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Doutor José Dias Curto, Professor Associado com Agregação, ISCTE-IUL
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Resume

This thesis addresses the modeling of energy prices with time-varying volatility and

jumps in three separate and self-contained papers:

A. Modeling energy futures volatility through stochastic volatility processes with

Markov chain Monte Carlo

This paper studies the volatility dynamics of futures contracts on crude oil, natural

gas and electricity. To accomplish this purpose, an appropriate Bayesian model

comparison exercise between seven stochastic volatility (SV) models and their

counterpart GARCH models is performed, with both classes of time-varying volatil-

ity processes being estimated through a Markov chain Monte Carlo technique. A

comparison exercise for hedging purposes is also considered by computing the ex-

treme risk measures (using the Conditional Value-at-Risk) of simulated returns from

the SV model with the best performance — i.e., the SV model with a t-distribution

— and the standard GARCH(1,1) model for the hedging of crude oil, natural gas

and electricity positions. Overall, we find that: (i) volatility plays an important role

in energy futures markets; (ii) SV models generally outperform their GARCH-family

counterparts; (iii) a model with t-distributed innovations generally improves the fit-

ting performance of both classes of time-varying volatility models; (iv) the maturity

of futures contracts matters; and (v) the correct specification for the stochastic be-

havior of futures prices impacts the extreme market risk measures of hedged and
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unhedged positions.

B. How does electrification under energy transition impact the portfolio man-

agement of energy firms?

This paper presents a novel approach for structuring dependence between elec-

tricity and natural gas prices in the context of energy transition: a copula of mean-

reverting and jump-diffusion processes. Based on historical day-ahead prices of

the Nord Pool electricity market and the Henry Hub natural gas market, a stochas-

tic model is estimated via the maximum likelihood approach and considering the

dependency structure between the innovations of these two-dimensional returns.

Given the role of natural gas in the global policy for energy transition, different cop-

ula functions are fit to electricity and natural gas returns. Overall, we find that: (i)

using an out-of-sample forecasting exercise, we show that it is important to con-

sider both mean-reversion and jumps; (ii) modeling correlation between the returns

of electricity and natural gas prices, assuring nonlinear dependencies are satisfied,

leads us to the adoption of Gumbel and Student-t copulas; and (iii) without govern-

ment incentive schemes in renewable electricity projects, the usual maximization of

the risk-return trade-off tends to avoid a high exposure to electricity assets.

C. Modeling commodity prices under alternative jump processes and fat tails

dynamics

The recent fluctuations in commodity prices affected significantly Oil Gas (O&G)

companies’ returns. However, integrated O&G companies are not only exposed

to the downturn of oil prices since a high level of integration allows these firms to

obtain non-perfectly positive correlated portfolio. This paper aims to test several dif-

ferent stochastic processes to model the main strategic commodities in integrated

O&G companies: brent, natural gas, jet fuel and diesel. The competing univari-

ate models include the log-normal and double exponential jump-diffusion model,
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the Variance-Gamma process and the geometric Brownian motion with nonlinear

GARCH volatility. Given the effect of correlation between these assets, we also

estimate multivariate models, such as the Dynamic Conditional Correlation (DCC)

GARCH, DCC-GJR-GARCH and the DCC-EGARCH models. Overall, we find that:

(i) the asymmetric conditional heteroskedasticity model substantially improves the

performance of the univariate jump-diffusion models; and (ii) the multivariate ap-

proaches are the best models for our strategic energy commodities, in particular

the DCC-GJR-GARCH model.

JEL Classification: C52, C58, Q40, Q41

Keywords: Bayesian econometrics, Commodity prices, Energy prices, Futures, Maxi-

mum likelihood.
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Resumo

Esta tese aborda a modelação de preços de energia com modelos de volatilidade

variável no tempo e saltos e encontra-se separada em três artigos distintos:

A. Modelação da volatilidade de futuros de energia com processos de volatili-

dade estocástica utilizando “Markov chain Monte Carlo”

Este artigo estuda a dinâmica da volatilidade dos contratos futuros de petróleo

bruto, gás natural e eletricidade. Para cumprir este propósito, um exercı́cio apro-

priado de comparação de modelos Bayesianos entre sete modelos de volatilidade

estocástica (VE) e os correspondentes modelos GARCH é realizado, com am-

bas as classes de processos de volatilidade variável no tempo tendo sido esti-

madas através de uma técnica de “Markov Chain Monte Carlo”. Um exercı́cio de

comparação para fins de “hedging” também é considerado, calculando as medidas

de risco extremo (usando o “Conditional Value-at-Risk”) dos retornos simulados

do modelo de VE com o melhor desempenho —ou seja, o modelo VE com uma

distribuição-t— e o modelo GARCH (1,1) para hedging das posições de petróleo

bruto, gás natural e eletricidade. No geral, descobrimos que: (i) a volatilidade de-

sempenha um papel importante nos mercados futuros de energia; (ii) os modelos

VE geralmente superam seus homólogos da famı́lia GARCH; (iii) um modelo com

inovações t-distribuı́das geralmente melhora o desempenho de ajuste de ambas

as classes de modelos de volatilidade que variam no tempo; (iv) o vencimento de
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contratos de futuros importa; e (v) a correta especificação do comportamento es-

tocástico dos preços futuros impacta as medidas de risco extremo de mercado das

posições “hedged” e “unhedged”.

B. Como a eletrificação na transição energética impacta a gestão de portefólio

das empresas de energia?

Neste artigo apresentamos uma nova abordagem no contexto da transição en-

ergética: o modelo estocástico com reversão à média e difusão com saltos combi-

nado com funções de cópula. Com base nos preços históricos do mercado de elet-

ricidade (“Nord Pool”) e do mercado de gás natural (“Henry Hub”), estimamos um

modelo estocástico com base no método de Máxima Verossimilhança. O modelo

teórico é fornecido considerando a estrutura de dependência entre as inovações

desses retornos bi-dimensionais. Dado o papel do gás natural na polı́tica global

de transição energética, ajustamos diferentes funções de cópula aos retornos de

eletricidade e gás natural. Descobrimos que: (i) Num exercı́cio de previsão fora

da amostra, confirmamos o desempenho de previsão do modelo estocástico de

reversão à média e difusão com saltos; (ii) modelar a correlação entre os retornos

de eletricidade e gás natural, garantindo que dependências não lineares sejam

satisfeitas, conduz-nos às funções da cópula (principalmente a cópula de Gumbel

e t-Student) e (iii) sem incentivos ou mecanismos governamentais de apoio a pro-

jetos renováveis, a habitual maximização do trade-off de risco-retorno tenderá a

evitar elevadas exposições a ativos de eletricidade.

C. Modelação do preço de “commodities” com base em processos alternativos

de difusão em saltos e caudas pesadas

As recentes flutuações nos preços das “commodities” afetaram fortemente os re-

tornos das empresas de petróleo e gás (O&G). No entanto, as empresas integradas

de O&G não estão apenas expostas ao decréscimo dos preços do petróleo, uma
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vez que um elevado nı́vel de integração permite obter carteiras correlacionadas,

embora não perfeitamente positivas. Este artigo tem como objetivo testar diversos

processos estocásticos para modelar as principais “Commodities” estratégicas em

empresas integradas de O&G: “brent”, gás natural, “jet fuel” e “diesel”. Os modelos

univariados concorrentes incluem o modelo log-normal e o modelo “double ex-

ponential jump-diffusion”, a abordagem Variância-Gama e o movimento browniano

geométrico (GBM) com volatilidade GARCH não linear. Dado o efeito de correlação

entre esses ativos, também estimamos modelos multivariados, como a Correlação

Condicional Dinâmica (DCC) GARCH, DCC-GJR-GARCH e o DCC-EGARCH. De-

scobrimos que: (i) o modelo de heterocedasticidade condicional assimétrica mel-

hora substancialmente o desempenho dos modelos univariados de difusão com

saltos e (ii) no geral, as abordagens multivariadas são os melhores modelos para

nossas “commodities” estratégicas, principalmente o DCC-GJR-GARCH.

Classificação JEL: C52, C58, Q40, Q41

Palavras-chave: Econometria bayesiana, Futuros, Máxima Verosimilhança, Preços de

Commodities, Preços de energia.
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1. Introduction

This thesis addresses three essays on modeling energy prices with time-varying volatil-

ity and jumps in three separate and self-contained papers.

The first paper aims to study the volatility dynamics of futures contracts of crude oil,

natural gas and electricity. To accomplish this goal, an appropriate Bayesian model

comparison exercise between seven stochastic volatility (SV) models and the corre-

sponding GARCH models is performed, with both classes of time-varying volatility pro-

cesses being estimated using a Markov chain Monte Carlo (MCMC, hereafter) method.

This paper offers a twofold contribution for the current literature on modeling the volatil-

ity of futures for energy markets. First, we model futures contracts of crude oil, natural

gas and electricity based on a list of SV and GARCH models and using the MCMC

technique. The list of models includes not only the standard processes, but also mod-

els accommodating jumps, heavy-tails and leverage effects.

Second, we show the relevance of the accurate specification of the theoretical frame-

work to be used when modeling futures contracts of energy markets. To the best of

our knowledge, this problem has not been addressed yet in the energy economics

and energy finance literature. To accomplish this goal, we compute the CVaR mea-

sure suggested by Rockafellar and Uryasev (2000) for each commodity/utility based

on the model with best fit performances and then compare it with the standard GARCH
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model. A short hedge strategy using futures contracts is suggested and implemented

for this risk management formulation. Moreover, and beyond these two main contri-

butions, this paper can be also considered as a natural extension of Chan and Grant

(2016): the Bayesian approach suggested by these authors is extended to other en-

ergies (e.g., electricity to represent renewable energies); a higher level of frequency

in data (daily data versus weekly data) is considered; besides spot prices of energy,

derivatives contracts (in particular, futures) are also studied; and, finally, the relevance

of the estimation framework under MCMC for risk management and hedging purposes

is addressed.

The second paper provides a novel approach for structuring dependence between

electricity and natural gas prices in the context of energy transition: a copula of mean-

reverting and jump diffusion processes. For this purpose, we use historical day-ahead

prices of the Nord Pool electricity market and the Henry Hub natural gas market, a

stochastic model is estimated through the maximum likelihood estimation and con-

sidering the dependency structure between the innovations of these two-dimensional

returns. The adoption of a stochastic process with mean-reversion and jumps is mo-

tivated by the stylized facts in the electricity (and natural gas) markets since they are

recognized to be seasonal, mean-reverting and to exhibit frequent jumps in the spot

data, as documented, for instance, in Benth et al. (2008) and Haugom (2011). These

features in both markets not only contribute to higher volatility levels, but also for an

increasing difficulty to estimate models governed by appropriate stochastic processes.

In order to illustrate the relevance of the model, we first estimate several spot prices

of one of the most significant European electricity day-ahead market and then we con-

duct an out-of-sample forecasting exercise against the competing standard geometric

Brownian motion model with Poisson jumps proposed by Merton (1976) and a GARCH

model adapted to the extreme value theory (henceforth, EVT). After modeling the be-
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havior of the electricity returns, and given the recent predictions of an increasing global

demand for natural gas and since this is the unique fossil fuel available in the context of

energy transition, we propose a copula framework (incorporating mean reversion and

jumps) to model a simulated portfolio of electricity (from renewable energy sources)

and natural gas assets.

In a nutshell, we offer a twofold contribution to the current literature. First, we develop

the theoretical framework to model electricity and natural gas spot prices based on a

copula of mean-reverting and jump-diffusion processes. As a second contribution, our

research generates multiple empirical findings. To the best of our knowledge, this is a

novel development for exploring the effect of the nonlinear dependence between elec-

tricity and natural gas markets in a context of energy transition while maintaining the

three most significant features of these assets: spikes/drops, jumps and seasonality.

This new approach should be not only relevant for energy companies (with or without

renewable energy assets) but also for policy makers.

Finally, the main concerning of the last paper is to compare a number of univariate

and multivariate models using the most important strategic commodities in Oil & Gas

(O&G) firms. For this purpose, the historical prices between 1990-2017 for brent, nat-

ural gas, jet fuel and diesel are tested. In fact, the recent fluctuations in commodity

markets heavily affected O&G companies’ returns. However, integrated O&G firms are

not only exposed to the downturn of the crude oil prices since a high level of integration

allows to obtain non perfectly positively correlated portfolio. In the first part of the paper,

we estimate four univariate stochastic processes including jump-diffusion and fat-tails.

The competing models include the log-normal model of Merton (1976), the double ex-

ponential jump-diffusion of Kou (2002), the Variance-Gamma (VG, hereafter) approach

of Madan and Seneta (1990), Madan et al. (1998) and Seneta (2004) and the geomet-

ric Brownian motion (GBM, henceforth) with nonlinear GARCH (NGARCH, hereafter)
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volatility suggested by Engle and Ng (1993). The second part of the paper aims model-

ing our main strategic commodities with three theoretical multivariate approaches: the

Dynamic Conditional Correlation (DCC, henceforth) GARCH, DCC-GJR-GARCH and

the DCC-EGARCH.

Therefore, the last paper offers three contributions for the current literature on model-

ing the spot prices of commodity markets. First, and most importantly, these models

have not been explored for an integrated portfolio of an O&G firm. Although some

researchers used the standard stochastic processes— GBM, Constant Elasticity of

Variance and others— to model prices of some individual commodities (e.g. Geman

and Shih (2009)), this paper studies different jump-diffusion processes on a real and

not perfectly correlated portfolio of energy prices.

Second, we test four univariate jump-diffusion and fat tails stochastic models. To sup-

port the phenomenon of discontinuous variations in commodity prices, this research

tests empirically the pertinence of jumps by incorporating the log-normal and the dou-

ble exponential jump-diffusion models and others pure jumps processes of finite vari-

ations, however with infinitely jump-diffusion, such as the VG process. On the other

hand, the traditional conditional heteroskedasticity phenomena is also tested by esti-

mating the NGARCH volatility model to the standard GBM.

Third, since the correlation effects matters for integrated O&G firms, we suggest to test

three different multivariate approaches based on the Dynamic Conditional Correlation:

the DCC-GARCH, DCC-GJR-GARCH and the DCC-EGARCH. This is a natural empir-

ical extension of Cappiello et al. (2006) since the authors provided the technical details

to extended the research of Engle (2002) by allowing to incorporate the asymmetric ef-

fects in the standard DCC model and applied the multivariate models to stock markets.

Additionally, we also provide several empirical findings since we extended the period

of analysis in order to include the recent decreases in the prices of these commodity

4



markets.

This thesis proceeds as follows. Chapter 2 presents the first paper. Chapter 3 presents

the second paper. Chapter 4 presents the third paper. Finally, Chapter 5 concludes.
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2. Modeling energy futures volatility through stochas-

tic volatility processes with Markov chain Monte

Carlo

Abstract: This paper studies the volatility dynamics of futures contracts on crude oil,

natural gas and electricity. To accomplish this purpose, an appropriate Bayesian model

comparison exercise between seven stochastic volatility (SV) models and their coun-

terpart GARCH models is performed, with both classes of time-varying volatility pro-

cesses being estimated through a Markov chain Monte Carlo technique. A comparison

exercise for hedging purposes is also considered by computing the extreme risk mea-

sures (using the Conditional Value-at-Risk) of simulated returns from the SV model

with the best performance—i.e., the SV model with a t-distribution—and the standard

GARCH(1,1) model for the hedging of crude oil, natural gas and electricity positions.

Overall, we find that: (i) volatility plays an important role in energy futures markets; (ii)

SV models generally outperform their GARCH-family counterparts; (iii) a model with

t-distributed innovations generally improves the fitting performance of both classes of

time-varying volatility models; (iv) the maturity of futures contracts matters; and (v) the

correct specification for the stochastic behavior of futures prices impacts the extreme

market risk measures of hedged and unhedged positions.
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JEL Classification: C11, C52, C58, Q40, Q41

Keywords: Bayesian econometrics, Commodities, Energy markets, Futures contracts,

Markov chain Monte Carlo, Stochastic volatility, Utilities.

2.1 Introduction

Modeling and forecasting commodities and utilities futures prices (and the correspond-

ing volatility) have been receiving much attention in the literature over the years, since

their dynamics have important economic and financial implications. A plausible mo-

tivation for this interest is the need for accurately measure the volatility of energy fu-

tures prices, since this variable plays a key role on the price connection between spot

and futures markets—see, for example, Silvapulle and Moosa (1999), Lin and Tam-

vakis (2001), Hammoudeh et al. (2003), Hammoudeh and Li (2004) and Huang et al.

(2009)—and on risk management problems—see, for instance, Sadorsky (2006) and

Aloui and Mabrouk (2010).

The first attempts to remove the assumption of constant variance from the conven-

tional time series and econometric models have been based on the autoregressive

conditional heteroscedasticity (ARCH, hereafter) process proposed by Engle (1982),

which allows the conditional variance to change over time as a function of past er-

rors leaving the unconditional variance constant. A more general class of processes,

known as generalized ARCH (GARCH, henceforth) processes, has been subsequently

suggested by Bollerslev (1986). The main advantages of the GARCH model over the

ARCH process is that it permits a more parsimonious description in many situations

and provides a better fit for modeling time series data when the data exhibits het-

eroscedasticity and volatility clustering. However, in some situations there are specific
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aspects of the model that can be improved so that it can better detect the features

and dynamics of a particular time series. For instance, the standard GARCH model is

not able to capture the leverage effects that are often observed in financial time series.

Therefore, several GARCH extensions were proposed to make GARCH modeling more

flexible. The most popular extensions of the traditional GARCH models include the pos-

sibility of accommodating jumps, heavy-tails and capturing the asymmetric behavior in

volatility.

An alternative class of stochastic volatility (SV, henceforth) models has also emerged in

the literature inspired in the prominent work of Taylor (1994). Even though GARCH and

SV models can be both considered as time-varying volatility processes, they possess

different assumptions and properties and, therefore, are nonnested. Nevertheless, it

is possible to make formal comparison exercises between the models of each class.

While in the primer class of models the conditional variance is a deterministic function

of model parameters and historical data, in the latter class volatility is assumed to

be a latent variable following a given stochastic process—see, for instance, Sadorsky

(2006), Trolle and Schwartz (2009), Larsson and Nossman (2011) and Brooks and

Prokopczuk (2013).

More recently, Chan and Grant (2016) compared a battery of GARCH and SV mod-

els for the spot prices of crude oil, refined products and natural gas prices under a

Bayesian approach. The authors found that SV models outperform their GARCH coun-

terpart models for their list of energy prices. To the best of our knowledge, however,

such formal Bayesian model comparison exercise has not been addressed yet in the

case of energy futures contracts. Hence, one of the purposes of this paper is to fill this

gap in the literature on energy economics and energy finance.

The stochastic behavior of energy and derivatives prices is a relevant theme for mod-

eling purposes and beyond; different assumptions for the stochastic path of energy

8



and derivative prices also affect risk management and hedging strategies. The origi-

nal contribution of Markowitz (1952) on diversification of investments and selection of

efficient portfolios (also known as the modern portfolio theory) potentiated the use of

financial derivatives on the physical energy traded in the spot markets, in order to re-

duce the companies market risk exposure. In fact, years later, Artzner et al. (1999) and

Rockafellar and Uryasev (2000) present the foundations of a coherent risk measure for

portfolio and risk optimization: the Conditional Value-at-Risk (CVaR, hereafter). This

coherent (extreme) risk measure represents a step forward compared with the stan-

dard deviation and the Value-at-Risk (VaR, hereafter) measures.

This paper offers two relevant contributions for the current literature on modeling the

volatility of futures on energy products. First, we model futures contracts of crude

oil, natural gas and electricity based on a list of SV and GARCH models and using

the Markov chain Monte Carlo (MCMC, hereafter) technique. The battery of mod-

els includes not only the standard processes, but also models accommodating jumps,

heavy-tails and leverage effects. Second, we show the relevance of correctly specify-

ing the theoretical framework to be used when modeling futures contracts. To the best

of our knowledge, this problem has not been addressed yet in the energy economics

and energy finance literature. To accomplish this goal, we compute the CVaR mea-

sure suggested by Rockafellar and Uryasev (2000) for each commodity/utility based

on the model with best fit performances and then compare it with the standard GARCH

model. A short hedge strategy using futures contracts is adopted for this risk man-

agement problem. Moreover, and beyond these two main contributions, this paper can

be also considered as a natural extension of Chan and Grant (2016): the Bayesian

approach suggested by these authors is extended to other energies (e.g., renewable

energies); a higher level of frequency in data (daily data versus weekly data) is con-

sidered; besides spot prices of energy, derivatives contracts (in particular, futures) are
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also studied; and, finally, the relevance of the estimation framework under MCMC for

risk management and hedging purposes is analyzed.

The remainder of the paper is organized as follows. Section 2.2 describes the list of

time-varying volatility models to be tested and presents the Bayes factor to evaluate the

fitting performance. Section 2.3 describes the futures contracts on crude oil, natural

gas and electricity that will be used in our empirical analysis. Section 2.4 presents

the numerical results and tests several futures maturities. Section 2.5 performs the

numerical analysis for hedging applications. Section 2.6 concludes. Additional details

and results are relegated to the appendixes.

2.2 Time-varying volatility models

For the analysis to remain self-contained, the next two subsections briefly outline the

two classes of time-varying volatility models that will be considered for modeling the

volatility of commodities and utilities futures contracts, that is: SV models and GARCH

models. An excellent description of these two classes of processes is provided already

in Chan and Grant (2016). Nevertheless, their main features are also collected in

Appendixes A and B for the sake of completeness. This section ends with a short

description of the Bayes approach that will be used in our empirical analysis. Details

about the required estimation procedures for both time-varying volatility models under

the MCMC technique are provided also in Chan and Grant (2016).

2.2.1 The class of stochastic volatility models

The first class of processes that will be used for analyzing the behavior of the volatility

of commodities and utilities futures contracts is divided into seven different stochastic
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volatility models, in which the volatility term is a random variable. The list of stochas-

tic volatility models includes: (i) the standard stochastic volatility model (hereafter, SV

model), where the log-volatility is assumed to follow a stationary auto-regressive model

of first order, i.e. an AR(1) process; (ii) an extension to the standard stochastic volatility

model, where now the log-volatility is assumed to follow a stationary auto-regressive

model of second order (henceforth, SV-2 model); (iii) a stochastic volatility model ac-

commodating the possibility of infrequent jumps (SV-J model); (iv) the stochastic volatil-

ity in mean model (SV-M model) proposed by Koopman and Hol Uspensky (2002); (v)

the standard stochastic volatility model coupled with moving average innovations (SV-

MA model) suggested by Chan (2013); (vi) a stochastic volatility process incorporating

t innovations to capture extreme events in future contracts (SV-t model); and (vii) a

stochastic volatility model with leverage effects (SV-L model). The technical details

about these processes are presented in Appendix A.

