investigate base change E=F at two levels: at the level of
algebraic varieties, and at the level ofK-theory. We put special emphasis on the representations
with Iwahori fixed vectors, and the tempered spectrum of GL.1/ and GL.2/. In this context,
the prominent arithmetic invariant is the residue degree f .E=F /.
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1. Introduction

The domain of definition of the classical modular forms (the upper half plane) is a
homogeneous space H D fz 2 C W Im z > 0g of the reductive group G.R/ D
GL.2;R/,

H D GL.2;R/=O.2;R/ �Z;
where Z is the centre of G.R/ and O.2;R/ is the orthogonal group. Each modular
form admits a lift Qf to the group GL.2;R/ and thence to the adele group GL.2;A/.

The action of GL.2;A/ on Qf by right translation defines a representation � D �f
of the group GL.2;A/ in the space of smooth complex-valued representations on
GL.2;A/, for which

.�.h/ Qf /.g/ D Qf .gh/
for all g; h 2 GL.2;A/. If �f is irreducible then one has an infinite tensor product
representation

� D
O
v

�v

where the �v are representations of the local groups GL.2;Qv/ with v D p or 1.
Let F be a local nonarchimedean field, so that F is either a finite extension of Qp

or is a local function field Fq..x//. The cardinality of the residue field kF will be
denoted qF . If F D Qp then qF D p. If F D Fq..x// then qF D q.
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Now let G D GL.n/ D GL.n; F /. Brodzki and Plymen [4], working directly
with L-parameters, equipped the smooth dual of GL.n/ with a complex structure. In
the smooth dual of GL.n/, especially important are the representations with Iwahori
fixed vectors. This part of the smooth dual has the structure of the extended quotient
.C�/n==Sn. This is a smooth complex affine algebraic variety denoted XF .

Let E=F be a finite Galois extension of F . We recall that the domain of an
L-parameter of GL.n; F / is the local Langlands group

LF ´ WF � SL.2;C/

whereWF is theWeil group ofF . Base change is defined by restriction ofL-parameter
from LF to LE . We prove, in Section 3, that base change

XF ! XE

is a finite morphism of algebraic varieties.
An L-parameter � is tempered if �.WF / is bounded [3], §10.3. Base change

therefore determines a map of tempered duals. In the rest of this article, we investigate
this map at the level of K-theory.

Let G.F / D GL.n; F /. Let C �
r .G/ denote the reduced C*-algebra of G. Ac-

cording to the Baum–Connes correspondence, we have a canonical isomorphism [2],
[11]

�F W K top� .ˇ1G.F // ! K�C �
r .G.F //

where ˇ1G.F / denotes the enlarged building of G.F /.
In noncommutative geometry, isomorphisms of C*-algebras are too restrictive to

provide a good notion of isomorphism of noncommutative spaces, and the correct no-
tion is provided by strong Morita equivalence of C*-algebras; this point is emphasized
in [13], p. 409. In the present context, the noncommutative C*-algebra C �

r .G.F //

is strongly Morita equivalent to the commutative C*-algebra C0.Irrt G.F // where
Irrt G.F / denotes the tempered dual ofG.F /, see [15]. As a consequence of this, we
have

K�C �
r .G.F // Š K� Irrt G.F /:

This leads to the following formulation of the Baum–Connes correspondence:

K
top� .ˇ1G.F // Š K� Irrt G.F /:

This in turn leads to the following diagram

K
top� .ˇ1G.E//

��

�E �� K� Irrt .G.E//

b�

E=F

��
K

top� .ˇ1G.F // �F

�� K� Irrt .G.F //
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where the left-hand vertical map is the unique map which makes the diagram com-
mutative.

In this paper we focus on the right-hand vertical map. Section 4 contains some
partial results. In Sections 5 and 6, we focus on GL.1/ and GL.2/. We need some
crucial results of Bushnell and Henniart [5]: the exact references are given in Section 6.
In Section 6, the local field F has characteristic 0 and p ¤ 2. The K-theory map
induced by unramified base change for totally ramified cuspidal representations with
unitary central character is described in Theorem 6.3.

In conformity with the recent book by Bushnell and Henniart [6], we will consis-
tently write cuspidal representation instead of supercuspidal representation.

We would like to thank Guy Henniart for his help on many occasions, and for his
prompt replies to emails.

Sergio Mendes is supported by Fundação para a Ciência e Tecnologia, Terceiro
Quadro Comunitário de Apoio, SFRH/BD/10161/2002.

2. Base change formula for quasicharacters

Let F be a local nonarchimedean field. Such a field has an intrinsic norm, denoted
modF in [18], p. 4. We will write

jxjF D modF .x/:

The valuation valF is then uniquely determined by the equation

jxjF D q
� valF .x/
F

where qF is the cardinality of the residue field kF D oF =pF . Here oF denotes the
ring of integers and pF its maximal ideal.

In this section, we review standard material on base change for quasicharacters.
Let E=F be a finite Galois extension, and let the corresponding Weil groups be
denoted WE , WF . We have the standard short exact sequence

1 ! IE ! WE
dE��! Z ! 0:

Let Art�1
E W W ab

E Š E�, let ˇE W WE ! W ab
E and let

˛E D Art�1
E B ˇE W WE ! E�:

Lemma 2.1. We have
NE=F .˛E .w// D ˛F .w/

for all w 2 WE � WF .
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Proof. See [17], 1.2.2.

