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Resumo

De modo a colmatar a necessidade de fornecer largura de banda suficiente para atingir

altas taxas de tráfego de dados em ligações entre centros de dados, foi proposta a trans-

missão de sinais com modulação de impulsos em amplitude com 4 ńıveis (PAM4) em

ligações de curto alcance entre centro de dados com modulação de intensidade e deteção

direta suportadas por fibras homogéneas multinúcleo fracamente acopladas. No entanto,

neste tipo de fibras, a diafonia entre núcleos (ICXT) limita significativamente o desem-

penho das ligações, causando grandes flutuações da taxa de erros binários (BER), o que

pode conduzir à indisponibilidade da ligação.

Neste trabalho, através da análise de diagramas de olho usando uma rede neuronal

convolucional (CNN) é estimada a BER em ligações ópticas entre centros de dados PAM4

degradadas por ICXT com o objetivo de monitorização do desempenho. Para avaliar o

desempenho da CNN é usada como métrica a raiz do erro quadrático médio (RMSE).

Para diferentes atrasos de propagação entre núcleos, razões de extinção e ńıveis de dia-

fonia, a CNN é capaz de prever BERs sem ultrapassar o limite estabelecido para o RMSE.

As CNNs treinadas com diferentes parâmetros ópticos obtiveram o melhor desempenho

em termos de generalização em comparação com CNNs treinadas com parâmetros ópticos

espećıficos. Estes resultados confirmam que os modelos baseados em CNN são capazes

de extrair informação a partir de imagens de diagramas de olhos, prevendo a BER sem

conhecimento prévio dos sinais transmitidos.

Palavras-chave: aprendizagem automática, crosstalk entre núcleos, fibras multinúcleo,

rede neuronal convolucional, taxa de erros binários.
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Abstract

To meet the required future challenge of providing enough bandwidth to achieve high data

traffic rates in datacenter links, four-level pulse amplitude modulation (PAM4) signals

transmission in short-haul intensity modulation-direct detection datacenters connections

supported by homogeneous weakly-coupled multicore fibers has been proposed. However,

in such fibers, a physical effect known as inter-core crosstalk (ICXT) limits significantly the

performance of short-reach connections by causing large bit error rate (BER) fluctuations

that can lead undesirable system outages.

In this work, a convolutional neural network (CNN) is proposed for eye-pattern analy-

sis and BER prediction in PAM4 inter-datacenter optical connections impaired by ICXT,

with the aim of optical performance monitoring. The performance of the CNN is assessed

using the root mean square error (RMSE).

Considering PAM4 interdatacenter links with one interfering core and for different

skew-symbol rate products, extinction ratios and crosstalk levels, the results show that

the implemented CNN is able to predict the BER without surpassing the RMSE limit. The

CNNs trained with different optical parameters obtained the best performance in terms of

generalization comparing to CNNs trained with specific optical parameters. These results

confirm that the CNN-based models can be able to extract features from received eye

patterns to predict the BER without prior knowledge of the transmitted signals.

Keywords: bit error rate, convolutional neural network, inter-core crosstalk, machine

learning, multicore fiber.
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CHAPTER 1

Introduction

This dissertation focuses on addressing physical level issues associated with four-level pulse

amplitude modulation (PAM4) signals transmission in multicore fibers (MCF), proposed

for short-haul intensity modulation-direct detection (IM-DD) datacenters connections [1,

2, 3]. MCFs, from the total spatial channel count (SCC) perspective, are considered as

promising technologies to overcome the capacity limits of single core-single mode fiber (SC-

SMF) transmissions [4, 5, 6]. However, in homogeneous weakly-coupled multicore fibers

(WC-MCFs), a physical effect known as inter-core crosstalk (ICXT) limits significantly

the performance of such short-reach connections by causing large bit error rate (BER)

fluctuations that lead undesirable outage probabilities (OPs) [7]. To address this issue, in

this work, a convolutional neural network (CNN) is used to perform eye-pattern analysis

and extract predictions of the BER of PAM4 inter-datacenter optical connections impaired

by ICXT. The CNN developed can be applicable for performance monitoring and, if

intended, for system outage detection.

1.1. Motivation

As telecommunications technology evolved, alongside with the number of network users

and devices, datacenters became crucial to handle large amounts of data due to their

flexibility and scalability in computing and storage resources [8, 9]. Even so, the number

of devices connected to internet protocol (IP) networks is estimated to be more than three

times the global population by the year of 2023 [10], which leads to a significant global data

center IP traffic growth. This requires answering technologically to the future challenge

of providing enough bandwidth to achieve such high data traffic rates in datacenter links.

The current approach to deal with capacity scalability in datacenter links is using

multiple wavelengths (also known as lanes, in the datacenters terminology) carrying wave-

length division multiplexing (WDM) channels, where each one of these channels carries a

conventional on-off keying (OOK) signal [11]. 200 GBd OOK per lane IM-DD transmis-

sions has been achieved, however, this strategy is compromised, since it requires complex

and expensive components and leads to a high power consumption in order to enable the

upcoming data rates requirements [12, 13]. For this reason, PAM4 has been proposed
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for datacenter connections and has already been standardized by the IEEE 802.3bs task

force to enable rates of 50 and 100 Gbit/s per wavelength channel, since it minimizes the

spectral efficiency and power consumption issues [11]. Datacenter connections are usually

categorized as intra-datacenter and inter-datacenter links, in relation to their maximum

range, respectively, up to 10 km and 100 km [11]. Nowadays, some of these connections

typically rely on optical fibers such SC-SMF, however, it is expected that such fibers will

no longer fulfill the future capacity demands, as transmission in SC-SMFs is approaching

its limit of 100 Tb/s with coherent detection and over 200 Gbit/s per lane with IM-DD

[14, 15].

Multicore fibers have been proposed in order to overcome this capacity limit issue.

In particular, homogeneous WC-MCFs ensure the simplicity, low cost and power con-

sumption design requirements imposed by datacenter links. Even so, transmission in such

MCFs is impaired by ICXT, which due to its inherent random nature, can limit signifi-

cantly the performance of such connections by causing large BER fluctuations due to the

high ICXT levels that can occur, leading to undesirable system outage periods [3, 16].

Several implementations using machine learning (ML) have been proposed for the

physical layer of optical networks, which include fiber nonlinearity mitigation, modulation

format (MF) recognition and optical performance monitoring (OPM) [17, 18]. Regarding

the latter, most recently, the use of convolutional neural networks (CNNs) has been

investigated [19, 20]. Given the good results obtained with these techniques, in this work,

for performance monitoring, a CNN is used for eye-pattern analysis and BER prediction

in PAM4 inter-datacenter optical connections impaired by ICXT.

1.2. Goals

The main focus of this dissertation is to apply a CNN for performance monitoring of

IM-DD PAM4 datacenter connections impaired by ICXT. The main goals are:

• Study and characterization of short-haul IM-DD datacenter optical links with

PAM4 transmission and supported by homogenous WC-MCFs;

• Review of the literature in ML and ML applied to optical performance monitor-

ing;

• Study of the DP-DCM proposed in the literature [3, 21] that models accurately

the ICXT effect in homogeneous WC-MCFs;

2



Chapter 1 Introduction

• Implementation and demonstration of the effectiveness of the CNN for perfor-

mance monitoring of the BER of the PAM4 datacenter connection impaired by

ICXT, used as an indicator to decide if ICXT mitigation is required.

1.3. Dissertation organization

This dissertation is organized in the following chapters. A literature review is presented

in Chapter 2, which addresses the fundamental concepts related to this work, namely

datacenter connections, PAM4 signal transmission in datacenter links supported by MCFs

impaired by ICXT and an overview on ML. In Chapter 3, the CNN implemented for eye-

pattern analysis and BER prediction of PAM4 inter-datacenter optical connections is

presented. The optical telecommunication system equivalent model used for collecting

data is also studied, where the DP-DCM developed to characterize the ICXT in MCFs is

described in detail. In Chapter 4, the performance of the CNN-based eye-pattern analysis

and BER prediction is evaluated for different optical parameters such as the crosstalk

level, extinction ratio and skew-symbol rate product based on the root mean square error

(RMSE) metric. The final conclusions and future work are presented in Chapter 5.

1.4. Main contributions

We consider that this work has the following main contributions:

• Implementation and validation of the effectiveness of a CNN for performance

monitoring of the BER and system outage detection of the PAM4 datacenter

connections impaired by ICXT;

• Design and validation of a sampling proposal for eye-pattern and BER balancing;

• Implementation of an eye-pattern to image conversion based on a fixed and a

dynamic scale;

• Demonstration that the BER can be extracted (through a proper pre-processing)

by analysis of eye-patterns generated from synthetic data (from MATLAB);

• Demonstration that the CNN can predict the BER accurately when trained with

several different optical link parameters, instead of being trained for only a spe-

cific optical link configuration.
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CHAPTER 2

Literature Review

2.1. Datacenters

Datacenters are large-scale computing platforms built to handle high amounts of data by

providing flexibility and scalability in computing, networking and storage resources [8].

Therefore, as technology evolves, alongside with the number of network users and devices

[10], datacenters play a fundamental role in connectivity and are expected to ensure high

efficiency and reliability on how they manage such significant amounts of traffic.

2.1.1. Datacenter architecture

Traditionally, a datacenter has a three-tier architecture with an access, aggregation

and core tiers [11, 22]. As shown in Fig.2.1, servers, through Top-of-Rack packet-based

switches (ToR), connect to access switches which are usually connected to two aggregation

routers. These aggregation routers are then linked to core routers in the upper layer. The

connections inside and between the aggregation and core tiers are set in such way to

provide redundancy [11]. In order to ensure a higher scalability, datacenters may have

more than three tiers, by expanding the aggregation tier to more than one stage [11, 22].

Figure 2.1. A three-tier data center architecture, suitable for handling
north-south traffic. Blues lines represent connections with less than 10
km and green lines represent connections with less than 100 m. Based on
[8, 11, 22].
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In this architecture, traffic from the Internet passes through the core tier, then to

the aggregation tier, access tier and edge layer, where the servers are located [11]. Here,

the data is channelled to the right server. The same approach is applied in the opposite

way. The traffic that travels along the datacenter in this way is named north-south traffic

[11]. However, when traffic is generated from one server to another, within the same

datacenter, in a three-tier architecture, it travels up to the core tier and then back to the

edge layer, meaning that it must traverse two access switches, two aggregation routers and

a core router, which increases latency and leads high power consumption [11]. Moreover,

with cloud external providers, such as Microsoft and Amazon, hosting massive amounts

of data [23], traffic must also travel in such way between different datacenters in big

facilities known as hyperscale datacenters. Hence, three-tier datacenter architectures are

quite problematic since they cannot scale properly to handle this so-called east-west traffic

[11].

Figure 2.2. A two-tier data center architecture, suitable for handling
north-south and east-west traffic. Red lines represent connections with less
than 100 km, blues lines represent connections with less than 10 km, green
lines represent connections with less than 100 m. Based on [8, 11, 22].