2.2.2 The class of GARCH models

In order to compare the performance of the aforementioned SV models against their

counterpart GARCH-family processes for modeling the behavior of volatility in com-

modities and utilities futures contracts, the following GARCH models will be also con-

sidered: (i) the standard GARCH model (hereafter, G model), where the conditional

variance follows an AR(1) process; (ii) a GARCH model with the conditional variance

following now an AR(2) process (henceforth, G-2 model); (iii) a GARCH model with

jumps (G-J model); (iv) the traditional GARCH in mean model (G-M model); (v) the

GARCH model incorporating innovations with a first-order moving average process (G-

MA model); (vi) the GARCH model with t innovations (G-t model); and (vii) a GARCH

model accommodating leverage effects, as suggested by Glosten et al. (1993). The

technical details about these models can be consulted in Appendix B.
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2.2.3 Evaluating the fitting performance of energy futures contracts

Following Chan and Grant (2016), our formal Bayesian model comparison exercise be-

tween the SV and GARCH processes is also performed through a Bayes factor (here-

after, BF ) using importance sampling. In particular, given a specific set of models

{M1, ...,MK}, each model Mk (for k = 1, ..., K) is defined by two components, namely:

the likelihood function p(y|θk,Mk), which is dependent of the parameter vector θk with

dimension pk; and the prior density represented by p(θk|Mk). For i, j ∈ {1, ..., K}, one

possible approach for model comparison is the BF defined by

BFij =
p(y|Mi)

p(y|Mj)
, (2.1)

that is interpreted as the BF in favor of Mi against Mj. The marginal likelihood under

model Mk is defined as

p(y|Mk) =

∫
p(y|θk,Mk)p(θk|Mk)dθk. (2.2)

The marginal likelihood (2.2) can be interpreted as a density prediction of our empirical

data under model Mk evaluated at the actual observed data y. A BFij > 1 denotes that

the observed data is more likely under the process Mi when compared to model Mj.

Consequently, a BFij > 1 is interpreted as a Bayesian evidence in favor of model Mi

where the dimension of superiority is proportional to the value determined by the BF .

For instance, a BFij = 5 means that process Mi is 5 times more likely than model Mj,

given the collected data to estimate both models.

We recall also that computing the marginal likelihood is a nontrivial exercise, since

the integral appearing in equation (2.2) generally involves an high-dimensional inte-
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gration problem and, hence, cannot be solved analytically. A plausible approach to

overcome this issue is to use the cross-entropy method of Chan and Eisenstat (2015),

which is an improved technique of an adaptive importance sampling method to com-

pute the marginal likelihood—see also Rubinstein (1997) and Rubinstein and Kroese

(2004). Additional technical details on the computation of the marginal likelihood for

the time-varying volatility models considered in this paper are available in Chan and

Grant (2016, Section 3 and Appendix B).

2.3 Data

In this section, we present the main features of the data set chosen for our empirical

research. We are considering the most usual daily prices of futures contracts used by

energy companies (non-renewable and renewable energies). This data set includes

the daily prices of futures contracts on crude oil (West Texas Intermediate), natural gas

(Henry Hub) and electricity. Crude oil and natural gas futures prices are collected from

the US Energy Information Administration (EIA)/Thomson Reuters Eikon. The time

series for our futures contracts are collected from January 2000 to November 2019, on

a daily basis, but given the recent deregulation and integration in electricity markets in

Europe, the time series for electricity futures prices is collected from January 2015 to

November 2019, also on a daily basis. For this purpose, we use the electricity futures

contracts of the Iberian market (MIBEL). This market belongs to the Internal Energy

Market of the European Union, arising from the liberalisation of electricity production

and commercialisation.

The crude oil futures prices are measured in dollars per barrel ($/bbl). The futures

prices for crude oil represent daily closing prices at 2:30 p.m. from the trading floor

of the New York Mercantile Exchange (NYMEX), for a specific delivery month. Each
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of these futures contracts expires on the third business day prior to the 25th calendar

day of the month preceding the delivery month. For natural gas high frequency data,

(spot and futures) prices are based on delivery at the Henry Hub in Louisiana. These

contracts are measured in dollars per million Btu ($/MMbtu). Once again, the official

daily is based on the closing prices at 2:30 p.m. from the trading floor of the NYMEX,

for a specific delivery month. Following the philosophy of crude oil futures contracts,

natural gas contracts expire three business days prior to the first calendar day of the

delivery month. Therefore, the delivery month for the derivatives contracts that we

consider is the calendar month following the trade date. Electricity futures contracts

are measured in e/MWh and the futures prices represent the settlement price for each

trading day. To preserve the consistency of the previous futures contracts, we adopt

electricity prices with one month of time to maturity. As usual, the prices of the futures

contracts are converted into geometric returns by taking the first difference of the logs

and multiplying by 100. Appendix C presents the plots of the daily returns of spot and

1 month futures prices of crude oil, natural gas and electricity.

2.4 Empirical results

To better explore and emphasize the major findings of our empirical work, this section

is divided in three subsections. In the first, and following the insights of Chan and

Grant (2016), we compare the performance of the seven stochastic volatility processes

against their GARCH-family counterpart models using a formal Bayesian model com-

parison exercise. The main goal here is to examine which class of time-varying volatility

models tends to provide a better fit to the price dynamics of futures contracts on crude

oil, natural gas and electricity. Furthermore, we also want to highlight which particular

(and more complex) model features should be included in the standard SV and GARCH
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processes to obtain a superior model performance. To accomplish this purpose, all the

models are estimated through the Bayesian techniques outlined in Chan and Grant

(2016, Appendix A), whereas the required marginal likelihoods are computed via the

improved cross-entropy method suggested in Chan and Eisenstat (2015) and Chan

and Grant (2016, Appendix B). In the second, we report the posterior estimates of the

model parameters of both classes of processes for our set of energy futures contracts.

Finally, in the third, we provide some robustness tests regarding the use of alternative

futures contracts possessing different expiry dates.

The econometric approach is implemented by adopting the Matlab code offered by

Chan and Grant (2016), and all the numerical results are obtained by implementing the

MCMC technique using Matlab (R2015a 32 bit) running on an Intel Core i7 2.40GHz

personal computer.

2.4.1 Model comparison exercise results

Table 2.1 presents the (log) marginal likelihoods for stochastic volatility models (in

Panel A) and GARCH models (in Panel B) to analyze the stochastic behavior of the

price of each selected futures contract with a time to maturity of 1 month. The numeri-

cal standard errors are also reported in parentheses.
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Table 2.1: Log marginal likelihoods corresponding to the estimated models.

Crude oil Natural gas Electricity
Panel A: Stochastic volatility models

SV -10732.6 -12466.5 -2263.9
(0.03) (0.06) (0.22)

SV-2 -10733.4 -12465.8 -2259.0
(0.16) (0.16) (0.30)

SV-J -10729.0 -12471.9 -2286.8
(0.51) (0.40) (1.25)

SV-M -10737.2 -12473.7 -2270.4
(0.06) (0.07) (0.31)

SV-MA -10734.4 -12466.3 -2265.5
(0.02) (0.06) (0.18)

SV-t -10721.1 -12451.2 -2233.2
(0.02) (0.01) (1.06)

SV-L -10720.6 -12468.0 -2265.8
(0.04) (0.04) (0.24)
Panel B: GARCH models

G -10812.5 -12586.3 -2569.4
(0.01) (0.01) (0.04)

G-2 -10812.6 -12583.7 -2570.6
(0.05) (0.16) (0.04)

G-J -10721.5 -12476.0 -2265.8
(0.07) (0.09) (0.13)

G-M -10819.4 -12592.5 -2577.6
(0.02) (0.03) (0.06)

G-MA -10815.4 -12587.3 -2571.3
(0.01) (0.01) (0.03)

G-t -10721.3 -12460.2 -2257.3
(0.02) (0.02) (0.02)

G-L -10794.5 -12589.8 -2531.1
(0.03) (0.03) (0.04)

Several conclusions can be taken from the results contained in Table 2.1. We start

noting that the SV-L model offers the best fitting performance for crude oil futures con-

tracts, followed closely by the SV-t, G-t, G-J and SV-J models (in this specific ranking

order). Clearly, both the t-distributed innovations and the jump component substantially
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improve the performance of the standard SV and standard G models. Even though the

inclusion of the leverage effect in stochastic volatility processes places the SV-L model

at the top of all tested processes for crude oil futures contracts, such additional model-

ing complexity is much less important than the t-distributed innovations and the jump

component in the case of GARCH models, though such feature still improves the stan-

dard G model.

In the case of natural gas and electricity futures contracts, the SV-t process is undoubt-

edly the one that provides the best fit to the corresponding data, while the G-t model is

ranked in second place in this comparative model exercise. The comparison of crude

oil futures contracts with the natural gas ones (for the same 1 month to maturity) re-

veals that the price paths of crude oil futures contracts behave more like equity high

frequency data than natural gas futures contracts—we recall that there is supporting

evidence in the literature that models with leverage effects achieve better performances

for estimating equity returns. Moreover, the seasonality effect that is exhibited in the

path of natural gas futures (and spot) prices can explain the better performance of the

stochastic model that assumes the error follows a heavy-tailed distribution, such as the

t-distribution. A similar conclusion is achieved also for electricity futures. A plausible

reason for this finding is that such distribution captures the spikes (upward movements)

and drops (downward movements) observed in the electricity futures prices.

Another relevant finding for our set of commodities/utilities futures contracts is related

with the general performance of both classes of time-varying volatility models: the

stochastic volatility processes generally outperform their corresponding GARCH mod-

els. A plausible explanation for this observation is that the log-volatility is assumed to

follow a specific random variable in the case of stochastic volatility models, whereas

GARCH models only assume a conditional variance that is a deterministic function of

parameters estimated based on lagged data. The unique exceptions are observed
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in the case of crude oil and electricity futures contracts when we consider the pair of

models with a jump component. For this pair of models (i.e., SV-J versus G-J models),

the log marginal likelihoods are -10729.0 (resp., -2286.8) and -10721.5 (resp., 2265.8)

for crude oil (resp., electricity) futures contracts, respectively. Therefore, we obtain a

Bayes factor of 1.8 × 103 (resp., 1.3 × 109) in favor of the GARCH process against its

stochastic volatility counterpart model.

Furthermore, and despite the aforementioned disadvantage of the GARCH-family mod-

els against SV models, when GARCH models incorporate a heavy-tailed distribution

(i.e., a t-distribution or a jump component) they attenuate misspecification and extreme

events problems in crude oil, natural gas and electricity futures contracts and, there-

fore, the inherent over-performance of stochastic volatility models decreases. This fact

also explains why both the G-t and G-J models show evidence of a much better per-

formance than other GARCH processes in our model comparative exercise.

We also investigate which other features might be important when modeling the dy-

namics of energy futures contracts. For instance, comparing the standard SV model

with the corresponding process in which the log-volatility follows a stationary AR(2)

process, it follows that the SV-2 model provides only small improvements in the log

marginal likelihood of natural gas and electricity futures contracts. By contrast, the

SV-2 model deteriorates the fitting performance for crude oil futures contracts when

compared with the standard SV model. In the case of GARCH models, the standard G

model performs slightly better than the G-2 model for crude oil and electricity futures

contracts, whereas the G-2 model is superior to the standard G model for natural gas

futures contracts.

The relevance of the volatility feedback for modeling energy futures is also tested. Even

though the empirical evidence suggests the importance of volatility feedback for the log

returns of stocks, its inclusion when modeling futures contracts on energy seems to be
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unimportant. Clearly, the log marginal likelihood decreases in all cases when the com-

ponent of volatility feedback is added to stochastic volatility and GARCH processes.

This finding in energy futures is consistent with the results documented in Sadorsky

(2006) and Chan and Grant (2016), who highlight no evidence that the G-M model

predicts better than the standard G model for several non-renewable energies, such as

crude oil, heating oil and natural gas.

Another important issue is related with the possible inclusion of moving average com-

ponents in both stochastic volatility and GARCH processes for modeling energy futures

contracts. Overall, our results reveal that adding a moving average component does

not improve the fitting performance of futures contracts on crude oil, natural gas and

electricity. The only exception is the case of natural gas: the SV-MA process performs

better than the standard SV model, though the differences are almost negligible. We

note that this is not consistent with the findings of Chan and Grant (2016), who docu-

ment that the SV-MA and G-MA models improve the performance fit of crude oil and

natural gas spot prices, for the period of 1997-2015, when compared with the corre-

sponding standard SV and G models, respectively.

Our last finding involves the introduction of leverage effects in both classes of mod-

els. As already mentioned, there is evidence supporting that adding leverage effects

improves the fitting performance of both the standard SV and G models in the case

of crude oil futures contracts. However, an opposite conclusion can be drawn in the

case of natural gas futures contracts: the models incorporating leverage effects per-

formed poorly when compared with their corresponding standard ones. The analysis

for electricity futures prices shows mixed results: adding the leverage effect in stochas-

tic volatility models contributes to a slightly worst performance than the standard SV

model, whereas such additional complexity in the case of GARCH models improves

the standard G model.
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2.4.2 Estimation results

The numerical results from the estimation of SV models for crude oil, natural gas and

electricity futures contracts are reported in Tables 2.2, 2.3 and 2.4, respectively. For

comparative purposes, and given space constraints, the estimation of the GARCH-

family counterpart models is shown in Tables D.1, D.2 and D.3 collected in Appendix D.

In order to complement the parameter posterior mean estimations, the corresponding

standard deviations are also presented in parentheses.

Table 2.2: Posterior means and standard deviations for the parameter set of stochastic volatility
models estimated through MCMC and for crude oil futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
0.06 0.07 0.07 0.13 0.06 0.07 0.03
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)

µh
1.41 1.40 1.35 1.41 1.40 1.28 1.40
(0.13) (0.16) (0.15) (0.13) (0.13) (0.15) (0.13)

φh
0.98 0.88 0.99 0.98 0.98 0.99 0.98
(0.00) (0.07) (0.00) (0.00) (0.00) (0.01) (0.01)

ω2
h

0.02 0.04 0.01 0.02 0.02 0.02 0.02
(0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.01)

ρh
- 0.08 - - - - -
- (0.08) - - - - -

κ
- - 0.02 - - - -
- - (0.01) - - - -

µk
- - -0.91 - - - -
- - (0.16) - - - -

σ2
k

- - 25.10 - - - -
- - (13.29) - - - -

λ
- - - -0.02 - - -
- - - (0.01) - - -

ψ
- - - - -0.03 - -
- - - - (0.01) - -

ν
- - - - - 15.39 -
- - - - - (3.30) -

ρ
- - - - - - -0.36
- - - - - - (0.08)

Q(20) 11.45 12.44 12.54 11.75 8.63 10.95 10.67
(1.672) (0.03) (2.54) (1.67) (1.99) (1.64) (1.97)

Q2(20) 25.86 27.15 21.90 25.35 25.55 23.69 27.53
(4.87) (0.08) (5.40) (4.73) (4.67) (4.55) (4.22)
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Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.

Table 2.3: Posterior means and standard deviations for the parameter set of stochastic volatility
models estimated through MCMC and for natural gas futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
-0.01 -0.01 -0.03 -0.02 -0.01 -0.02 0.00
(0.04) (0.04) (0.04) (0.06) (0.04) (0.04) (0.04)

µh
2.12 2.08 2.06 2.12 2.11 1.98 2.12
(0.11) (0.22) (0.12) (0.10) (0.11) (0.12) (0.11)

φh
0.98 0.89 0.98 0.98 0.98 0.98 0.98
(0.00) (0.09) (0.00) (0.00) (0.00) (0.00) (0.00)

ω2
h

0.02 0.04 0.02 0.03 0.02 0.02 0.02
(0.00) (0.01) (0.00) (0,00) (0.00) (0.00) (0.00)

ρh
- 0.08 - - - - -
- (0.09) - - - - -

κ
- - 0.02 - - - -
- - (0.01) - - - -

µk
- - 1.72 - - - -
- - (0.27) - - - -

σ2
k

- - 71.56 - - - -
- - (27.87) - - - -

λ
- - - 0.00 - - -
- - - (0.01) - - -

ψ
- - - - -0.04 - -
- - - - (0.01) - -

ν
- - - - - 13.28 -
- - - - - (2.86) -

ρ
- - - - - - 0.09
- - - - - - (0.06)

Q(20) 26.89 26.92 25.39 26.34 18.68 28.00 26.28
(2.621) (4.13) (3.78) (2.40) (2.45) (2.84) (2.64)

Q2(20) 48.47 55.94 42.69 50.02 48.42 35.90 48.71
(7.56) (8.90) (8.64) (7.36) (7.57) (7.83) (8.05)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table 2.4: Posterior means and standard deviations for the parameter set of stochastic volatility
models estimated through MCMC and for electricity futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
-0.04 -0.04 -0.07 -0.06 -0.03 -0.02 -0.02
(0.04) (0.04) (0.05) (0.06) (0.04) (0.05) (0.04)

µh
0.87 0.88 1.30 0.86 0.87 0.89 0.89
(0.11) (0.12) (0.26) (0.12) (0.12) (0.35) (0.11)

φh
0.77 0.94 0.97 0.78 0.78 0.77 0.77
(0.03) (0.15) (0.01) (0.04) (0.03) (0.01) (0.03)

ω2
h

0.61 0.51 0.04 0.64 0.61 0.61 0.61
(0.06) (0.16) (0.00) (0.11) (0.08) (0.00) (0.07)

ρh
- -0.16 - - - - -
- (0.12) - - - - -

κ
- - 0.03 - - - -
- - (0.01) - - - -

µk
- - 2.63 - - - -
- - (0.96) - - - -

σ2
k

- - 76.84 - - - -
- - (25.13) - - - -

λ
- - - 0.01 - - -
- - - (0.02) - - -

ψ
- - - - 0.05 - -
- - - - (0.03) - -

ν
- - - - - 8.63 -
- - - - - (1.34) -

ρ
- - - - - - 0.08
- - - - - - (0.05)

Q(20) 36.34 35.26 31.65 38.72 31.98 30.20 31.45
(7.38) (5.91) (4.69) (6.70) (7.27) (0.69) (5.52)

Q2(20) 23.39 20.72 17.58 17.42 18.29 7.09 19.50
(11.81) (6.98) (5.16) (4.00) (4.89) (0.03) (5.94)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.

The stochastic volatility processes applied to crude oil and natural gas futures con-

tracts show that the posterior mean parameter φh is quite similar across all the models.

Under the SV-2 model it is equal to 0.88 and 0.89 for crude oil and natural gas fu-

tures contracts, respectively. The posterior mean parameters governing the remaining

stochastic volatility processes, for these two futures contracts, reveal a high persistence

behavior by ranging between 0.98 and 0.99. For electricity futures contracts, however,
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such persistence is less pronounced: the estimated φh ranges between 0.77 and 0.97

across the seven stochastic volatility models, which can be justified with the spikes

and downturns observed in the underlying asset price. A similar persistent behavior

across models is also generally observed for the remaining parameters governing the

stochastic volatility process.

Similarly to the estimates of the stochastic volatility processes, the parameters gov-

erning the evolution of the conditional variance process associated to GARCH models

are also highly persistent across all processes. For crude oil and natural gas futures

contracts, the posterior mean of β1 is estimated to be between 0.93 to 0.95 and to be

equal to 0.91, respectively, if we do not consider the G-2 model—see Tables D.1 and

D.2, respectively. In the case of the G-2 model, however, β1 is much lower: 0.71 and

0.37 for crude oil and natural gas futures contracts, respectively. As shown in Table

D.3, the persistence of the β1 parameter is much weaker across all models for the case

of electricity futures contracts.

As highlighted in Tables 2.2 and 2.3, the average jump size µk for the stochastic volatil-

ity model is negative for crude oil and positive for natural gas futures contracts. These

results are coherent with the corresponding ones for the G-J model—see Tables D.1

and D.2. For electricity futures, the jump size is also positive, which is coherent with

the dominance of the spikes (over downturns) in the futures markets—see Tables 2.4

and D.3. The estimates for the jump probability κ in the stochastic volatility models are

lower than the corresponding ones for the GARCH processes.

The volatility feedback coefficient λ is estimated to be equal to -0.02, 0.00 and 0.01

for crude oil, natural gas and electricity futures contracts—see Tables 2.2, 2.3 and 2.4,

respectively. Similar results are also observed for the corresponding GARCH models in

Appendix D. We recall that when λ = 0 the SV-M model (resp., G-M model) reduces to

the standard SV model (resp., standard G model). Hence, these results (very close to
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0) reveal that the volatility feedback is not relevant for modeling non-renewable energy

futures (more specifically, crude oil and natural gas futures) and electricity futures. As

expected, this is consistent with the conclusions that have been already drawn for both

SV-M and G-M models based on the analysis of the log marginal likelihood results from

Table 2.1.

The estimate of the moving average component ψ in the SV-MA and G-MA models

is also close to zero for the three futures contracts under analysis, as highlighted in

Tables 2.2, 2.3, 2.4, D.1, D.2 and D.3. These parameter values justify also why the

log marginal likelihoods for the crude oil, natural gas and electricity futures contracts

highlighted in Table 2.1 for the SV-MA model (resp., G-MA model) are not too farther

away from the corresponding ones reported for the standard SV model (resp., standard

G model).

The degree of freedom parameter ν associated to crude oil, natural gas and electricity

futures contracts is estimated to be equal to 15.39, 13.28 and 8.63—see Tables 2.2,

2.3 and 2.4, respectively. These results indicate that the tails of the t-distribution are

relatively heavy, i.e. outliers tend to occur frequently. Clearly, this supports the better

fitting performance already reported for both SV-t and G-t models. We recall that the

SV-t process has been ranked at the top of all tested models in the case of natural gas

and electricity futures contracts, as evidenced by the log marginal likelihoods reported

in Table 2.1. We further note that these two models are always preferable than their

counterpart standard SV and G models—see Appendix D for additional details on the

GARCH processes.

The correlation ρ between observation and state innovations is negative for crude oil

and positive for natural gas and electricity futures contracts: it is equal to -0.36, 0.09

and 0.08, respectively—see Tables 2.2, 2.3 and 2.4. In the case of crude oil, such

parameter value implies that a negative shock at time t tends to augment the volatility
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at time t+ 1. However, an opposite behavior is achieved in the case of natural gas and

electricity futures markets.