Lemma 2.2. We have
f � valE D valF BNE=F :

Proof. See [18], VIII.1, p. 139.

Lemma 2.3. We have
dE D �valE B ˛E

Proof. LetˆE denote a geometric Frobenius inWE , as in [17, p.19]. The Weil group
WE is the disjoint union tIEˆnE . Then we have

valE .˛E .xˆ
n
E // D valE .$

�n
E /

D �n
D �dE .xˆnE /

for all x 2 IE .

Lemma 2.4. Let w 2 WE � WF . Then we have

f � dE .w/ D dF .w/:

Proof. By Lemmas 2.1, 2.2 and 2.3 we have

dF .w/ D � valF .˛F .w//

D � valF .NE=F .˛E .w//

D �f � valE .˛E .w//

D f � dE .w/: �

Now an unramified quasicharacter  of WE is given by the following simple
formula

 .w/ D zdE.w/

where z 2 C�. The base change formula for a quasicharacter � of WF is given by

bE=F .�/ D �jWE
: (1)

Lemma 2.5. Under base change we have

bE=F . /.w/ D .zf /dE.w/

for all w 2 WE .
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Proof. By Lemma 2.4 we have

bE=F . /.w/ D zdF .w/

D zf �dE.w/

D .zf /dE.w/: �

We can remember this result with the (informal) equation

zE=F D zf :

3. Representations with Iwahori fixed vectors

Let ‰.WF / denote the group of unramified quasicharacters of WF . Then we have

‰.WF / Š C�;  7!  .$F /:

Let LF denote the local Langlands group:

LF ´ WF � SL.2;C/:

A Langlands parameter (or L-parameter) is a continuous homomorphism

� W LF ! GL.n;C/

(GL.n;C/ is given the discrete topology) such that �.ˆF / is semisimple, whereˆF
is a geometric Frobenius inWF . Two Langlands parameters are equivalent if they are
conjugate under GL.n;C/. The set of equivalence classes of Langlands parameters
is denoted ˆ.GL.n//.

We will use the local Langlands correspondence for GL.n/ [12], [9], [10]:

�F W ˆ.GL.n// ! Irr.GL.n//:

Consider first the single L-parameter

� D 1˝ �.j1/˚ � � � ˚ 1˝ �.jk/

where �.j / is the j -dimensional complex representation of SL.2;C/, and j1 C � � �
C jk D n. We define the orbit of � as follows:

O.�/ D f 1 ˝ �.j1/˚ � � � ˚  k ˝ �.jk/ W  r 2 ‰.WF /; 1 � r � kg=�
where � denotes the equivalence relation of conjugacy in GL.n;C/.

In the local Langlands correspondence, these L-parameters correspond precisely
to the irreducible smooth representations of GL.n/which admit Iwahori fixed vectors.
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Each partition j1 C � � � C jk D n determines an orbit. The disjoint union of the
orbits, one for each partition of n, creates a complex affine algebraic variety with
finitely many irreducible components. This variety is smooth [4]. This variety admits
a simple description as an extended quotient, as we now proceed to explain.

Let � be a finite group and X a topological space. Suppose that � acts on X as
homeomorphisms. Define

zX D f.�; x/ 2 � �X W �x D xg
and

g:.�; x/ D .g�g�1; gx/;
for all g 2 � and .�; x/ 2 zX . Since .g�g�1/.gx/ D g.�x/ D gx; � acts on zX .

Definition 3.1. The extended quotientX==� associated to the action of � onX is the
quotient space zX=� .

If � 2 � , let X� denote fixed set

X� D fx 2 X W �x D xg
and letZ� denote the centralizer of � in � . Then the extended quotient is the disjoint
union

X==� D F
X�=Z�

where one � is chosen in each �-conjugacy class.
Let X D .C�/n be the complex torus of dimension n. The symmetric group

� D Sn acts onX by permuting the coordinates. First, we form the ordinary quotient:

Symn.C�/ ´ .C�/n=Sn;

the n-fold symmetric product of C�.
Next, we form the extended quotient .C�/n==Sn. The conjugacy class of � 2 Sn

determines a partition of n. Let the distinct parts of the partition be n1; : : : ; nl with
ni repeated ri times so that

r1n1 C � � � C rlnl D n:

Let
zj D  j .$F /:

The map

 1 ˝ �.n1/˚ � � � ˚  r1C���Crl ˝ �.nl/ 7! .z1; : : : ; zr1C���Crl /

determines a bijection

O.�/ � Symr1.C�/ � � � � � Symrl .C�/ D X�=Z.�/:
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With a mild abuse of notation, we will write the L-parameter

� D  1 ˝ �.j1/˚ � � � ˚  k ˝ �.jk/

as
z1 � �.j1/˚ � � � ˚ zk � �.jk/:

After base change E=F this L-parameter becomes

z
f
1 � �.j1/˚ � � � ˚ z

f

k
� �.jk/:

Example 3.2. We illustrate this result for GL.4/, by computing the L-parameters,
the respective orbits and the extended quotient. For each item, we list the partition,
the L-parameter and the orbit:

� 4C 0, � D 1˝ �.4/, O.�/ Š C�

� 3C 1, � D 1˝ �.3/˚ 1˝ 1, O.�/ Š .C�/2

� 2C 2, � D 1˝ �.2/˚ 1˝ �.2/, O.�/ Š Sym2.C�/
� 2C 1C 1, � D 1˝ �.2/˚ 1˝ 1˚ 1˝ 1, O.�/ Š C� � Sym2.C�/
� 1C 1C 1C 1, � D 1˝ 1˚ 1˝ 1˚ 1˝ 1˚ 1˝ 1, O.�/ Š Sym4.C�/

and the extended quotient is

.C�/4==S4 D C� t .C�/2 t Sym2.C�/ t C� � Sym2.C�/ t Sym4.C�/:

Theorem 3.3. Let XF be that part of the smooth dual of GL.n; F / comprising all
representations which admit Iwahori fixed vectors. Then XF is a smooth complex
affine algebraic variety, and in fact has the structure of extended quotient:

XF D .C�/n==Sn:

Let E=F be a finite Galois extension. Then base change

XF ! XE

is a finite morphism of algebraic varieties. Explicitly, if z1; : : : ; zr are typical coor-
dinates on XF , then base change is given by

.z1; : : : ; zr/ 7! .z
f
1 ; : : : ; z

f
r /:

Proof. A regular map f W X ! Y of affine varieties is finite if CŒX	 is integral
over CŒY 	, i.e., if the pullback f ] W CŒY 	 ! CŒX	 makes CŒX	 a finitely generated
CŒY 	-module. The map XF ! XE is regular.
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Each irreducible component in the algebraic variety XF is a product of symmetric
products. Denote a typical symmetric product by SF . The coordinate ring of each
symmetric product SF is of the form

CŒt1; : : : ; tr ; t
�1
1 ; : : : ; t�1r 	Sr

the ring of invariant Laurent polynomials. The pullback is

CŒSE 	 ! CŒSF 	; ti 7! t
f
i :

Since CŒSF 	 is finitely generated as a CŒSE 	-module, the base change map is
finite.

Example 3.4. The unramified twists of the Steinberg representation of GL.n/.

These representations correspond, in the local Langlands correspondence, to the
orbit of the singleL-parameter 1˝ �.n/. This creates an irreducible curve YF in the
smooth dual of GL.n; F /, in fact YF Š C�. Base change E=F is as follows:

YF ! YE ; z 7! zf :

Example 3.5. The spherical Hecke algebra.

Let K D GL.n; oF / and denote by H .G==K/ the convolution algebra of all
complex-valued, compactly-supported functions on G such that f .k1xk2/ D f .x/

for all k1, k2 in K. Then H .G==K/ is called the spherical Hecke algebra. It is a
commutative unital C-algebra.

Start with the single L-parameter

� D 1˝ 1˚ � � � ˚ 1˝ 1

and let O.�/ denote the orbit of �. We have

O.�/ D f 1 ˝ 1˚ � � � ˚  n ˝ 1g=�
with  j an unramified quasicharacter of WF , 1 � j � n. Let T be the standard
maximal torus of GL.n/, and let LT be the standard maximal torus in the Langlands
dual LG:

LT � LG D GL.n;C/:

Let W D Sn the symmetric group on n letters. Then we have

O.�/ Š CŒLT=W 	 D Symn.C�/:
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As a special case of the above, base changeE=F induces the following finite morphism
of algebraic varieties:

Symn.C�/ ! Symn.C�/; .z1; : : : ; zn/ 7! .z
f
1 ; : : : ; z

f
n /:

In view of the Satake isomorphism [7]

H .G==K/ Š CŒLT=W 	

we can interpret base change as an explicit morphism of unital C-algebras. This
recovers (and generalizes) the result in [1], p. 37, for we do not require the extension
E=F to be either unramified or cyclic.

4. K -theory computations

In this section we compute the K-theory map for two examples: the unitary twists
of the Steinberg representation of GL.n/, and certain connected components in the
unitary principal series of GL.n/.

Let T denote the circle group

T D fz 2 C W jzj D 1g

and let ‰t .WF / denote the group of unramified unitary characters of WF . Then we
have

‰t .WF / Š T ;  7!  .$F /

where $F is a uniformizer in F .
Consider first the single L-parameter

� D 
˝ �.j1/˚ � � � ˚ 
˝ �.jk/:

In this formula, 
 is an irreducible representation of WF , �.j / is the j -dimensional
complex representation of SL.2;C/, and j1 C � � � C jk D n. We define the compact
orbit of � as follows:

Ot .�/ D ˚ kL
rD1

 r ˝ 
˝ �.jr/ W  r 2 ‰t .WF /; 1 � r � k
�
=�

where, as before, � denotes the equivalence relation of conjugacy in GL.n;C/.
The Steinberg representation StG has L-parameter 1˝ �.n/.
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Theorem 4.1. Let
� D 1˝ �.n/

and let Ot .�/ be the compact orbit of �. Then we have

BC W T ! T ; z 7! zf :

(i) This map has degree f , and so at the level of the K-theory group K1, BC
induces the map

Z ! Z; ˛1 7! f � ˛1
of multiplication by the residue degree f . Here, ˛1 denotes a generator of
K1.T / Š Z.

