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Abstract: A theoretical model for the stochastic time evolution of the intercore crosstalk (ICXT)
in homogeneous weakly-coupled multicore fibers (MCF) with multiple interfering cores is
proposed and validated experimentally. The model relies on the introduction of non-stationary
time varying random phase shifts at every center point between the phase matching points of the
MCF where the difference of the effective refractive indexes of the core of the originating signal
and the core suffering from ICXT is zero. Closed form-expressions for the autocovariance of
the short-term average ICXT (STAXT) with stationary and non-stationary phase shift models in
MCFs with multiple excited cores are derived and validated by comparison with experimental
results. These expressions enable estimating the decorrelation time of the STAXT generated by
multiple interfering cores from the decorrelation times of the STAXT generated by each pair
of cores. The proposed model and the ICXT measurements taken continuously over more than
150 hours show that the decorrelation time of the STAXT generated by multiple interfering cores
exceeds the one obtained for the pair of cores with shorter decorrelation time. The proposed
model is increasingly important to simulate and design MCF-based systems where the ICXT
dynamics must be properly accounted for to develop efficient ICXT-tolerant techniques.
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1. Introduction

Multicore fiber (MCF) technology is a powerful candidate to overcome the capacity crunch
foreseen for the near future in different optical networks. MCF-based systems have been recently
proposed for long-haul, radio-over-fiber, access networks, or data center connectivity [1–4].
In these systems, different cores of each fiber are used for simultaneous transmission of
information signals. MCFs are commonly classified into homogeneous and heterogeneous fibers.
Homogeneous MCFs, in which the physical properties of different cores are nearly identical, are
characterized by similar signal propagation times along the different cores and non-negligible
intercore crosstalk (ICXT) levels that increase with the fiber reach [5–7]. Heterogeneous MCFs,
with cores with significantly different refraction indexes or radii, are generally characterized by
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low ICXT, higher core-count and different propagation times between cores [7, 8].
The ICXT generated in weakly-coupled homogeneous MCFs is characterized by a random

variation along the longitudinal direction of the fiber [9–11]. A theoretical model that suitably
describes this random ICXT behavior in weakly-coupled homogeneous MCFs has been proposed
[6, 12–14]. The model is based on the introduction of random phase shifts at every center point
between the phase matching points (PMPs) of the MCF where the difference of the effective
refractive indexes of the core of the originating signal and the core suffering from ICXT is
zero [9, 12]. Recently, remarkable fluctuations of the short term average crosstalk (STAXT) over
time were shown [15–20]. The STAXT is defined as the average ICXT power measured, in the
absence of signal modulation, by a power meter during a short period of time [15]. Experimental
observations have shown that the photodetected ICXT in weakly-coupled homogeneous MCFs
varies randomly also over time and frequency [15, 16, 21–25].

Previous works showed that the impact of the ICXT on the performance is significantly
dependent on the modulation format, data-rate, temporal skew between cores, kind of optical
receiver, etc., employed in theMCF system [8, 26, 27]. In [28], a maximum average crosstalk level
of -32 dB to maintain the optical signal-to-noise-ratio (OSNR) penalty below 1 dB for systems
using 64 quadrature amplitude modulation (QAM) format was shown. In [8], experimental results
suggest that the ICXT can significantly limit the transmission distance of 25 GBd polarization
division multiplexing (PDM) systems using 4-QAM, 16-QAM or 64-QAM modulation formats
when the ICXT levels exceed 40 dB/100 km. More recently, it was concluded that MCF-based
systems employing carrier free signals and large temporal skews between cores exhibit nearly
constant ICXT power over time [26]. Contrarily, direct detection (DD) MCF systems using
carrier supported signals are impaired by ICXT power that may fluctuate significantly over time
[26, 27]. Thus, short-reach access networks, data-centers or other systems, where MCFs with
high core count and low-cost DD receivers are preferable to maximize the spatial information
density at a reduced cost, may be particularly affected by the dynamic behavior of ICXT over
time and require a performance margin to operate adequately [26].
Despite the need of understanding in detail the time properties of the ICXT fluctuations to

design new MCF systems with low outage probability, only very few works have addressed
the theoretical analysis of this stochastic ICXT effect. In [29], the random time nature of the
ICXT and STAXT in weakly-coupled homogeneous MCFs have been theoretically modeled by
including a stochastic time variation in each phase shift. A Brownian motion has been proposed to
model the time evolution of the phase shifts, and closed form expressions for the autocorrelation
and autocovariance functions of the STAXT have been proposed. With this model, derived
considering only one interfering core, simulation of the time varying nature of the ICXT in MCFs
can be performed. In [17], the time varying nature of the STAXT is also modeled by introducing
a stochastic time variation in each phase shift. However, the time evolution of the phase shift
is not modeled analytically. Instead, the faster or slower variation of the time varying STAXT
observed experimentally for different pairs of cores is obtained by qualitatively changing the
number of random perturbations applied to the original phase shift in a given time interval. As a
consequence, it is not straightforward to replicate the experimental results through simulation.
In this work, a theoretical model that characterizes the stochastic time evolution of the ICXT