Finally, we report the Ljung-Box and McLeod-Li statistics of twentieth order calculated

on the standardized residuals and squared standardized residuals, respectively. In the

case of crude oil, these diagnostic tests fail to reject the null hypothesis of no serial

correlation in the standardized residuals and squared standardized residuals at the 5%

level for all the SV and GARCH models—see Tables 2.2 and D.1, respectively. This

indicates that both classes of processes adequately capture the time-varying volatility

of the crude oil data. The Ljung-Box tests show that the null hypothesis of no serial

correlation in the standardized residuals is not rejected at the 5% level for the SV and

GARCH models when applied to natural gas data—see Tables 2.3 and D.2, respec-

tively. The same conclusion is obtained also from the Q2(20) tests reported in Table

D.2 for the GARCH processes. However, with the exception of the SV-t model, all the

McLeod-Li tests shown in Table 2.3 reject the null hypothesis of no serial correlation in

the squared standardized residuals at the 1% level for the remaining stochastic volatil-

ity models. This result provides further evidence supporting the previous argument that

the SV-t model is preferable to the standard SV model and other competing processes.

Lastly, in the case of electricity, the McLeod-Li tests fail to reject the null hypothesis of

no serial correlation in the squared standardized residuals at the 5% level for all the

SV and GARCH models—see Tables 2.4 and D.3, respectively. The penultimate line

of Table 2.4 reveals that the null hypothesis of no serial correlation in the standardized

residuals is not rejected at the 5% level in the SV-t model and is not rejected at the

1% level for the remaining stochastic volatility models, with the exception of the SV-

M model for which such null hypothesis is rejected also at the 1% level. The Q(20)

tests reported in Table D.3 for the GARCH processes show that the null hypothesis of

no serial correlation in the standardized residuals is not rejected at the 1% level only
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in the case of the G-J and G-t models. These results support, again, the ranking of

the marginal likelihood, which favours the SV-t model with respect to the remaining

processes in the case of electricity futures contracts.

2.4.3 Testing different maturities

The energy futures contracts analyzed so far have a time to maturity of 1 month. How-

ever, it is well known that futures contracts on a given underlying asset generally have

different expiry dates available. Therefore, we now extend our empirical analysis in

order to test if the time to maturity of energy futures contracts influences our previous

conclusions. To accomplish this purpose, we re-estimate each model using the MCMC

technique and compute the corresponding log marginal likelihood for crude oil and nat-

ural gas futures contracts expiring in 2, 3 and 4 months. We only perform this empirical

exercise for crude oil and natural gas futures contracts since these energy derivatives

are both at the top of the ranking of the Chicago Mercantile Exchange in the sub-group

of energy—in the Top 10+, crude oil and Henry Hub Natural Gas futures are the most

liquid futures contracts (i.e., they are ranked in the first two positions, respectively); the

remaining positions are composed by refining products and not electricity derivatives.

Table 2.5 presents the (log) marginal likelihoods aiming to test if the use of alternative

futures contracts on crude oil and natural gas with different expiry dates changes our

previous results in terms of the model fitting performance. The numerical results from

the estimation of SV models for crude oil and natural gas futures contracts expiring in

2, 3 and 4 months are reported in Appendix E.
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Table 2.5: Log marginal likelihoods for different maturities of futures contracts on crude oil and
natural gas.

Crude oil futures Natural gas futures
2 month 3 month 4 month 2 month 3 month 4month

Panel A: Stochastic volatility models

SV -10480.0 -10257.4 -10084.2 -5669.2 -5435.7 -5250.2
(0.04) (0.03) (0.02) (0.02) (0.03) (0.02)

SV-2 -10479.5 -10257.7 -10083.3 -5668.9 -5435.7 -5250.2
(0.32) (0.20) (0.17) (0.09) (0.04) (0.04)

SV-J -10479.3 -10261.3 -10090.4 -5670.6 -5430.5 -5239.6
(0.25) (0.30) (0.65) (0.19) (0.22) (0.24)

SV-M -10484.2 -10261.1 -10087.5 -5675.6 -5442.1 -5256.6
(0.05) (0.04) (0.06) (0.03) (0.02) (0.02)

SV-MA -10481.7 -10258.8 -10084.3 -5670.4 -5438.2 -5253.1
(0.02) (0.02) (0.04) (0.04) (0.01) (0.02)

SV-t -10471.5 -10249.8 -10072.9 -5666.4 -5432.3 -5242.8
(0.01) (0.05) (0.05) (0.05) (0.02) (0.01)

SV-L -10465.7 -10286.8 -10072.7 -5670.7 -5437.7 -5252.2
(0.02) (0.68) (0.08) (0.01) (0.01) (0.02)

Panel B: GARCH models

G -10551.1 -10325.1 -10166.3 -5699.5 -5471,0 -5299.5
(0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

G-2 -10551.8 -10324.1 -10165.0 -5700.5 -5471.9 -5300.7
(0.03) (0.09) (0.04) (0.09) (0.10) (0.02)

G-J -10467.3 -10243.5 -10068.7 -5675.6 -5435.7 -5254.3
(0.08) (0.08) (0.05) (0.04) (0.07) (0.08)

G-M -10557.7 -10331.7 -10172.5 -5705.5 -5477.2 -5306.1
(0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

G-MA -10554,0 -10328,0 -10168.5 -5701.9 -5473.8 -5302.6
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

G-t -10472.4 -10251,0 -10075.3 -5670.5 -5436.9 -5251.8
(0.01) (0.01) (0.02) (0.06) (0.03) (0.02)

G-L -10532.5 -10307.2 -10152.4 -5701.4 -5474.4 -5302.2
(0.03) (0.03) (0.02) (0.02) (0.03) (0.03)

Overall, the best fitting performance is obtained by the stochastic volatility models for

all tested expiry dates. The only exception is in the case of crude oil futures contracts

for the pair of SV-J versus G-J models, in which the latter process is preferable (when

compared with the corresponding SV-J model) independently of the time to maturity.

We recall that this is consistent with the results reported for 1 month futures on crude
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oil. Hence, these findings support our previous conclusions that stochastic volatility

processes generally outperform their corresponding GARCH-family models.

Another salient feature is that the results for the futures contracts expiring in 2 months

are similar to those observed with the 1 month futures contracts: the SV-L and the SV-t

models are the ones offering the best fitting performance for crude oil and natural gas

futures contracts, respectively. However, for the contracts expiring in 3 and 4 months

such model ranking changes. In the case of crude oil futures, the G-J model is at the

top for contracts expiring in 3 and 4 months, whereas the SV-J model is the best for

natural gas futures contracts expiring in 3 and 4 months. Clearly, the time to maturity

matters when one needs to choose a time-varying volatility model for modeling the

volatility of energy futures contracts.

Once again, the general performance of stochastic volatility processes compared with

their corresponding GARCH-family models can be explained with the fact that the

primer processes assume that the log-volatility is following a specific random variable,

while in the latter the conditional variance is a deterministic function of parameters es-

timated based on past continuous returns. The performance of the G-J model in crude

oil futures with a time to maturity of 3 and 4 months can be justified by the inclusion

of heavy-tailed distributions (i.e., by introducing a jump component). In other words,

this jump component in the GARCH process introduces an extra dynamic in the path

of futures contracts against extreme events and, therefore, turns the performance of

stochastic volatility models less evident.

Finally, and given our aim of presenting a hedging exercise in the following section,

we also estimate both time-varying volatility model classes for the spot prices (and

assuming the same time horizon). Due to space constraints, we only present here the

two main findings. First, the fitting performance of stochastic volatility processes also

beats the GARCH-family models. Second, there is evidence that the SV-t model offers
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the best fitting performance in the case of crude oil and natural gas, while the SV-MA

process is preferable for electricity—see Appendix F for additional details on the log

marginal likelihoods for the series of daily price changes on crude oil, natural gas and

electricity spot prices. The corresponding posterior means and standard deviations

estimations on these energy prices are available upon request.

2.5 Implications for hedging purposes

Integrated energy producers can hedge against (undesirable) falls in energy spot prices

by taking positions in energy futures contracts. To mitigate the market risk, energy pro-

ducers can adopt a short hedge approach by selling enough energy futures contracts

in the derivatives market to cover the quantity of energy to be produced. Given this

hedging strategy, the risk-reward trade-off is clear: the downside of the short hedge is

that the energy seller would have been better off without the hedge if the price of the

energy spot price went up.

Extreme risk measures, such as VaR and CVaR, have become essential tools for quan-

tifying the market risk of energy firms. Even though there are other alternative methods

for evaluating the market risk of energy firms, in this paper we use the VaR and CVaR

as risk measures based on the simulated distributions estimated through MCMC and

ranked by the BF approach.

Since the value of energy trades can change over time with the behavior of the un-

derlying spot and derivatives prices, we choose the model with the best performance

evaluated in the previous section with the BF method, i.e. the SV-t process. Under our

Bayesian approach, and in order to show the relevance of the specification of the un-

derlying behavior of prices, we compare the extreme risk measures of the SV-t model
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with the most basic GARCH process, i.e. the standard G model.

Tables 2.6 and 2.7 show the results from our hedging optimization exercise with 1,000

Monte Carlo simulations, considering the SV-t model and the standard G process,

respectively. The first part of each table presents the unhedged spot position (i.e., the

simulation results from the calibration of the spot prices for crude oil, natural gas and

electricity) with the corresponding extreme risk measures for losses with 90%, 95% and

97.5% confidence levels. The standard deviation is included to complement the CVaR

and VaR results. Next, the results associated to the futures contracts for delivery after

1 month are also reported. Finally, we also show the same risk metrics for a hedged

position that combines (with a unit hedge ratio) the previous spot and futures positions.

Table 2.6: Extreme risk measures simulated from a stochastic volatility model with a t-distribution.

Crude oil Natural gas Electricity
Standard deviation 0.0310 0.0677 0.0488

VaR (10%) -0.0324 -0.0428 -0.0332
VaR (5%) -0.0488 -0.0614 -0.0497

VaR (2.5%) -0.0668 -0.0945 -0.0825
CVaR (10%) -0.0563 -0.0989 -0.0821
CVaR (5%) -0.0722 -0.1469 -0.1223

Spot position

CVaR (2.5%) -0.0879 -0.2206 -0.1818
Standard deviation 0.0290 0.0605 0.0552

VaR (10%) -0.0250 -0.0645 -0.0571
VaR (5%) -0.0427 -0.0888 -0.0789

VaR (2.5%) -0.0591 -0.1203 -0.1150
CVaR (10%) -0.0518 -0.1093 -0.0980
CVaR (5%) -0.0712 -0.1413 -0.1283

1 month futures

CVaR (2.5%) -0.0916 -0.1811 -0.1626
Standard deviation 0.0198 0.0387 0.0386

VaR (10%) -0.0202 -0.0592 -0.0421
VaR (5%) -0.0245 -0.0670 -0.0843

VaR (2.5%) -0.0248 -0.0820 -0.1187
CVaR (10%) -0.0241 -0.0854 -0.0841
CVaR (5%) -0.0255 -0.1069 -0.1191

Hedged position

CVaR (2.5%) -0.0261 -0.1317 -0.1239
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Table 2.7: Extreme risk measures simulated from a standard GARCH model.

Crude oil Natural gas Electricity
Standard deviation 0.0190 0.0245 0.0375

VaR (10%) -0.0241 -0.0304 -0.0454
VaR (5%) -0.0328 -0.0381 -0.0573

VaR (2.5%) -0.0391 -0.0496 -0.0695
CVaR (10%) -0.0348 -0.0429 -0.0641
CVaR (5%) -0.0414 -0.0514 -0.0768

Spot position

CVaR (2.5%) -0.0464 -0.0593 -0.0900
Standard deviation 0.0154 0.0160 0.0415

VaR (10%) -0.0159 -0.0202 -0.0458
VaR (5%) -0.0207 -0.0257 -0.0704

VaR (2.5%) -0.0287 -0.0319 -0.0849
CVaR (10%) -0.0258 -0.0282 -0.0759
CVaR (5%) -0.0334 -0.0334 -0.0959

1 month futures

CVaR (2.5%) -0.0429 -0.0379 -0.1141
Standard deviation 0.0180 0.0090 0.0184

VaR (10%) -0.0211 -0.0125 -0.0199
VaR (5%) -0.0282 -0.0157 -0.0204

VaR (2.5%) -0.0375 -0.0160 -0.0286
CVaR (10%) -0.0336 -0.0154 -0.0300
CVaR (5%) -0.0423 -0.0166 -0.0396

Hedged position

CVaR (2.5%) -0.0471 -0.0172 -0.0506

Several conclusions can be drawn from Tables 2.6 and 2.7. The first concluding remark

is about the properties of the estimated CVaR against the VaR results. Tables 2.6 and

2.7 show that CVaR accounts for losses exceeding VaR for all scenarios (i.e., simulated

unhedged returns, futures returns and returns from the hedged position) and for both

models (i.e., SV-t and standard G models).

Second, the standard deviation and the risk measures for the unhedged spot and 1

month futures positions computed for the standard G model displayed in Table 2.7

reveal that electricity markets exhibit a higher volatility when compared with natural

gas and crude oil markets, with natural gas markets being generally more volatile than

crude oil markets. However, if we consider the results shown in Table 2.6 for the SV-t
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model we observe that natural gas markets are riskier than electricity and crude oil

markets. Hence, while both processes indicate that crude oil markets are less volatile

than natural gas and electricity markets, they are not consistent with each other when

ranking the riskier markets. Such ranking inconsistency between the two models is also

found for the case of hedged positions. Hence, care must be taken when choosing the

appropriate time-varying volatility model for risk management purposes.

Third, the extreme risk measures show a higher level for the maximum expected loss

with the stochastic volatility model with a t-distribution compared with the GARCH (1,1)

process. In fact, the combination of a stochastic volatility behaviour with a statisti-

cal feature that captures extreme events in energy markets (t-distribution) generates

higher extreme risk measures, since the so-called heavy tails phenomenon is conve-

niently accommodated.

Fourth, the adoption of a monthly hedging strategy reduces the market risk exposure

to energy spot prices. This finding is observed for both the SV-t and the standard

G models. This is particularly relevant for risk management optimization purposes.

Although similar conclusions are achieved using both models, when the results from

the (unitary) hedging strategy are transposed to a real portfolio of integrated energy

firms, the relevance of fitting the spot and derivatives prices/volatility using the most

suitable model is crucial. For example, an energy firm that produces 2,000,000 barrels

per day may observe (on average) a difference of $ 23,000,000/year in the CV aR95%

computed using the SV-t process and the standard G model (that does not capture

several empirical features of the commodities/utilities markets). Hence, the adoption of

the MCMC estimation method and the corresponding BF selection criteria should be

also relevant for decision makers in risk management.
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2.6 Conclusions

This paper tests a large number of time-varying volatility processes based on a formal

Bayesian model comparison exercise for modeling the volatility of future contracts from

a representative portfolio of energy firms: oil, natural gas and electricity. In summary,

this paper offers four relevant findings for the literature. First, by adopting the Bayes fac-

tor criteria to rank our battery of models, we find that stochastic volatility models almost

always outperform the most used GARCH-family models. This finding consolidates the

conclusion of Chan and Grant (2016) for a battery of similar models but applied to spot

prices. Second, the stochastic volatility model with a t-distribution seems to be the best

model for computing the volatility of futures contracts on commodities/utilities. Third,

the maturity of future contracts seems relevant since it impacts the fitting performance

of our models. Finally, given the previous concluding remarks, these findings have

relevant implications for hedging, particularly when computing extreme risk measures,

such as the CVaR. We show the pertinence of using the accurate stochastic process for

computing the corresponding risk measures for both hedged and unhedged positions.

Given our promising results, it would be interesting to test the pertinence of introducing

alternative jump distributions to our stochastic volatility models or regime-shift models

in order to capture structural breaks in futures contracts of energy markets. It would

be also worthwhile to apply multivariate stochastic volatility models in fitting multiple

futures contracts, given the linear and non-linear dependencies between them.
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Appendix A

The first model that we consider is the standard stochastic volatility (SV) model repre-

sented by

yt = µ+ εyt , εyt ∼ N (0, eht), (A.1)

and

ht = µh + φh(ht−1 − µh) + εht , εht ∼ N (0, ω2
h), (A.2)

with N (a, b) denoting the Gaussian distribution (with mean a and variance b), and

where the log-volatility ht is governed by a stationary auto-regressive process of first

order, AR(1), with |φh| < 1 and unconditional mean µh. The process starts with

h1 ∼ N
(
µh,

ω2
h

1−φ2
h

)
.

The second stochastic volatility model is obtained by assuming equation (A.1) of the

standard SV model, but considering now that the log-volatility ht follows a stationary

AR(2) process, that is

ht = µh + φh(ht−1 − µh) + ρh(ht−2 − µh) + εht , εht ∼ N (0, ω2
h), (A.3)

where the roots of the characteristic polynomial related with (φh, ρh) are assumed to lie

outside the unit circle. Moreover, it is considered that h1 and h2 follow the unconditional

distribution

h1, h2 ∼ N
(
µh,

(1− ρh)ω2
h

(1 + ρh) ((1− ρh)2 − φ2
h)

)
.

We recall that this alternative stochastic volatility model with a stationary AR(2) pro-

cess, denoted hereafter as the SV-2 model, nests the standard SV model as a special

case when ρh = 0.
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Next we consider a stochastic volatility model accommodating the possibility of infre-

quent jumps (SV-J). In this model, a jump component is added to equation (A.1), thus

resulting in

yt = µ+ ktqt + εyt , εyt ∼ N (0, eht), (A.4)

while the log-volatility ht follows, again, the AR(1) process shown in equation (A.2)

and qt ∈ {0, 1} represents a jump variable with success probability P(qt = 1) = κ,

where P denotes the real world (or physical) probability measure. Therefore, if qt = 1,

a jump occurs at time t and the jump size is determined by kt, which is modeled as

kt ∼ N (µk, σ
2
k), where µk and σ2

k are the mean and the variance of the jump size,

respectively.

The fourth model is the stochastic volatility in mean (SV-M) model proposed by Koop-

man and Hol Uspensky (2002). In contrast with the previous models, the stochastic

volatility is now included in equation (A.1) as a covariate, that is

yt = µ+ λeht + εyt , εyt ∼ N (0, eht), (A.5)

with the log-volatility ht following the same AR(1) process highlighted in equation (A.2).

The parameter λ included in equation (A.5) captures the extent of volatility feedback in

futures contracts. Clearly, the SV-M model nests the standard SV model as a special

case when λ = 0.

Following Chan (2013) and Chan and Grant (2016), we consider also stochastic volatil-

ity models with moving average innovations (SV-MA). More specifically, we adopt a

first-order moving average model with stochastic volatility, that is

yt = µ+ εyt , (A.6)
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and

εyt = ut + ψut−1, ut ∼ N (0, eht), (A.7)

where u0 = 0, |ψ| < 1 and with the log-volatility ht being still modeled via equation

(A.2).

A stochastic volatility model with t innovations (SV-t) is also considered. The economic

rational for testing this model is that the t-distribution has heavier tails than the Gaus-

sian distribution. Therefore, the SV-t model should be able to better capture more

extreme events in commodities and utilities futures contracts when compared with the

standard SV model. The observation equation for the SV-t model is given by

yt = µ+ εyt , εyt ∼ tν(0, e
ht), (A.8)

where tν represents a t-distribution with ν degrees of freedom, while the log-volatility

ht is governed, again, through the stationary AR(1) process shown in equation (A.2).

Finally, we consider a stochastic volatility model with leverage (SV-L). This model is in-

tended to test the existence of a potentially larger impact of negative excess returns on

the conditional variance (i.e., the presence of a leverage effect). It might be particularly

relevant since the innovations in the observed and state equations can be correlated,

that is

yt = µ+ εyt , (A.9)

and

ht+1 = µh + φh(ht − µh) + εht , (A.10)
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where the innovations εyt and εht jointly follow a bivariate normal distribution, that is

εyt
εht

 ∼ N
0,

 eht ρe
1
2
htωh

ρe
1
2
htωh ω2

h


 .

If ρ < 0, given a negative shock to yt at time t, the volatility at time t + 1 tends to be

higher. The SV-L model nests the standard SV model when ρ = 0.

Appendix B

The first model that we adopt to model energy futures prices under the class of GARCH

models is the standard GARCH(1,1) model, denoted hereafter as the G model for

simplicity. This model is governed by

yt = µ+ εt, εt ∼ N (0, σ2
t ), (B.1)

and

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, (B.2)

where ε0 = 0 and σ2
0 is a constant. To guarantee that the variance process σ2

t is

straightly positive and stationary, it is necessary to assume that α0 > 0, α1 ≥ 0, β1 ≥ 0

and α1 + β1 < 1. Equation (B.2) highlights that the conditional variance σ2
t is modeled

as a deterministic function of the model parameters and lagged data. The conditional

variance σ2
t follows an AR(1) process.

The second model to be considered is the GARCH(2,1) model, henceforth the G-2

model, which is similar to the previous G model, though with the conditional variance
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σ2
t following now an AR(2) process, that is

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + β2σ

2
t−2, (B.3)

where σ2
−1 = ε0 = 0 and σ2

0 is a constant. The variance dynamics is now enriched

for capturing the lagged periods of the volatility in futures contracts. Similarly to the

standard G model, it is required that α0 > 0, α1 ≥ 0, β1 ≥ 0, β2 ≥ 0 and α1 +β1 +β2 < 1.

The GARCH model with a jump component (G-J) accommodates the possibility of

infrequent jumps in futures price contracts. Under this model specification, we have

yt = µ+ ktqt + εt, εt ∼ N (0, σ2
t ), (B.4)

and

σ2
t = α0 + α1(yt−1 − µ)2 + β1σ

2
t−1, (B.5)

where the jump indicator qt and jump size kt are modeled as in the counterpart SV-J

model.

The GARCH in mean (G-M) model is the counterpart to the SV-M model. Under the

G-M model, the conditional variance σ2
t appears in the conditional mean as a covariate,

that is

yt = µ+ λσ2
t + εt, εt ∼ N (0, σ2

t ), (B.6)

and

σ2
t = α0 + α1(yt−1 − µ− λσ2

t−1)2 + β1σ
2
t−1. (B.7)

The G-M model is particularly relevant for testing if the log-returns of futures contracts

on energy depend on their volatility. It is possible to observe that the G-M model nests

the standard G model when λ = 0.
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The next model combines GARCH innovations with a first-order moving average pro-

cess and it will be referred henceforth as the G-MA model. This model specification

aims to better capture the short-run dynamics in high frequency data related with fu-

tures contracts. To accomplish this purpose, it allows the log-returns of energy futures

price contracts to be correlated over time, that is

yt = µ+ εt, (B.8)

and

εt = ut + ψut−1, ut ∼ N (0, σ2
t ), (B.9)

where the condition |ψ| < 1 is required to ensure the invertibility condition and the

variance equation is still modeled via equation (B.2).