(ii) At the level of the K-theory group K0, BC induces the identity map

Z ! Z; ˛0 7! ˛0;

where ˛0 denotes a generator of K0.T / Š Z.

Proof. (i) Since the map has degree f the result follows.
(ii) This is because ˛0 is the trivial bundle of rank 1 over T .

Next we define the L-parameter � as follows:

� D 
˝ 1˚ � � � ˚ 
˝ 1

where 
 is a unitary character of WF . The unitary characters of WF factor through
F � and we have

F � Š h$F i � UF :

We will take 
 to be trivial on h$F i, and then regard 
 as a unitary character of UF .
The group UF admits countably many such characters 
.

In this case the compact orbit is the n-fold symmetric product of the circle T :

Ot .�/ Š Ot .BC.�// Š T n=Sn:

Lemma 4.2. The symmetric product T n=Sn has the homotopy type of a circle.

Proof. Send the unordered n-tuple Œz	 D Œz1; : : : ; zn	 to the unique polynomial with
roots z1; : : : ; zn and leading coefficient 1

Œz1; : : : ; zn	 7! zn C an�1zn�1 C � � � C a1z C a0; a0 ¤ 0:

We have then

Symn.C�/ Š fzn C an�1zn�1 C � � � C a1z C a0 W a0 ¤ 0g �h C�;
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since the space of coefficients an�1; : : : ; a1 is contractible. Hence

Symn.T / �h T

via the map which sends Œz1; : : : ; zn	 to the product z1 : : : zn.

We recall the local Langlands correspondence

�F W ˆ.GL.n// ! Irr GL.n/:

Let t D diag.x1; : : : ; xn/ be a diagonal element in the standard maximal torus T of
GL.n/. Then

� W t 7! �F .
/.x1 : : : xn/

is a unitary character of T . Let � be an unramified unitary character of T , and form
the induced representation

IndGTU .�˝ �/:

This is an irreducible unitary representation of G. When we let � vary over all
unramified unitary characters of T , we obtain a subset of the unitary dual of G. This
subset has the structure of n-fold symmetric product of T .

Since UF admits countably many unitary characters, the unitary dual ofG contains
countably many subspaces (in the Fell topology), each with the structure Symn.T /.
We are concerned with the effect of base change E=F on each of these compact
spaces.

Theorem 4.3. Let T n=Sn denote one of the compact subspaces of the unitary prin-
cipal series of GL.n/ currently under discussion. Then we have

BC W T n=Sn ! T n=Sn; .z1; : : : ; zn/ 7! .z
f
1 ; : : : ; z

f
n /:

(i) At the level of the K-theory group K1, BC induces the map

Z ! Z; ˛1 7! f � ˛1
of multiplication by f , where f is the residue degree and ˛1 denotes a generator of
K1.T / D Z.

(ii) At the level of the K-theory group K0, BC induces the identity map

Z ! Z; ˛0 7! ˛0;

where ˛0 denotes a generator of K0.T / D Z.
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Proof. From Lemma (4.2) we have a commutative diagram:

Symn.T /

h

��

BC �� Symn.T /

h

��
T eBC

�� T

Here, BC.z1; : : : ; zn/ D .z
f
1 ; : : : ; z

f
n /, h is the homotopy map h.Œz1; : : : ; zn	/ D

z1 : : : zn and fBC is the map z 7! zf . Since

.z1 : : : zn/
f D z

f
1 : : : z

f
n

we have Kj .BC/ D Kj .fBC/. But fBC is a map of degree f . Therefore,

K1.BC/.˛1/ D f:˛1 and K0.BC/.˛0/ D ˛0

where ˛1 is a generator of K1.T / D Z and ˛0 is a generator of K0.T / D Z.

5. Base change and K -theory for GL.1; F /

So far we have considered base change as a map of compact orbits. Now we want to
describe base change as a map of the locally compact Hausdorff spaces

BC W At
1.F / ! At

1.E/

where At
1.F / denotes Irrt GL.1; F /. From now on we will change notation and we

denote the tempered dual Irrt GL.n; F / by At
n.F /.

To study the effect of base change onK-theory groups we explicitly compute the
functorial base change map Kj .BC/. We will use K-theory with compact supports
and in particular we will prove that BC is a proper map.

Let � D j jsF �0 be a character of F �, where �0 is the restriction of � to o�
F . We

will write from now on � D z�F . � /�0 (since jxjsF D q
�s�F .x/
F this is simply a change

of variables q�s
F 2 T 7! z 2 T ). We also denote the group of units o�

F by UF .
If �0 is a character of UF then �0 is trivial on some Um

F . The least m such that
�0 D �jUF

is trivial on Um
F is called the conductor of � and is denoted c.�/. Note

that �0 D �jUF
can be thought as a character of the finite cyclic group UF =U

c.�/
F .