in weakly-coupled homogeneous MCFs with multiple excited cores is proposed. Closed form-
expressions for the autocovariance of the STAXT with stationary and non-stationary phase shift
models are derived and compared with simulation and experimental results. In addition, the
decorrelation time of the STAXT generated by single or multiple interfering cores is evaluated
from the proposed model and compared with experimental measurements.
The remainder of the paper is organized as follows. Section 2 presents the theory of the

proposed ICXT model. Section 3 describes the system parameters and the setup employed in
experiments and in the simulation analysis. In section 4, the autocorrelation and autocovariance of
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the STAXT obtained with the proposed ICXT model are validated by simulation. The validation
is performed for multiple interfering cores and considering MCFs with different decorrelation
times between pairs of cores. Section 5 presents the experimental results of the STAXT and
decorrelation time of each pair of cores of the MCF used in the lab. From these results, the
parameters required by the theoretical model to evaluate the autocovariance of the STAXT are
estimated and the autocovariance of the STAXT evaluated from the proposed model with multiple
interfering cores is validated. The conclusion of the work is presented in Section 6.

2. Theory

The dual polarization ICXT model proposed in [14,29] considers only two MCF cores, namely,
the interfering and the test core. In this section, that ICXT model is generalized to account for a
MCF with Nc cores, with Nc-1 cores excited at the transmitter side and the other core acting as
the test core. Analytical expressions for the autocovariance function of the STAXT considering
the time evolution of the phase shifts described by a stationary or a non-stationary random process
are also proposed.

2.1. ICXT field in a MCF with multiple excited cores

Due to the weakly-coupled regime of the homogeneous MCFs considered in this work, we can
assume that the ICXT field at the output of a MCF with multiple cores excited at the transmitter
side results from adding the independent ICXT contributions generated by each one of the excited
cores. Considering identical loss coefficient in the different cores of the MCF, the slowly varying
complex amplitude of the electric field of the interfered core n at the MCF output normalized
by the core loss, En(L, t) = [En,x(L, t) En,y(L, t)]T , can be written from the dual polarization
ICXT model proposed in [14, 29] as

En(L, t) = − j
Nc∑
m=1,
m,n

Kn,m√
2

Np∑
k=1

[√
ζmv

(k)
1,n,m(t)

√
1 − ζmv(k)2,n,m(t)√

ζmv
(k)
3,n,m(t)

√
1 − ζmv(k)4,n,m(t)

] 
F
(k)
n,m

(
0, t − ξ(k)n,m

)
F
(k)
n,m

(
0, t − ξ(k)n,m

) (1)

where L is the MCF length, t is the time, Nc is the number of cores of the MCF, Np is the number
of PMPs, ζm∈[0,1] is the level of power splitting between the polarization directions at the input
of the m-th interfering core, Kn,m is the discrete coupling coefficient evaluated from the average
of the intercore coupling coefficients (between cores n and m) of the two orthogonal polarization
directions ux and uy, κn,m=0.5

(
κn,m,x + κn,m,y

)
, and

v
(k)
i,n,m(t) = exp

[
− j(Φ(k)i,m (t) + φ

(k)
n,m)

]
, 1 ≤ i ≤ 4 (2)

F
(k)
n,m (0, t) = F−1

[
Ẽm (0, ω) exp

(
− jη(k)n,mω

2
)]

(3)

φ
(k)
n,m = βn,0

(
L − z(k)m

)
+ βm,0z(k)m ξ

(k)
n,m = βn,1

(
L − z(k)m

)
+ βm,1z(k)m (4)

η(k)n,m = 0.5
[
βn,2

(
L − z(k)m

)
+ βm,2z(k)m

]
(5)

where ω is the angular frequency, F−1 is the inverse Fourier transform operator, Ẽm (0, ω) is
the Fourier transform of the slowly varying complex amplitude of the electric field of the m-th
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interfering core at theMCF input and z(k)m is the longitudinal coordinate of theMCF corresponding
to the k-th center point between consecutive PMPs of core m. βq,i (with i = 1 or i = 2) is the
average of the i-th order derivative of the intrinsic propagation constant of core q of the two
polarizations with respect to angular frequency and Φ(k)i,m(t) are independent random processes
that represent the contributions of the time varying nature of the phase shift associated with each
PMP of the m-th interfering core to the Jones vector of the ICXT field. The functions v(k)i,n,m(t)
represent the coupling between the polarization directions [14, 29]. The instantaneous ICXT
power in the dual polarization scheme is given by p (t) = |En,x(L, t)|2 + |En,y(L, t)|2.