The GARCH model with t innovations (G-t) is governed by

yt = µ+ εt, εt ∼ tν(0, σ
2
t ), (B.10)

where the variance process is given again by equation (B.2). As before, the use of a

t-distribution might better capture more extreme observations when compared with the

Gaussian distribution.

Finally, we consider the GARCH model with leverage (G-L) suggested by Glosten et al.

(1993). Similarly to its counterpart SV-L model, the G-L model is intended to capture

the potential presence of an asymmetric leverage effect, which is known to potentially

improve the forecast performance of the standard G model, as documented, for in-

stance, in Wei et al. (2010). In this model specification, the observation equation is still
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equation (B.1) and the variance equation is given by

σ2
t = α0 + (α1 + δ111{εt−1<0})ε

2
t−1 + β1σ

2
t−1, (B.11)

where δ1 is the parameter that controls the asymmetric leverage effect and 11{.} is the

indicator function. When δ1 = 0, the G-L model is reduced to the standard G model.
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Appendix C
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Figure C.1: Daily returns of spot and 1 month futures prices of crude oil from January 2000 to
November 2019.
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Figure C.2: Daily returns of spot and 1 month futures prices of natural gas from January 2000
to November 2019.
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Figure C.3: Daily returns of spot and 1 month futures prices of electricity from January 2015 to
November 2019.
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Appendix D

Table D.1: Posterior means and standard deviations for the parameter set of GARCH models
estimated through MCMC and for crude oil futures contracts.

G G-2 G-J G-M G-MA G-t G-L

µ
0.05 0.05 0.08 -0.01 0.04 0.06 0.02
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)

α0
0.04 0.04 0.02 0.04 0.04 0.02 0.03
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

α1
0.06 0.07 0.05 0.06 0.06 0.04 0.02
(0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

β1
0.94 0.71 0.94 0.93 0.94 0.94 0.95
(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

β2
- 0.21 - - - - -
- (0.02) - - - - -

κ
- - 0.05 - - - -
- - (0.01) - - - -

µk
- - -1.11 - - - -
- - (0.18) - - - -

σ2
k

- - 13.06 - - - -
- - (2.98) - - - -

λ
- - - 0.01 - - -
- - - (0.01) - - -

ψ
- - - - -0.02 - -
- - - - (0.01) - -

ν
- - - - - 8.32 -
- - - - - (0.79) -

δ1
- - - - - - 0.05
- - - - - - (0.01)

Q(20) 7.98 8.03 7.71 8.07 7.03 7.84 7.95
(0.26) (0.19) (0.24) (0.25) (1.41) (0.29) (0.28)

Q2(20) 18.07 16.35 19.02 18.14 18.04 19.21 24.97
(0.70) (0.50) (0.71) (0.70) (0.73) (1.23) (1.10)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table D.2: Posterior means and standard deviations for the parameter set of GARCH models
estimated through MCMC and for natural gas futures contracts.

G G-2 G-J G-M G-MA G-t G-L

µ
0.03 0.03 -0.05 0.03 0.02 -0.03 0.03
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

α0
0.14 0.21 0.14 0.16 0.15 0.12 0.16
(0.03) (0.04) (0.02) (0.03) (0.03) (0.03) (0.03)

α1
0.09 0.13 0.06 0.09 0.09 0.05 0.09
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

β1
0.91 0.37 0.91 0.91 0.91 0.91 0.91
(0.01) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01)

β2
- 0.49 - - - - -
- (0.03) - - - - -

κ
- - 0.04 - - - -
- - (0.01) - - - -

µk
- - 1.95 - - - -
- - (0.10) - - - -

σ2
k

- - 40.27 - - - -
- - (5.42) - - - -

λ
- - - -0.01 - - -
- - - (0.01) - - -

ψ
- - - - -0.04 - -
- - - - (0.02) - -

ν
- - - - - 7.10 -
- - - - - (0.66) -

δ1
- - - - - - -0.01
- - - - - - (0.01)

Q(20) 21.19 20.91 22.14 20.81 17.10 22.21 21.39
(0.32) (0.28) (0.37) (0.37) (1.34) (0.44) (0.32)

Q2(20) 16.90 18.95 15.10 16.45 16.54 15.39 17.22
(0.98) (1.20) (0.53) (1.21) (0.96) (0.67) (0.93)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table D.3: Posterior means and standard deviations for the parameter set of GARCH models
estimated through MCMC and for electricity futures contracts.

G G-2 G-J G-M G-MA G-t G-L

µ
0.01 0.01 0.00 0.43 0.03 0.00 0.06
(0.08) (0.08) (0.05) (0.20) (0.08) (0.05) (0.07)

α0
3.57 3.47 0.12 3.65 3.07 0.10 0.08
(0.61) (0.51) (0.01) (0.55) (0.60) (0.03) (0.02)

α1
0.05 0.04 0.05 0.11 0.11 0.02 0.01
(0.03) (0.03) (0.00) (0.05) (0.07) (0.01) (0.00)

β1
0.43 0.39 0.84 0.37 0.46 0.86 0.95
(0.08) (0.07) (0.00) (0.06) (0.09) (0.03) (0.01)

β2
- 0.06 - - - - -
- (0.03) - - - - -

κ
- - 0.08 - - - -
- - (0.01) - - - -

µk
- - 0.77 - - - -
- - (0.25) - - - -

σ2
k

- - 53.15 - - - -
- - (9.76) - - - -

λ
- - - -0.06 - - -
- - - (0.03) - - -

ψ
- - - - 0.06 - -
- - - - (0.05) - -

ν
- - - - - 2.60 -
- - - - - (0.21) -

δ1
- - - - - - 0.08
- - - - - - (0.01)

Q(20) 44.66 44.81 32.55 45.46 44.13 34.33 38.66
(0.50) (0.57) (0.22) (1.21) (1.47) (1.08) (0.83)

Q2(20) 9.12 8.90 10.09 8.87 10.51 8.20 7.87
(0.44) (0.41) (0.32) (2.51) (1.29) (1.83) (0.43)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Appendix E

Table E.1: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 2-month crude oil futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
0.06 0.07 0.06 0.14 0.06 0.06 0.03
(0.02) (0.03) (0.02) (0.04) (0.02) (0.02) (0.03)

µh
1.30 1.29 1.27 1.30 1.30 1.20 1.30
(0.12) (0.13) (0.14) (0.12) (0.12) (0.14) (0.12)

φh
0.98 0.91 0.99 0.98 0.98 0.99 0.98
(0.00) (0.08) (0.00) (0.00) (0.00) (0.00) (0.00)

ω2
h

0.02 0.04 0.01 0.02 0.02 0.01 0.02
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

ρh
- 0.05 - - - - -
- (0.09) - - - - -

κ
- - 0.01 - - - -
- - (0.01) - - - -

µk
- - -0.09 - - - -
- - (0.11) - - - -

σ2
k

- - 27.53 - - - -
- - (12.13) - - - -

λ
- - - -0.02 - - -
- - - (0.00) - - -

ψ
- - - - -0.03 - -
- - - - (0.01) - -

ν
- - - - - 18.75 -
- - - - - (4.29) -

ρ
- - - - - - -0.41
- - - - - - (0.06)

Q(20) 11.94 13.11 11.26 12.38 8.59 11.84 11.63
(2.00) (2.07) (2.27) (1.98) (2.00) (1.97) (1.81)

Q2(20) 28.42 31.14 26.88 29.37 29.07 26.10 28.80
(5.15) (6.12) (5.35) (5.13) (4.95) (4.87) (4.99)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table E.2: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 3-month crude oil futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
0.06 0.07 0.11 0.15 0.06 0.07 0.05
(0.02) (0.02) (0.05) (0.04) (0.02) (0.02) (0.02)

µh
1.21 1.20 1.11 1.21 1.21 1.11 1.14
(0.12) (0.14) (0.13) (0.11) (0.12) (0.14) (0.06)

φh
0.98 0.91 0.98 0.98 0.98 0.99 0.91
(0.00) (0.07) (0.00) (0.00) (0.00) (0.00) (0.01)

ω2
h

0.02 0.04 0.02 0.02 0.02 0.01 0.11
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01)

ρh
- 0.05 - - - - -
- (0.07) - - - - -

κ
- - 0.06 - - - -
- - (0.03) - - - -

µk
- - -1.02 - - - -
- - (0.67) - - - -

σ2
k

- - 5.25 - - - -
- - (5.08) - - - -

λ
- - - -0.03 - - -
- - - (0.00) - - -

ψ
- - - - -0.03 - -
- - - - (0.01) - -

ν
- - - - - 18.93 -
- - - - - (5.25) -

ρ
- - - - - - -0.25
- - - - - - (0.02)

Q(20) 13.65 14.27 15.51 13.89 9.77 13.51 11.53
(2.06) (2.11) (3.58) (2.07) (2.00) (1.97) (2.96)

Q2(20) 28.72 30.54 25.12 29.18 29.20 29.38 28.44
(4.85) (6.70) (6.04) (5.33) (4.93) (5.14) (6.08)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table E.3: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 4-month crude oil futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
0.06 0.07 0.13 0.15 0.06 0.07 0.04
(0.02) (0.02) (0.03) (0.04) (0.02) (0.02) (0.02)

µh
1.14 1.13 1.02 1.14 1.13 1.03 1.13
(0.11) (0.13) (0.14) (0.11) (0.11) (0.13) (0.11)

φh
0.98 0.95 0.99 0.98 0.98 0.98 0.98
(0.00) (0.07) (0.00) (0.01) (0.00) (0.01) (0.01)

ω2
h

0.02 0.04 0.02 0.03 0.02 0.02 0.02
(0.00) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01)

ρh
- 0.01 - - - - -
- (0.07) - - - - -

κ
- - 0.07 - - - -
- - (0.02) - - - -

µk
- - -1.27 - - - -
- - (0.39) - - - -

σ2
k

- - 4.01 - - - -
- - (2.30) - - - -

λ
- - - -0.03 - - -
- - - (0.01) - - -

ψ
- - - - -0.04 - -
- - - - (0.01) - -

ν
- - - - - 18.47 -
- - - - - (7.44) -

ρ
- - - - - - -0.34
- - - - - - (0.07)

Q(20) 19.68 19.78 20.38 20.02 13.06 19.45 18.40
(2.57) (3.20) (4.18) (2.39) (2.30) (2.21) (2.24)

Q2(20) 26.46 25.37 22.71 25.04 26.66 28.34 27.81
(5.20) (5.26) (5.92) (5.07) (4.94) (7.59) (5.24)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table E.4: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 2-month natural gas futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
-0.03 -0.03 -0.06 -0.01 -0.03 -0.03 -0.02
(0.04) (0.04) (0.05) (0.09) (0.04) (0.04) (0.04)

µh
1.68 1.69 1.62 1.68 1.68 1.61 1.68
(0.12) (0.23) (0.12) (0.11) (0.12) (0.12) (0.11)

φh
0.97 0.93 0.97 0.97 0.97 0.97 0.97
(0.01) (0.08) (0.01) (0.01) (0.01) (0.01) (0.01)

ω2
h

0.02 0.03 0.02 0.03 0.02 0.02 0.02
(0.01) (0.01) (0.00) (0.01) (0.00) (0.00) (0.00)

ρh
- 0.03 - - - - -
- (0.09) - - - - -

κ
- - 0.03 - - - -
- - (0.02) - - - -

µk
- - 1.53 - - - -
- - (0.86) - - - -

σ2
k

- - 17.47 - - - -
- - (16.54) - - - -

λ
- - - -0.00 - - -
- - - (0.01) - - -

ψ
- - - - -0.04 - -
- - - - (0.02) - -

ν
- - - - - 32.57 -
- - - - - (16.74) -

ρ
- - - - - - 0.08
- - - - - - (0.10)

Q(20) 22.34 22.51 21.22 22.80 19.49 23.05 22.59
(2.35) (2.53) (3.36) (2.65) (2.48) (2.34) (2.26)

Q2(20) 27.47 28.94 27.26 27.76 26.19 23.37 28.06
(5.86) (6.20) (6.70) (5.66) (5.76) (5.74) (5.97)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table E.5: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 3-month natural gas futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
-0.03 -0.03 -0.04 0.00 -0.03 -0.03 -0.03
(0.04) (0.04) (0.04) (0.08) (0.04) (0.04) (0.04)

µh
1.51 1.53 1.44 1.51 1.51 1.42 1.51
(0.11) (0.23) (0.12) (0.12) (0.11) (0.12) (0.11)

φh
0.97 0.92 0.97 0.97 0.97 0.97 0.97
(0.01) (0.09) (0.01) (0.01) (0.01) (0.01) (0.01)

ω2
h

0.02 0.03 0.02 0.02 0.02 0.02 0.02
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.01)

ρh
- 0.04 - - - - -
- (0.09) - - - - -

κ
- - 0.02 - - - -
- - (0.01) - - - -

µk
- - 0.75 - - - -
- - (0.58) - - - -

σ2
k

- - 25.76 - - - -
- - (12.96) - - - -

λ
- - - -0.01 - - -
- - - (0.00) - - -

ψ
- - - - -0.03 - -
- - - - (0.02) - -

ν
- - - - - 29.58 -
- - - - - (20.20) -

ρ
- - - - - - -0.03
- - - - - - (0.09)

Q(20) 26.07 26.04 24.50 25.90 24.91 26.29 26.06
(2.60) (2.53) (3.38) (2.54) (2.80) (2.62) (2.54)

Q2(20) 24.40 25.19 27.29 23.71 24.01 18.98 24.66
(5.59) (5.89) (7.58) (5.54) (5.90) (5.22) (5.54)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Table E.6: Posterior means and standard deviations for the parameter set of SV models estimated
through MCMC and for 4-month natural gas futures contracts.

SV SV-2 SV-J SV-M SV-MA SV-t SV-L

µ
-0.03 -0.03 -0.03 -0.01 -0.03 -0.03 -0.03
(0.04) (0.04) (0.04) (0.07) (0.04) (0.04) (0.04)

µh
1.34 1.35 1.28 1.34 1.34 1.20 1.34
(0.10) (0.20) (0.10) (0.11) (0.11) (0.11) (0.10)

φh
0.96 0.92 0.97 0.97 0.97 0.97 0.97
(0.01) (0.08) (0.01) (0.01) (0.01) (0.01) (0.01)

ω2
h

0.03 0.03 0.02 0.03 0.03 0.02 0.03
(0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

ρh
- 0.04 - - - - -
- (0.09) - - - - -

κ
- - 0.01 - - - -
- - (0.00) - - - -

µk
- - -0.87 - - - -
- - (0.32) - - - -

σ2
k

- - 135.82 - - - -
- - (58.24) - - - -

λ
- - - -0.00 - - -
- - - (0.01) - - -

ψ
- - - - -0.02 - -
- - - - (0.02) - -

ν
- - - - - 14.50 -
- - - - - (4.96) -

ρ
- - - - - - -0.00
- - - - - - (0.11)

Q(20) 24.67 24.48 22.80 24.58 24.52 25.08 24.76
(2.61) (2.54) (2.86) (2.50) (2.69) (2.51) (2.59)

Q2(20) 26.46 26.91 37.72 26.26 26.63 38.62 26.27
(4.98) (5.49) (8.81) (4.96) (5.04) (22.49) (4.96)

Notes: Q(20) and Q2(20) are, respectively, the Ljung-Box and McLeod-Li statistics of order 20 computed
on the standardized residuals and squared standardized residuals. The 5% and 1% critical values are
31.41 and 37.57, respectively.
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Appendix F

Table F.1: Log marginal likelihoods corresponding to the estimated models.

Crude oil Natural gas Electricity
Panel A: Stochastic volatility models

SV -10804.4 -12221.2 -5531.5
(0.09) (0.08) (0.02)

SV-2 -10805.3 -12221.6 -5559.0
(0.29) (0.25) (0.30)

SV-J -10805.2 -12226.5 -5570.4
(0.59) (0.37) (0.31)

SV-M -10808.3 -12228.8 -5534.5
(0.05) (0.11) (0.02)

SV-MA -10806.2 -12224.2 -5019.4
(0.06) (0.13) (0.20)

SV-t -10784.1 -12220.5 -5535.9
(0.01) (0.18) (0.02)

SV-L -10796.2 -12222.3 -5533.0
(0.09) (0.20) (0.02)
Panel B: GARCH models

G -10912.3 -12387.8 -5482.6
(0.01) (0.02) (0.02)

G-2 -10912.3 -12381.7 -5472.0
(0.04) (0.07) (0.08)

G-J -10786.5 -12260.5 -5360.1
(0.05) (0.08) (0.03)

G-M -10919.8 -12395.8 -5490.0
(0.02) (0.05) (0.02)

G-MA -10914.7 -12389.2 -5222.7
(0.01) (0.04) (0.02)

G-t -10784.5 -12230.4 -5372.8
(0.01) (0.01) (0.02)

G-L -10903.1 -12589.8 -5485.0
(0.05) (0.03) (0.02)
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3. How does electrification under energy transition

impact the portfolio management of energy firms?

Abstract: This paper presents a novel approach for structuring dependence between

electricity and natural gas prices in the context of energy transition: a copula of mean-

reverting and jump-diffusion processes. Based on historical day-ahead prices of the

Nord Pool electricity market and the Henry Hub natural gas market, a stochastic model

is estimated via the maximum likelihood approach and considering the dependency

structure between the innovations of these two-dimensional returns. Given the role of

natural gas in the global policy for energy transition, different copula functions are fit

to electricity and natural gas returns. Overall, we find that: (i) using an out-of-sample

forecasting exercise, we show that it is important to consider both mean-reversion and

jumps; (ii) modeling correlation between the returns of electricity and natural gas prices,

assuring nonlinear dependencies are satisfied, leads us to the adoption of Gumbel

and Student-t copulas; and (iii) without government incentive schemes in renewable

electricity projects, the usual maximization of the risk-return trade-off tends to avoid a

high exposure to electricity assets.

JEL Classification: C52, C58, Q40, Q41, Q48

Keywords: Energy transition, Electricity, Natural gas, Copula functions, Jump-diffusion,
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Mean reversion.

3.1 Introduction

Energy firms are challenged to move for energy transition with ambitious targets to

enhance the decarbonization. To accomplish this purpose, two main assets come

forward: electricity assets from renewable sources and natural gas.

Electricity assets from renewable sources are the main key drivers for energy firms.

The shift from an electricity mix from fossil-based electricity (e.g., coal and oil) to non-

fossil electricity (e.g., biomass, hydro, solar and wind) has been considered as a key

strategy for mitigating the emissions of carbon dioxide (hereafter, CO2)—see, for exam-

ple, Ang and Su (2016). Moreover, the recent and quick growth of renewable energies

in the European power market has turn the electricity markets more complex and dy-

namic since many sources of renewable energy are intermittent—see, for instance,

European Wind Energy Association (2012) and Wind Europe (2019) for additional de-

tails.

In these circumstances, natural gas is continuing to assume a relevant role in a context

of energy transition for diversified energy portfolios. Gas-fired power plants are com-

monly used as a back-up technology to ensure security of supply and provide short-

term flexibility in energy systems with high-shares of weather-driven renewable power

sources. According to the recent report from the U.S. Energy Information Administra-

tion (2016), natural gas is expected to remain a key fuel in the worldwide electric power

and industrial sectors.

The co-existence of these two types of power production plants provides a promising
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combination for a smooth transition to sustainable future energy systems that are flex-

ible enough to accommodate high shares of renewable energy sources. Even though

the interdependence between electricity and natural gas systems—with a focus on

the need of increasing the operational flexibility of both energy systems in an inte-

grated manner—has been studied recently by Ordoudis et al. (2019) and Ordoudis

et al. (2020), the presence and importance of nonlinear interdependencies between

the returns of electricity and natural gas market prices, in the context of energy transi-

tion, is not explored yet in the literature. This is the main purpose of this paper.

More specifically, we propose a theoretical framework to capture the prices specifica-

tions and interdependencies of relevant energy sources in a context of energy transi-

tion. The goal of modeling correlation and structuring dependence between the spot

prices of commodities/utilities with different paths and features leads us to the adop-

tion of copula functions. We first recall that even though the terms correlation and

dependence are often used interchangeably, the primer is a rather particular kind of

dependence measure between random variables. Hence, the strict use of correlation

prevents the possibility of capturing other forms of dependence. The main advantage

of using copula functions is that it is possible to separate the statistical properties of

each variable from their dependence structure. To the best of our knowledge, our paper

is the first to apply a stochastic-copula approach in an energy transition context.

Electricity spot markets are known to possess several stylized facts. In particular, they

are recognized to be seasonal, mean-reverting and to exhibit frequent jumps in the spot

data, as documented, for instance, in Benth et al. (2008) and Haugom (2011). These

features in the electricity spot data not only contribute to higher volatility levels, but

also for an increasing difficulty to calibrate models governed by appropriate stochastic

processes. The first attempts to incorporate realistic models have been proposed by

Schwartz (1997), Schwartz and Smith (2000) and Lucia and Schwartz (2002). These
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authors focused on alternative stochastic processes to capture the mean-reverting ef-

fects, the long-term uncertainty and the seasonality patterns observed in spot prices.

The suggestion of considering a jump component to model electricity prices is made

by Kaminski (1997) and Clewlow and Strickland (2000). Following these initial insights,

various factors characterizing the dynamics of electricity prices have been consid-

ered and a wide range of functional forms with different time-varying specifications

and stochastic shocks has been suggested afterwards in the literature—e.g., Huisman

and Mahieu (2003), Geman and Roncoroni (2006), Seifert and Uhrig-Homburg (2007),

Lindström and Regland (2012), Zhou et al. (2016), Gianfreda and Bunn (2018), Zhou

et al. (2019) and Wozabal and Rameseder (2020), among others.