It is well known that the parameters .z; c.�// 2 T � N0 do not completely
determine the character �. There is a group isomorphism

UF =U
m
F Š UF =U

1
F � U1

F =U
2
F � � � � � Um�1

F =Um
F :

Now UF =U
1
F Š k�

F while Ui�1
F =Ui

F Š kF for i � 1 [8], Proposition 5.4. Note
that k�

F is interpreted as a multiplicative group while kF is interpreted as an additive
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group. Since kF has order qF and k�
F has order qF � 1 it follows that UF =U

m
F is

a finite cyclic group of order .qF � 1/qm�1
F and 3UF =U

m
F Š UF =U

m
F is also finite

with the same order.
We have [8], Lemma 3.4,

F � Š h$F i � UF

where $F is a uniformizer if F . It follows that

At
1.F / Š T � bUF :

We will keep in mind the following enumeration of the countable set bUF : to each
natural number nwe attach the finite set of all characters� 2 bUF for which c.�/ D n.
This enumeration is not canonical.

Proposition 5.1 ([18], Proposition 5, p. 143). The norm map NE=F W E� ! F �
determines an open morphism of E� onto an open subgroup of F �.

It follows that there exist m; n 2 N0 such that

NE=F .U
n
E / D Um

F : (2)

A natural question is how to relate the indexes n andm. For unramified extensions
we have the following result.

Proposition 5.2 ([16], Proposition 1, p. 81). Let E=F be a finite, separable, unram-
ified extension. Suppose that kF is finite. Then

NE=F .U
n
E / D Un

F for all n � 0:

Apart from unramified extensions, we will consider the cases when the extension
is tamely ramified and totally ramified, since the ramification theory is simpler. The
case of wildly ramified extensions is more subtle and will not be considered. We now
recall some results about ramification theory. Let E=F be a finite Galois extension
and G D Gal.E=F /. Put

Gi D f� 2 G W �x � x 2 piC1E for all x 2 oE g; i � �1: (3)

The group Gi is called the i-th ramification group of the extension E=F . Altogether,
they form a decreasing sequence of subgroups

G�1 D G 	 G0 	 G1 	 � � � 	 Gi 	 GiC1 	 � � � : (4)

Denote by F0=F the maximal unramified subextension of F inE=F . Note that F0 is
the intersection of E with the maximal unramified subextension of xF=F , denoted by
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F ur , where xF is a fixed algebraic closure of F . The subgroup IE=F D Gal.E=F0/
is called the inertia subgroup of Gal.E=F / and we have the identification G0 D
IE=F [16], Proposition 1, p. 62. It follows that G=G0 D Gal.kE=kF / and E=F is
unramified if and only if G0 D f1g.

The quotient group G0=G1 is cyclic and has order prime to the characteristic
residue ofE [16], Corollary 1, p. 67. Therefore, the tame ramification is given by the
groups G0 and G1. In particular, the extension E=F is tamely ramified if and only if
G1 D f1g. These results can be summarized in the following diagram.

E

e

G1 = {1}

F0

f

G0

F G

To every finite (separable) extension E=F of local fields we associate a real function
[16], §3, p. 73,

'E=F .u/ D
Z u

0

dt

.G0 W Gt / for all u 2 Œ�1;C1Œ:

Remark 5.3. This is simply extending the definition of the filtration (4) indexed
by a finite discrete parameter to a decreasing filtration fGtgt��1 with a continuous
parameter. If i � 1 < t � i then we define Gt D Gi . 'E=F is a step function and is
a homeomorphism of the interval Œ�1;C1Œ into itself.

The inverse  E=F D '�1
E=F

is called the Hasse–Herbrand function. We collect
some properties of  E=F [16], Proposition 13, p. 73:

(i) The function  E=F is continuous, piecewise linear, increasing and convex.
(ii)  E=F .0/ D 0.

(iii) If � is an integer, then  E=F .�/ is also an integer.

Example 5.4. Suppose E=F is unramified. Then G0 D f1g and we have

'E=F .u/ D
Z u

0

dt

.G0 W Gt / D u:

Therefore,  E=F .x/ D x.
Now let E=F be a tame extension. Then jG0j D e, G1 D f1g, and we have

'E=F .u/ D
Z u

0

dt

.G0 W G1/ D
Z u

0

jG1j
jG0jdt D

Z u

0

dt

e
D u=e:

It follows that  E=F .x/ D ex.
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Example 5.5 ([16], p. 83). If E=F is cyclic, totally ramified with prime degree p,
then

 .x/ D
(
x; x � t;

t C p.x � t /; x � t;

where t is such that Gt ¤ f1g and f1g D GtC1 D GtC2 D � � � .

Proposition 5.6 ([16], Corollary 4, p. 93). Assume that E=F is a Galois extension,
totally ramified. Let � be a non-negative number and suppose that G .�/ D f1g.
Then

NE=F .U
 .�/
E / D U�

F :

We now deduce a similar result for Galois tamely ramified extensions.

Proposition 5.7. Let E=F be a tamely ramified extension. Then

NE=F .U
 .�/
E / D U�

F

for all non-negative real numbers �.

Proof. Let F0=F be the maximal unramified subextension of F in E=F . We have
a tower of fields F � F0 � E. Then E=F0 is a totally tamely ramified extension.
Since G1 D f1g, we also have G .�/ D f1g, for all � � 0, where  denotes the
Hasse–Herbrand function  E=F .