In [29], the time varying phase shifts of the ICXTmodel associated with each PMP are assumed
stationary and modeled by independent Brownian motions. Here, the statistical characterization
of the time varying of the phase shift associated with each PMP of each interfering core in MCFs
with multiple excited cores is developed considering an independent non-stationary Wiener
process for each time varying phase shift. These two different statistical characterizations of the
phase shifts are compared with experimental results and discussion about which model is more
suitable to provide good description of the time varying nature of the ICXT is accomplished.

2.1.1. Non-stationary phase shift model

The non-stationarymodel of the phase shifts considered in this work is based on theWiener process
that is commonly used to characterize the laser phase noise in optical fiber communication
systems. The non-stationary model for each phase shift associated with each PMP of each
interfering core can be written as:

Φ
(k)
i,m (t) = 2π

∫ t

0
µ
(k)
i,m (τ) dτ t > 0 (6)

where µ(k)i,m (τ) is the instantaneous frequency associated with the k-th PMP of the m-th interfering
core. In each PMP, µ(k)i,m (τ) is a zero mean white Gaussian noise process with double sided power
spectral density (PSD) given by Sµ,m=KΦm/(2π)2, where KΦm is a parameter associated with
the decorrelation time of the STAXT generated by core m in core n. With the model of Eq. (6),
each phase shift is a non-stationary Gaussian process with zero mean and variance given by
σ2
Φ
(k)
i,m

(t)=(2π)2Sµ,mt. As the phase shifts of different cores and the phase shifts of the same core

but in different PMPs are uncorrelated, we also have

Rns,m1,m2,k1,k2 (τ) = E
{
exp

[
± j

(
Φ
(k1)
i,m1
(t) − Φ(k2)

i,m2
(t + τ)

)]}
=

=

{
exp

(
−0.5KΦm |τ |

)
for m1=m2 and k1=k2

E
{
exp

[
± jΦ(k1)

i,m1
(t)

]}
E

{
exp

[
∓ jΦ(k2)

i,m2
(t + τ)

]}
= 0 for m1 , m2 or k1 , k2

(7)

where τ is the time lag. In Eq. (7), we considered E
{
exp

[
± jΦ(k)i,m (t)

]}
= 0 because Φ(k)i,m (t) is

uniformly distributed between 0 and 2π. The autocorrelation of the non-stationary phase shifts in
the same PMP of the same core is given on page 72 in [30]. In the following, for the sake of
notation simplicity, Rns,m1,m2,k1,k2 (τ) is referred to simply as Rns,m(τ).

2.2. Autocovariance of the STAXT in MCFs with multiple excited cores

In this section, the autocovariance of the STAXT in MCFs with multiple excited cores is derived
from the dual polarization ICXTmodel considering the non-stationary phase shift model proposed
in this work and the stationary model presented in [29].
The evaluation of the STAXT is performed using a constant signal (absence of signal

modulation) at the input of the interfering cores. Under this condition, the slowly varying complex
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amplitude of the electric field of the interfered core n at the MCF output in each polarization
direction is given by

En,x(L, t) = − j
Nc∑
m=1,
m,n

√
pi,mKn,m
√

2

Np∑
k=1

(√
ζmv

(k)
1,n,m(t) +

√
1 − ζmv(k)2,n,m(t)

)
(8)

En,y(L, t) = − j
Nc∑
m=1,
m,n

√
pi,mKn,m
√

2

Np∑
k=1

(√
ζmv

(k)
3,n,m(t) +

√
1 − ζmv(k)4,n,m(t)

)
(9)

where pi,m is the power at the input of the interfering core m, i. e., after the fan-in.
Let us consider that the STAXT is measured in a time interval, T , much smaller than the

decorrelation time of the STAXT (in [15], T=100 ms and the decorrelation time of the STAXT is
of the order of a few minutes). Considering that the instantaneous power of the ICXT is nearly
constant within this time interval, the STAXT of core n can be written as

ST AXTn(t) =
1
T

∫ t+T

t

p(τ)dτ ≈ p(t) (10)

Using Eq. 8 and Eq. 9, the mean power of the STAXT of core n evaluated from Eq. (10) is
E[p(t)]=Np

∑Nc

m=1,
m,n

pi,m |Kn,m |2, where E[x] is the expected value of x. Considering the ICXT

field in the two polarization directions characterized by phase shifts with identical STAXT
decorrelation times, the autocorrelation of the STAXT of core n is given by:

RST AXT,n (τ) = E [p (t) p (t + τ)] = RST AXT,n,x (τ) + RST AXT,n,y (τ) + RST AXT,n,xy (τ) (11)

where RST AXT,n,x (τ) and RST AXT,n,y (τ) are contributions of the autocorrelation of the STAXT
originated from the power injected at the input of the m-th interfering core in polarizations ux
and uy, respectively, and RST AXT,n,xy (τ) is a contribution obtained from the product of powers
injected in different polarizations. These contributions are given by