To manage east-west traffic more efficiently, hyperscale datacenters have switched to

a two-tier architecture [11], shown in Fig.2.2. ToR switches are now connected directly to

leaf switches. These leaf switches are connected to every spine switch inside a datacenter,

resulting in several possible paths, that increase the redundancy inside the datacenter [11].

In this architecture, east-west traffic is routed to a spine switch before traveling back down

to the most suitable leaf switch. Moreover, traffic between different datacenters is handled
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by border leaf switches. In order to provide a higher scalability, more leaf switches or

spine switches may be added [11].

2.1.2. Datacenter connections

Datacenter connections are categorized as short-haul links and can be labed as intra-

datacenter and inter-datacenter links by having a range up to 10 km and 100 km, respec-

tively [11]. For instance, in the two-tier architecture represented in Fig. 2.2, connections

between border leaf switches from different datacenters are considered inter-datacenter

links, while all connections within a datacenter are considered intra-datacenter links.

Both, above 100 m, are typically supported by optical fiber technology and less propa-

gation impairments in comparison with long haul links are of concern, since polarization

mode dispersion (PMD) and nonlinearities are generally low in such short propagation

distances [11].

Figure 2.3. Schematic of an optical network. Based on [24].

Optical networks are essentially divided into core, metro and access networks [24, 25],

schematically shown in Fig.2.3. Even though coherent detection techniques enabling high

spectral efficiency have already been deployed in core and metro haul, short reach optical

access networks and the datacenters connections considered in this work, still rely on IM-

DD in order to meet the simplicity, low cost and power consumption design requirements.

In Fig. 2.4, an intra-datacenter WDM link is schematically presented. In general, this

type of link operates near the 1310 nm wavelength (second window) in order to avoid

signal distortion arising from chromatic dispersion (CD) [11]. For such short propagation
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distances, optical amplification is not required. The performance of intra-datacenter links

is usually measured by calculating the receiver sensitivity, which is the received power re-

quired to achieve a target BER, determined by a forward error correction (FEC) threshold

[11].

Figure 2.4. Schematic of an intra-datacenter link, in which TX stands for
transmitter, MUX for multiplexer, DE-MUX for demultiplexer and RX for
receiver. Based on [11].

Inter-datacenter links, schematically shown in Fig. 2.5, can be up to ten times longer

than intra-datacenter links. Such distances require optical amplification which is imple-

mented with erbium-doped fiber amplifiers (EDFAs) that operate near 1550 nm (third

window) [11]. In this window and for the required data rates, CD is a major impairment,

that must be compensated by CD compensation (CDC) modules [11]. The performance

of inter-datacenter links is typically measured in terms of the optical signal-to-noise ratio

(OSNR) required to obtain a target BER specified again by a FEC threshold [11].

Figure 2.5. Schematic of an inter-datacenter link, in which EDFA stands
for erbium-doped fiber amplifier and CDC for chromatic dispersion com-
pensation module. Based on [11].

Regarding signal transmission, datacenter connections have been mainly using IM

signals such as OOK and, most recently, PAM4 have also been considered [11]. The latter

has been proposed to replace OOK for short reach optical communication using IM-DD

and has already been adopted by the IEEE 802.3bs task force to enable 50 and 100 Gbit/s

per wavelength, since it minimizes the power consumption and spectral efficiency issues

of OOK transmission [11, 26]. Current approaches to deal with capacity scalability
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in datacenter links rely on increasing the number of WDM channels and increasing the

baud rate, which demands higher bandwidth components and adopt a higher number of

symbols per bit [26]. Scaling the symbol rate is limited by the achievable bandwidth of

electrical and optical components [27]. Increasing the number of WDM channels has the

downside of requiring a higher number of optical and electrical components, as much of

the number of new WDM channels, and may severely increase the link cost. Encoding

more bits in one symbol allows scaling the capacity without requiring higher bandwidths

components, but has the disadvantages of requiring higher OSNRs (7 dB are lost when

passing from an OOK signal to a PAM4 format) and enhances the susceptability to

intersymbol interference (ISI) [26, 27].

2.2. Multicore Fiber

Datacenter links predominantly rely on conventional SC-SMF technology. SC-SMF based

transmission systems experiments have been able to reach capacity values up to 100 Tb/s

mainly by using coherent detection in long-haul connections [1, 2, 14]. Even so, due to

the ever-growing predicted traffic rates, these capacity values are expected to no longer

fulfil the future demands, which raises the challenge of redesigning optical fibers and asso-

ciated technology. By the information theory developed by Shannon, the additive white

Gaussian noise (AWGN) waveform channel allows to predict the capacity that can be

offered by a link [28]. Calculations based on this type of channel lead to the conclusion

that multiplexing factors, such as increasing the number spatial paths, are promising so-

lutions for capacity scaling demands [29]. Therefore, space division multiplexing (SDM)

on optical fibers has been proposed and actively researched since 2008, being an object

of deep study as a solution to overcome the upcoming capacity critical point of conven-

tional SC-SMF [8]. The SDM concept consists of multiple light paths used to transmit

independent channels. From the fiber point of view, there are three main approaches to

introduce multiple spatial paths [14, 30]. The first approach is the intuitive and is the

most commonly used and consists of multiple parallel independent SC-SMFs, known as

fiber bundles. However, in order to achieve high capacities, a large number of SM-SCFs

is required leading to space issues inside datacenters facilities. The second approach is

to introduce several different modes in a fiber core, such as in few-mode fiber (FMF) or

multimode fiber (MMF), where each mode is assigned to a different channel [30]. This

approach requires multiple input-multiple output (MIMO) digital signal processing (DSP)

to deal with the mode coupling and is not suitable for datacenter link distances, since
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it does not meet the simplicity design requirements [30]. Finally, the third approach is

using MCFs, which are fibers that incorporate multiple cores in the same fiber cladding

[14]. MCFs, from the total SCC perspective, are considered promising technologies to

overcome the capacity limits of SC-SMF transmissions and as a SDM solution for maxi-

mizing the capacity and spatial efficiency of datacenter connections, as already claimed in

recent works [4, 5, 6]. Key enabling technologies for datacenter connections with MCFs,

such as SDM MUX/DEMUX modules, SDM switches and SDM transceivers have been

assessed in [6].

2.2.1. ICXT in multicore fibers

One of the main issues to be dealt in MCF signal transmission is the ICXT [14]. This

interference in MCFs occurs from coupling between cores and is particularly relevant with

the transmission of signals with the same wavelength in neighboring cores [4]. The ICXT

has been experimentally shown to have a stochastic time evolution, which can result in

high levels of ICXT in short or long time periods [7, 16]. This leads to poor signal

transmission quality and even system outages.

The effect of ICXT also depends of the type of MCFs, which can be categorized as

weakly-coupled or strongly-coupled (SC-MCF) in terms of signal coupling between cores

[14]. In WC-MCFs, the core-to-core distance, i.e, core pitch, is set to guarantee a low level

of interference between neighbouring cores for a ICXT level lower than -30 dB. Hence, the

core pitch must be higher than 30 µm to ensure a coupling coefficient lower than 0.01 m−1

[14]. In strongly-coupled MCFs, in order to increase the core density and fiber capacity,

the core pitch is decreased resulting in a high level of interference between neighbouring

cores and a higher ICXT [14]. In this case, the core pitch is lower than 30 µm, which

leads to a coupling coefficient higher than 0.1 m−1 [14]. Transmission in SC-MCF can

be theoretically considered similar to the transmission in MMFs, and, as so, it requires

MIMO-DSP to separate the signals in the different cores and reduce the ICXT at the

receiver [14]. Due to the complex receiver setup, SC-MCFs are not considered suitable

datacenter links transmission due to the lower cost requirement. Therefore, WC-MCFs

have been considered a promising technology to improve the transmission capacity per

fiber in datacenter connections [31].

MCFs can also be categorized as homogeneous or heterogeneous [14, 31]. In ho-

mogeneous MCFs, all cores are made of the same material, which leads to equal core
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propagation constants [14]. In heterogeneous MCFs, adjacent cores have a different ge-

ometry and effective refractive index, leading to different propagation constants between

neighbouring cores [14]. The latter can be a good strategy to mitigate ICXT, however,

it also requires DSP to compensate the delays between the signals transmitted in the

fiber cores and recover properly the signal received at the end of each core [14]. Thus,

heterogeneous MCFs links are more complex to implement in datacenter connections.

The ICXT stochastic behaviour is problematic for datacenters connections, since they

are expected to ensure high efficiency and reliability on how they manage significant

amounts of traffic. For decreasing the ICXT in homogeneous WC-MCFs, the coupling

coefficient between cores must be reduced [14]. Trench-assisted and hole-assisted MCFs

have been proposed for that matter [14]. Another approach to ease ICXT in MCFs

is to employ propagation-direction interleaving (PDI) techniques resorting to resource

allocation algorithms (RSA) where adjacent cores are assigned to opposite transmission

directions [4, 6, 14]. Low crosstalk and high core count MCFs can be designed using

trench-assisted MCFs with PDI [14]. The core pitch and layout, the refractive index,

operating wavelength, as well as the bending and twist of the fiber (typical of short links)

should be considered when evaluating techniques for decreasing the ICXT [14].

2.2.2. PAM4 signal transmission in datacenter links supported by MCFs

PAM4 has been proposed to replace OOK for short reach optical communication using IM-

DD, since it minimizes the power consumption and enhances spectral efficiency compared

to OOK transmissions [11, 26]. In addition, PAM4 signals transmission over MCFs

has also been considered and studied for scaling the capacity of short haul links and,

particularly, of datacenter connections [4, 5, 6].

Several works have experimentally demonstrated PAM4 signals transmission sup-

ported by MCFs and have been reported in [5]. The standard 125 µm cladding diameter

MCF has been considered a preferred choice for applications in short-hauls to avoid bend-

ing ICXT-related impairments [5]. It has been also stated that a four or eight core-count

are a more realistic and deployable MCF-based solution in datacenters [5]. Fiber cable

density in datacenters can be improved by implementing 400 Gb/s PAM4 transmission

based on 4-core SM-MCF using 100 Gb/s per wavelength transceiver technology, which

was demonstrated over 2 km [5]. In [32], a PAM4 transmission with a directly modu-

lated 1.5µm single-mode vertical cavity surface emitting laser (VCSEL) supported by a

7-core MCF was achieved. PAM4 signals up to 70 Gbaud were generated with a VCSEL
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in optical back-to-back (B2B) and 50 Gbaud PAM4 signals were successfully transmit-

ted in each core through 1 km without dispersion compensation and 10 km with disper-

sion compensation [32]. In [33], a 80 Gbaud/wavelength/core PAM4 signal transmission

is demonstrated using an integrated externally modulated laser, which enabled 7×149

Gbit/s transmission speed over 1 km supported by SM-MCF [33].