The principal distinct feature of our modeling approach in comparison with the afore-

mentioned relevant contributions is that we consider a copula of two mean-reverting

and jump-diffusion stochastic processes. In a nutshell, we offer two main contribu-

tions to the literature. First, we develop the theoretical framework to model electricity

and natural gas spot prices based on a copula of mean-reverting and jump-diffusion

processes using a Maximum Likelihood (henceforth, ML) estimation procedure. As a

second contribution, our paper generates multiple empirical findings. In order to illus-

trate the relevance of the model, we first estimate several spot prices of one of the

most significant European electricity day-ahead market and then we conduct an out-

of-sample forecasting exercise against the competing standard geometric Brownian

motion model with Poisson jumps proposed by Merton (1976).

Given the recent interest in many energy markets applications of combining copula

functions with generalized autoregressive conditional heteroscedasticity (hereafter, GARCH)

models to construct conditional joint distributions—e.g., Chan and Gray (2006), Ghor-

bel and Trabelsi (2014), Lu et al. (2014), Kayalar et al. (2017) and Quintino et al.

(2019)—, we also test a GARCH model adapted to the extreme value theory (hence-
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forth, EVT) approach against the proposed mean-reverting and jump-diffusion stochas-

tic model and the Merton (1976) model. The combination of GARCH and EVT is in-

tended to use a GARCH modeling framework that is better able to model the tails of

the returns distribution when compared with the simple GARCH specification.

Overall, we find that the mean-reverting and jump-diffusion stochastic process yields a

better performance than the two competing models—i.e., Merton (1976) and GARCH-

EVT. In addition, we apply a list of elliptical (Gaussian and Student-t) and Archimedean

(Clayton, Frank and Gumbel) copula functions to electricity and natural gas spot re-

turns. Our results show that the Gumbel and Student-t copula functions are the most

appropriate for fitting the dependency structure between electricity and natural gas as-

sets.

In summary, the recent predictions on the increasing global demand of natural gas and

the relevant role of the natural gas in the context of energy transition (pressured by the

global targets for decreasing the CO2 emissions) allow us to propose a new approach

to model a simulated portfolio of electricity (representing the renewable energies) and

of natural gas: a copula of mean-reverting and jump-diffusion processes. To the best

of our knowledge, this is a novel development for exploring the effect of the nonlinear

dependence between electricity and natural gas markets in a context of energy transi-

tion while maintaining the three most significant features of these assets: spikes/drops,

jumps and seasonality. This new framework should be relevant for energy firms (with

or without renewable energy assets) given the implications for integrated portfolios in

energy transition.

Furthermore, the high levels of uncertainty observed in electricity prices and the avail-

able renewable generation turns risk management a fundamental decision-making

problem. Such prices tend to act as the underlying references in financial derivatives.

Hence, a better comprehension of the dependency structure between electricity prices
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and natural gas prices should be important for designing (new) financial contracts aim-

ing to structure hedging strategies—see, for example, Kaminski (1997), Clewlow and

Strickland (2000) and Deng and Oren (2006) for more details on the importance of

pricing and risk managing electricity derivatives.

The results of this paper are also useful from the regulators’ and investors perspective

because most prevailing regulation schemes are incentive-based in the form of feed-in

tariffs and use benchmarking—see, for example, Couture and Gagnon (2010), Ritzen-

hofen and Spinler (2016), Barbosa et al. (2018) and Kök et al. (2018), just to name a

few. Although the goal of this paper is not to discuss which feed-in tariff policy should be

used to provide effective policies aiming to increase investments in renewable energy,

it calls at least the policymakers’ attention on the importance of considering the depen-

dence structure between the spot prices of electricity and natural gas when defining

policy instruments to promote investments in renewable energy sources.

The remainder of the paper is organized as follows. Section 3.2 presents the data.

Section 3.3 provides the theoretical framework for modeling the prices through a mean-

reverting and jump-diffusion process and shows the model parameters estimated via

a ML approach. Section 3.4 reports the estimation of copula functions and the corre-

sponding fitting for the returns of electricity and natural gas. Section 3.5 implements a

portfolio risk analysis and optimization problem and Section 3.6 concludes. Appendixes

G and H contain additional results.

3.2 Data

This paper uses daily spot prices of electricity markets in Europe. More specifically,

we adopt the Nord Pool market, which operates in power trading in several countries—
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e.g., Norway, Denmark, Sweden, Finland, Estonia, Latvia, Lithuania, Germany, Nether-

lands, Belgium, Austria, Luxembourg, France and United Kingdom—and represents a

turnover of 494 TWh of traded power (more than 90% of the total power consumption

in the Nordic and Baltic market). This is the Europe’s largest and most liquid market

for electricity.

The Nord Pool market operates in the day-ahead spot market (also known as the

Elspot market) for physical exchange of production and consumption. In the period

2015-2020, the Elspot market contains 17 day-ahead markets from 7 countries, namely

Norway, Denmark, Sweden, Finland, Estonia, Latvia and Lithuania.3.1 Nord Pool Spot

computes the reference price used for financial trading purposes that is known as the

System Price (henceforth, SYS) and represents the price that would be charged if there

were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4

represent the four bidding areas in Sweden. FI denotes the bidding area in Finland,

while DK1 and DK2 stand for the two bidding areas in Denmark. Oslo, Kristiansand,

Bergen, Molde, Trondheim and Tromsø represent the five bidding areas in Norway

(Molde and Trondheim belong to the same bidding area NO3). EE, LV and LT corre-

spond to the bidding areas of Estonia, Latvia and Lithuania, respectively. An additional

variable (price) has been created to represent the arithmetic average of the Elspot

prices. We also consider the UK N2EX day-ahead market to represent the auction

prices in the United Kingdom. All these prices are presented in EUR/MWh.

Our data set includes also the daily spot prices of natural gas. For this commodity, the

prices represent the spot prices of the distribution hub on the natural gas pipeline sys-

tem in Louisiana. These prices are measured in dollars per Million Btu (USD/MMBtu)

and represent the prices for the production of natural gas assets—e.g., natural gas
3.1We note that market data for Germany, Netherlands, Belgium, Austria, Luxembourg and France became avail-

able only after the 3rd of July, 2019 and, therefore, these countries are excluded from our analysis due to the lack
of sufficient data.
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Figure 3.1: Average Elspot, UK N2EX day-ahead and natural gas historical prices between
01-Jan-2015 and 01-Jun-2020.

fields in upstream operations and used as indexing prices to natural gas commercial-

ization in deregulated markets in the downstream operations.

While electricity prices were obtained from the Nord Pool market data, natural gas

prices were collected from the U.S. Energy Information Administration (EIA)/Thomson

Reuters Eikon. The time series for the prices of electricity and natural gas are daily-

based and collected from 01-Jan-2015 to 01-Jun-2020. Figure 3.1 shows the graphical

representation of the average Elspot, UK N2EX day-ahead and natural gas historical

prices for this time period.
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3.3 The general setup of the model

This section presents the general setup of the model aiming to accommodate the ob-

served empirical properties of electricity and natural gas prices. The discretized ver-

sion of the model for ML estimation purposes is also discussed in order to estimate the

parameters of the stochastic and seasonal components. Finally, an out-of-sample anal-

ysis is conducted for assessing the forecasting performance of the proposed model. In

this section, however, no conditional dependency between electricity and natural gas

will be considered and tested. Such novelty, in the context of energy transition, will be

analyzed in Section 3.4 using alternative copula distribution functions.

3.3.1 Modeling spikes, drops, seasonality and mean reversion

Realistic approaches for modeling the behavior of spot prices in electricity (and natural

gas) markets contain mean-reversion, seasonality, diffusion and jump components. In

order to model our prices, we adopt the modeling framework considered in Lucia and

Schwartz (2002) and Seifert and Uhrig-Homburg (2007), that is

lnPt = f(t) +Xt, (3.1)

where Pt represents the spot price of electricity (or natural gas), f(t) denotes the deter-

ministic seasonal part of the model and Xt is the stochastic component of the model.3.2

The deterministic part of the model is modeled through sinusoidal functions expressed

as

f(t) = c1 sin(2πt) + c2 cos(2πt) + c3 sin(4πt) + c4 cos(4πt) + c5 + µt, (3.2)

3.2As argued by Seifert and Uhrig-Homburg (2007, Page 62), the use of log-prices (instead of prices) is preferable
since the seasonality is less affected by extreme prices and it also facilitates the modeling of jumps.

62



where ci ∈ R, for i ∈ {1, ..., 5}, are constant parameters, µ ∈ R is the linear trend of

the deterministic component of the model and t represents the annualized time factors.

We recall that time series of electricity day-ahead and natural gas prices exhibit a

number of stylized patterns, that are mainly driven by the balance between supply

and demand of power over time. The seasonality component considered in equation

(3.2) is essentially driven by the evolution of temperature and daylight variations over

the calendar year. Even though it should be possible to augment the continuous-time

periodical component (3.2) by including also weekly, daily and hourly patterns—see, for

instance, Lucia and Schwartz (2002), Seifert and Uhrig-Homburg (2007), Zhou et al.

(2016), Zhou et al. (2019) and Wozabal and Rameseder (2020)—, we consider the

determinist component as given in equation (3.2) for the sake of simplicity and to be

better able to analyze the dependency structure via copulas in a more parsimony way.

Removing the deterministic component in the log-prices results in a stochastic behavior

of prices. Since deseasonalised spot prices still exhibit a high volatility, jumps in data

and a mean-reversion feature, the stochastic part Xt is modeled as in Seifert and

Uhrig-Homburg (2007, Equation 6), that is as an Ornstein-Uhlenbeck (mean-reverting)

process with a jump component in the context of a stochastic intertemporal economy

that is characterized by continuous trading on the period [t0, T ], for some fixed time

period T > t0, and where t0 denotes the current time:

dXt = (α− κXt)dt+ σdWt + JtdNt, (3.3)

where κ ∈ R+ is the speed of mean reversion, α/κ denotes the long-run level of the

process, σ ∈ R+ represents the usual volatility parameter and {Wt; t ≥ t0} is a standard

Brownian motion. The jump size is denoted by Jt and follows a normal distribution with

mean µJ ∈ R and standard deviation σJ ∈ R+, while {Nt; t ≥ t0} is a Poisson process
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with a jump intensity λ that is independent from the Brownian motion.3.3 Since the

pricing of energy derivatives is outside the scope of this study, this model is developed

only under the physical (real world) measure.

3.3.2 Estimation through the ML procedure

We estimate the parameter set of the model in a two-step procedure. First, we estimate

the deterministic component of the model by running the Least Squares (hereafter, LS)

method as

min
{c1,c2,c3,c4,c5,µ}

M∑
m=1

(
lnPm/365 − f(m/365)

)2
, (3.4)

where M represents the number of (daily) data points of the time series of prices.

After performing this estimation, the seasonality component is removed from the loga-

rithm of the spot price by subtracting the deterministic component f(t) from the loga-

rithmic prices of electricity (lnPt) in equation (3.1).

Second, it is necessary to estimate the stochastic component. However, a discretiza-

tion of the process is required under the ML estimation procedure. To accomplish this

purpose, we adopt the Euler discretization scheme and the Bernoulli jump approach

for the jump component. The discretized procedure is applied as follows to equation

(3.3):

Xt = α∆t+ φXt−1 + σζ, (3.5)

with probability (1− λ∆t) and

Xt = α∆t+ φXt−1 + σζ + µJ + σJζJ , (3.6)

3.3We note that we are incorporating jumps as in Merton (1976), but other jump specifications can be also used
in the our general framework.
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with probability λ∆t, where ∆t represents a discrete time-period, φ = 1 − κ∆t, while

ζ and ζJ represent independent standard normal random variables. Under this setup,

the density function of Xt given Xt−1 is equal to

f(Xt|Xt−1) = (λ∆t)N1(Xt|Xt−1) + (1− λ∆t)N2(Xt|Xt−1), (3.7)

with

N1(Xt|Xt−1) := (2π(σ2 + σ2
J))−

1
2 exp

[
−(Xt − α∆t− φXt−1 − µJ)2

2(σ2 + σ2
J)

]
(3.8)

and

N2(Xt|Xt−1) := (2πσ2)−
1
2 exp

[
−(Xt − α∆t− φXt−1)2

2σ2

]
. (3.9)

The parameter set to be estimated under the ML approach is θ ≡ (α, κ, σ, µj, σj, λ),

where θ is an unknown parameter in a bounded set Θ ⊂ R6. Therefore, we need to

solve the following minimization problem

min
{θ}
−

T∑
t=1

ln(f(Xt|Xt−1)), (3.10)

subject to

φ < 1, (3.11)

σ2 > 0, (3.12)

σ2
J > 0 (3.13)

and

0 ≤ λ∆t ≤ 1. (3.14)

It is important to mention a few additional notes regarding these constraints. Given the

relationship between φ and κ, the inequality constraint (3.11) is equivalent to κ > 0.
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As usual, the volatility of the process and the volatility of the jump component must be

positive, as shown in inequalities (3.12) and (3.13). Finally, inequality (3.14) is required

because λ∆t is the probability of a jump occurring at the period ∆t. In order to solve

this optimization problem, we adopt the following initial values: α = 0, φ = 0, µJ = 0,

σ2
J = V ar(Xt), σ2 = V ar(Xt) and λ = 0.5.

3.3.3 Estimation of the parameters

This subsection provides the calibration results to the aforementioned electricity and

natural gas market data using the ML estimation approach and considering the full

sample, i.e., the period between 01-Jan-2015 and 01-Jun-2020.3.4 Table 3.1 provides

the parameter estimates associated with the stochastic component of our model for all

the Elspot day-ahead prices series, the N2EX day-ahead prices and natural gas prices.

The corresponding parameters estimates obtained for each year of the electricity time

series are reported in Tables G.1 to G.5 of the corresponding appendix. The annual

results for the natural gas series are collected in Table G.6 of the Appendix G.3.5

Several relevant observations can be drawn from these calibration results. We first re-

call that modeling the logarithm of the spot electricity price as shown in equation (3.1)

requires strict positive prices. Hence, the existence of negative (spot) prices in the

series DK1 and DK2 in 2019, 2017 and 2016—see, respectively, Tables G.1, G.3 and

G.4 of the Appendix G—prevents the calibration of the model for the full sample period

from 01-Jan-2015 and 01-Jun-2020. We note, however, that the existence of negative

electricity prices is frequently observed in practice and is well documented in the liter-

ature, e.g. in Zhou et al. (2016), Gianfreda and Bunn (2018) and Zhou et al. (2019).
3.4We note that all the results of this paper have been obtained through Matlab (R2015a 32 bit) running on an

Intel Core i7 2.40GHz personal computer.
3.5The corresponding results for the electricity and natural gas market data for the period between 01-Jan-2020

and 01-Jun-2020 are also available upon request.
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As expected, this problem can be easily avoided by modeling the price of electricity

instead of the log-price. Results not reported here (but available upon request), show,

however, that the latter assumption provides better out-of-sample forecasts, which is

consistent with the observations documented in Seifert and Uhrig-Homburg (2007).

Overall, we find a very strong mean reversion parameter κ (speed of mean reversion),

ranging from 2.647 to 114.718. All the estimates are statistically significant at the

0.1% level. Although the mean reversion speed of natural gas (3.229) is lower than

the ones associated to UK day-ahead (23.458) and average Elspot prices (31.266),

it is similar to the mean reversion observed in other electricity prices series—namely,

Oslo, Kristiansand and Bergen. The parameter α can be simply interpreted as the

product of the long-run level of the stochastic process and the mean reversion speed.

The inclusion of mean reversion is important when modeling electricity and natural

gas market data. Moreover, in the following subsection an out-of-sample exercise is

presented to further validate the relevance of including a mean reversion feature in the

Elspot market.

Some comments can be also made with respect to volatility. First, the estimations for

volatility range from 0.793 to 2.622 in the electricity series. The estimated volatility of

the average Elspot prices (1.912) is higher than the one for the UK day-ahead (1.114)

and the Henry Hub natural gas prices (0.545). We note also that all the estimates are

statistically significant at the 0.1% level. Second, we also find an higher volatility in

the Elspot market not only in the full sample, but also in each annual subsample—see

Tables G.1 to G.6 in the Appendix G. Third, natural gas exhibits lower historical volatility

than all electricity markets.

The estimated jump intensities λ, ranging between 22.894 and 102.102, indicate the

significant prevalence of jumps in the series, thus emphasizing the need of a well de-

signed risk management policy for energy firms. However, an additional deep dive ex-
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ercise is needed: (i) natural gas has a lower jump intensity; and (ii) Elspot prices show

a higher jump intensity than the UK day-ahead market. The estimates associated to

electricity markets are statistically significant at the 0.1% level, while the estimate for

natural gas is statistically significant at the 1% level.

Still concerning the jump components, we analyze next the parameters µJ and σJ . The

mean jump size ranges from -0.077 to 0.017. We note that the mean jump sizes of

the average Elspot prices (-0.017) and UK day-ahead prices (0.017) are symmetric,

whereas µJ is zero in the case of natural gas. A deeper analysis to the subsamples

of 2016 and 2017 reveals only positive mean jumps in these markets. By contrast,

the subsample of 2019 shows only negative mean jumps in electricity and natural gas

markets. Although the mean jump size estimates are not shown to be statistically

significant at any of the tested levels, the range of (negative and positive) values en-

countered in µJ is consistent with the presence of spikes and drops observed in these

markets.

Finally, the standard deviation of the jump component is ranging between 0.203 and

0.451 in the Elspot day-ahead markets—the σJ of the average Elspot market is 0.319.

This jump volatility is similar to the volatility of the jumps in the UK day-ahead market

(0.306). The estimate for σJ of natural gas is lower (0.138) than the corresponding

volatilities in both electricity markets. We observe also that all these estimates are

statistically significant at the 0.1% level.

Even though our main focus is on the stochastic behavior and the nonlinear interde-

pendencies between returns, the corresponding seasonality parameters estimates for

the full sample are presented in Table 3.2. Figure 3.1 also supports the interpretation

of the numerical results, since we can clearly see the yearly seasonality with highest

prices in winter months for the average Elspot prices and UK N2EX day-ahead prices.
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Table 3.1: Estimation of the parameters from the stochastic component for electricity and natural
gas markets between 01-Jan-2015 and 01-Jun-2020 and via the ML approach.

α κ σ µJ σJ λ
SYS -1.042 7.756∗∗∗ 1.128∗∗∗ 0.007 0.232∗∗∗ 101.302∗∗∗

SE1 -1.428 9.831∗∗∗ 1.536∗∗∗ 0.015 0.329∗∗∗ 87.309∗∗∗

SE2 -1.395 9.908∗∗∗ 1.545∗∗∗ 0.015 0.329∗∗∗ 86.793∗∗∗

SE3 0.553 23.427∗∗∗ 1.730∗∗∗ -0.006 0.410∗∗∗ 91.495∗∗∗

SE4 -0.001 33.038∗∗∗ 2.156∗∗∗ -0.000 0.450∗∗∗ 88.061∗∗∗

FI 3.586∗ 83.008∗∗∗ 2.622∗∗∗ -0.043 0.451∗∗∗ 84.199∗∗∗

DK1 - - - - - -
DK2 - - - - - -
Oslo -1.193∗ 2.647∗∗∗ 0.919∗∗∗ 0.008 0.232∗∗∗ 87.256∗∗∗

Kristiansand -0.698 3.040∗∗∗ 0.801∗∗∗ 0.002 0.203∗∗∗ 98.102∗∗∗

Bergen -0.839 2.719∗∗∗ 0.891∗∗∗ 0.005 0.244∗∗∗ 75.060∗∗∗

Molde -0.261 6.476∗∗∗ 1.048∗∗∗ -0.000 0.227∗∗∗ 102.102∗∗∗

Trondheim -0.261 6.476∗∗∗ 1.048∗∗∗ -0.000 0.227∗∗∗ 102.102∗∗∗

Tromsø 0.428 6.319∗∗∗ 0.793∗∗∗ -0.009 0.227∗∗∗ 81.840∗∗∗

EE 5.662∗∗∗ 114.718∗∗∗ 2.608∗∗∗ -0.077∗∗ 0.409∗∗∗ 73.315∗∗∗

LV 1.532 83.707∗∗∗ 2.350∗∗∗ -0.022 0.384∗∗∗ 68.126∗∗∗

LT 2.023 87.336∗∗∗ 2.373∗∗∗ -0.028 0.377∗∗∗ 71.784∗∗∗

Average Elspot prices 1.016 31.266∗∗∗ 1.912∗∗∗ -0.017 0.319∗∗∗ 64.119∗∗∗

UK day-ahead prices -0.629 23.458∗∗∗ 1.114∗∗∗ 0.017 0.306∗∗∗ 36.852∗∗∗

Natural gas prices -0.128 3.229∗∗∗ 0.545∗∗∗ 0.000 0.138∗∗∗ 22.894∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ
is the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used
for financial trading purposes that is known as the System Price (SYS), i.e., the price that would be
charged if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4
represent the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2
stand for the two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø
represent the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3).
EE, LV and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average
Elspot prices express an additional variable (price) representing the arithmetic average of the Elspot
prices. UK day-ahead prices represent the auction prices in the United Kingdom. Finally, the Henry Hub
natural gas prices represent the spot prices of the distribution hub on the natural gas pipeline system
in Louisiana. The existence of negative (spot) prices in the series DK1 and DK2 in 2019, 2017 and
2016—see, respectively, Tables G.1, G.3 and G.4 of the Appendix G—prevents the calibration of the
model in the period from 01-Jan-2015 to 01-Jun-2020. The symbols ∗, ∗∗, ∗∗∗ indicate if the estimate is
statistically significant at 5%, 1% and 0.1% level, respectively.
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Table 3.2: Estimation of the seasonal parameters of electricity and natural gas markets between
01-Jan-2015 and 01-Jun-2020 and via the LS approach.

c1 c2 c3 c4 c5 µ
SYS -0.144 0.151 0.010 0.025 0.040 3.206
SE1 -0.176 0.110 0.029 0.024 0.037 3.237
SE2 -0.176 0.110 0.029 0.024 0.037 3.237
SE3 -0.150 0.106 0.027 0.010 0.056 3.218
SE4 -0.147 0.098 0.012 0.007 0.067 3.226
FI -0.150 0.036 0.052 0.006 0.046 3.405
DK1 - - - - - -
DK2 - - - - - -
Oslo -0.128 0.182 -0.002 0.035 0.044 3.165
Kristiansand -0.126 0.171 0.001 0.034 0.046 3.152
Bergen -0.116 0.178 -0.005 0.035 0.047 3.142
Molde -0.159 0.130 0.012 0.013 0.033 3.238
Trondheim -0.159 0.130 0.012 0.013 0.033 3.238
Tromsø -0.135 0.145 0.001 0.013 0.052 3.129
EE -0.112 0.010 0.032 0.015 0.015 3.414
LV -0.153 -0.021 0.018 0.046 0.004 3.656
LT -0.151 -0.019 0.016 0.045 0.002 3.666
Average Elspot prices -0.141 0.070 0.015 0.024 0.045 3.305
UK day-ahead prices -0.062 0.055 -0.027 0.023 -0.029 4.025
Natural gas prices -0.074 0.009 -0.004 0.041 -0.016 1.019

Notes: ci, for i ∈ {1, ..., 5}, are constant parameters and µ is the linear trend of the deterministic compo-
nent of the model. The Nord Pool Spot computes the reference price used for financial trading purposes
that is known as the System Price (SYS), i.e., the price that would be charged if there were no trans-
mission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent the four bidding areas
in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the two bidding areas in
Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent the five bidding areas in
Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV and LT correspond to the
bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot prices express an additional
variable (price) representing the arithmetic average of the Elspot prices. UK day-ahead prices represent
the auction prices in the United Kingdom. Finally, the Henry Hub natural gas prices represent the spot
prices of the distribution hub on the natural gas pipeline system in Louisiana. The existence of negative
(spot) prices in the series DK1 and DK2 in 2019, 2017 and 2016—see, respectively, Tables G.1, G.3
and G.4 of the Appendix G—prevents the calibration of the model in the period from 01-Jan-2015 to
01-Jun-2020.