RST AXT,n,x (τ) =
1
2
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RST AXT,n,xy (τ) =
1
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(14)

Following an approach similar to that of Appendix in [29] and considering that the phase shift
associated with each PMP is a zero mean process, the autocorrelation of the STAXT generated in
a MCF with multiple excited cores is independent of the level of power splitting between the
polarization directions, and can be approximated as:

RST AXT,n (τ) ≈
Nc∑
m=1,
m,n

p2
i,m |Kn,m |4

[
N2
p +

Np

2
(Np − 1)R2

m(τ)
]
+ N2

p

Nc∑
m1=1,
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pi,m1 |Kn,m1 |2×

×
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m2=1,
m2,n,
m2,m1

pi,m2 |Kn,m2 |2 +
N2
p

2

Nc∑
m1=1,
m1,n

pi,m1 |Kn,m1 |2Rm1 (τ)
Nc∑

m2=1,
m2,n,
m2,m1

pi,m2 |Kn,m2 |2Rm2 (τ) (15)
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where Rl(τ)=Rns,l(τ) whether the non-stationary phase shift model is considered. In the case of
the stationary phase shift model, Rl(τ)=exp

(
−σ2
Φl
+ RΦl (τ)

)
where the autocorrelation of each

phase shift of the l-th interfering core is given by [29]:

RΦl (τ) = σ2
Φl

exp (−αl |τ |) (cos (αlτ) + sin (αl |τ |)) (16)

σ2
Φl

is the variance of the phase shift and αl is a parameter that enables adjusting the decorrelation
time of the STAXT generated by core l [29]. The autocovariance of the STAXT of core n
generated in a MCF with multiple excited cores can be obtained from the autocorrelation as:

CST AXT,n (τ) = RST AXT,n (τ) − E2 [p(t)] ≈
Np(Np − 1)

2

Nc∑
m=1,
m,n

p2
i,m |Kn,m |4R2

m(τ)+

+
N2
p

2

Nc∑
m1=1,
m1,n

pi,m1 |Kn,m1 |2Rm1 (τ)
Nc∑

m2=1,
m2,n,
m2,m1

pi,m2 |Kn,m2 |2Rm2 (τ) (17)

where we have considered the square of the mean STAXT power given by:

E2 [p(t)] = N2
p

Nc∑
m=1,
m,n

p2
i,m |Kn,m |4 + N2

p

Nc∑
m1=1,
m1,n

pi,m1 |Kn,m1 |2
Nc∑

m2=1,
m2,n,
m2,m1

pi,m2 |Kn,m2 |2 (18)

Let us consider that the discrete coupling coefficients, the powers at the output of the fan-in for
the different cores and the statistical properties of the phase shifts of the cores are identical. In
this case, Eq. (17) can be simplified to:

CST AXT,n (τ) ≈ (Nc − 1)
[

N2
p − Np

2
+ (Nc − 2)

N2
p

2

]
p2
i,m |Kn,m |4R2

m(τ) (19)

Equation (19) shows that, with the ICXT model given by Eq. (1), the time dependence of the
STAXT autocovariance in MCFs with multiple excited cores is similar to that one obtained
when only one interfering core is considered. Particularly, it can be concluded from Eq. (19)
that the STAXT decorrelation time is the same regardless the number of interfering cores. This
conclusion holds for cores with identical discrete coupling coefficients and statistical properties of
the phase shifts and is somehow in conflict with the work reported in [17], where it is concluded
that the decorrelation time of the STAXT becomes smaller when the number of interfering cores
increases. We will detail this discussion later on this paper when validating our model with
experimental results.
Let us consider also the case where the STAXT is generated by a single interfering core. In

this case, the autocovariance of the STAXT induced by core m in core n is given by:

CST AXT,n (τ) ≈
Np(Np − 1)

2
p2
i,m |Kn,m |4R2

m(τ) (20)

If the non-stationary phase shift model is considered, R2
m(τ) = exp

(
−KΦm |τ |

)
and, thus,

KΦm=1/TST AXT,m where TST AXT,m is the decorrelation time at 1/e of the STAXT generated by
core m.
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Fig. 1. Experimental setup implemented in the lab to measure the STAXT. (i) Profile of the
19-core MCF.