The conditions of Proposition 5.6 are satisfied and we have

NE=F0
.U

 .�/
E / D U�

F0
:

Since F0=F is unramified, it follows from Proposition 5.2 that

NF0=F .U
�
F0
/ D U�

F :

Finally, by transitivity of the norm map we have

NE=F .U
 .�/
E / D NF0=F .NE=F0

.U
 .�/
E // D NF0=F .U

�
F0
/ D U�

F :

Base change for GL.1/ on the admissible side

LetE=F be a finite Galois extension and letWE ,! WF denote the inclusion of Weil
groups. Langlands functoriality predicts the existence a commutative diagram

G1.F /

ResE=F

��

F L1 �� At
1.F /

BC
��

G1.E/
EL1

�� At
1.E/
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where G1.F / (resp. G1.E/) is the group of characters of WF (resp. WE ) and BC is
the base change map. On the admissible side base change is given by

At
1.F / ! At

1.E/;

�F 7! �F BNE=F : (5)

Lemma 5.8. Let �F be a character of F � with conductor c.�F / and consider the
character �E ´ �F BNE=F of E�. Suppose that we have

NE=F .U
n
E / D U

c.�F /
F :

Then n is the conductor c.�E / of �E .

Proof. We have

�E .U
n
E / D �F BNE=F .Un

E / D �F .U
c.�F /
F / D 1:

Let r be any integer such that 0 < r < n. Then

Un
E � Ur

E ;

NE=F .U
n
E / � NE=F .U

r
E /;

U
c.�F /
F � Us

F ;

with c.�F / > s. Then

�F BNE=F .Ur
E / D �F .U

s
F / ¤ 1;

since c.�F / is the least integer with this property. Therefore n D c.�E /.

We may now describe base change as a map of topological spaces. The unitary
dual At

1.F / (resp. At
1.E/) is a disjoint union of countably many circles, parametrized

by characters � 2 bUF (resp.  2 bUF ):

At
1.F / Š F

T�; At
1.E/ Š F

T�:

We recall that �E D �F BNE=F and c.�E / is the unique integer such that

NE=F .U
c.�E/
E / D U

c.�F /
F :

Theorem 5.9. LetE=F be unramified, tamely ramified or totally ramified (in the last
case we also require E=F to be cyclic). Then we have:

(1) Base change is a proper map.
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(2) When we restrict base change to one circle, we get the following:

BC W T�F
! T�E

; z 7! zf

with c.�E / D  E=F .c.�F //.

Proof. (1) Base change maps each circle into another circle. Let K be a closed arc
in T� , and let  D �E . Then we may write

K D fei� 2 T� W �0 � � � �1; � 2 Œ0; 2�	g:
The pre-image of this closed arc is

BC�1.K/ D fei� 2 T� W �0=f � � � �1=f; � 2 Œ0; 2�	g
which is a closed arc in T�. It follows that the pre-image of a compact set is compact.

(2) follows immediately from Lemma 5.8.

K -theory

LetE=F be a finite Galois extension. The unitary dual of GL.1/ is a countable disjoint
union of circles and so has the structure of a locally compact Hausdorff space. The
base change map

BC W F
T� ! F

T� (6)

with � 2 bUF ,  2 bUE is a proper map.
Each K-group is a countably generated free abelian group:

Kj .At
1.F // Š L

Z�; Kj .At
1.E// Š L

Z�

with � 2 bUF ;  2 bUE ; j D 0; 1, where Z� and Z� denote a copy of Z.
There is a functorial map at the level of K-theory groups

Kj .BC/ W L
Z� ! L

Z�: (7)

Base change selects among the characters of bUE those of the form
�E D �F BNE=F , where �F is a character of bUF .

Theorem 5.10. When we restrict K1.BC/ to the direct summand Z�E
we get the

following map:
Z�E

! Z�F
; x 7! f � x:

On the remaining direct summands, K1.BC/ D 0. When we restrict K0.BC/ to the
direct summand Z�E

we get the following map:

Z�E
! Z�F

; x 7! x:

On the remaining direct summands, K0.BC/ D 0. In each case, we have c.�E / D
 E=F .c.�F //.
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6. Base change and K -theory for GL.2 ; F /

Through this section, F denotes a nonarchimedean local field with characteristic 0
and p ¤ 2.

Let G 02 .F / be the set of equivalence classes of irreducible 2-dimensional smooth
(complex) representations of WF . Let A0

2.F / be the subset of At
2.F / consisting of

equivalence classes of irreducible cuspidal representations of GL.2; F /. The local
Langlands correspondence gives a bijection

FL W G 02 .F / ! A0
2.F /:

We recall the concept of admissible pair [6], p. 124.

Definition 6.1. Let E=F be a quadratic extension and let � be a quasicharacter of
E�. The pair .E=F; �/ is called admissible if

(1) � does not factor through the norm map NE=F W E� ! F � and,

(2) if �jU1
E does factor through NE=F , then E=F is unramified.

Denote the set of F -isomorphism classes of admissible pairs .E=F; �/ by P2.F /.
According to [6], p. 215, the map

P2.F / ! G 02 .F /;

.E=F; �/ 7! IndE=F �
(8)

is a canonical bijection, where we see � as a quasicharacter of WE via the class
field theory isomorphism W ab

E Š E� and IndE=F is the functor of induction from
representations of WE to representations of WF .