3.3.4 Forecasting performance

This subsection performs an out-of-sample forecasting analysis to evaluate the fitting

performance of the mean-reverting and jump-diffusion stochastic process (henceforth,

MR-JD) stated in equation (3.3) against the classic geometric Brownian motion with
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jumps model (hereafter, JGBM) offered by Merton (1976), which does not take into

account the presence of mean reversion in the series.

Additionally, we also estimate the GARCH-EVT model—see, for instance, Ghorbel and

Trabelsi (2014) for additional details—to compare its performance against the esti-

mated MR-JD model. To implement the GARCH-EVT model, first captures the residu-

als from the return series are captured using the asymmetric GARCH model suggested

by Glosten et al. (1993) and then the sample marginal cumulative distribution function

of each electricity series is created based on a Gaussian kernel estimate for the interior

and a generalized Pareto distribution estimate for the (upper and lower) tails.

To apply this out-of-sample exercise, we use the average Elspot prices (that capture the

path of the 17 Elspot prices). The evaluation period for the out-of-sample forecasting

exercise corresponds to the following 1, 3 and 5 trading days in the average Elspot

market of our sample and at the beginning of each year. We compare the three models

by computing the mean absolute percentage error (hereafter, MAPE). The results are

reported in Table 3.3.

Table 3.3: Out-of-sample forecasting performance.

2016 2017 2018 2019 2020
Panel A: 5 days

MR-JD 16.8% 15.7% 6.7% 13.4% 10.7%
JGBM 28.5% 28.0% 22.0% 11.4% 11.1%
GARCH-EVT 9.3% 19.4% 29.6% 5.3% 12.2%

Panel B: 3 days
MR-JD 11.7% 13.3% 5.5% 14.2% 6.4%
JGBM 19.5% 24.2% 18.0% 6.7% 7.4%
GARCH-EVT 11.2% 18.2% 18.2% 7.0% 12.8%

Panel C: 1 day
MR-JD 3.2% 9.7% 6.0% 2.3% 6.2%
JGBM 11.4% 16.8% 0.3% 8.2% 9.3%
GARCH-EVT 14.8% 23.3% 6.3% 4.8% 17.7%
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Notes: This table shows the mean absolute percentage errors. JGBM represents the classic standard
geometric Brownian motion with jumps model offered by Merton (1976). MR-JD is the mean-reverting
stochastic process with jumps proposed in equation (3.3). The GARCH-EVT model stands for the mod-
eling framework described, for example, in Ghorbel and Trabelsi (2014). The values in bold highlight
which model offers a best fitting performance.

To sum up, this out-of-sample forecasting exercise confirms the better fitting perfor-

mance of the MR-JD model compared with the JGBM and GARCH-EVT models. The

MAPE values highlight that the adoption of a stochastic process capturing the three

stylized facts commonly found in the electricity markets allows a better fitting perfor-

mance in 10 times—forecasting in the next 3 and 5 days achieves a better performance

in 2017, 2018 and 2020 and the best forecasting for the next trading day is achieved

in 2016, 2017, 2019 and 2020. These errors are in line with the ones reported, for in-

stance, in Conejo et al. (2005) and explained by the high volatility feature of electricity

markets.

3.4 The copula approach in the context of energy transition

This section aims to test the presence and importance of nonlinear interdependencies

between the returns of electricity and natural gas prices in the context of energy tran-

sition. To accomplish this purpose, we propose a novel approach based on a copula

between the returns of electricity and natural gas, assuming each one of them follows

a mean-reverting and jump-diffusion process as described by equations (3.1), (3.2) and

(3.3).

3.4.1 Copula functions

An important theorem offered by Sklar (1959) provides the groundwork to the theory

of copulas and the foundation for many of the applications to statistics and to financial
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modeling problems—for a comprehensive overview of this theorem see, for instance,

Nelsen (2006, Section 2.3). In a nutshell, a d-dimensional copula C is a mathematical

function representing a joint distribution F as a function of the corresponding marginal

distributions Fj, for j = 1, . . . , d, that is

F (x1, . . . , xd) = C (F1 (x1) , . . . , Fd (xd)) . (3.15)

This means that any copula C may be used to join any collection of univariate distri-

bution functions F1, . . . , Fd, creating a multivariate distribution function F with margins

F1, . . . , Fd. The copula C of their joint distribution function may be extracted from equa-

tion (3.15) by evaluating

C(u) := C (u1, . . . , ud)

= F
(
F−1

1 (u1) , . . . , F−1
d (ud)

)
, (3.16)

where F−1
j , for j = 1, . . . , d, are the quantile functions of the margins.

Our novel approach suggests the use of a copula (with d = 2) for the joint modeling

of electricity and natural gas prices assuming the dynamic behavior of each asset is

governed by the mean-reverting and jump-diffusion process proposed in equations

(3.1), (3.2) and (3.3). This should be of interest for practitioners and academics since

the classical covariance matrix setup is based on a linear dependency structure. The

advantage of the copula approach is that other forms of dependence can be captured.

Figure 3.2 shows the graphical representation of the returns that will be used in our

copula application. The left-hand side figures plot the historical log-returns for average

Elspot, UK N2EX day-ahead and natural gas prices from 01-Jan-2015 to 01-Jun-2020.

The right-hand figures plot the corresponding histograms. The continuous line is the

normal density. Clearly, the normal distribution is not able to fit the higher peaks near
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the origin and the heavy tails of the empirical distributions. This observation further

enhances the importance of considering stochastic processes moving away from the

standard GBM assumption.

We suggest testing two of the most popular copula families used in finance: (i) elliptical

copulas and (ii) Archimedean copulas. Elliptical copula functions are the copulas of

elliptical distributions. The most used elliptical copulas are the Gaussian and Student-

t copulas. The primer was firstly suggested by Lee (1983) and then generalized by

Van Ophem (1999), whereas the latter has been initially discussed in Embrechts et al.

(2002) and Fang et al. (2002). The main advantage of using elliptical copula functions

is that one can specify different levels of correlation between the margins. However,

the main disadvantages include: (i) the absence of closed-form solutions; and (ii) these

copulas are restricted to have radial symmetry. In contrast to the Gaussian copula, the

t-copula has (symmetric) tail dependence, which is useful in models of the joint move-

ments of the log-returns. More specifically, it should be better able to accommodate

the empirical properties highlighted in Figure 3.2.

We also test the most used three Archimedean copula functions: the Gumbel (1960),

Clayton (1978) and Frank (1979) copulas. Archimedean copulas represent an impor-

tant class of copula functions given their analytical tractability and ability to reproduce

a wide variety of dependence structures. The Gumbel copula function is an asym-

metric copula and, therefore, reproduces nonlinear positive dependence in the data

set. Consequently, this copula shows greater dependence in the positive tail than in

the negative tail. In opposition to the Gumbel copula, the Frank copula function is a

plausible copula when the data shows significant positive or negative dependence and

describes circumstances of symmetric tail independence. Finally, the Clayton copula

function is an asymmetric copula that is appropriate when nonlinear positive depen-

dence is observed in the data. However, in opposition to the Gumbel copula function,
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Figure 3.2: The left-hand side figures plot the historical log-returns for average Elspot, UK
N2EX day-ahead and natural gas prices from 01-Jan-2015 to 01-Jun-2020. The right-hand side
figures plot the corresponding histograms. The continuous line is the normal density.
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this copula shows greater dependence in the negative tail than in the positive tail. For

the sake of completeness, Table 3.4 shows the functional form of each of the five bi-

variate copula functions under our two-dimensional modeling setup (i.e., d = 2 in our

case).3.6

Table 3.4: Bivariate copula functions.

Copula Copula function
Panel A: Elliptical copula functions

Gaussian Cρ (u1, u2) := Φρ

(
Φ−1 (u1) ,Φ−1 (u2)

)
Student-t Cρ,ν (u1, u2) := tρ,ν

(
t−1
ν (u1) , t−1

ν (u2)
)

Panel B: Archimedean copula functions

Clayton Cα (u1, u2) :=
(
u−α1 + u−α2 − 1

)− 1

α

Frank Cα (u1, u2) := − 1
α ln

[
1 + (exp[−αu1]−1)(exp[−αu2]−1)

exp[−α]−1

]
Gumbel Cα (u1, u2) := exp

[
−((− lnu1)α + (− lnu2)α)

1

α

]
Notes: Φρ (.) denotes the standardized bivariate normal distribution with correlation ρ, whereas Φ−1 (.)
is the inverse of the univariate standard normal distribution function. tρ,ν (.) denotes the standardized
bivariate Student-t distribution with correlation ρ and ν(≥ 1) degrees of freedom, while t−1

ν (.) is the
inverse of the univariate Student-t cumulative distribution function with ν degrees of freedom. Finally, α
is the parameter attached to the generator of each of the Archimedean copula functions.

3.4.2 Numerical results

Our copulas are estimated through the ML approach that is implemented in Matlab

using the copulafit function.3.7 Table 3.5 shows the elliptical and Archimedean cop-

ula functions parameter estimates, and Table 3.6 presents the corresponding Akaike

Information Criterion (hereafter, AIC) to choose the copula function with better fitting

performance. These results are computed for the entire sample (01-Jan-2015 to 01-

Jun-2020) and using the returns of electricity and natural gas contracts.3.8

3.6We note that the theory of copulas has a long list of important contributions and a complete literature review
on the topic is out of the scope of the present paper. Hence, further details on this theme may be consulted, for
instance, in Joe (1997), Nelsen (2006) or Fusai and Roncoroni (2008, Chapter 8).

3.7Technical details of this copula-based parametric approach can be consulted, for instance, in Fusai and Ron-
coroni (2008, Chapter 8) and Choroś et al. (2010).

3.8Tables H.1 and H.2 contained in the corresponding appendix show the historical correlations for the returns
and prices, respectively.
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According to the AIC criteria, the Gumbel copula is the family selected for 10 time

series: SE1, SE2, SE3, SE4, DK1, Oslo, Bergen, Molde, Trondheim and average

Elspot prices. These results highlight the nonlinear positive dependence between the

returns of the series, i.e., a greater dependence in the positive tail rather than in the

negative tail of the distributions. Ghorbel and Trabelsi (2014) also find that the Gumbel

copula is the appropriate one in some energy markets, in particular for modeling the

dependency structure between crude oil, heating oil and natural gas.

The second copula with the best fitting performance is the Student-t copula that is the

most appropriate for 8 time series: SYS, FI, Kristiansand, Tromsø, EE, LT, LV and UK

N2EX, thus showing that there exists a symmetric dependence between the returns of

these series. This is in line with the observations of Lu et al. (2014), who document that

the Student-t copula is the most appropriate copula function for fitting the dependence

structure between crude and natural gas futures.

We further note that we have also tested the Bayesian Information Criterion (here-

after, BIC) for each copula function under the MR-JD process and the obtained results

confirm the selection of the same copula functions. The outputs for the BIC and Log-

Likelihoods are available upon request.
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Table 3.5: Parameters estimated via the ML approach and for each copula function from Table 3.4,
for the period between 01-Jan-2015 and 01-Jun-2020.

Student’s-t Gaussian Clayton Frank Gumbel
SYS 0.039 0.030 0.019 0.300 1.030
SE1 0.013 0.011 0.015 0.152 1.017
SE2 0.013 0.011 0.015 0.152 1.017
SE3 0.038 0.035 0.028 0.266 1.030
SE4 0.053 0.045 0.042 0.398 1.037
FI -0.019 -0.023 0.015 -0.071 1.013
DK1 0.023 0.018 0.004 0.190 1.021
DK2 0.041 0.036 0.027 0.349 1.024
Oslo 0.031 0.023 0.015 0.247 1.031
Kristiansand 0.038 0.027 0.015 0.300 1.031
Bergen 0.037 0.031 0.015 0.303 1.030
Molde 0.029 0.027 7.369 0.220 1.024
Trondheim 0.029 0.027 7.369 0.220 1.024
Tromsø 0.024 0.020 0.006 0.186 1.029
EE -0.004 -0.010 0.015 0.021 1.016
LV 0.002 -0.007 0.015 0.044 1.014
LT 0.002 -0.009 0.015 0.039 1.016
Average Elspot prices 0.024 0.015 4.948 0.212 1.027
UK day-ahead prices 0.028 0.024 0.015 0.180 1.033

Notes: The second and third columns show the ρ parameters associated to the Student’s-t and Gaussian
copula functions, whereas the remaining columns to the right present the α parameters of Clayton, Frank
and Gumbel copula functions. The Nord Pool Spot computes the reference price used for financial
trading purposes that is known as the System Price (SYS), i.e., the price that would be charged if there
were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent the four
bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the two
bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent the
five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
UK day-ahead prices represent the auction prices in the United Kingdom. All copulas are constructed
using the returns of each electricity contract and the Henry Hub natural gas contract associated to the
distribution hub on the natural gas pipeline system in Louisiana.
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Table 3.6: Akaike Information Criterion (AIC) for each copula function from Table 3.4.

Student’s-t Gaussian Clayton Frank Gumbel
SYS -6.650 -0.226 0.634 -2.125 -5.124
SE1 1.445 0.830 1.000 0.185 -1.208
SE2 1.480 0.829 1.000 0.192 -1.181
SE3 -1.643 -0.651 0.086 -1.476 -3.296
SE4 -4.425 -1.839 -0.899 -4.517 -4.901
FI -2.239 0.269 1.000 0.826 -1.295
DK1 -0.962 0.549 0.986 -0.274 -1.221
DK2 -1.014 -0.746 0.250 -3.302 -1.519
Oslo -3.779 0.261 1.000 -1.121 -5.074
Kristiansand -6.203 -0.038 1.000 -2,128 -5.154
Bergen -1.648 -0.321 1.000 -2.221 -4.409
Molde -1.104 0.021 0.999 -0.692 -3.499
Trondheim -1.104 0.021 0.999 -0.692 -3.499
Tromsø -7.153 0.453 0.957 -0,188 -4.639
EE -2.473 0.874 1.000 0.984 -1.573
LV -4.851 0.939 1.000 0.932 -0.207
LT -7.653 0.893 1.000 0.947 -0.532
Average Elspot prices -2.838 0.677 0.999 -0.555 -3.918
UK day-ahead prices -4.604 0.238 1.000 -0.131 -4.380

Notes: The Nord Pool Spot computes the reference price used for financial trading purposes that is
known as the System Price (SYS), i.e., the price that would be charged if there were no transmission re-
strictions within the Nordic region. SE1, SE2, SE3 and SE4 represent the four bidding areas in Sweden.
FI denotes the bidding area in Finland. DK1 and DK2 stand for the two bidding areas in Denmark. Oslo,
Kristiansand, Bergen, Molde, Trondheim and Tromsø represent the five bidding areas in Norway (Molde
and Trondheim belong to the same bidding area NO3). EE, LV and LT correspond to the bidding areas of
Estonia, Latvia and Lithuania, respectively. Average Elspot prices express an additional variable (price)
representing the arithmetic average of the Elspot prices. UK day-ahead prices represent the auction
prices in the United Kingdom. All copulas are constructed using the returns of each electricity contract
and the Henry Hub natural gas contract associated to the distribution hub on the natural gas pipeline
system in Louisiana. The values in bold highlight which copula should be used for each of the series.

3.5 Risk analysis and portfolio optimization

After modeling the dependence structure through copula functions, we simulate the re-

turns of an energy firm (whose portfolio incorporates electricity and natural gas assets)

and compute extreme risk measures for a two-dimensional portfolio. For this purpose,

1,000 simulations of returns are used and the Value-at-Risk (hereafter, VaR) and Con-

ditional Value-at-Risk (henceforth, CVaR) are adopted as extreme risk measures (for a
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level of confidence of 1− α).

Table 3.7 tests several specifications of weights of electricity (ωelect) and natural gas

(ωng). We begin with a combination of 10% in electricity assets and 90% in natural

gas—to represent a leveraged portfolio in a fossil fuel energy—and adopt subsequent

changes in the weights until achieving a high level of investment in electricity. Elec-

tricity is assumed to come from renewable projects for all the combinations of these

two assets. Under our copula approach, and in order to show the relevance of the

specification adopted for the underlying behavior of electricity and natural gas prices,

we compare the extreme risk measures produced by the MR-JD copula with the ones

generated by the GARCH-EVT copula, i.e., by the process yielding the second best

fitting performance, as shown in Table 3.3.3.9

Several remarks can be drawn from Table 3.7. In Table 3.7 CVaR accounts for losses

exceeding VaR for all scenarios (i.e., for each combination of weights of electricity and

natural gas) and for both copula models (i.e., MR-JD and GARCH-EVT). By definition,

CVaR is the weighted average of the extreme losses which investors are exposed in

the left tail of the distribution of returns beyond the VaR level. Table 3.7 shows that VaR

represents only between 60% (for 1− α = 0.99) to 80% (for 1− α = 0.90) of the CVaR.

This finding is valid for all (discrete) combinations of the assets. The quantification

of losses exceeding VaR is particularly relevant for risk managers since these results

arise from the fat tails feature of these energy returns.
3.9We note that we have also performed the estimation of the copula functions based on the residuals of the

GARCH-EVT. The results confirm that the Gumbel copula is the one with best fitting performance for the average
Elspot and natural gas returns—yielding an AIC value of -6.338. The AIC values for Gaussian, Student-t, Clayton
and Frank copula functions are -0.538, -3.887, 0.886 and -3.194, respectively.
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Table 3.7: Computation of the CVaR and VaR based on the Gumbel copula for different portfolios
of electricity and natural gas.

CVaR VaR
ωelec;ωng 1− α MR-JD GARCH-EVT MR-JD GARCH-EVT

90% -0.1051 -0.1116 -0.0577 -0.0600
10%;90% 95% -0.1395 -0.1513 -0.0800 -0.0852

99% -0.2692 -0.3147 -0.1654 -0.1883
90% -0.1330 -0.1391 -0.0725 -0.0749

20%;80% 95% -0.1772 -0.1886 -0.1006 -0.1058
99% -0.3462 -0.3891 -0.2133 -0.2415
90% -0.1558 -0.1620 -0.0847 -0.0873

30%;70% 95% -0.2080 -0.2196 -0.1175 -0.1229
99% -0.4085 -0.4513 -0.2520 -0.2849
90% -0.1755 -0.1820 -0.0952 -0.0981

40%;60% 95% -0.2346 -0.2467 -0.1322 -0.1380
99% -0.4622 -0.5059 -0.2853 -0.3225
90% -0.1932 -0.2000 -0.1047 -0.1078

50%;50% 95% -0.2584 -0.2711 -0.1453 -0.1515
99% -0.5100 -0.5550 -0.3149 -0.3561
90% -0.2092 -0.2165 -0.1133 -0.1168

60%;40% 95% -0.2799 -0.2934 -0.1572 -0.1639
99% -0.5534 -0.6001 -0.3419 -0.3868
90% -0.2240 -0.2318 -0.1212 -0.1250

70%;30% 95% -0.2998 -0.3141 -0.1682 -0.1754
99% -0.5934 -0.6420 -0.3666 -0.4151
90% -0.2378 -0.2461 -0.1285 -0.1328

80%;20% 95% -0.3184 -0.3335 -0.1784 -0.1862
99% -0.6306 -0.6813 -0.3897 -0.4417
90% -0.2507 -0.2596 -0.1355 -0.1401

90%;10% 95% -0.3357 -0.3518 -0.1880 -0.1963
99% -0.6656 -0.7183 -0.4114 -0.4667

Notes: ωelect and ωng are the weights of electricity and natural gas assets in each portfolio, respectively.
The second column presents the confidence level 1−α. The third and fourth columns show, respectively,
the CVaR for the MR-JD and GARCH-EVT processes under the Gumbel copula. Finally, the fifth and
sixth columns exhibit the corresponding VaR for each model also under the Gumbel copula.

The second finding concerns the variability of the extreme risk measures for different

combinations of electricity and natural gas. The results highlight that both risk mea-

sures increase with higher stakes on electricity. This finding is coherent with the em-

pirical results reported in Section 3.3., where we found that electricity markets exhibit

a higher volatility when compared with the Henry Hub natural gas market.
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The last finding is related with the choice of the best stochastic process. Although simi-

lar extreme risk measures are obtained using both copula models, when the results are

transposed from the (unitary) risk measures to a real portfolio of an energy firm the im-

portance of fitting the underlying prices/volatility based on the most suitable approach

becomes crucial. For example, an energy firm that has available a capital expendi-

ture budget of $2.0 billion may observe (on average) a difference of $23,626,808 in

the CVaR95% computed using the MR-JD copula and the GARCH-EVT copula (for the

allocation (ωelect, ωng) = (10%, 90%)). This finding highlights the relevance of adopting

a stochastic process that accommodates the features of the underlying energy prices,

i.e., for electricity and natural gas, spikes/drops, mean reversion and seasonality effects

should be included.

To complement the previous risk analysis, we also perform an optimization exercise to

find the optimal energy mix for a portfolio manager that seeks the maximization of the

risk-return trade-off. Since risk managers of energy firms aim to maximize their return-

risk ratio, we perform the optimization of the historical return of our portfolio (including

natural gas as a fuel fossil energy and electricity from renewable assets such as photo-

voltaic or wind projects) adjusted by the corresponding standard deviation as:

max
{ωelect,ωng}

rp
σp

(3.17)

subject to

ωelect + ωng = 1, (3.18)

and

ωelect, ωng ≥ 0, (3.19)

where rp denotes the average (historical) return of the portfolio and σp represents the

corresponding standard deviation. While the first restriction ensures the full investment
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in both assets, the second condition is needed to require only long positions in each

asset. The results of this optimization exercise are available in Table 3.8.