2.3. Machine learning

Machine Learning is a branch of Artificial Intelligence and it is, essentially, a modeling

technique that finds a model, by itself, from a given training data [17, 34]. These models

are later applied to the actual field data and are generally assigned to detection, classifi-

cation, recognition and decision-making purposes. ML algorithms can be divided in three

main categories, depending on the training method, which are supervised learning (SL),

unsupervised learning (UL) and reinforcement learning (RL) [17]. In optical fiber com-

munications, the first two are the most addressed techniques according to [17, 18]. SL

consists of assigning to each training dataset an input and the output which the model

is supposed to produce for that particular input [34]. After several trainings, the ML

algorithm is finally able to obtain a model that predicts the output with sufficient ac-

curacy from input datasets different from the training dataset. The two most common

applications of supervised learning are classification and regression [17, 34]. Discrete

variables as outputs are associated with classification problems, which focus on determin-

ing the classes to which the input data belongs [17, 34]. Continuous variables are related

to regression problems, which do not infer classes but, instead, estimate output values

[17, 34]. In contrast, the training dataset in UL contains only inputs without outputs.

Therefore, the models are generated by examining common patterns in the input data.

This type of learning is most often associated with clustering techniques, which are useful

for grouping similar data.

One of the most well known ML algorithms is the Artificial Neural Network (ANN),

which can behave as an universal approximation function mediator between the input

data and output data after the training phase [35, 36]. The simplest architecture of an

ANN is composed of an input layer, an hidden layer and an output layer. These layers

contain nodes, or also called neurons, modeled as an activation function, with weights

and biases, which are continuously updated during through a back propagation training

process, until the output layer can produce the desired output [36].
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With the growth of data and computation capacity, ML has expanded into deep learn-

ing (DL) and ANNs developed into deep neural networks (DNN) composed by multiple

hidden layers and a high number of nodes [37]. This allowed to address a wider variety of

problems and data types resorting to new algorithms with specific structures such as con-

volutional neural networks (CNNs), which allow to process images, by adding convolution,

activation and pooling layers for feature extraction [37, 38].

Figure 2.6. Schematic of underfitting, overfitting and good generalization
for an uni-dimensional regression problem. Based on [17].

Generalization is an important aspect of a consistent model [34]. Typically, overfitting

and underfitting phenomenons occur when a model is unable to generalize. Fig.2.6 a),

shows an example of underfitting, in which relevant features of the data are not captured

due to a model unable to yield new data [17, 34]. In overfitting, schematically repre-

sented in Fig.2.6 b), the model yields precisely the training data, which results in a low

generalization and inaccurate predictions for new input data [17, 34]. Therefore, it is

important to choose unbiased data, in order to decrease the disparity between the training

data and the data that will be later applied to the obtained model. However, one of the

main challenges DL still faces is the shortage of available data and unbalanced data within

the training data [39]. To address this issue, some techniques such as data augmentation

and domain randomization have been studied [39, 40]. The basic principle of data aug-

mentation is obtaining new data by transforming the already existing data [39]. Domain

randomization generates synthetic data similar enough to emulate the data under study

[40]. Training with synthetic data generated through simulation can be cheaper, diverse,

which prevents from training with unbiased data, and less time consuming compared to

collecting real data [40, 41, 42].
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As an addition to collecting unbiased and large amounts of data, validation is also

considered as a method to confront generalization. This method consists of splitting the

available data into a training set and a validation set. Then, during training, the model

performance is evaluated using the validation set [17]. If the model presents an acceptable

performance in terms of generalization or a stabilized error, the training can be finished.

If not, the model must be modified and a new training and validation process must be

started. A slight variation of validation is cross-validation that splits training data into

groups for the training and validation, but systematically reorganises the sets [17].

2.4. ML in optical performance monitoring

The application of ML techniques to the physical layer of optical communication networks

has already been addressed in several works and has gained a lot of interest by the research

community in the last few years [17, 18, 43]. Hence, typical areas of application of ML

in the physical layer of optical communications networks are fiber nonlinearity mitigation,

modulation format (MF) recognition and optical performance monitoring (OPM). Even

so, ML approaches to deal with the ICXT in WC-MCFs have not been yet addressed in

the literature to the best of the authors’ knowledge, which we aim to address in this work.

Regarding OPM, the use of CNNs have been recently addressed . In [19], a CNN-based

technique is assessed to perform OSNR estimation and MF recognition, from eye-pattern

images of several modulation formats, PAM4 being one of them. In [20] an eye-pattern

analysis scheme based on a CNN for IM-DD transmissions is also presented. Different

eye-patterns of OOK and PAM4 signals from B2B and up to 80 km link transmissions are

sent to a CNN-based model that outputs eye diagram characteristics, fiber link length,

Q-factor and impairments recognition [20].

As the previous studies using CNNs presented good results, in this work, we focus on

contributing with the study of the performance of a CNN in predicting BERs through

eye-patterns from PAM4 datacenter optical connections impaired by ICXT and suported

by WC-MCFs, which to the best of our knowledge, has not been yet addressed in the

literature.
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System model description

In this chapter, the CNN for eye-pattern analysis and BER prediction of PAM4 inter-

datacenter optical connections is presented. The optical telecommunication system equiv-

alent model is described in section 3.1, where the DP-DCM developed to characterize the

ICXT in MCFs [21] is described in detail. The study of the BER distribution and respec-

tive eye-patterns in an optically amplified PAM4 link impaired by ICXT is performed in

section 3.2. The main tasks of the CNN-based eye-pattern analysis and BER prediction

are presented in section 3.3.

3.1. Optical communication system model

Figure 3.1. System equivalent model to assess the impact of ICXT on a
PAM4 optical communication link with DD and MCFs. Based on [2, 3]

The optical telecommunication system equivalent model developed in [2, 3] for a PAM4

inter-datacenter optical link supported by MCF is shown in Fig. 3.1. In this work, by

analysis of the results provided by this model, namely the BER and received eye-patterns,

a CNN will be tested and trained to predict the BER.

The impact of ICXT on the performance of optically amplified PAM4 links for inter-

datacenter connections has been analyzed in [2, 3] by resorting to the DP-DCM that

describes accurately the ICXT effect in homogeneous WC-MCFs [21]. The DP-DCM of

the MCF used in [2, 3], considers firstly only two cores, the interfering core m and the
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interfered core n as shown in Fig. 3.1. Hence, two transmitters, one for each core, generate

different signals where the signal transmitted along core m, cm(t), is the interfering PAM4

signal and the signal transmitted along core n, cn(t), is the interfered PAM4 signal. After

symbols generation, the PAM4 symbols with non-ideal extinction ratio are sampled and

passed through an electrical filter that models the frequency limitations of the electrical

part of the transmitter. After electrical filtering, the PAM4 signal is converted to the

optical domain by an optical modulator with a finite extinction ratio and without chirp.

The extinction ratio is given by the inverse of the ITU-T definition as r = P0

P3
, where P0

and P3 are the powers of the PAM4 symbols ’0’ and ’3’, respectively.

The optical signals cm(t) and cn(t) are transmitted in two perpendicular polarization

directions, x and y, which are represented by the power splitting of the transmitted PAM4

signal by both polarization directions at the input of the MCF. Hence, in the interfering

core m, the power splitting in the PAM4 transmitted signal in polarization x, cm,x(t), and

in the PAM4 transmitted signal in polarization y, cm,y(t), is given by

cm,x(t) = cm(t)×
√

ξm (3.1)

cm,y(t) = cm(t)×
√

1− ξm (3.2)

where ξm determines the power distribution between the two polarization directions in

core m and can vary between 0 and 1.

In the interfered core n, the PAM4 transmitted signal in polarization x, cn,x(t), and in

polarization y, cn,y(t) is given by

cn,x(t) = cn(t)×
√
ξn (3.3)

cn,y(t) = cn(t)×
√

1− ξn (3.4)

The results in [21] show that the variance of the ICXT field amplitude is similar for

all polarization directions and is independent of ξm and ξn.

After splitting, the PAM4 signal travels along core n of the MCF, which is modelled

by the linear propagation transfer function HF (ω). Linear propagation through the MCF

is assumed, since non-linear effects are usually insignificant in inter-datacenters distances
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[11, 44]. The signal at the output of core n without ICXT is represented as

cF (t) = cn(t) ∗ F−1[HF (ω)] (3.5)

where ∗ stands for convolution, F−1 stands for the inverse Fourier Transform and HF (ω)

is given by

HF (ω) = exp(−jβ̄n(ω)L). exp(−
αn

2
L) (3.6)

where ω is the angular frequency, β̄n(ω) is the average of the propagation constants in

core n, which is given by the sum of the contributions in both polarization directions in

n as in β̄n(ω) = (βx
n(ω) + βy

n(ω))/2; where αn is the attenuation coefficient of the core n

and L is the SM-MCF length. In the absence of the ICXT effect, linear propagation is

also considered in core m with the average of the propagation constants in core m being

given by β̄m(ω) = (βx
m(ω) + βy

m(ω))/2. The β̄l(ω) is represented as [45]

β̄l(ω) = β0,l + β1,lω +
β2,l

2
ω2 +

β3,l

6
ω3 (3.7)

where l can be m or n, when referring to core m or m, respectively. In (3.7), β0,l is the

propagation constant at the carrier wavelength, β1,l is the inverse of the group velocity,

β2,l is the group velocity dispersion and β3,l is the higher-order dispersion [45].

The effect of ICXT on the interfered cores is modelled by the DP-DCM simply by using

transfer functions that change randomly along time, being this dependence introduced by

applying random phase shifts (RPSs) along the longitudinal direction of the fiber. The

transfer functions Fa,b(ω) model the frequency response of the ICXT from the polarization

a, with a = x or y, at the input of core m to the polarization b, with b = x or y, at the

output of core n and are represented as [21]

Fa,b(ω) = − j√
2
K̄nm exp(−jβ̄n(ω)L) · exp(−

αm

2
L)

Np∑
k=1

exp[−j∆βmnzk] exp[−jϕ
(a,b)
nm,k]

(3.8)

where αm is the attenuation coefficient of the core m. In the model proposed by [2, 3],

K̄nm is the average inter-core coupling coefficient [21], Np is the number of phase-matching

points (PMPs), ∆βmn is given by β̄m(ω)− β̄n(ω) and ϕ
(a,b)
nm,k represent the RPSs associated

with the k -th PMP, which are modelled using an uniform distribution between [0, 2π[

and zk is the longitudinal coordinate of the k -th PMP randomly distributed between two
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consecutive PMPs and is given by

zk =
L

Np

(rk + k − 1) (3.9)

where rk(1 ≤ k ≤ Np) are independent random variables generated with an uniform

distribution between [0, 1[. In this work, we also assume αm ≈ αn.

The DP-DCM models the evolution of the ICXT impact on the system performance

in different MCF realizations by generating randomly different Np sets of RPSs in each

MCF realization. Therefore, in each iteration of the Monte Carlo (MC) simulator, a

new PAM4 signal with symbols randomly generated is transmitted in core m and one

MCF realization corresponding to the transfer functions given by (3.8) is generated. The

transfer functions Fx,x(ω) and Fy,x(ω) model the ICXT generated from polarization x and

y of the core m that is going to interfere with the electrical field in the polarization x of

the core n. The transfer functions Fx,y(ω) and Fy,y(ω) model the ICXT generated from

both polarizations of core m that interfere with the field of core n in the polarization y.