The tempered dual of GL.2/ comprises the cuspidal representations with unitary
central character, the unitary twists of the Steinberg representation, and the unitary
principal series.

We will restrict ourselves to admissible pairs .E=F; �/ for which � is a unitary
character. This ensures that 
 ´ IndE=F � is unitary. Therefore det.
/ is unitary and
L.
/ has unitary central character.

The cuspidal representations of GL.2/with unitary central character arrange them-
selves in the tempered dual as a countable union of circles. For each circle T , we
select an admissible pair .E=F; �/ for which

L.
/ 2 T

and label this circle as T.E=F;	/.
We further restrict ourselves to admissible pairs .E=F; �/ for whichE=F is totally

ramified.
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Theorem 6.2. Let L=F be an unramified extension of odd degree. Then we have:

(1) Base change is a proper map.

(2) When we restrict base change to one circle we get the following:

BC W T.E=F;	/ ! T.EL=L;	L/; z 7! zf .L=F /

with �L D � BNEL=E and c.�L/ D  EL=E .c.�// D c.�/.

Proof. The proof of .1/ is analogous to the proof of Theorem 5.9.
Each representation 
 2 G 02 .F / has a torsion number: the order of the cyclic

group of all the unramified characters � for which �
 Š 
. The torsion number of 

will be denoted t .
/.

Set � D IndE=F �; � D L.�/ and �L D IndEL=L �L D � jWL. Then � is totally
ramified, in the sense that t .�/ D 1, as in the proof of Theorem 3.3 in [5], p. 697.
The pair .EL=L; �L/ is admissible [5], Theorem 4.6. We now quote [5], Proposi-
tion 3.2 (7), to infer that

L.�L/ D bL=F �:

If L=F is unramified then, by [14], Proposition 7.2, p. 153, EL=E is unramified.
For the ramification indices, we have:

eEL=F D eEL=L � eL=F D eEL=E � eE=F :
Since L=F and EL=E are both unramified it follows that

eEL=L D eE=F D 2:

Since EL=L is a quadratic extension, EL=L is totally ramified. Therefore �L is
totally ramified, i.e., t .�L/ D 1.

Hence, base change maps each circle into another circle and the map is given by
z 7! zf .L=F /.

Finally, sinceEL=E is unramified, we have EL=E .x/ D x and the result follows.

LetL=F be a finite unramified Galois extension. The cuspidal part of the tempered
dual of GL.2/ is a countable disjoint union of circles and so has the structure of a
locally compact Hausdorff space. The base change map

BC W F
T.E=F;	/ ! F

T.EL=L;�/ (9)

with .E=F; �/ an admissible pair,E=F totally ramified and � unitary is a proper map.
Each K-group is a countably generated free abelian group:

Kj .
F

T.E=F;	// Š L
Z.E=F;	/; Kj .

F
T.EL=L;�// Š L

Z.EL=L;�/
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where Z.E=F;	/ and Z.EL=L;�/ denote a copy of Z, j D 0; 1.
In complete analogy with GL.1/ there is a functorial map at the level ofK-theory

groups
Kj .BC/ W L

Z.EL=L;�/ ! L
Z.E=F;	/: (10)

Base change selects among the admissible pairs .EL=L; / those of the form
.EL=L; �L/, where �L D � BNEL=E .

Theorem 6.3. When we restrict K1.BC/ to the direct summand Z.EL=L;	L/ we get
the following map:

Z.EL=L;	L/ ! Z.E=F;	/; x 7! f .L=F / � x:
On the remaining direct summands, K1.BC/ D 0. When we restrict K0.BC/ to the
direct summand Z.EL=L;	L/ we get the following map:

Z.EL=L;	L/ ! Z.E=F;	/; x 7! x:

On the remaining direct summands, K0.BC/ D 0.

References

[1] J. Arthur and L. Clozel, Simple algebras, base change, and the advanced theory of the
trace formula. Ann. of Math. Stud. 120, Princeton University Press, Princeton, NJ, 1989.
Zbl 0682.10022 MR 1007299

[2] P. Baum, N. Higson and R. J. Plymen, A proof of the Baum-Connes conjecture for p-
adic GL.n/. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 171–176. Zbl 0918.46061
MR 1467072

[3] A. Borel, Automorphic L-functions. In Automorphic forms, representations and L-
functions (Oregon State Univ., Corvallis, Oregon, 1977), Proc. Sympos. Pure Math. 33,
Part 2, Amer. Math. Soc., Providence, R.I., 1979, 27–61. Zbl 0412.10017 MR 546608

[4] J. Brodzki and R. J. Plymen, Complex structure on the smooth dual of GL.n/. Doc. Math.
7 (2002), 91–112. Zbl 1012.22031 MR 1911211

[5] C. J. Bushnell and G. Henniart, The essentially tame local Langlands correspondence, I.
J. Amer. Math. Soc. 18 (2005), 685–710. Zbl 1073.11070 MR 2138141