3. Experimental and simulation setup

Figure 1 depicts the schematic diagram of the experimental setup implemented in the lab to
measure the STAXT. An external cavity laser (ECL) is used to generate the continuous wave
signal and the optical amplifier is used to boost the optical power. The optical signals to be
launched into each MCF core are obtained at the output of an optical splitter. The CW signals
injected in the different MCF cores are generated by the same laser source. However, as the
ICXT mechanism of the MCFs is an intrinsic effect of the fiber and does not depend on the
light source, we do not expect to obtain different results/conclusions if different sources are used
to generate the light to be injected in the different cores. The optical power at the input of the
fan-in is 0 dBm for each core. The MCF is a 20 km-long homogeneous trench-assisted 19-core
fiber with profile as shown in inset (i) of Fig. 1. The cladding diameter is 180 µm, the core pitch
is 32 µm and the core diameter is 9 µm. The loss of the MCF in each core is 0.4-0.5 dB/km.
In addition, three splices with loss per splice below 1 dB are located at 10.5 km, 11 km and
12.5 km. The total loss of the fan-in+MCF+fan-out for each core of the MCF used in this work is
shown in Table 1. The loss of the fan-in+fan-out devices, including fans splicing, is below 5 dB.
The STAXT is measured at the output of the central core (core 1) with two configurations of
interfering cores: (i) with only one interfering core, in which the STAXT induced by cores 2
to 7 is assessed individually, and (ii) with six interfering cores, in which the optical signals are
launched in cores 2 to 7 simultaneously. Note that the ICXT generated in the central core due
to the outer cores (cores 8 to 19) of the MCF is negligible compared to the ICXT generated by
cores 2 to 7. The STAXT at the output of the central core is monitored continuously over several
days with experimental measurements taken with a time period of 2 seconds.

In addition to experimental measurements of the STAXT, simulation of the setup shown in Fig. 1
is also performed. In the simulation, the ICXT is generated using Eq. (1). This equation includes
the effects of group velocity dispersion (dispersion parameter of each core is, approximately,
20 ps/nm/km) and skew between the pair of cores. The skew of the pair of cores under analysis in
this work is shown in Table 2. The STAXT is evaluated over a time window of 10 hours and
considering 1000 PMPs [13, 15, 29]. The number of PMPs is associated with the number of
points along the longitudinal direction of the MCF in which the difference between the effective
refractive indexes of the core of the originating signal and the core of ICXT is zero [31]. This

Table 1. Total fan-in+MCF+fan-out loss.

Cores Loss [dB] Pair of cores Loss [dB]
(1) 14.2 (5) 15.3
(2) 17.3 (6) 14.2
(3) 14.6 (7) 16.2
(4) 14.5 - -
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number of PMPs is proportional to the MCF length [6, 12]. Therefore, it is expected that a higher
number of PMPs is required when the MCF length increases. However, further investigation
showed that, even for longer MCFs, adequate description of the ICXT statistics is obtained by
simulation with 1000 PMPs as the mean, variance and autocorrelation function of the STAXT
are almost the same as those ones achieved with a higher number of PMPs. This was confirmed
considering the PMPs distributed uniformly or randomly along the fiber and for MCF lengths
reaching 2000 km. In this work, the longitudinal coordinate of each PMP is calculated as follows:
(i) the length of the MCF is divided in 1000 segments with equal length, and (ii) in each segment,
the PMP coordinate follows an uniform distribution.

4. Simulation results

In this section, the analytical results of the autocorrelation and autocovariance of the STAXT
evaluated from Eq. (15) and Eq. (17) for a MCF with multiple excited cores are validated by
comparison with numerical simulation of Eq. (1). The same level of optical power is considered
at the input of all interfering cores and identical MCF loss in the different cores is assumed.
Figure 2(a) and Fig. 2(b) depict the autocorrelation and autocovariance of the STAXT,

respectively, at the output of the central core considering the stationary phase shift model. A
MCF with six interfering cores characterized by a discrete coupling coefficient in each core of
-78 dB is considered. Two different STAXT decorrelation time configurations are analyzed:

Case 1: the STAXT decorrelation time of each pair of cores is 5 minutes. With the stationary
phase shift model, this decorrelation time is obtained by setting αl=7.19 × 10−4 s−1;

Case 2: the STAXT decorrelation time is 2 minutes for pairs (1,2), (1,3) and (1,4), and
5 minutes for pairs (1,5), (1,6) and (1,7). In the case of the stationary phase shift model,
the decorrelation time of 2 minutes is obtained by setting αl=18 × 10−4 s−1.

In addition, simulation results for different power splitting levels between the polarization
directions at the input of each interfering core are shown in Fig. 2. Figure 2(c) and Fig. 2(d)
show results similar to Fig. 2(a) and Fig. 2(b) but considering the non-stationary phase shift
model. Figure 2 shows excellent agreement between the analytical and simulation results of
the STAXT autocorrelation and autocovariance functions. This conclusion holds for the two
phase shift models analyzed and confirms that the STAXT autocovariance and autocorrelation
functions are independent from the fiber dispersion, skew between cores and power splitting levels
between the polarization directions at the fiber input. As shown in Fig. 2(b) and Fig. 2(d), the
decorrelation time evaluated at 1/e from the STAXT autocovariance function is 5 minutes (case
1) and 3 minutes (case 2) regardless the phase shift model considered. Two important conclusions
can be drawn from these decorrelation time results. In a MCF with multiple interfering cores,
if the different pairs of cores are characterized by identical discrete coupling coefficients and
by phase shifts with identical statistical properties, the decorrelation time of the STAXT of
the interfered core obtained with one or multiple interfering cores is the same, as indicated by
Eq. (19). When the pairs of cores are characterized by different STAXT decorrelation times, the
STAXT decorrelation time measured in the test core with multiple interfering cores is higher

Table 2. Skew between the pair of cores.