The ICXT level quantifies the ammount of ICXT power that will affect the interfered core

and is defined by the ratio between the mean ICXT power and the mean power of the

signal both at the output of the interfered core n and is calculated as in Xc = Np|Knm|2

[21].

The temporal dependence of the ICXT is induced by effects such as the walk-off due

to different group velocities between cores [44]. In this model, the skew between the

interfering core m and the interfered core n is given by Smn = dmnL, where dmn is the

walkoff between cores m and n defined by dmn = β1,m − β1,n.

In the DP-DCM, the effect of ICXT in the PAM4 signal after propagation in core n, is

obtained by cF,XT (t) = cF (t) + cXT (t), where the interfering signals from core m, cXT,x(t)

(with a=x and b=y) and cXT,y(t) (with a=y and b=x ), are represented as

cXT,a(t) = cm,a(t) ∗ F−1[Fa,a(ω)] + cm,b(t) ∗ F−1[Fa,b(ω)] (3.10)

cXT (t) = cXT,a(t)â+ cXT,b(t)b̂ (3.11)

In Fig. 3.1, at the output of the MCF, a CDC module compensates the CD arising

from the transmission through core n, which can be a major source of performance degra-

dation due to the required data rates. The CDC is modelled considering a DCF in linear
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propagation with a length that fully compensates the distortion due to CD on the signal

cF,XT (t). The ideal DCF length is given by

LDCF =
−Dλ,nL

Dλ,DCF

(3.12)

where Dλ,n is the core n dispersion parameter and Dλ,DCF is the DCF dispersion param-

eter.

After the CDC module, there is an EDFA to compensate the inter-datacenter link

losses and an optical filter to reduce the amplified spontaneous emission (ASE) noise

power generated by the EDFA.

The amplifier gain is set to compensate all the losses from the SM-MCF and DCF and

the ASE noise is modelled as additive white Gaussian noise with power spectral density,

per polarization mode, given by [45]

SASE =
Fn

2
(gEDFA − 1)hv0 (3.13)

where gEDFA is the EDFA gain in linear units, hv0 is the photon energy and Fn is the

EDFA noise figure.

The optical filter, modelled by a 4th order super Gaussian filter, reduces the power

of the optical noise and introduces negligible inter-symbol interference (ISI) [45]. The

transfer function of the i -th order super Gaussian filter is given by [46]

H0(f) =
1√
iL

exp

[
−
(
2|f − f0|

B0

)2i

ln(
√
2)

]
(3.14)

where f0 is the optical filter lowpass equivalent center frequency, iL is the insertion loss

in linear units, and B0 is the optical filter bandwidth at −3 dB.

After CDC and optical amplification, the PAM4 signal degraded by ICXT and ASE

noise passes the DD receiver dedicated to core n, where is converted to an electrical signal,

cPIN(t), by the PIN photo-detector with a responsivity of Rλ = ηq
hν0

. Electrical noise is

added after photodetection and an electrical filter, modelled as a 3rd order Bessel filter, is

used to reduce the noise power. In the decision circuit, the BER of each MCF realization,

the average BER and the OP are assessed. The BER of each MCF realization is calculated

by the semi-analytical method known as the exhaustive Gaussian approach. For a PAM4

signal, the BER is given by [47]
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BER =
1

2 · 4Nreg

{
4Nreg∑
k=1
ak=0

Q

(
F1 − i0,k

σ0,k

)
+

4Nreg∑
k=1
ak=1

[
Q

(
i1,k − F1

σ1,k

)
+Q

(
F2 − i1,k

σ1,k

)]
+

4Nreg∑
k=1
ak=2

[
Q

(
i2,k − F2

σ2,k

)
+Q

(
F3 − i2,k

σ2,k

)]
+

4Nreg∑
k=1
ak=3

Q

(
i3,k − F3

σ3,k

)}

(3.15)

where 4Nreg is the maximum length of PAM4 symbols optical sequence generated using

deBruijn sequences, with Nreg as the length of the offset register used to generate the

sequence; i0,k, i1,k, i2,k and i3,k correspond to the means of the currents at the input of the

decision circuit for the symbols ak at the time sampling instants tk = t0+Ts(k−1), where

t0 is extracted from the received eye-pattern at the decision circuit input, k ∈ 1, ..., 4Nreg ,

σ0,k, σ1,k, σ2,k and σ3,k are the noise standard deviations for the different time sampling

instants [47] and the function Q(x) is given by [3]

Q(x) =

∫ ∞

x

1√
2
e−

ξ2

2 dξ (3.16)

In the simulation, the decision thresholds F1, F2 and F3 are optimized in each time-

fraction by applying the bisection method to minimize the BER [2, 3]. Effects such as

ICXT, ISI, electrical noise, signal-ASE, and ASE-ASE beat noises are taken into account

using this semi-analytical method.

After several MCF realizations, the average BER is obtained by averaging the BERs

obtained in each MCF realization. The OP has been appointed as a key system perfor-

mance indicator on weakly-coupled DD MCF-based systems and evaluates the probability

of a system outage [16]. To assess the performance of optical links impaired by ICXT,

the OP is defined as the probability of the BER in the presence of ICXT, to exceed a

given BER limit [3]. The BER limit determines the minimum BER value in which the

system becomes unavailable. In the simulation, the OP is estimated by [2, 3]

OP =
No

Nr

(3.17)

where N0 is the number of MCF realizations with BER above the BER limit and Nr is the

number of simulated MCF realizations necessary to reach N0 occurrences of BER above

the BER limit.
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3.2. Study of the inter-datacenter PAM4 link performance with ICXT

In this section, the impact of ICXT on the optically amplified PAM4 links performance

is assessed by analyzing the received eye-patterns and the distribution of the obtained

BER at the decision circuit. The system and simulation parameters used throughout this

section are presented in Table 3.1.

Parameters Value
Number of generated PAM4 symbols in

each MCF realization
NPAM4symbols = 44

Number of samples per symbol Ns = 32
Symbol rate Rs = 56 Gbaud

Operating wavelength λ0 = 1550 nm
Receiver electrical filter bandwidth Be,RX = 0.85×Rs

Receiver optical filter bandwidth B0 = 1.6×Rs

SM-MCF length L = 80 km
Optimized transmission power for r=0

and r=0.1
PTX,r=0 = -1.912 dBm,
PTX,r=0.1 = 0.26 dBm

Number of PMPs Np = 1000
EDFA noise figure 4.77 dB

Skew-symbol rate product |SmnRs| = 1000, |SmnRs| = 0.01
Number of interfering cores with PAM4

signaling
Ni = 1

MCF chromatic dispersion parameter Dλ,n = 17 ps/(nm·km)
MCF attenuation coefficient α = 0.2 dB/km

DCF chromatic dispersion parameter Dλ,DCF = 100 ps/(nm·km)
DCF attenuation coefficient αDCF = 0.5 dB/km

PIN responsivity Rλ = 1 A/W
ICXT levels Xc = -20 dB, -14 dB

BER limit with ICXT 3.8× 10−3 (log10(BERlimit) ≈ −2.4202)
Target BER without ICXT 3.8× 10−5 (log10(BERlimit) ≈ −4.4202)

Table 3.1. System and simulation parameters

In this work, we consider that the inter-datacenter link, impaired by ICXT, is in

outage when the BER is above a pre-defined limit of 3.8 × 10−3, which is the thresh-

old typically used for datacenters connections with forward-error correction [3, 48, 49].

The electrical and optical receiver filters bandwidth were optimized in B2B operation to

maximize the receiver sensitivity [2, 3]. For the MCF length of 80 km and r=0 and

r=0.1, the signal power at the transmitter output has also been optimized to achieve the

BER of 3.8× 10−5 without ICXT. The number of PMPs is set to characterize accurately

the RPS mechanism [3, 48, 49]. Two different intercore skews with skew-symbol rate

product of |SmnRs| = 1000 and |SmnRs| = 0.01 are also chosen to perform these studies.

The case of |SmnRs| = 1000 is referred as high skew symbol rate product as |SmnRs| >> 1
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[3, 50, 51]. The situation of |SmnRs| = 0.01 is referred as low skew-symbol rate product,

since |SmnRs| << 1 [3, 50, 51].

Figure 3.2. Eye-patterns of the PAM4 signal at the MCF input for a)
r=0 and b) r=0.1.

The eye-patterns in Fig. 3.2 represent an example of the PAM4 transmitted signals

cm(t) and cn(t) at the output of the optical transmitter for r = 0 and r = 0.1. In contrast,

Fig. 3.3 and Fig. 3.4 show the impact of the ICXT on the eye-patterns at the decision

circuit input of the optically amplified PAM4 IM-DD system with full loss and chromatic

dispersion compensation. Fig. 3.3 shows the received eye-patterns for Xc = -14 dB and

|SmnRs| = 1000 of a) best BER and b) worst BER with r=0 and c) best BER and d)

worst BER with r=0.1 after 1000 MCF realizations, which was shown to be a number high

enough to obtain a stabilized average BER [3]. Fig. 3.4 shows the received eye-patterns

for Xc = -14 dB and |SmnRs| = 0.01 of a) best BER and b) worst BER with r=0 and c)

best BER and d) worst BER with r=0.1 after 1000 MCF realizations.

In Fig. 3.3 b), for the worst BER with r=0, the lowest eye is fully closed due to the

strong ICXT. However, as seen in Fig. 3.3 d), for the worst BER with r=0.1, the ICXT

degrades less the received eye-pattern (the lowest eye is not fully closed), which leads to a

lower BER. The product |SmnRs| has been shown to be relevant on the impact of ICXT

on the performance of optical links with DD [16, 50, 52]. The same conclusions can be

drawn through the analysis of Fig. 3.4 b) and d) where the eye-patterns are fully closed

for both extinction ratios, in comparison with Fig. 3.3 b) and d), which shows that,

for optical links with low |SmnRs|, the ICXT is more detrimental than for high |SmnRs|.

However, for the best BERs obtained with low |SmnRs|, Fig. 3.4 a) c) show that the
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amplitude levels are more defined than in the eye-patterns shown in Fig. 3.3 a) and c)

with high |SmnRs|, where more symbols in the interfering core are contributing to ICXT

[3].

Figure 3.3. Eye-patterns at the decision circuit input for Xc = -14 dB,
|SmnRs| = 1000 for a) best BER and b) worst BER with r=0 and a) best
BER and b) worst BER with r=0.1.

Figs. 3.5 and 3.6 show the histograms of the BERs and the corresponding average BER

obtained in 1000 MCF realizations, with, respectively Xc = -14 dB and Xc = -20 dB,

r=0.1, r=0, for two different inter-core skews, a) |SmnRs| = 1000 and b) |SmnRs| = 0.01.

Fig. 3.5 shows that several MCF realizations experience system outage, especially for

|SmnRs| = 0.01, since the corresponding BERs surpass the BER limit, as can be confirmed

by the OPs presented in Table 3.2, estimated from Figs. 3.5 and 3.6, using Nr = 1000
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Figure 3.4. Eye-patterns at the decision circuit input for Xc = -14 dB,
|SmnRs| = 0.01 for a) best BER and b) worst BER with r=0 and a) best
BER and b) worst BER with r=0.1.

occurrences in Eq. (3.17). Only for |SmnRs| = 1000 and r=0, the BER limit is never

exceeded and there is no system outage.