[6] C. J. Bushnell and G. Henniart, The Local Langlands Conjecture for GL.2/, Grundlehren
Math. Wiss. 335, Springer-Verlag, Berlin 2006. Zbl 1100.11041 MR 2234120

[7] P. Cartier, Representations of p-adic groups: a survey. In Automorphic forms, rep-
resentations and L-functions (Oregon State Univ., Corvallis, Oregon, 1977), Proc.
Sympos. Pure Math. 33, Part 1, Amer. Math. Soc., Providence, R.I., 1979, 111–155.
Zbl 0421.22010 MR 546593

[8] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. Transl. Math. Monogr.
121, 2nd ed., Amer. Math. Soc., Providence, R.I., 2002. Zbl 01793794 MR 1915966

http://www.emis.de/MATH-item?0682.10022
http://www.ams.org/mathscinet-getitem?mr=1007299
http://www.emis.de/MATH-item?0918.46061
http://www.ams.org/mathscinet-getitem?mr=1467072
http://www.emis.de/MATH-item?0412.10017
http://www.ams.org/mathscinet-getitem?mr=546608
http://www.emis.de/MATH-item?1012.22031
http://www.ams.org/mathscinet-getitem?mr=1911211
http://www.emis.de/MATH-item?1073.11070
http://www.ams.org/mathscinet-getitem?mr=2138141
http://www.emis.de/MATH-item?1100.11041
http://www.ams.org/mathscinet-getitem?mr=2234120
http://www.emis.de/MATH-item?0421.22010
http://www.ams.org/mathscinet-getitem?mr=546593
http://www.emis.de/MATH-item?01793794
http://www.ams.org/mathscinet-getitem?mr=1915966


Base change and K-theory for GL.n/ 331

[9] G. Henniart, Une preuve simple des conjectures de Langlands pour GL.n/ sur un corps
p-adique. Invent. Math. 139 (2000), 439–455. Zbl 1048.11092 MR 1738446

[10] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura va-
rieties. Ann. of Math. Stud. 151, Princeton University Press, Princeton, NJ, 2001.
Zbl 1036.11027 MR 1876802

[11] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-
Connes. Invent. Math. 149 (2002), 1–95. Zbl 1084.19003 MR 1914617

[12] G. Laumon, M. Rapoport and U. Stuhler, D-elliptic sheaves and the Langlands corre-
spondence. Invent. Math. 113 (1993), 217–338. Zbl 0809.11032 MR 1228127

[13] Yu. I. Manin andA.A. Panchishkin, Introduction to modern number theory. Encyclopaedia
Math. Sci. 49, Springer-Verlag, Berlin 2005. Zbl 1079.11002 MR 2153714

[14] J. Neukirch, Algebraic number theory. Grundlehren Math. Wiss. 322, Springer-Verlag,
Berlin 1999. Zbl 0956.11021 MR 1697859

[15] R. J. Plymen, The reduced C�-algebra of the p-adic group GL.n/. J. Funct. Anal. 72
(1987), 1–12. Zbl 0625.46064 MR 883498

[16] J.-P. Serre, Local fields. Grad. Texts in Math. 67, Springer-Verlag, New York 1979.
Zbl 0423.12016 MR 554237

[17] J. Tate, Number theoretic background. In Automorphic forms, representations and L-
functions (Oregon State Univ., Corvallis, Oregon, 1977), Proc. Sympos. Pure Math. 33,
Part 2, Amer. Math. Soc., Providence, R.I., 1979, 3–26. Zbl 0422.12007 MR 546607

[18] A. Weil, Basic number theory. Classics Math., Springer-Verlag, Berlin 1995.
Zbl 0823.11001 MR 1344916

Received June 6, 2006; revised February 15, 2007

S. Mendes, ISCTE, Av. das Forças Armadas, 1649-026, Lisbon, Portugal

E-mail: sergio.mendes@iscte.pt

R. Plymen, School of Mathematics, Manchester University, Manchester M13 9PL, England

E-mail: plymen@manchester.ac.uk

http://www.emis.de/MATH-item?1048.11092
http://www.ams.org/mathscinet-getitem?mr=1738446
http://www.emis.de/MATH-item?1036.11027
http://www.ams.org/mathscinet-getitem?mr=1876802
http://www.emis.de/MATH-item?1084.19003
http://www.ams.org/mathscinet-getitem?mr=1914617
http://www.emis.de/MATH-item?0809.11032
http://www.ams.org/mathscinet-getitem?mr=1228127
http://www.emis.de/MATH-item?1079.11002
http://www.ams.org/mathscinet-getitem?mr=2153714
http://www.emis.de/MATH-item?0956.11021
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.emis.de/MATH-item?0625.46064
http://www.ams.org/mathscinet-getitem?mr=883498
http://www.emis.de/MATH-item?0423.12016
http://www.ams.org/mathscinet-getitem?mr=554237
http://www.emis.de/MATH-item?0422.12007
http://www.ams.org/mathscinet-getitem?mr=546607
http://www.emis.de/MATH-item?0823.11001
http://www.ams.org/mathscinet-getitem?mr=1344916

	Introduction
	Base change formula for quasicharacters
	Representations with Iwahori fixed vectors
	K-theory computations
	Base change and K-theory for GL(1,F)
	Base change and K-theory for GL(2,F)
	References