Table 3.8: Portfolio optimization and corresponding extreme risk measures from the MR-JD Gum-
bel copula.

Optimal weights Risk measure Simulated extreme risk measure
CVaR(90%) -0.1097
CVaR(95%) -0.1458

ωelec = 0.115 CVaR(99%) -0.2821
ωng = 0.885 VaR(90%) -0.0602

VaR(95%) -0.0834
VaR(99%) -0.1735

Notes: ωelect and ωng are the weights of electricity and natural gas assets in the optimal portfolio, respec-
tively. The second column identifies the used extreme risk measure for the level of confidence 1−α. The
third column shows the extreme optimal extreme risk measures based on the MR-JD processes under
the Gumbel copula.

The findings taken from Table 3.8 are relevant for energy transition policies. In a context

of a two-dimensional portfolio of natural gas and electricity assets, decision makers

tend to avoid a high level of exposure to electricity prices, since electricity is known to

be an high-volatility utility. This finding has implications in energy transition since the

most relevant investments enhancing carbon neutrality involve electricity production

with renewable energy sources. In addition to the large required capital expenditures

in renewable projects, the high level of volatility in electricity markets highlights that

the existence of incentive schemes provided by governments to new investments in

renewable projects are of pivotal importance or, in the absence of such mechanisms,

an accurate risk management policy is required for hedging electricity positions as long

as energy transition is done based on electricity assets.
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3.6 Conclusions and policy implications

In this paper, we have proposed a stochastic framework for modeling electricity (and

natural gas) prices in a context of energy transition. The model captures the three

most relevant features in these markets: mean reversion in the prices, spikes and

drops (modeled as a jump process) and seasonality effects. Our empirical analysis

was addressed for the day-ahead prices of the Nord Pool electricity market and natural

gas prices. Using a ML approach, the model parameters are estimated for multiple

day-ahead prices. Based on Monte Carlo simulations, an out-of-sample exercise is

run to show that the mean-reverting model with jumps outperforms the corresponding

standard geometric Brownian motion with jumps and the GARCH-EVT model.

Given the recent forecasts of an increasing global demand for natural gas (and liq-

uefied natural gas) and since this is the unique fossil fuel available in the context of

energy transition (to meet the goals for decreasing CO2 emissions), we propose a cop-

ula framework (incorporating mean reversion and jumps) to model a simulated portfolio

of electricity (from renewable energy sources) and natural gas assets. Several copula

functions are tested and Gumbel and Student-t copulas emerge as the most suitable

ones. These findings are relevant for risk management purposes, given the historical

low or null correlations in these energy returns. Using extreme risk measures, our port-

folio risk analysis simulates multiple energy portfolios in a context of energy transition

by reducing the energy sources from fossil fuels (i.e., natural gas) and increasing the

weight of electricity assets/projects (from renewable energy sources). We conclude

that the use of government incentive schemes in renewable electricity projects is im-

portant for energy firms, because the usual maximization of the risk-return trade-off

tends to avoid a high exposure to electricity assets.
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For future research and as a natural extension of this work, we intend to study the

optimal weights problem of energy assets. The use of a more realistic formulation

of portfolio optimization requires additional inputs, such as the investments in renew-

able assets, disinvestments in fossil fuels and the modeling of operations in the renew-

able business (feed-in tariffs, hourly pricing management, operations and maintenance

costs, etc.). This issue is out of the scope of the present paper and will be addressed

in future research.
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Appendix G

Table G.1: Estimation of the parameters from the stochastic component for Elspot and N2EX
day-ahead markets in 2019 and via the ML approach.

α κ σ µJ σJ λ
SYS 2.110 103.234∗∗∗ 1.155∗∗∗ -0.093 0.295∗ 21.164∗

SE1 1.909 67.587∗∗∗ 1.303∗∗∗ -0.031 0.474∗∗∗ 42.500∗∗∗

SE2 1.909 67.580∗∗∗ 1.303∗∗∗ -0.031 0.474∗∗∗ 42.505∗∗∗

SE3 2.632 91.459∗∗∗ 1.697∗∗∗ -0.074 0.556∗∗ 27.010∗∗∗

SE4 5.211∗ 151.133∗∗∗ 2.085∗∗∗ -0.208 0.608∗∗ 21.546∗∗

FI 6.284 192.152∗∗∗ 2.761∗∗∗ -0.178 0.496∗∗ 31.044∗∗

DK1 - - - - - -
DK2 - - - - - -
Oslo 0.514 65.879∗∗∗ 0.790∗∗∗ -0.010 0.171∗∗ 47.429∗∗

Kristiansand 0.394 65.358∗∗∗ 0.768∗∗∗ -0.008 0.180∗∗ 44.737∗∗∗

Bergen 0.412 63.998∗∗∗ 0.768∗∗∗ -0.008 0.170∗∗ 48.648∗∗

Molde 0.928 49.574∗∗∗ 0.931∗∗∗ -0.043 0.281∗ 23.738∗∗

Trondheim 0.928 49.574∗∗∗ 0.931∗∗∗ -0.043 0.281∗ 23.738∗∗

Tromsø 1.094 43.843∗∗∗ 0.860∗∗∗ -0.054 0.285∗∗ 22.534∗∗

EE 4.654 220.575∗∗∗ 2.526∗∗∗ -0.110 0.393 34.520
LV 3.629 215.143∗∗∗ 2.538∗∗∗ -0.117 0.443 23.499
LT 3.327 212.197∗∗∗ 2.565∗∗∗ -0.114 0.459 21.586
Average Elspot prices 3.453 143.360∗∗∗ 1.693∗∗∗ -0.142 0.267∗ 20.826∗

UK day-ahead prices 0.568 134.902∗∗∗ 1.223∗∗∗ -0.018 0.194 24.536

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used for
financial trading purposes that is known as the System Price (SYS), i.e., the price that would be charged
if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent
the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the
two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent
the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
Finally, UK day-ahead prices represent the auction prices in the United Kingdom. The existence of
negative (spot) prices in the series DK1 and DK2 in 2019 prevents the calibration of the model in this
year. The symbols ∗, ∗∗, ∗∗∗ indicate if the estimate is statistically significant at 5%, 1% and 0.1% level,
respectively.
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Table G.2: Estimation of the parameters from the stochastic component for Elspot and N2EX
day-ahead markets in 2018 and via the ML approach.

α κ σ µJ σJ λ
SYS 0.888 103.449∗∗∗ 0.888∗∗∗ -0.010 0.203∗∗∗ 91.555∗∗∗

SE1 0.863 106.626∗∗∗ 1.207∗∗∗ -0,013 0.267∗∗∗ 69.283∗∗∗

SE2 0.863 106.626∗∗∗ 1.207∗∗∗ -0.013 0.267∗∗∗ 69.283∗∗∗

SE3 0.382 106.386∗∗∗ 1.229∗∗∗ -0.005 0.262∗∗∗ 74.916∗∗∗

SE4 -0.638 133.194∗∗∗ 1.651∗∗∗ 0.009 0.287∗∗∗ 76.080∗∗∗

FI 2.730 184.358∗∗∗ 1.741∗∗∗ -0.039 0.325∗∗∗ 66.043∗∗∗

DK1 16.590∗∗∗ 232.547∗∗∗ 2.598∗∗∗ -0.444∗∗∗ 0.561∗∗∗ 36.722∗∗∗

DK2 9.986∗∗∗ 208.980∗∗∗ 2.333∗∗∗ -0.178∗ 0.431∗∗∗ 54.902∗∗∗

Oslo 0.914 96.596∗∗∗ 1.013∗∗∗ -0.017 0.254∗∗∗ 59.738∗∗∗

Kristiansand 1.190 85.434∗∗∗ 0.798∗∗∗ -0.014 0.189∗∗∗ 93.386∗∗∗

Bergen 1.830 83.992∗∗∗ 1.028∗∗∗ -0.044 0.371∗∗∗ 44.204∗∗∗

Molde 0.955 85.709∗∗∗ 0.918∗∗∗ -0.015 0.239∗∗∗ 69.380∗∗∗

Trondheim 0.955 85.709∗∗∗ 0.918∗∗∗ -0.015 0.239∗∗∗ 69.380∗∗∗

Tromsø -1.043 62.770∗∗∗ 0.608∗∗∗ 0.012 0.190∗∗∗ 81.333∗∗∗

EE 2.841 180.738∗∗∗ 1.771∗∗∗ -0.043 0.328∗∗∗ 61.948∗∗∗

LV -0.581 181.760∗∗∗ 1.962∗∗∗ 0.020 0.360∗∗ 39.878∗∗∗

LT -0.749 181.703∗∗∗ 1.999∗∗∗ 0.024 0.355∗∗ 41.324∗∗

Average Elspot prices 1.762 140.018∗∗∗ 1.237∗∗∗ -0.020 0.218∗∗∗ 85.320∗∗∗

UK day-ahead prices -2.082∗ 139.716∗∗∗ 0.624∗∗∗ 0.026 0.102∗∗∗ 79.565∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used for
financial trading purposes that is known as the System Price (SYS), i.e., the price that would be charged
if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent
the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the
two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent
the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
Finally, UK day-ahead prices represent the auction prices in the United Kingdom. The symbols ∗, ∗∗,
∗∗∗ indicate if the estimate is statistically significant at 5%, 1% and 0.1% level, respectively.
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Table G.3: Estimation of the parameters from the stochastic component for Elspot and N2EX
day-ahead markets in 2017 and via the ML approach.

α κ σ µJ σJ λ
SYS -4.353∗∗ 122.576∗∗∗ 0.857∗∗∗ 0.033∗ 0.119∗∗∗ 132.055∗∗∗

SE1 -8.134∗∗ 146.671∗∗∗ 1.050∗∗ 0.042∗∗ 0.156∗∗∗ 194.439∗∗∗

SE2 -8.134∗∗ 146.671∗∗∗ 1.050∗∗ 0.042∗∗ 0.156∗∗∗ 194.439∗∗∗

SE3 -12.215∗∗∗ 155.280∗∗∗ 1.134∗∗ 0.058∗∗∗ 0.159∗∗∗ 210.956∗∗∗

SE4 -15.462∗∗ 159.045∗∗∗ 1.447∗ 0.065∗∗ 0.155∗∗∗ 240.725∗∗∗

FI -7.702 206.719∗∗∗ 1.764∗∗ 0.041 0.166∗∗∗ 190.163∗∗∗

DK1 - - - - - -
DK2 - - - - - -
Oslo -1.757 79.455∗∗∗ 0.570∗∗∗ 0.014 0.120∗∗∗ 126.310∗∗∗

Kristiansand -1.021 73.804∗∗∗ 0.587∗∗∗ 0.008 0.122∗∗∗ 110.704∗∗∗

Bergen -1.291 72.893∗∗∗ 0.541∗∗∗ 0.010 0.114∗∗∗ 113.986∗∗∗

Molde -4.260∗ 142.482∗∗∗ 1.389∗∗∗ 0.288∗∗∗ 0.021 149.316∗

Trondheim -4.260∗ 142.482∗∗∗ 1.389∗∗∗ 0.288∗∗∗ 0.021 149.316∗

Tromsø -0.958 66.305∗∗∗ 0.621∗∗∗ 0.012 0.158∗∗∗ 78.621∗∗∗

EE -6.818 203.848∗∗∗ 1.798∗∗ 0.040 0.167∗∗∗ 174.341∗∗

LV -3.535 175.610∗∗∗ 1.912∗∗∗ 0.026 0.171∗∗∗ 147.479∗

LT -1.599 174.774∗∗∗ 2.030∗∗ 0.012 0.166∗∗∗ 156.237∗

Average Elspot prices -7.269 162.829∗∗∗ 1.287∗ 0.040∗ 0.121∗∗∗ 182.791∗∗

UK day-ahead prices -0.986 150.624∗∗∗ 0.803∗∗∗ 0.019 0.133∗∗∗ 51.391∗∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used for
financial trading purposes that is known as the System Price (SYS), i.e., the price that would be charged
if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent
the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the
two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent
the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
Finally, UK day-ahead prices represent the auction prices in the United Kingdom. The existence of
negative (spot) prices in the series DK1 and DK2 in 2017 prevents the calibration of the model in this
year. The symbols ∗, ∗∗, ∗∗∗ indicate if the estimate is statistically significant at 5%, 1% and 0.1% level,
respectively.
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Table G.4: Estimation of the parameters from the stochastic component for Elspot and N2EX
day-ahead markets in 2016 and via the ML approach.

α κ σ µJ σJ λ
SYS -1.167 82.267∗∗∗ 1.296∗∗∗ 0.027 0.206∗∗ 62.748∗

SE1 -4.381∗ 137.591∗∗∗ 2.066∗∗∗ 0.545∗∗∗ 0.131 8.697∗

SE2 -4.381∗ 137.591∗∗∗ 2.066∗∗∗ 0.545∗∗∗ 0.131 8.697∗

SE3 -5.156∗ 120.914∗∗∗ 1.903∗∗∗ 0.115 0.265∗∗ 48.949
SE4 -4.992 142.059∗∗∗ 2.335∗∗∗ 0.521∗∗∗ 0.110 10.406∗

FI -3.251 185.328∗∗∗ 2.346∗∗ 0.041 0.252∗∗ 96.940
DK1 - - - - - -
DK2 - - - - - -
Oslo -0.936 74.903∗∗∗ 0.864∗∗∗ 0.016 0.207∗∗∗ 93.800∗∗∗

Kristiansand -0.153 69.679∗∗∗ 0.645∗∗∗ 0.001 0.123∗∗∗ 122.165∗∗∗

Bergen 0.143 63.456∗∗∗ 0.657∗∗∗ 0.003 0.125∗∗∗ 114.226∗∗∗

Molde -1.975 90.824∗∗∗ 1.578∗∗∗ 0.073 0.268∗ 32.771∗

Trondheim -1.975 90.824∗∗∗ 1.578∗∗∗ 0.073 0.268∗ 32.771∗

Tromsø -0.265 87.068∗∗∗ 0.684∗∗∗ 0.014 0.244∗ 48.914∗

EE -0.723 189.669∗∗∗ 2.212∗∗∗ 0.020 0.276∗∗ 69.486∗∗

LV -2.178 184.162∗∗∗ 2.068∗∗∗ 0.041 0.281∗∗ 67.883
LT -4.189 191.764∗∗∗ 1.940∗∗∗ 0.049 0.264∗∗∗ 97.815∗

Average Elspot prices -2.971 138.514∗∗∗ 1.967∗∗∗ 0.416∗∗∗ 0.119 8.379
UK day-ahead prices -6.474∗∗∗ 211.043∗∗∗ 1.491∗∗∗ 0.251∗∗ 0.392∗∗ 26.511∗∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used for
financial trading purposes that is known as the System Price (SYS), i.e., the price that would be charged
if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent
the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the
two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent
the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
Finally, UK day-ahead prices represent the auction prices in the United Kingdom. The existence of
negative (spot) prices in the series DK1 and DK2 in 2016 prevents the calibration of the model in this
year. The symbols ∗, ∗∗, ∗∗∗ indicate if the estimate is statistically significant at 5%, 1% and 0.1% level,
respectively.
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Table G.5: Estimation of the parameters from the stochastic component for Elspot and N2EX
day-ahead markets in 2015 and via the ML approach.

α κ σ µJ σJ λ
SYS -1.964 84.651∗∗∗ 1.369∗∗∗ 0.017 0.224∗∗∗ 135.241∗∗∗

SE1 -5.988∗∗ 82.084∗∗∗ 0.986∗ 0.034 0.239∗∗∗ 187.595∗∗∗

SE2 -6.634∗∗ 90.383∗∗∗ 0.941 0.036 0.236∗∗∗ 193.751∗∗∗

SE3 -7.194∗ 105.804∗∗∗ 2.222∗∗∗ 0.078 0.371∗∗∗ 96.601∗∗∗

SE4 -9.765∗∗ 94.793∗∗∗ 2.192∗∗∗ 0.077 0.384∗∗∗ 131.106∗∗∗

FI 4.584 157.498∗∗∗ 2.732∗∗∗ -0.029 0.385∗∗∗ 146.582∗∗∗

DK1 -4.367 198.133∗∗∗ 1.871∗∗ 0.020 0.410∗∗∗ 240.503∗∗∗

DK2 -18.397∗∗∗ 169.986∗∗∗ 1.105 0.068∗∗ 0.331∗∗∗ 280.442∗∗∗

Oslo -1.059 68.060∗∗∗ 0.998∗∗∗ 0.010 0.225∗∗∗ 135.280∗∗∗

Kristiansand -0.553 66.814∗∗∗ 1.004∗∗∗ 0.007 0.225∗∗∗ 126.908∗∗∗

Bergen -1.255 61.210∗∗∗ 1.011∗∗∗ 0.013 0.229∗∗∗ 122.692∗∗∗

Molde -3.206∗ 74.941∗∗∗ 0.780∗∗∗ 0.020 0.202∗∗∗ 176.438∗∗∗

Trondheim -3.206∗ 74.941∗∗∗ 0.779∗∗∗ 0.020 0.202∗∗∗ 176.438∗∗∗

Tromsø 0.661∗ 54.640∗∗∗ 0.860∗∗∗ -0.003 0.183∗∗∗ 130.475∗∗∗

EE 16.586∗∗∗ 244.115∗∗∗ 3.073∗∗∗ -0,201∗ 0.393∗∗∗ 80.340∗∗

LV 3.972 167.847∗∗∗ 1.502∗∗∗ -0,029 0.212∗∗∗ 127.480∗∗∗

LT 3.472 163.395∗∗∗ 1.393∗∗ -0,022 0.208∗∗∗ 147.721∗∗∗

Average Elspot prices 0.653 145.193∗∗∗ 1.397∗∗ -0.002 0.166∗∗∗ 212.358∗∗∗

UK day-ahead prices 1.553 171.116∗∗∗ 0.554∗∗∗ -0.009 0.069∗∗∗ 154.748∗∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Nord Pool Spot computes the reference price used for
financial trading purposes that is known as the System Price (SYS), i.e., the price that would be charged
if there were no transmission restrictions within the Nordic region. SE1, SE2, SE3 and SE4 represent
the four bidding areas in Sweden. FI denotes the bidding area in Finland. DK1 and DK2 stand for the
two bidding areas in Denmark. Oslo, Kristiansand, Bergen, Molde, Trondheim and Tromsø represent
the five bidding areas in Norway (Molde and Trondheim belong to the same bidding area NO3). EE, LV
and LT correspond to the bidding areas of Estonia, Latvia and Lithuania, respectively. Average Elspot
prices express an additional variable (price) representing the arithmetic average of the Elspot prices.
Finally, UK day-ahead prices represent the auction prices in the United Kingdom. The symbols ∗, ∗∗,
∗∗∗ indicate if the estimate is statistically significant at 5%, 1% and 0.1% level, respectively.
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Table G.6: Estimation of the parameters from the stochastic component for Henry Hub natural gas
prices in the period 2015-2019 and via the ML approach.

α κ σ µJ σJ λ
2015 0.458 20.304∗∗∗ 0.162∗∗∗ -0.001 0.047∗∗∗ 181.808∗∗

2016 1.538 52.323∗∗∗ 0.067∗∗∗ -0.086 0.001∗∗∗ 13.833∗∗

2017 0.861 60.123∗∗∗ 0.521∗∗∗ -0.004 0.044∗∗∗ 143.919∗∗

2018 0.287 25.646∗∗∗ 0.424∗∗∗ -0.036 0.167∗∗∗ 31.439∗∗

2019 0.246 49.245∗∗∗ 0.499∗∗∗ -0.008 0.111∗∗∗ 37.864∗∗

Notes: κ is the speed of mean reversion, α/κ denotes the long-run level of the process, σ represents
the volatility, µJ and σJ are, respectively, the mean and the standard deviation of the jump size and λ is
the jump intensity of the Poisson process. The Henry Hub natural gas prices represent the spot prices
of the distribution hub on the natural gas pipeline system in Louisiana. The symbols ∗, ∗∗, ∗∗∗ indicate
if the estimate is statistically significant at 5%, 1% and 0.1% level, respectively.
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Appendix H

Table H.1: Historical correlation between the listed electricity prices and the Henry Hub natural
gas prices.

2015 2016 2017 2018 2019 All
SYS 0.270 0.018 -0.017 -0.058 -0.055 0.012
SE1 0.200 0.024 -0.036 -0.019 -0.059 0.001
SE2 0.200 0.024 -0.036 -0.019 -0.059 0.001
SE3 0.199 0.018 -0.036 -0.045 -0.061 0.020
SE4 0.197 0.013 -0.037 -0.027 -0.024 0.015
FI 0.177 -0.028 -0.017 -0.052 -0.061 -0.013
DK1 0.192 0.009 -0.070 -0.077 -0.264 -0.017
DK2 0.178 0.017 -0.037 -0.067 -0.167 -0.004
Oslo 0.273 -0.012 0.003 -0.055 -0.050 0.002
Kristiansand 0.267 0.030 -0.030 -0.067 -0.063 0.002
Bergen 0.257 0.031 -0.013 -0.031 -0.033 0.004
Molde 0.240 0.012 -0.038 -0.029 -0.047 0.017
Trondheim 0.240 0.012 -0.038 -0.029 -0.047 0.017
Tromsø 0.256 -0.013 0.024 -0.008 -0.058 0.013
EE 0.188 -0.009 -0.022 -0.057 -0.025 -0.006
LV 0.095 0.046 -0.085 -0.074 -0.027 -0.028
LT 0.084 0.018 -0.079 -0.075 -0.019 -0.031
Average Elspot prices 0.251 0.021 -0.045 -0.059 -0.080 -0.012
UK day-ahead prices 0.094 0.038 -0.024 -0.046 0.098 0.004

Notes: The Nord Pool Spot computes the reference price used for financial trading purposes that is
known as the System Price (SYS), i.e., the price that would be charged if there were no transmission re-
strictions within the Nordic region. SE1, SE2, SE3 and SE4 represent the four bidding areas in Sweden.
FI denotes the bidding area in Finland. DK1 and DK2 stand for the two bidding areas in Denmark. Oslo,
Kristiansand, Bergen, Molde, Trondheim and Tromsø represent the five bidding areas in Norway (Molde
and Trondheim belong to the same bidding area NO3). EE, LV and LT correspond to the bidding ar-
eas of Estonia, Latvia and Lithuania, respectively. Average Elspot prices express an additional variable
(price) representing the arithmetic average of the Elspot prices. Finally, UK day-ahead prices represent
the auction prices in the United Kingdom. The last column of the table refers to the full sample period
(01-Jan-2015 to 01-Jun-2020).
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Table H.2: Historical correlation between the listed electricity returns and the Henry Hub natural
gas returns.