Pair of cores Skew [ns] Pair of cores Skew [ns]
(1,2) 5.4 (1,5) 2.4
(1,3) 4.8 (1,6) 7.0
(1,4) 3.2 (1,7) 3.3

                                                                                                Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4614 



0 5 10 15 20
0.9

1

1.1

1.2

1.3

1.4
x 10

−8

τ [minutes]

R
S

T
A

X
T

,n

 

 

Simulation: ζ=0

Simulation: ζ=0.25

Simulation: ζ=0.5

Simulation: ζ=0.75

Simulation: ζ=1

Theoretical

Case 1

Case 2

(a)

0 5 10 15 20
0

1

2

3

4

55
x 10

−9

τ [minutes]

C
S

T
A

X
T

,n

 

 

Simulation: ζ=0

Simulation: ζ=0.25

Simulation: ζ=0.5

Simulation: ζ=0.75

Simulation: ζ=1

Theoretical

1/e

Case 2

Case 1

(b)

0 5 10 15 20
0.9

1

1.1

1.2

1.3

1.4
x 10

−8

τ [minutes]

R
S

T
A

X
T

,n

 

 

Simulation: ζ=0

Simulation: ζ=0.25

Simulation: ζ=0.5

Simulation: ζ=0.75

Simulation: ζ=1

Theoretical

Case 2

Case 1

(c)

0 5 10 15 20
0

1

2

3

4

55
x 10

−9

τ [minutes]

C
S

T
A

X
T

,n
 

 Simulation: ζ=0

Simulation: ζ=0.25

Simulation: ζ=0.5

Simulation: ζ=0.75

Simulation: ζ=1

Theoretical

1/e

Case 2

Case 1

(d)

Fig. 2. (a) Autocorrelation and (b) autocovariance functions of the STAXT of the central core
considering the stationary phase shift model. (c) Autocorrelation and (d) autocovariance
functions of the STAXT of the central core considering the non-stationary phase shift model.
The results are evaluated considering six interfering cores. Case 1: the STAXT decorrelation
time of each pair of cores is 5 minutes. Case 2: the STAXT decorrelation time is 2 minutes
for pairs (1,2), (1,3) and (1,4), and 5 minutes for pairs (1,5), (1,6) and (1,7).

than that one of the pair of cores with lower STAXT decorrelation time. This occurs because
the ICXT power generated in the interfered core results from different contributions: one, that
is faster and that corresponds to the cores with smaller decorrelation time, and other, slower,
corresponding to the cores with larger decorrelation time. Thus, the resulting ICXT generated
by multiple cores with faster and slower decorrelation times is characterized by random time
fluctuations with intermediate decorrelation time.

5. Experimental results

In the following, the experimental results of the STAXT considering a MCF with a single
interfering core and with six interfering cores are presented. From these results, the STAXT
autocovariance evaluated from experimental measurements is obtained and compared with the
STAXT autocovariance proposed in Eq. (17) for a MCF with multiple interfering cores. In
addition, the theoretical decorrelation times of the STAXT are also compared with those ones
estimated from experimental measurements with single and multiple interfering cores.

5.1. One interfering core

5.1.1. STAXT

Figure 3 depicts the STAXT measured in the central core over 160 hours for six different
interfering cores. Power variations of the STAXT over time exceeding 20 dB can be observed. It
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Fig. 3. STAXT of the central core measured over 160 hours for different interfering cores.

is also shown that the STAXT induced by core 3 in core 1 is higher than the STAXT generated
by the other cores. The experimental results of the STAXT power at the output of the central
core considering only one interfering core are useful to estimate the discrete coupling coefficient,
Kn,m, between core 1 and each one of the other interfering cores (2 to 7). This is achieved by
evaluating the average ICXT power for each pair of cores shown in Fig. 3 over the 160 hours
period and taking into account that, for ergodic processes, Np |Kn,m |2 ≈

pXT ,natot al,m

pin,m

l f −o,n
l f −o,m

,
where atotal,m is the loss of fan-in+MCF+fan-out in core m, l f−o,l is the insertion loss of the
fan-out associated with the l-th output, pXT,n is the average ICXT power generated by core m
at the output of the fan-out corresponding to core n and pin,m is the power at the input of the
fan-in in the interfering core m, i e., pin,m

pi,m
= l f−i,m where l f−i,m is the insertion loss of the

fan-in associated with the m-th input. Table 3 shows the parameters used to estimate the discrete
coupling coefficients from experimental measurements of the STAXT. Identical MCF loss in
each core (0.5 dB/km and 2.5 dB for MCF splices), similar insertion loss for the fan-in and
fan-out devices, and the total loss of the fan-in+MCF+fan-out shown in Table 1 are considered. In
addition, 1000 PMPs are considered to evaluate the discrete coupling coefficients. Other number
of PMPs could be used to estimate the discrete coupling coefficients from the average ICXT
power measured experimentally as far as the same number of PMPs is used also to evaluate the
autocovariance of the STAXT from the theoretical model proposed in section 2.2.