In Fig. 3.6, as the ICXT level is 6 dB lower, the influence of ICXT on the perfor-

mance is reduced, which leads to a higher number of MCF realizations that have lower

BERs and are lower than the BER limit. Therefore, the only system outages occurs for

|SmnRs| = 0.01 and r=0 and for |SmnRs| = 0.01 and r=0.1, where the corresponding OPs

are 0.007 and 0.001, much lower than the ones considered in Fig. 3.5.

For both crosstalk levels, the effect of ICXT on the BER distribution is less detrimental

with r = 0.1. This influence of the extinction ratio on the ICXT impact has been already
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Figure 3.5. Histogram of the log10(BER) for 1000 MCF realizations with
Xc = -14 dB, r=0.1 and r=0, for a) |SmnRs| = 1000 and b) |SmnRs| = 0.01.

Figure 3.6. Histogram of the log10(BER) for 1000 MCF realizations with
Xc = -20 dB, r=0.1 and r=0 for a) |SmnRs| = 1000 and b) |SmnRs| = 0.01.

observed in OOK systems [47]. For r = 0, a higher spreading of the BER values is ob-

served, and, hence, more MCF realizations have lower BERs and more lead to a BER that

surpasses the BER limit. The results in both figures show also that the product |SmnRs|

has a significant influence on the BERs distribution, since for |SmnRs| = 1000, the BER

range is significant lower in comparison with the BER range obtained for |SmnRs| = 0.01.

Therefore, as seen is Table 3.2, system outage is more likely to occur for |SmnRs| = 0.01

and r=0 and less likely to occur for |SmnRs| = 1000 and r = 0.1.

3.3. CNN for eye-pattern analysis and BER prediction

In this work, we study the use of a MATLAB-based CNN for eye-pattern image analysis

and BER prediction in PAM4 datacenter optical connections supported by homogeneous

25



Chapter 3 System model description

Simulation OP
Xc = -14 dB |SmnRs| = 1000, r = 0 0.1860

|SmnRs| = 1000, r = 0.1 0
|SmnRs| = 0.01, r = 0 0.397
|SmnRs| = 0.01, r = 0.1 0.149

Xc = -20 dB |SmnRs| = 1000, r = 0 0
|SmnRs| = 1000, r = 0.1 0
|SmnRs| = 0.01, r = 0 0.007
|SmnRs| = 0.01, r = 0.1 0.001

Table 3.2. OP obtained from Figs. 3.5 and 3.6, for 1000 MCF realizations,
Xc = -14 dB, Xc = -20 dB, r = 0, r = 0.1, L =80 km, |SmnRs| = 1000
and |SmnRs| = 0.01.

WC-MCFs impaired by ICXT. The schematic of the main tasks of the MATLAB simulator

is illustrated in Fig. 3.7.

Figure 3.7. Main tasks of the MATLAB-based CNN for eye-pattern anal-
ysis and BER prediction model.

The first main task corresponds to data collection, where eye-patterns and the cor-

responding BERs are collected from the PAM4 optical communication system model

described in section 3.1 for different types of optical links. The latter are obtained by

varying several optical link parameters, such as crosstalk level, skew-symbol rate product

and extinction ratio. Before a CNN training, the eye-patterns are pre-processed, ac-

cording to the different optical links under study, to obtain what we denote as grayscale

eye-patterns (GEPs) images. After that, the CNN is trained, following a SL approach,

with GEPs as inputs and BERs as outputs. Then, the CNN is tested with unseen GEP

images, where the prediction performance is evaluated through the root mean square error

(RMSE) metric [53].
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3.3.1. Data collection

The data used to train and test the CNN corresponds to the data collected from the optical

telecommunication system equivalent model developed in [3] and described in section 3.1

that models with a good accuracy the ICXT effect in PAM4 inter-datacenter optical links

supported by homogeneous WC-MCFs. Each pair of collected data consists of a received

eye-pattern, Ei (with i=1,...,NEP ), where NEP is the number of eye-patterns collected,

such as the ones shown in Figs. 3.3 and 3.4, and the corresponding BER calculated

logarithmically, i.e., log10(BER), at the decision circuit. Each eye-pattern is a 32 × 256

matrix, with Ns=32 amplitude samples per symbol and 256 is the number of generated

PAM4 symbols in each MCF realization.

A good performance of the CNN is highly dependent on the training data. So, it is im-

portant to choose a high number of unbiased data to achieve a consistent model by decreas-

ing the disparity between the training data and testing data. Therefore, a guided sampling

is performed to collect a balanced number of BERs and corresponding eye-patterns. For

that purpose, for the different optical links, the data generated by the MATLAB optical

telecommunication system equivalent model is collected following a two-step balancing

scheme, schematically shown in Fig. 3.8, within a [log10(BER)min, log10(BER)max] range,

where 1000 pairs of data (eye-patterns) are saved in every 0.1 interval of the log10(BER).

Within these NBER intervals, where NBER = log10(BERmax)−log10(BERmin)
0.1

, a second balanc-

ing step is performed with 20 sub intervals, where 50 pairs of data are saved in every 0.005

interval of the log10(BER). Notice that the BER range is not the same for all optical links

studied, since the BER values distribution is much dependent on the link parameters as

seen in section 3.2.

Figure 3.8. Two-step balancing scheme of the collected data generated
by the optical telecommunication system equivalent model described in 3.1,
where NBER is the total number of intervals with a sub-division of 0.1 in
logarithmic scale in [log10(BER)min, log10(BER)max].

As the ICXT has a stochastic behaviour with a random time evolution and frequency

dependence, it leads to random fluctuations of the BER and different BER distributions,

depending on the parameters of the optical link under study. Some BERs are less frequent
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than others, particularly for higher BERs associated with system outages. Especially for

low outage probabilities, these BERs become extremely rare to occur. Therefore, to

collect a good amount of balanced data inside each logarithmic BER interval and to

maintain the time of simulation at acceptable levels, particularly for BERs less likely to

occur, a slight change of the DP-DCM model has been implemented following a domain

randomization-based approach.

As mentioned in section 3.1, in each iteration of the MC simulator, one MCF realiza-

tion corresponding to the transfer functions given by eq. (3.8) is generated with random

different Np RPSs. This randomness models the unpredictability and affects the ICXT on

the received PAM4 signal and the corresponding BER. Firstly, the MC simulator starts

with a random set of Np RPSs using the uniform distribution between [0, 2π[ and is stored

and used in the first MCF realization. After that, based on a single uniformly distributed

random number in the interval [0, 1], it is determined how the set of Np RPSs for the

next MCF realization is generated. If the random number is above or equal to 0.5, a new

set of Np RPSs is generated following the previously described procedure and, again, it is

stored. If not, a new set is obtained by adding normally distributed random noise with

zero mean and unitary variance to the set of Np RPSs previously stored that is known

to lead to a BER inside a BER interval. The set of RPSs generated with this random

perturbation is not stored, and, therefore, it is never used again in the following MCF

realizations. At the end of each MC simulator iteration, the eye-pattern and the corre-

sponding log10(BER) are saved if the corresponding NBER interval is not full. As the MC

simulator iterations continue, following the previously described procedures, the number

of Np RPSs sets stored increases and the random perturbation approach is performed by

randomly selecting one of the stored sets of Np RPSs.

3.3.2. Eye-pattern pre-processing

Before training and testing the CNN, the eye-patterns are pre-processed to obtain what

we denote as grayscale eye-patterns (GEPs). Typically, oscilloscopes sample the received

signal and generate a two-dimensional database, that statistically represents the time,

where the unit interval or bit period of the eye-pattern is defined by the data clock, and

the amplitude of the digital signal [54]. As the number of samples increases, a third

dimension is considered, denoted as plot density, which represents the number of pixels

that are located in the same position on the oscilloscope display [54]. In this work, a

similar approach is used to obtain GEP images.
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First, for a x×y GEP image, the amplitudes of a synthetic eye-pattern obtained from

MATLAB are normalized into [1, y] ∈ N amplitudes to obtain the vertical position of

the GEP image pixel assigned to the corresponding amplitude. For the case of a fixed

scale GEP, this normalization takes into account the maximum amplitude that occurred

in all eye-patterns obtained for the corresponding type of optical link under study, i.e.,

the eye-patterns used during a CNN training. For the case of a dynamic scale GEP,

each eye-pattern is normalized taking into account its maximum amplitude. After that,

the eye-pattern to GEP conversion process continues with a y × x GEP matrix with

zero elements. The plot density is modeled by incrementing one unit in all elements of

the GEP matrix with the rows given by the eye-pattern normalized amplitudes and the

corresponding columns given by the rows of the original eye-pattern normalized into [1, x ].

Fig. 3.9 shows the process to transform a synthetic 32×256 eye-pattern matrix ob-

tained from MATLAB into a 32×32 fixed scale GEP image. For instance, the amplitude

in the (1, 1)th element of the eye-pattern matrix, E, is normalized into [1, 32] ∈ N ampli-

tudes, which gives 4. This means that this amplitude falls in (4, 1)th element of the GEP

matrix, G. The amplitude is considered in the GEP matrix by incrementing one unit in

that given element. If more amplitudes of the first row of the eye-pattern have the nor-

malized amplitude 4, the (4, 1)th element of the GEP matrix is incremented accordingly

to these number of amplitudes. The case of E(6, 1) amplitude follows the same logic,

where the normalized amplitude is 2 and one unit is incremented in G(2, 6).

Notice that for a different GEP size, since each eye-pattern is a 32 × 256 matrix, an

additional normalization needs to be performed during the GEP transformation process.

For instance, to obtain a 64×64 GEP, the amplitudes of the eye-pattern are normalized

into [1, 64] ∈ N amplitudes to obtain the vertical position of the GEP image pixel as-

signed to the corresponding amplitude. Then, the transformation process follows the

previously described procedure, however, the plot density is modeled by incrementing one

unit in all elements with the rows given by the eye-pattern normalized amplitudes and

the corresponding columns given by the rows of the original eye-pattern normalized into

[1, 64].

After this transformation process, the GEP images, obtained from the GEP matrices,

are used as input data in the CNN described in the next subsection.
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Figure 3.9. Example of the process to transform eye-patterns into 32×32
GEP images.

3.3.3. CNN architecture

In this work, the CNN model is developed on the MATLAB platform using the Deep

Learning Toolbox and Deep Network Designer. The proposed CNN architecture is based

on [19, 20] and is schematically represented in Fig. 3.10. First, normalization is applied

by re-scaling the data in the range [−1, 1] every time a GEP image is forward propagated

through the input layer of the CNN. This architecture has five convolutional (Conv) layers,

C1 to C5, that pass the GEP images through a set of convolutional kernels with stride

(1,1). The layers C1 and C2, where both kernel sizes are 5×5, produce, respectively, 32

and 64 feature maps and the layers C3, C4 and C5, where the corresponding kernels sizes

are 3×3, produce, respectively, 128, 256 and 512 feature maps. All convolution layers add

the required padding to the input, either a GEP image or feature map, to ensure that its

border pixels are completely exposed to the filter and the resulting feature map has the

same size as the input. The outputs of each convolutional layers are normalized using a

batch normalization (BN) layer followed by a Rectified Linear Unit (ReLU) layer for a

more effective and faster training [38]. After the first four Conv+BN+ReLU operations,

a down-sampling is performed by an average pooling layer. In our CNN, we set the four

pooling layers, P1, P2, P3 and P4, with 2×2 subsampling regions and stride (2,2). After

feature extraction (C5+BN+ReLU), a dropout layer is placed to prevent overfitting and

a fully connected layer followed by a regression layer are used to predict the BER.
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Figure 3.10. CNN architecture considered in this work to learn the BER
from the GEP images.

3.3.4. Performance evaluation metric

In this work, the performance evaluation metric chosen to evaluate the CNN-based eye-

pattern image analysis and BER prediction is the Root Mean Square Error (RMSE), which
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has been widely used in the literature as a key CNN regression performance indicator

[53, 55, 56], and is given by

RMSE =

√√√√ 1

n

n∑
i=1

e2i (3.18)

where n is the number of eye-patterns considered either in the training, test or validation

sets and ei is the difference between the expected values and the predicted values of the

BER. In this work, we consider a RMSE below 0.1 as an acceptable prediction of the

log10 (BER).

3.4. Conclusions

In this chapter, the CNN for eye-pattern analysis and the prediction of the BER from

PAM4 inter-datacenter optical connections was presented. The optical telecommunica-

tion system equivalent model was described in section 3.1, where the DP-DCM developed

to characterize the ICXT in MCFs was described in detail. The study of the BER dis-

tribution and respective eye-patterns in an optically amplified PAM4 link impaired by

ICXT is performed in section 3.2, which showed that the product |SmnRs| has a sig-

nificant influence on the BERs distribution, since for |SmnRs|= 1000, the BER ranges

and the distribution across this range are significant lower in comparison with the BER

range and distribution obtained for |SmnRs| =0.01. These different BER distributions

and ranges may influence significantly the CNN training. It was also shown that system

outage is more likely to occur for |SmnRs| =0.01 and r=0 and less likely to occur for

|SmnRs|= 1000 and r= 0.1, which is related to the BER distributions obtained for the

two different |SmnRs|.

The main tasks performed by the CNN-based eye-pattern analysis and BER prediction

was presented in section 3.3, with an emphasis on the data collection process from the

optical telecommunication system equivalent model, eye-patterns pre-processing based on

oscilloscopes’ eye-patterns representation and the CNN architecture.
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CHAPTER 4

CNN performance assessment and discussion

In this chapter, the performance of the CNN-based eye-pattern analysis and BER predic-

tion in PAM4 inter-datacenter optically amplified short IM-DD connections impaired by

ICXT is assessed. In section 4.1, the simulation parameters are introduced. The GEP size

influence on the CNN performance is evaluated in section 4.2 and an assessment regarding

the CNN non-deterministic behaviour is presented in section 4.3. The performance of the

CNN-based eye-pattern analysis and BER prediction is evaluated in section 4.4 for fixed

scale GEPs and in section 4.5 for dynamic scale GEPs. The main conclusions drawn from

this chapter results are presented in section 4.6.

4.1. Simulation parameters

Throught this chapter, the CNN developed for eye-pattern analysis and BER prediction

in PAM4 inter-datacenter optical connections impaired by intercore crosstalk with the

architecture presented in section 3.3 is trained and tested with the system simulation and

training CNN parameters shown in Table 4.1. The remaining simulation parameters of the

optical communication system model that generates the data provided to the CNN models

are presented in Table 3.1. As studied in section 3.2, the skew-symbol rate products

|SmnRs| = 1000 and |SmnRs| = 0.01 and the extinction ratios r = 0 and r = 0.1 are

relevant to the impact of ICXT, as they affect the BER range and distribution. Therefore,

these parameters are also chosen to perform these studies. We also consider the crosstalk

levels Xc = -16 dB, -14 dB and -12 dB.

In this work, the data used to obtain a CNN regression model is randomly splitted

before each CNN training, where 70% is assigned as training data, 15% as validation

data and 15% as test data. The main performance metric chosen to evaluate the CNN

performance is the RMSE and we consider an acceptable error margin limit of 0.1, in

logarithmic scale. The hyperparameters of the CNN were tuned and empirically set. The

network is trained with a stochastic gradient descent with momentum (SGDM) optimizer

that updates the weights and biases of the CNN. The maximum number of epochs, i.e.,

the number of times the training data is given to the CNN during training, is set to

30, since lower values resulted in worse performances and higher values did not enhance
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the performance and resulted in a much higher computation time. A mini-batch size,

that gives the number of training data samples sent to the CNN after each parameter

update, with 8 observations at each iteration is used, since from the CNN training tests,

it performed better when comparing to 16, 32 and 64 mini-batch sizes. The initial learning

rate, which defines the frequency the optimizer updates the CNN parameters, is has been

empirically set to 1× 10−4 and reduced by a factor of 0.1 after 20 epochs.

Parameters Value
Skew-symbol rate product |SmnRs| = 1000, |SmnRs| = 0.01

ICXT levels Xc = -16 dB, Xc = -14 dB, Xc = -12 dB
Extinction ratio r = 0, r = 0.1
Data splitting Training data = 70%, validation data =

15% and test data = 15%
Optimizer SGDM

Mini batch size 8
Epochs 30

Initial learning rate 1× 10−4

Learning rate drop factor 0.1
Learning rate drop period 20

Error margin limit (logarithmic scale) 0.1

Table 4.1. System simulation parameters and CNN hyperparameters.

The total ammount of data collected from the PAM4 optical telecommunication link

equivalent model considering different system parameters is presented in Table 4.2. Notice

that the BER range is not the same for all optical links studied, since the BER values

distribution is much dependent on the link parameters as seen in section 3.2. However,

inside each logarithmic BER interval of 0.1, it is guaranteed that there are 1000 eye-

patterns, for a good data balacing.

4.2. Grayscale eye-pattern size influence on the CNN performance

In this section, the impact of the GEP images size, 32 × 32, 64 × 64, 128 × 128 and

256 × 256, on the CNN performance is studied. To perform this study, an optical link

with Xc = -14 dB, r=0.1 and |SmnRs| = 1000 is considered.

Fig. 4.1 shows the RMSE values obtained for the BER predictions of each GEP size

under study after ten CNN trainings. After splitting, the training, validation and test

data remained the same during the ten trainings. By doing this, the variability of the

RMSE results for each GEP size is only influenced by the CNN training algorithm. It can

be observed that, for all GEP sizes, the RMSEs differ for each training, which confirms

the non-deterministic behaviour of the CNN algorithm. There is no significant difference
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Link type NEP log10(BER) range
Xc = -16 dB |SmnRs| = 1000, r = 0 16000 [-3.8, -2.2]

|SmnRs| = 1000, r = 0.1 6000 [-3.7, -3.1]
|SmnRs| = 0.01, r = 0 26000 [-4.5, -1.9]
|SmnRs| = 0.01, r = 0.1 21000 [-4.3, -2.3]

Xc = -14 dB |SmnRs| = 1000, r = 0 25000 [-3.7, -1.2]
|SmnRs| = 1000, r = 0.1 14000 [-3.3, -1.9]
|SmnRs| = 0.01, r = 0 34000 [-4.5, -1.1]
|SmnRs| = 0.01, r = 0.1 33000 [-4.4, -1.1]

Xc = -12 dB |SmnRs| = 1000, r = 0 20000 [-3.1, -1.2]
|SmnRs| = 1000, r = 0.1 10000 [-3, -2]
|SmnRs| = 0.01, r = 0 35000 [-4.3, -0.8]
|SmnRs| = 0.01, r = 0.1 34000 [-4.3, -1]

Table 4.2. Data collected from the optical telecommunication system
equivalent model described in section 3.1, for different crosstalk levels, ex-
tinction ratio and skew-symbol rate products.

between the training and test RMSEs for each training attempt, from which we conclude

that the model does not present overfitting or underfitting. Table 4.3 presents the average

RMSEs and respective standard deviations of the ten CNN trainings for each GEP size

corresponding to the results presented in Fig. 4.1.

Figure 4.1. RMSE of the BER prediction obtained in ten trainings of the
CNN for different GEP sizes for an optical link with Xc = -14 dB, r=0.1
and |SmnRs| = 1000.

The 256×256 GEP has the worst performance, since it leads to a higher average RMSE,

of 1.16 × 10−1 for the training set and 1.20 × 10−1 for the test set, for all ten trainings

in comparison with the other GEP sizes. For 256 × 256 GEPs, a more variability of the

RMSE results is observed for the ten trainings, as can be seen in Fig. 4.1, and confirmed

by its highest standard deviation. Fig. 4.1 and Table 4.3 also show that the CNN trained

with 32× 32, 64× 64 and 128× 128 GEPs present similar training and test RMSEs, from

which we can conclude that the current CNN archicteture is more adequate for smaller
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GEP sizes. As the RMSEs are very similar, there is the advantage in training the CNN

with 32× 32 GEP images, due to lower computation time.

GEP size
Avg
training
RMSE

Std
training
RMSE

Avg test
RMSE

Std test
RMSE

32× 32 6.25× 10−2 1.2× 10−3 6.32× 10−2 1.0× 10−3

64× 64 5.95× 10−2 2.7× 10−3 6.41× 10−2 2.7× 10−3

128× 128 6.37× 10−2 7.4× 10−3 6.49× 10−2 7.0× 10−3

256× 256 1.16× 10−1 1.87× 10−2 1.20× 10−1 1.76× 10−2

Table 4.3. Average (Avg) RMSE and standard deviation (Std) of the
BER predictions obtained in ten trainings of the CNN for different GEP
sizes for an optical link with Xc = -14 dB, r=0.1 and |SmnRs| = 1000.

4.3. CNN non-deterministic behaviour assessment

As mentioned in the section 4.2, the CNN algorithm presents a non-deterministic be-

haviour, which means that different CNN trainings using the same data splitting can

perform differently, i.e., the predicted BERs are not the same. This is directly reflected in

the RMSE and, therefore, in the CNN performance evaluation. To study this effect and

determine the reliability of the CNN regarding the variability of results, a further study is

performed, where training the CNN with the same percentage of data splitting, but with

the data points distributed differently is also assessed. This situation is denoted as ”dif-

ferent data splitting” and the corresponding RMSE results from the training, validation

and test data are presented in Fig. 4.2. The results with the same splitting along the ten

trainings shown in Fig. 4.2 correspond to the ones presented in Fig. 4.1. As seen in Fig.

4.2 a), for the training data points, the highest RMSE is obtained in the fifth training

using the same splitting and, in general, the different splitting approach present lower

RMSEs. However, Figs. 4.2 b) and c) do not present the same behaviour, since with

the validation data points obtained similar RMSEs have been obtained and the test data

points give, in general, lower RMSEs with the same splitting during the ten trainings.