5.1.2. Autocovariance

Figure 4 depicts the autocovariance of the STAXT at the output of the central core considering
core 2 or core 6 as the interfering core. Results obtained from experimental measurements and
evaluated from Eq. (17) considering the stationary and non-stationary phase shift models are
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Table 3. Parameters used to estimate the discrete coupling coefficients. The mean ICXT
power measured experimentally is also shown.

Cores (n,m) pXT,n [dBm] l f−o,m [dB] Kn,m [dB] Pi,m [dBm] E[p(t)] [dBm]
(1,1) – 0.85 – – –
(1,2) -50.3 2.40 -64.55 -2.40 -36.95
(1,3) -45.2 1.05 -60.80 -1.05 -31.85
(1,4) -48.0 1.00 -63.65 -1.00 -34.65
(1,5) -46.9 1.40 -62.15 -1.40 -33.55
(1,6) -46.9 0.85 -62.70 -0.85 -33.55
(1,7) -48.8 1.85 -63.60 -1.85 -35.45

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

τ [minutes]

N
o

rm
. 
 C

S
T

A
X

T
,n

 

 

1/e

Theo.: stationary

Theo.: non−stationary

Experimental

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

τ [minutes]

N
o

rm
. 
 C

S
T

A
X

T
,n

 

 

1/e

Theo.: stationary

Theo.: non−stationary

Experimental

(b)

Fig. 4. Normalized autocovariance of the STAXT for the pair of cores (a) (1,2) and (b) (1,6).

presented. Very good agreement between the experimental results and the STAXT autocovariance
evaluated from the dual polarization ICXT theoretical model with the phase shifts modeled
by the non-stationary process is observed for most of the time lag values analyzed. Figure 4
shows that the autocovariance function evaluated from the stationary model is characterized
by a decay that is much faster than the one measured experimentally. Instead, the decay of
the autocovariance obtained with the non-stationary phase shift model and evaluated from
experimental measurements is quite similar for the time lags with higher STAXT correlation.
Some inconsistency between the experimental data and the non-stationary based theoretical
results occurs in the tails of the autocovariance function. Currently, we are not completely sure of
the origin of this inconsistency. However, we conceive that the inconsistency may result from
(i) some inaccuracy of the experimental measurements, (ii) due to its simplicity, the model
proposed is unable to completely characterize the mechanism associated with the random time
variation of the ICXT in MCFs leading to some inaccuracy in the tails of the autocovariance of
the STAXT and (iii) the contribution of the crosstalk induced by the fan-in and fan-out devices to
the autocovariance of the STAXT may not be neglected in the tail region.

5.1.3. STAXT decorrelation time

The speed of the ICXT fluctuations is of special concern in MCF-based systems as it affects the
design of ICXT-tolerant adaptive techniques and also how often the service is interrupted. The
ICXT fluctuations can be characterized by the STAXT decorrelation time evaluated from the
autocovariance function. The most common definition of decorrelation time is the decorrelation
time evaluated at 1/e of the maximum of the autocovariance function [15, 29]. Previous work
showed by simulation that an accurate estimation of the decorrelation time may require the
continuous monitoring of the STAXT over a quite long time period [29]. In order to confirm
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this conclusion experimentally, the STAXT generated in the central core by cores 2 to 7 was
monitored individually in the lab over more than six consecutive days leading to a time period of
accumulated measurements of more than one month. After capturing the STAXT measurements
for each pair of cores, the autocovariance of the STAXT and, thus, the decorrelation time, were
evaluated considering STAXT measurements obtained in time periods with different extensions.

Fig. 5. Decorrelation time of the STAXT measured experimentally at the output of the central
core as a function of the extension of the measurement time.

Figure 5 shows the decorrelation time of the STAXT measured experimentally at the output of
the central core as a function of the time period extension over which the STAXT is monitored.
Results for all the nearest neighboring cores are presented. Two main conclusions, valid for all
pairs of cores under analysis, can be drawn from the inspection of Fig. 5. (i) The decorrelation
time of the STAXT for the pair of cores under analysis is between 2 and 4 minutes. (ii) An
extension of the measurement time of more than 100 hours may be required to get stabilized
estimates of decorrelation times of the order of a few minutes. Even using a time window with
extension of more than 100 hours, slight fluctuations of the decorrelation time when the extension
of the measurement time increases are still observed. In order to reduce this fluctuation effect,
we calculate the decorrelation time of each pair of cores as the average of the decorrelation
times obtained for the last 30 hours of the measurement time extension shown in Fig. 5. These
decorrelation times of the STAXT measured experimentally for each pair of cores are presented
in Table 4.