To compare the RMSEs of the two training approaches, we resort to statistical hy-

pothesis testing, using the parameters shown in Table 4.4, where the null hypothesis under

test is the nonexistence of a significant statistical difference between the RMSEs of the

two training approaches and whether this difference is due to the different splitting and

not due to chance. By performing the Shapiro-Wilk test, using a right-tailed normal dis-

tribution, both training approaches do not reject the null hypothesis that their RMSEs
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Figure 4.2. RMSE of the BER prediction obtained with different train-
ing, validation and test data splitting before each one of the ten CNN train-
ings performed, labeled as different splitting, and the same data splitting
during the ten trainings, labeled as same splitting.

are normally distributed, since at the 5% significance level, the p-value is 0.392039 for dif-

ferent data splitting and without data splitting the p-value is 0.693304, which are higher

than 5%. One of the most used techniques in statistical hypothesis testing is the Student’s

t-test, used when the difference between samples follows a normal distribution with mean

equal to zero and unknown variance. A paired-sample t-test is performed [57] between

the two training approaches, where at the 5% significance level, the t-value with a degree

of freedom Df = 9 and the p-value are, respectively, t(9) = 3.7166; p=0.0048. This means

that the null hypothesis is to be rejected, i.e., a significant statistical difference between

the RMSEs of the two training approaches.
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Even so, as the number of samples used to perform these tests can be considered

statistically small, as an alternative to the t-test, a Wilcoxon signed rank test, which

is non-parametric, is performed. The p-value obtained at the 5% significance level is

p=0.0137, which means that the null hypothesis is also rejected. Thus, a conclusion that

can be drawn regarding the results of both tests is that, even with a balanced range of

synthetic data, different data splitting per each independent CNN training combined with

the non-deterministic behaviour of the CNN algorithm leads to a little higher variability

of the RMSE results as well as higher RMSEs than with the same data splitting.

To study the effect of the variability of results, the effect size between the RMSEs of

the two types of training is measured through the Hedges’ g formula given by [58]

g =
x1 − x2

sp
× n− 3

n− 2.25

√
n− 2

n
(4.1)

where x1 is the average RMSE of the test set of the CNN trained with different splitting,

x2 is the average RMSE of the test set of the CNN trained with the same splitting,

n1 and n2 are the number of independent CNN trainings performed, sp is the pooled

standard deviation given by sp =
√

(n1−1)s21+(n2−1)s22)

(n1−1)+(n2−1)
, n = n1 + n2 and n−3

n−2.25

√
n−2
n

is a

bias correction typically recommended when n < 50 [59].

From (4.1), the obtained g = 6.06 × 10−4, which means that a really small effect

between the two training approaches is observed. Therefore, we assume that the CNN

performance studies presented in this chapter, following a random data splitting, are

reliable regarding the variability of results.

Type of training
Avg
training
RMSE

Std
training
RMSE

Avg test
RMSE

Std test
RMSE

Different splitting 6.16× 10−2 1.2× 10−3 x1 = 6.52× 10−2 1.7× 10−3

Same splitting 6.25× 10−2 1.2× 10−3 x2 = 6.32× 10−2 1.0× 10−3

Table 4.4. Average (Avg) training and test RMSE and the corresponding
standard deviations (Std) obtained with different data splitting and the
same data splitting considering ten CNN trainings using 32× 32 GEPs.

4.4. CNN performance with fixed scale GEP images

Firstly, the accuracy of the BER prediction is assessed by training the considered CNN

from the eye-pattern analysis and test the corresponding regression model for each type

of optical link. The data collected from the optical equivalent model used to perform

this and subsequent studies is presented in Table 4.2. In this first study, regarding the
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pre-processing step of the CNN-based model, each eye-pattern is normalized taking into

account the maximum amplitude that occurred in all eye-patterns obtained for the cor-

responding type of optical link under study, in order to obtain proper GEP images. This

normalization is denoted has having a fixed scale and is explained with detail in section

3.3.2.

Fig. 4.3 shows the BER prediction distribution of the test set from the CNN trained

for the case of an optical link with Xc = -14 dB, |SmnRs| = 1000, for a) r=0.1 and b)

r=0. The ”linear” curve represents a linear regression of the data points (generated with

the MATLAB Basic fitting tool) and the coefficient of determination, R2, indicates that,

for the case of Fig. 4.3 a) the linear fit of the data explains 97.6% of its variance. In both

cases, the CNN shows a smaller dispersion of results in relation to the ”linear” curve in

predicting BERs above the BER limit. A possible reason for this behaviour can be drawn

by comparing these results with the BER distributions presented in Fig. 3.5 a), where,

for both cases of extinction ratio, less diversity of amplitudes with BERs above the BER

limit is obtained, making it easier for the CNN to learn and predict the BER based on the

GEPs, because probably the GEPs are more distinguishable between them than the ones

with lower BERs. In Fig. 4.3 a), a ”clustering” type of behaviour is seen above the BER

limit, which can be possibly caused by a higher similarity between GEPs obtained for a

particular BER above the BER limit, since high BERs are less likely to occur. Another

possible reason is that the GEPs that lead to less likely higher BERs for r=0.1, have been

obtained with more eye-patterns generated using the random perturbation described in

section 3.3.1. This random perturbation may not lead to meaningful differences between

the eye-patterns obtained, leading to this clustering effect. For both cases, each CNN

presents a RMSE lower than the error margin limit of 0.1. Even so, the CNN trained

with r = 0.1 led to a RMSE of 0.066, which outperformed the RMSE of 0.099 of the one

obtained with r = 0.

Fig. 4.4 shows the BER prediction distribution of the test set from the CNN trained

for the case of an optical link with Xc = -14 dB, |SmnRs| = 0.01 for a) r=0.1 and b)

r=0. In comparison with the results presented in Fig. 4.3, lower RMSE values and less

dispersion of results in relation to the ”linear” curve are obtained. For both cases, each

CNN presents a RMSE lower than the error margin limit and the RMSEs are very similar

for the two extinction ratios. As seen in Fig. 3.5 b), for |SmnRs| = 0.01, a wider range of

amplitudes with BERs either below or above the BER limit is obtained, which leads to
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Figure 4.3. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with Xc = -14 dB, |SmnRs| = 1000 for
a) r=0.1 and b) r=0. The BER limit that leads to an outage probability
is also depicted.

a superior performance of the CNN in comparison with the case represented in Fig. 4.3.

This can possibly be explained due to a much higher representation of eye-patterns with

distinct features obtained without using the random perturbation, leading to a higher

number of GEPs with useful information for the CNN training.

Figure 4.4. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with Xc = -14 dB, |SmnRs| = 0.01
with a) r=0.1 and b) r=0.

Considering different levels of crosstalk, Fig. 4.5 shows the BER prediction dis-

tribution of the test data from the CNN trained for the case of an optical link with

|SmnRs| = 0.01 and r=0 for a) Xc = -16 dB and b) Xc = -12 dB. Figs. 4.3 a) and b),

show a higher dispersion of results compared to Fig. 4.4 and the obtained RMSEs are
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close to the margin error, being 0.083 and 0.091 obtained, respectively, for Xc = −16 dB

and Xc = −12 dB.

Figure 4.5. BER prediction distribution of the test set from the CNN
trained for the case of an optical link with |SmnRs| = 0.01 and r=0 for a)
Xc = -16 dB and b) Xc = -12 dB.

Figure 4.6. RMSE of the CNN models trained and tested with fixed scale
GEPs as a function of Xc, for |SmnRs| = 0.01 and r=0; |SmnRs| = 0.01 and
r=0.1; |SmnRs| = 1000 and r=0 and |SmnRs| = 1000 and r=0.1.

In Fig. 4.6, the summary of the RMSEs obtained in the previous studies is presented.

Overall, each CNN model was able to predict the log10 (BER) without surpassing the

RMSE limit of 0.1, except for the cases of Xc = -16 dB and Xc = -12 dB with |SmnRs| =

1000 and r=0. For all CNNs trained, this case, r=0 and |SmnRs| = 1000, is the one that

it is more difficult to train, leading to a worst BER prediction. The best predictions (with
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lower RMSE) are obtained for the case of |SmnRs| = 0.01 and r=0.1, being the RMSE

lower than 0.05, for all the crosstalk levels. In fact, with r=0.1, the RMSEs obtained

with the different crosstalk levels are more similar, than in the case with r=0.

Figure 4.7. BER prediction distribution of optical links with Xc =
-16 dB, |SmnRs| = 0.01, r=0 and GEPs normalized with the eye-pattern
maximum amplitude obtained with Xc = -16 dB and b) GEPs normalized
with the eye-pattern maximum amplitude obtained with Xc = -16 dB and
Xc = -14 dB from a CNN trained for optical links with Xc = -14 dB,
|SmnRs| = 0.01 and r=0. The blue data points represent the predictions
with a margin error below 0.1.

Fig. 4.7, shows the results obtained for a CNN trained for the case of optical links

with Xc = -14 dB, |SmnRs| = 0.01 and r=0 and tested with GEPs from optical links with

Xc = -16 dB, |SmnRs| = 0.01 and r=0. In Fig. 4.7 a), the GEPs were normalized with the

eye-pattern maximum amplitude obtained in all eye-patterns simulated with Xc = -16 dB

and b), the GEPs were normalized with the eye-pattern maximum amplitude obtained in

all eye-patterns generated for both crosstalk levels of -16 dB and -14 dB. As the GEPs’s

true BER values increase, both CNN models predictions are more inconsistent, since a

wider range of predicted BERs is obtained. In both figures, the linear behaviour expected

of the regression model is not observed. Fig. 4.7 a) presents a higher RMSE than Fig.

4.7 b). In Fig. 4.7 b), for log10 (BER) ≈ −2, the predicted BERs vary between ≈ −3.13

and ≈ −1.42 and for log10 (BER) between -4.5 and -1.9, the CNN predicts log10 (BER)

around -3.26. These results show that the CNN is unable to predict correctly the BER of

test GEPs obtained with other crosstalk level, meaning that the CNN is not capable of

generalization.

However, Fig. 4.8 shows a CNN trained and tested with eye-patterns obtained with

all the crosstalk levels, with Xc = -16 dB, -14 dB and -12 dB , |SmnRs| = 0.01, r=0
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and log10 (BER) ∈ [−3.1,−1.9[ , which is able to predict more correctly the BER from

GEPs with different crosstalk levels, leading to a RMSE of 0.082 is obtained. This indi-

cates that the CNN needs to train with different optical parameters to perform a better

generalization in predicting the BERs.

Figure 4.8. BER prediction distribution of the test set from the CNN
trained for the case of optical links with Xc = -12 dB, Xc = -14 dB, Xc =
-16 dB, |SmnRs| = 0.01, r=0.

Fig. 4.9 shows another situation where the CNN is completely unable to predict

correctly the log10 (BER) from the GEPs. In this case, we are assessing if a CNN trained

for a specific skew-symbol rate product can generalize its BER predictions to a different

skew-symbol rate product. Fig. 4.9 a) presents the results, considering Xc = -14 dB

and r=0, of the CNN model trained for the case of an optical links with Xc = -14 dB,

|SmnRs| = 0.01 and tested for the case of an optical link with |SmnRs| = 1000. Fig. 4.9

b) presents the results, considering Xc = -14 dB and r=0.1, of the CNN trained for the

case of an optical links with |SmnRs| = 0.01 and tested for the case of an optical link with

|SmnRs| = 1000.

4.5. CNN performance with dynamic scale GEP images

The performance of the CNN presented in section 3.3 is also assessed regarding a dif-

ferent pre-processing step, where each eye-pattern is normalized taking into account its

maximum amplitude to obtain the GEP image, which we denote as having a dynamic

scale. As previously performed, a CNN is trained and tested considering different optical

link parameters. The RMSEs obtained for the dynamic scale GEPs as a function of the
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Figure 4.9. BER prediction distribution of optical links with a) Xc =
-14 dB, |SmnRs| = 1000, r=0 tested in a CNN trained for the case of optical
links with Xc = -14 dB, |SmnRs| = 0.01 and r=0 and with b) Xc = -14 dB,
|SmnRs| = 1000, r=0.1 tested in a CNN trained for the case of optical links
with Xc = -14 dB, |SmnRs| = 0.01 and r=0.1.

crosstalk level are shown in Fig. 4.10 and show a similar behavior to the one obtained

for the fixed scale GEPs in Fig. 4.6. Each CNN model is able to predict the log10 (BER)

without surpassing the RMSE limit of 0.1, except for the cases of Xc = -16 dB and

-12 dB with |SmnRs| = 1000 and r=0.

Figure 4.10. RMSE of the CNN models trained and tested with dynamic
scale GEPs as a function ofXc, for |SmnRs| = 0.01 and r=0; |SmnRs| = 0.01
and r=0.1; |SmnRs| = 1000 and r=0 and |SmnRs| = 1000 and r=0.1 for
dynamic scale GEPs.
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The results presented in Fig. 4.11, show that the CNN regression model obtained

for the case of optical links with Xc = -14 dB, |SmnRs| = 0.01 and r=0 is also unable

to predict correctly the BER of dynamic scale GEPs obtained from optical links with

Xc = -16 dB, |SmnRs| = 0.01 and r=0, where a RMSE = 0.285 is obtained. However, it

seems more able to generalize, giving BERs are closer to have a linear behaviour comparing

to the case presented in Fig. 4.9.

Figure 4.11. BER prediction distribution of GEPs from optical links
with Xc = -16 dB, |SmnRs| = 0.01 and r=0 from a CNN regression model
obtained for the case of an optical link with Xc = -14 dB, |SmnRs| = 0.01
and r=0.

Considering GEPs with dynamic scale, Fig. 4.12 a) presents the results of the CNN

model trained for the case of optical links with Xc = -14 dB, |SmnRs| = 0.01, r=0 and

tested for the case of an optical link with |SmnRs| = 1000. Fig. 4.12 b) presents the results,

considering Xc = -14 dB, r=0.1, of the CNN model trained for the case of an optical links

|SmnRs| = 0.01 and tested for the case of optical link with |SmnRs| = 1000. Comparing

with Fig. 4.9, using GEP images with dynamic scale gives a better generalization to

another skew-symbol rate product, being the results improved particularly for the case of

Fig. 4.12 a), which gives a RMSE below the limit.

Fig. 4.13 shows the BER prediction distribution of the test set from a CNN trained

with disjoint BER intervals, i. e., for the case of optical links with Xc = -16 dB and

log10 (BER) ∈ [−4.5,−3.9] , Xc = -14 dB and log10 (BER) ∈ [−3.8,−2.9[, Xc = -12 dB

and log10 (BER) ∈ [−2.9,−0.8] , for |SmnRs| = 0.01 and r=0. This CNN is tested with

the full log10 (BER) range considering eye-patterns obtained for the three crosstalk levels
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Figure 4.12. BER prediction distribution of GEPs from optical links with
a) Xc = -14 dB, |SmnRs| = 1000, r=0 tested in the CNN regression model
obtained for the case of optical links with Xc = -14 dB, |SmnRs| = 0.01 and
r=0 and with b) Xc = -14 dB, |SmnRs| = 1000, r=0.1 tested in the CNN
regression model obtained for the case of optical links with Xc = -14 dB,
|SmnRs| = 0.01 and r=0.1.

and the results are shown in Fig. 4.14, which shows that, in this case, the CNN is able to

predict the BER for the three crosstalk levels considered without surpassing the RMSE

limit of 0.1.

Figure 4.13. BER prediction distribution of the test set from a CNN
trained for the case of optical links with Xc = -16 dB and log10 (BER) ∈
[−4.5,−3.9] , Xc = -14 dB and log10 (BER) ∈ [−3.8,−2.9[, Xc = -12 dB
and log10 (BER) ∈ [−2.9,−0.8], |SmnRs| = 0.01 and r=0.
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Figure 4.14. BER prediction distribution of GEPs from optical links
with |SmnRs| = 0.01 and r=0, for a) Xc = -16 dB, b)Xc = -14 dB and c)
Xc = -12 dB, trained for the case of optical links with Xc = -16 dB and
log10 (BER) ∈ [−4.5,−3.9] , Xc = -14 dB and log10 (BER) ∈ [−3.8,−2.9[,
Xc = -12 dB and log10 (BER) ∈ [−2.9,−0.8].

4.6. Conclusions

In this chapter, the performance of the CNN-based eye-pattern analysis and BER predic-

tion in PAM4 inter-datacenter optically amplified short IM-DD connections impaired by

ICXT has been studied by assesssing the RMSE of the obtained BER predictions.

The studies performed took into consideration one interfering core, skew-symbol rate

products |SmnRs| = 1000 and 0.01, extinction ratios r = 0 and 0.1, crosstalk levels

Xc = -16 dB, -14 dB and -12 dB and a link length of 80 km. Two different approaches

regarding the GEPs have been assessed: fixed scale GEPs and dynamic scale GEPs. With

the fixed scale GEP images, by training a CNN and test the corresponding regression

model for each of the optical link parameters presented above, each CNN model was able

to predict the log10 (BER) without surpassing the RMSE limit of 0.1, except for the cases

47



Chapter 4 CNN performance assessment and discussion

of Xc = -16 dB and -12 dB with |SmnRs| = 1000 and r=0. The best performance was

obtained with Xc = -16 dB, |SmnRs| = 0.01 and r=0. We have also shown that training a

CNN with a certain crosstalk level, |SmnRs| and extinction ratio and trying to generalize

the CNN to test data obtained from other crosstalk levels or other skew-symbol rate

products, leads to innacurate BER predictions. The BER predictions can be improved by

training the CNN with eye-patterns generated for all the different crosstalk levels studied,

giving RMSEs below the limit.

The same tests have been performed with dynamic scale GEPs and the results obtained

are very similar to the ones obtained with a fixed scale GEP images. However, when

trying to generalize the CNN behavior to parameters values other than those trained,

the dynamic situation leads to a better generalization. For both fixed and dynamic scale

GEPs, the CNNs models trained and tested with |SmnRs| = 1000 and r = 0, have

presented the worst performances.
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Conclusions and future work

This chapter summarizes the dissertation final conclusions and presents some proposals

for future work.

5.1. Conclusions

In this work, the use of a CNN for eye-pattern image analysis and BER prediction

in PAM4 datacenter optical connections supported by homogeneous WC-MCFs impaired

by ICXT has been studied. A literature review has been presented in Chapter 2, which

addresses the fundamental concepts related to this work, namely datacenter connections,

PAM4 signal transmission in datacenter links supported by MCFs impaired by ICXT and

an ML overview.

In Chapter 3, the equivalent model of the PAM4 optical telecommunication system

equivalent model supported by MCFs was presented in section 3.1, being the DP-DCM

developed to characterize the ICXT in MCFs described in detail. The study of the BER

distribution and respective eye-patterns in the optically amplified PAM4 link impaired by

ICXT has been performed in section 3.2, which showed that the product |SmnRs| has a

significant influence on the BERs distribution, since for |SmnRs|= 1000, the BER range

and the distribution across this range is significant lower in comparison with the range

obtained for |SmnRs| =0.01. It was also shown that system outage is more likely to occur

for |SmnRs| =0.01 and r=0 and less likely to occur for |SmnRs|= 1000 and r= 0.1, which is

related to the BER distributions obtained for the two different |SmnRs|. Then, in section

3.3, the main tasks of the CNN implemented for eye-pattern analysis and BER prediction

has been presented, with an emphasis on the data collection process from the system

equivalent model, eye-patterns pre-processing and the considered CNN architecture.

In chapter 4, the performance of the CNN-based eye-pattern analysis and BER pre-

diction in PAM4 inter-datacenter optically amplified short IM/DD connections impaired

by ICXT has been studied by assessing the RMSE of the obtained BER predictions.

Two different approaches regarding the GEPs have been assessed: fixed scale GEPs and

dynamic scale GEPs. With the fixed scale GEPs and by training a CNN and test the

corresponding regression model for each of the optical link parameters considered, each
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CNN model was able to predict the log10 (BER) without surpassing the RMSE limit of

0.1, except for the cases of Xc = -16 dB and Xc = -12 dB with |SmnRs| = 1000 and r=0,

being the RMSE only around 0.01 higher than the limit established.

Training the CNN with a certain crosstalk level, |SmnRs| and r and testing with

data with different optical link parameters, the CNN is unable to predict correctly the

log10 (BER). These situations can be improved by training the CNN with eye-patterns

collected for the different crosstalk levels or with dynamic scale GEPs. From an implemen-

tation point of view, a CNN based on dynamic GEPs seems a better solution, since it does

not require a prior knowledge in terms of amplitudes from other eye-patterns. Each GEP

is generated based only on the corresponding eye-pattern maximum amplitude. Consid-

ering dynamic scale GEPs, when the CNN was trained with data with a certain crosstalk

level, |SmnRs| and extinction ratio and tested with a different level of crosstalk, a good

performance was obtained for r=0 while, for r=0.1, the RMSE surpassed the limit.

An additional test has been performed, by training the CNN with different log10 (BER)

ranges for the different crosstalk levels, same |SmnRs| and r and the CNN was able to

predict the BERs for the three crosstalk levels along the total BERs range.

Furthermore, we have statistically studied that the CNN results presented, which

follow a random data splitting, can be considered reliable in terms of variability of results.

As a final remark, the results obtained in this work confirm that CNN-based models

can extract features from eye-patterns to predict the BER without prior knowledge of

the transmitted signals, since only the eye-pattern image is used to extract information

and predict the BER. Such ML algorithms can be seen as a potencial side-tool to provide

additional monitoring information to existing optical systems.

5.2. Future work

Regarding the results obtained in this work, we suggest for future work:

• Generalize the CNN architecture to predict the BER with different crosstalk

levels, extinction ratios, skew-symbol rate products and other optical link pa-

rameters, instead of having a CNN trained for each parameters case.

• Assess the performance of the CNNs trained with synthetic data for monitoring

experimental data and generalize the CNN for these experiments.

• Train the CNN to predict the OP from the eye-patterns.

• Study of ICXT mitigation techniques using ML.
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