5.2. Six interfering cores

5.2.1. STAXT

Figure 6(a) shows the STAXT measured in the central core when the optical power is injected
simultaneously in the six adjacent cores. The comparison between Fig. 6(a) and Fig. 3 shows that,
when the number of interfering cores increases, the STAXT power also increases, as expected.
Figure 6(a) shows also fluctuations of the STAXT induced by the random time nature of the
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Table 4. Decorrelation time of the STAXT measured experimentally at the output of the
central core.

Pair of cores TST AXT Pair of cores TST AXT

(1,2) 3.4 minutes (1,5) 2.8 minutes
(1,3) 2.6 minutes (1,6) 4.0 minutes
(1,4) 3.7 minutes (1,7) 3.0 minutes

ICXT with magnitude exceeding 20 dB which is similar to the magnitude observed with only one
interfering core.

5.2.2. Autocovariance

Figure 6(b) shows the normalized autocovariance of the STAXT measured experimentally and
evaluated from Eq. (17) with the stationary and non-stationary phase shift models. The results
are presented for six interfering cores. Very good agreement between the experimental results
and the STAXT autocovariance model of Eq. (17) is observed when the non-stationary phase
shift model is used. These results confirm the validity of the proposed model to describe the
random time nature of the ICXT in weakly-coupled MCFs with multiple interfering cores.

5.2.3. STAXT decorrelation time

Figure 6(c) shows the experimental results of the decorrelation time of the STAXT of the central
core when the six nearest neighboring cores are used as interfering cores. Figure 6(c) shows that
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Fig. 6. (a) STAXT, (b) normalized autocovariance and (c) decorrelation time of the STAXT
measured experimentally at the output of the central core. All the results are obtained
considering six interfering cores.
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stabilized estimates of the decorrelation time of the STAXT obtained with six interfering cores
requires a measurement time extension of almost 200 hours. If we calculate the decorrelation
time of each pair of cores as the average of the decorrelation times obtained for the last 30 hours
of the measurement time extension shown in Fig. 6(c), the decorrelation time of the STAXT
evaluated experimentally with six interfering cores is 2.7 minutes which is of the same order of
magnitude of the decorrelation time of the STAXT obtained for each pair of cores, as predicted
by Eq. (17). Using, for each pair of cores, the decorrelation times of the STAXT presented in
Table 4 and the coupling coefficients of Table 3, the decorrelation time of the STAXT, evaluated
from the autocovariance function given by Eq. (17) with six interfering cores, is 3 minutes which
agrees quite well with the experimental data.
The work presented in [17] concluded that the decorrelation time of the STAXT is smaller

when the number of interfering cores increases. Unfortunately, only the time evolution of the
STAXT and the final STAXT decorrelation time values are shown in [17]. Information concerning
the autocovariance function, from which the decorrelation times are evaluated, or the evolution
of the decorrelation time as a function of the extension of the time measurement of the STAXT
are not provided. However, there is an interesting point when comparing the results of [17] with
those ones presented above. We concluded from Fig. 5 and Fig. 6(c) that more than 100 hours of
STAXT measurements are required to get stabilized estimates of the decorrelation time obtained
from experimental results. Despite the decorrelation times of each pair of cores involved in this
work and in [17] are of the same order of magnitude (couple of minutes), the calculations of the
decorrelation time performed in [17] use STAXT measurements taken only over 6 hours. From
our experience, this seems a quite short time interval to get stabilized and accurate decorrelation
time estimates, and can lead to misleading conclusions.

6. Conclusion

We have proposed, for the first time, a simple channel model to emulate the stochastic time
evolution of the ICXT in homogeneous weakly-coupled MCFs with multiple interfering cores.
Instead of using stationary phase shifts between consecutive PMPs as considered in a previous
work, the proposed model relies on the introduction of non-stationary phase shifts. Very good
agreement between the autocovariance of the STAXT evaluated from the proposed ICXT model
and from experimental results taken over long time measurements (more than 150 hours) has
been shown for MCFs with single and multiple interfering cores. Experimental results showed
that the fluctuations of the STAXT induced by multiple interfering cores are characterized by a
decorrelation time that exceeds the one of the pair of cores with shorter decorrelation time. A
decorrelation time of 2.7 minutes for the STAXT generated by six interfering cores has been
obtained experimentally with a measurement time period of 200 hours. The proposed ICXT
model provides a decorrelation time of the STAXT generated by the six interfering cores of
3 minutes considering a decorrelation time of the STAXT measured experimentally for each pair
of cores between 2.6 and 4 minutes. With this simple stochastic ICXT model, ICXT properties
can be accurately emulated and the design of MCF systems can be increasingly pursued.
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