2015 2016 2017 2018 2019 All
SYS -0.008 0.316 0.028 0.058 0.591 0.459
SE1 0.027 0.428 0.075 0.003 0.509 0.471
SE2 0.028 0.428 0.075 0.003 0.509 0.471
SE3 -0.025 0.403 0.019 0.033 0.485 0.435
SE4 0.012 0.418 0.042 0.050 0.400 0.425
FI -0.004 0.219 -0.035 -0.018 0.124 0.299
DK1 0.018 0.364 0.028 0.063 0.254 0.381
DK2 0.064 0.371 0.062 0.032 0.278 0.382
Oslo -0.025 0.275 0.044 0.054 0.601 0.445
Kristiansand -0.015 0.329 -0.018 0.103 0.604 0.457
Bergen -0.018 0.280 -0.040 0.062 0.603 0.444
Molde 0.036 0.410 0.060 0.003 0.598 0.466
Trondheim 0.036 0.410 0.060 0.003 0.598 0.466
Tromsø 0.102 0.311 0.027 -0.012 0.603 0.425
EE 0.042 0.185 -0.044 0.031 0.062 0.257
LV -0.131 0.124 0.002 0.003 0.082 0.237
LT -0.133 0.103 0.013 0.006 0.085 0.241
Average Elspot prices -0.005 0.357 0.031 0.030 0.472 0.437
UK day-ahead prices 0.414 0.247 0.109 0.158 0.649 0.512

Notes: The Nord Pool Spot computes the reference price used for financial trading purposes that is
known as the System Price (SYS), i.e., the price that would be charged if there were no transmission re-
strictions within the Nordic region. SE1, SE2, SE3 and SE4 represent the four bidding areas in Sweden.
FI denotes the bidding area in Finland. DK1 and DK2 stand for the two bidding areas in Denmark. Oslo,
Kristiansand, Bergen, Molde, Trondheim and Tromsø represent the five bidding areas in Norway (Molde
and Trondheim belong to the same bidding area NO3). EE, LV and LT correspond to the bidding ar-
eas of Estonia, Latvia and Lithuania, respectively. Average Elspot prices express an additional variable
(price) representing the arithmetic average of the Elspot prices. Finally, UK day-ahead prices represent
the auction prices in the United Kingdom. The last column of the table refers to the full sample period
(01-Jan-2015 to 01-Jun-2020).
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4. Modeling commodity prices under alternative

jump processes and fat tails dynamics

Abstract: The recent fluctuations in commodity prices affected significantly Oil & Gas

(O&G) companies’ returns. However, integrated O&G companies are not only exposed

to the downturn of oil prices since a high level of integration allows these firms to ob-

tain non-perfectly positive correlated portfolio. This paper aims to test several different

stochastic processes to model the main strategic commodities in integrated O&G com-

panies: brent, natural gas, jet fuel and diesel. The competing univariate models include

the log-normal and double exponential jump-diffusion model, the Variance-Gamma

process and the geometric Brownian motion with nonlinear GARCH volatility. Given

the effect of correlation between these assets, we also estimate multivariate models,

such as the Dynamic Conditional Correlation (DCC) GARCH, DCC-GJR-GARCH and

the DCC-EGARCH models. Overall, we find that: (i) the asymmetric conditional het-

eroskedasticity model substantially improves the performance of the univariate jump-

diffusion models; and (ii) the multivariate approaches are the best models for our strate-

gic energy commodities, in particular the DCC-GJR-GARCH model.

JEL Classification: C52, C58, Q40, Q41

Keywords: Commodities, Fat tails, Jumps, Maximum likelihood
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4.1 Introduction

The attention paid by notable economists to energy markets is not recent. Following the

prominent contributions of Keynes (1936), Kaldor (1939), Working (1948) and Working

(1949), Brennan and Hughes (1991) recover the findings on the theory of storage and

denominate it as the Kaldor–Working hypothesis, where the comparison between own-

ing physically a commodity and writing a future contract on it is analyzed. Afterwards,

the developments of the option pricing theory fully influenced the research on energy

markets.

Motivated by the seminal research of Black (1976), Gibson and Schwartz (1990) de-

scribe the spot price of the crude oil following a log-normal diffusion process, i.e., a

GBM for pricing options on this commodity. Other references follow this idea for some

exhaustible natural resources, such as Slade (1988), MacKie-Mason (1990), Pindyck

(2001) and Lund (1992). Years later, some studies introduced mean-reverting pro-

cesses to replace the usual GBM approach to model spot prices of commodities, e.g.,

Bessembinder et al. (1995), Schwartz (1997) and Eydeland and Geman (1998). More

recently, Geman and Shih (2009) examine and test alternative stochastic processes

(including the Constant Elasticity of Variance (CEV, hereafter) theoretical framework of

Cox (1975) and their mean-reverting processes) for modeling the spot prices of four

strategic commodities: crude oil, gold, copper and coal. The estimation of the au-

thors for these commodities occurred for two subsamples: 1990-1999 and 2000-2007

and they achieve three relevant findings: (i) the log-returns of the spot prices have

become closer to the features of skewness and kurtosis of a normal distribution; (ii)

the mean-reverting processes disappeared between 2000-2007 as long as the spot

prices increases; and (iii) the importance of the CEV theoretical framework emerges

due to the increasing volatility. Dias and Nunes (2011) also suggest the use of the CEV
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diffusion for pricing real options on commodity markets. Comparing with the standard

GBM approach, the authors show that firms using the assumption of the log-normal

behaviour for the prices of the underlying asset may result to non-optimal investment

(or disinvestment) policies.

More complex alternative stochastic models have been tested recently in commodity

markets. Askari and Krichene (2008) study the dynamics of crude oil prices and use

for this purpose the jump-diffusion model of Merton (1976) and the Variance-Gamma

process suggested by Madan and Milne (1991) and Madan et al. (1998). In the field of

the infinite and finite jump-diffusion, Cao et al. (2018) examine these jump processes

in commodity futures prices, in particular for crude oil and natural gas futures. These

authors document that futures prices can be decomposed into infinity small jumps and

infrequent larger jump-diffusion in these commodity futures markets. Another relevant

finding from the authors is that there is no evidence to eliminate the Brownian motion

behaviour for each futures series.

The volatility in commodities markets has not only been modeled based on stochastic

processes adopted from the option pricing theory. Recognizing that GARCH models

are widely used to model the volatility in energy markets, several empirical studies

emerged recently and use more complex models than the standard GARCH. For ex-

ample, while Nomikos and Andriosopoulos (2012) investigate the pertinence of mod-

eling the volatility of several NYMEX commodity series using the exponential GARCH

(EGARCH, hereafter) to face the standard GARCH approach, Youssef et al. (2015)

examine the adoption of three long-memory frameworks: the Fractional Integrated

GARCH (FIGARCH), the Hyperbolic GARCH (HYGARCH) and the Fractional Inte-

grated APARCH (FIAPARCH). More recently, Chan and Grant (2016) test a battery

of GARCH-family and stochastic volatility (hereafter, SV) models under Bayesian es-

timation for the several commodity prices, including crude oil, natural gas and several
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refined products. The list of the tested models includes standard, jump-diffusion, fat

tails and asymmetric frameworks. Their empirical research has found that SV models

generally outperform their GARCH-family counterpart models.

Another recent field in energy markets is the application of multivariate analysis. In

order to capture the changes in correlations between variables, the dynamic conditional

correlation GARCH (DCC-GARCH, hereafter) model suggested by Engle (2002) has

been applied for energy markets too. Creti et al. (2013) investigate the link between the

commodities and stocks markets and find that the last financial crisis has emphasized

the financialization of commodity markets. A similar empirical analysis was conducted

by Basher and Sadorsky (2016) by modeling the volatility of emerging stock markets,

crude oil, VIX, gold and bond prices with the DCC-GARCH model. This setup has been

combined with the multivariate heteroscedastic autoregressive model to investigate

the relationship between the volatility of the US crude oil and the Chinese agricultural

markets has been investigated by Luo and Ji (2018). The volatility linkage between

energy and agricultural Germany markets was studied by Cabrera and Schulz (2016)

with the adoption of the DCC-GARCH.

Hence, the main goal of this paper is to test the performance of four univariate stochas-

tic processes and three multivariate models to capture the price movements for the

main assets of an integrated O&G company using different time periods of analysis.

More specifically, this paper offers three contributions to the current literature on mod-

eling commodity prices. First, and to the best of our knowledge, these models have not

been explored yet for the main strategic commodities of integrated O&G firms: crude

oil, natural gas, jet fuel and diesel. Although some researchers used the standard

stochastic processes (GBM, CEV and others) to model prices of some individual com-

modities, this paper studies different univariate and multivariate jump-diffusion and fat

tails models. Second, to support the stylized-fact of discontinuous variations in com-
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modity prices, this research tests empirically the pertinence of jumps by incorporat-

ing the log-normal and the double exponential jump-diffusion models and others pure

jumps processes of finite variations, however with infinitely jump-diffusion, such as the

VG process. The traditional conditional heteroskedasticity phenomena is also tested

by introducing the nonlinear generalized autoregressive conditional heteroskedasticity

(NGARCH) volatility to the standard GBM. Third, since the correlation effects matter

for integrated O&G companies, we test three different multivariate approaches based

on the Dynamic Conditional Correlation: the DCC-GARCH, DCC-GJR-GARCH and

the DCC-EGARCH. Additionally, we also study a large period of analysis in order to

include the recent fluctuations in the prices of our commodities. Our examination for

these commodities allow us to find which features are pertinent for commodity prices,

thus providing useful empirical findings for investors and energy firms.

The remainder of this paper is organized as follows. Section 4.2 presents a brief

overview on the data. Section 4.3 reports the jump-diffusion and fat tails univariate

processes and the corresponding statistical implementation with the estimation results.

Section 4.4 presents multivariate approaches for our strategic commodities. Finally,

section 4.5 presents some concluding remarks and proposals for future research.

4.2 Data

This section presents the main features of the data set chosen for an integrated O&G

company. More specifically, we consider the (usual) daily spot prices typically used by

these firms, namely: brent, natural gas and the main refined products included in the

refining margin. In the case of exploration and production activities, the main driver

for the performance of these business units is the market risk of brent. As expected,

fluctuations in the prices of natural gas affect the prices of brent. Furthermore, the
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refining margin is considered as the most crucial and exogenous variable in the down-

stream business unit. Since the refining margin is not a spot price—i.e., it is a weighting

price of several refined products as output and taking the initial cost of the crude oil as

input—, we adopt the jet fuel and diesel as proxies for the refined products. Hence, our

data is constituted by four assets: brent, natural gas, jet fuel and diesel.

The prices of the light North Sea (physical) crude oil—measured in US$/barrel (hence-

forth, US$/bbl)—are usually considered as the benchmark for the daily (spot) prices of

brent. Therefore, we follow this market standard throughout this paper. For natural gas

daily prices, we adopt the UK National Balancing Point (hereafter, NBP) gas market,

which is the longest-established spot-traded natural gas market in Europe—the prices

are measured in GB Pence/Therm. Finally, for the downstream operations and the

refining margin, we consider a benchmark refining margin for companies based on hy-

drocracking, cracking, base oils and aromatic margins, which includes the jet fuel and

the ULSD/diesel.4.1 These two commodities are measured in US$/Ton (henceforward,

US$/T).

All data is collected from the Standard & Poor’s Global Platts database. The time series

for the daily prices of brent is collected from January 1990 to December 2017. Since

the first available price for the UK NBP gas market is August 1996, the data set period

for this commodity is from August 1996 to December 2017. For the spot prices of jet

fuel and diesel, we consider the period between January 1990 and December 2017

and from December 2002 to December 2017, respectively.

To calibrate each stochastic differential equation, we divide the full data set 1990-2017

into three subsamples: 1990-1999, 2000-2007 and 2008-2017. The entire sample is

provided for an analysis of long-term estimations. The choice made for the first two
4.1ULSD is diesel fuel with significantly lowered sulfur content which was recently adopted for almost all Euro-

pean and North America O&G companies.
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subperiods (i.e., 1990-1999 and 2000-2007) follows from the insights of Geman and

Shih (2009) and is justified by the changes observed in the commodity price behaviour

after 2000 for the period between 1990-2007. In fact, an increasing trajectory of the

brent and crude oil is observed after 2000 until the beginning of the subprime crisis.

The following subsample (i.e., 2008-2017) contains the two most relevant drops in the

crude oil prices in the latest years. Table 4.1 provides the descriptive statistics for the

prices and log-returns of the four strategic commodities under analysis.

Table 4.1: Descriptive statistics of the four strategic commodities for integrated O&G firms.

Brent Natural gas Jet fuel Diesel
Panel A: Prices

Average 47.59 34.47 463.88 655.92
Std. deviation 33.60 19.57 308.14 246.23
Median 32.39 30.63 341.88 605.50
Minimum 9.13 4.20 105.75 227.75
Maximum 144.22 187.50 1,466.50 1,354.00

Panel B: Log-returns
Average 0.00015 0.00024 0.00013 0.00021
Std. deviation 0.02303 0.07786 0.01859 0.01935
Median 0.00055 0.00000 0.00000 0.00037
Minimum -0.45319 -1.11045 -0.32333 -0.08735
Maximum 0.19454 1.17826 0.15369 0.10905
Observations 7,125 5,370 7,062 3,781

4.3 Jump-diffusion and fat tails processes

This section addresses the estimation of jump-diffusion and fat tails processes for our

portfolio of commodities.
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4.3.1 The jump-diffusion model of Merton (1976)

It is commonly accepted that realistic approaches for modeling the behaviour of com-

modity prices should contain both diffusion and jump components. In order to model

the spot prices of our commodities, we start considering the jump-diffusion model pro-

posed by Merton (1976) in which the asset price dynamics is governed by

dSt = µStdt+ σStdWt + StdJt, (4.1)

where St, µ and σ represent the spot price, the corresponding drift and the instanta-

neous volatility per unit of time, respectively, and {Wt; t ≥ t0} is a standard Brownian

motion under the real probability measure P. The univariate jump process defined by

Jt =

NT∑
j=1

(Yj − 1), (4.2)

where the parameters Nt and Jt denotes a Poisson process and the log-jump size,

respectively. Yj describes the size of the j-th jump. (NT )T≥0 follows a homogeneous

Poisson process with intensity λ. Given this Poisson distribution with parameter λT ,

the Poisson probability mass function is represented by

fP (x, λT ) =
exp(−λT )(λT )x

x!
, x = 0, 1, 2, .... (4.3)

Under this stochastic differential equation (SDE, hereafter), the log-jump size Jt is rep-

resented by a Gaussian random variable which is characterized by the mean value

µJ and standard deviation σJ . For simplicity, we are assuming that Wt, Nt and Jt

are independent variables in this model. We define the set of parameters, θ, of this
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Poisson-based jump-diffusion model as follows

θ ≡ (µ, σ, λ, µJ , σJ), (4.4)

which is an unknown parameter represented in the bounded set Θ ⊂ R5. For com-

parison purposes, we compare the performance of the jump-diffusion model of Merton

(1976) against the standard GBM process.

Regarding estimation purposes, Aı̈t-Sahalia (2004) explored the estimation of the Mer-

ton (1976) jump-diffusion model based on Poisson jumps (JGBM, henceforth)—as well

as for other Lévy processes—through the Generalized Method of Moments (GMM,

hereafter). One of the key conclusions obtained from Aı̈t-Sahalia (2004) is that GMM

estimators using absolute moment of various noninteger orders are not as efficient as

the Maximum Likelihood (ML, hereafter) estimation. Hence, we adopt the ML proce-

dure to estimate jump-diffusion and fat tails models. For the sake of completeness,

Appendix I.1 of provides further details about the estimation under ML for both the

GBM and JGBM processes.

The probability density function (pdf) results from the sum of the conditional probability

density, which is weighted by the probability of the conditioning variable, i.e., the jumps

occurrence. The ML estimates the parameter set on the log-returns conditioning on

the jumps as

{µ?,µJ ,λ>0,σ>0,σJ>0}L
? = log(L), (4.5)

where the parameter set is represented by θ ≡ (µ, µJ , λ, σ, σJ). Thus, we can define

the log-likelihood (LL, hereafter) function for Xti := log(Sti)− log(Sti−1
) as

L?(Θ) =
n∑
i=1

log f(xi;µ, µJ , λ, σ, σJ), (4.6)
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and

f(xi;µ, µJ , λ, σ, σJ) =
∞∑
j=0

P(nt = j)fN(xi; (µ− 1

2
σ2)∆t+ jµJ , σ

2∆t+ jσ2
J), (4.7)

where ∆t is the time step in the discretisation, xi represents the vector for the values

x1,...,xn and for t1,...,tn. From equation (4.7) it is easy to understand that this expression

is an (infinite) product between Gaussian random variables and a Poisson probability

defined by P(nt = j) = fp(j; ∆tλ). For example, for small values of ∆t usually the

Poisson process jumps at most once. When this scenario occurs, equation (4.7) is

simplified to

f(xi;µ, µJ , λ, σ, σJ) (4.8)

= (1− λ∆t)fN(xi; (µ− 1

2
σ2)∆t, σ2∆t) + λ∆tfN(xi; (µ− 1

2
σ2)∆t+ µJ , σ

2∆t+ σ2
J).

and results in a combined product of two Gaussian random variables by the probabili-

ties of no jumps in ∆t or one jump in ∆t.

The parameter set for both the GBM and JGBM processes are estimated via ML for

brent, natural gas, jet fuel and diesel. The aforementioned subsamples are also used to

perform this estimation.4.2 Table 4.2 reports the estimation for the parameter set under

the JGBM process, whereas the estimates under the GBM diffusion are displayed in

Table I.1 of the appendix I.
4.2All the numerical results are obtained through Matlab (R2015a 32 bit) running on an Intel Core i7 2.40GHz

personal computer. The application of the ML is executed with the “fminsearch” algorithm. By default, we set
the maximum number of iterations and maximum number of function evaluations to be 100,000. The termination
tolerance on the function value is 1e-4.
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Table 4.2: Estimation of the parameters under the jump-diffusion model of Merton (1976) and via
the ML approach.

µ σ µJ σJ λ LL

Brent

1990-2017 0.0000312 0.0216000 0.0706000 0.0008480 0.0113000 16,885
1990-1999 0.0000475 0.0230000 0.0848000 0.0004795 0.0095000 5,927
2000-2007 0.0006833 0.0223000 0.0704000 0.0008732 0.0046000 4,859
2008-2017 -0.0000635 0.0194000 0.0740000 0.0007642 0.0166000 6,142

Natural gas

1996-2017 0.0002462 0.0658000 0.2679000 0.0075000 0.0172000 6,571
1996-1999 0.0000107 0.0639000 0.2521000 0.0101000 0.0177000 1,051
2000-2007 0.0006055 0.0910000 0.3632000 0.0067000 0.0168000 1,831
2008-2017 0.0000211 0.0390000 0.1675000 0.0009419 0.0132000 4,398

Jet fuel

1990-2017 0.0001066 0.0175000 0.0688000 0.0008681 0.0076000 18,278
1990-1999 -0.0001544 0.0172000 0.0690000 0.0008963 0.0077000 6,615
2000-2007 0.0006403 0.0190000 0.0808000 0.0004987 0.0015000 5,119
2008-2017 -0.0001603 0.0163000 0.0550000 0.0015000 0.0181000 6,567

Diesel
2002-2017 0.0004222 0.0187000 0.0875000 0.0003726 0.0046000 9,584
2002-2007 0.0010000 0.0204000 0.0743000 0.0007144 0.0021000 3,156
2008-2017 -0.0001710 0.0170000 0.0542000 0.0011000 0.0200000 6,461

Several interesting findings can be drawn from these results. First, since µJ is not

larger than one, jumps in the log-returns of our commodities will not assume to be only

strictly positive. The role of this finding is particularly relevant since the price behaviour

of our strategic commodities also shows negative jumps. However, the estimated mean

value of the jumps is positive, which is also coherent with our series. The mean value

of jumps in natural gas exceeds the corresponding mean values for jumps for the other

commodities. This fact is in line with the extreme spikes observed in 2005 and 2006.

Second, the estimation of the parameters is consistent with the descriptive statistics.

For example, the estimation of µ in the period 1990-2017 for brent and via the ML

approach is 0.0001502, which compares with the average of the log-return of this com-

modity for the same period, i.e., 0.000147. The correlation between our commodities is

also evident in the results. Since the spot prices of brent, jet fuel and diesel are highly

correlated, the estimation for the drift in the period 2008-2017 assume always negative

values (once again, it is consistent with the average daily log-returns). Comparing with
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the natural gas and for the same subsample, the estimation for the drift component

assumes a positive value, given a lower correlation between the spot price of brent

(as well as other refined products) and natural gas prices. The estimated volatility

in our strategic commodities shows that a lower volatility can be identified in the last

subsample.

Finally, a brief comment on the parameter λ. Since the intensity of the jump-diffusion

plays a significant role in the framework suggested by Merton (1976), indeed we find

higher estimations for λ in the subsamples where occurred the most significant (positive

and negative) jumps. In fact, the subsample 2008-2017 represents the period in which

we find higher values for the intensity of jump-diffusion, which is explained by the most

two relevant drops in the price of brent (and consequently on the refined products, such

as the jet fuel and the diesel) over the last decade.4.3 As usual, the exception occurs

for natural gas, which reports similar values for λ̂ in each subsample.

Table I.2. of the appendix I reports the usual information criteria, i.e., the Akaike In-

formation Criteria (AIC, hereafter) and Bayesian Information Criteria (BIC, henceforth).

In fact, introducing Poisson jumps in the standard GBM process allows a better perfor-

mance in fitting these models to real data in accordance with the AIC. This finding is

valid for both the entire sample and each subsample, which justifies the preference of

the JGBM process when compared with the standard GBM diffusion. Using the BIC,

the previous results also remain for the major of subsamples.

Another goodness-of-fit test is introduced to validate this jump-diffusion approach: the

Q-Q plot. The parameter set of the jump-diffusion model with compound Poisson jumps
4.3The first relevant drop in this subsample was motivated by the uncertainty of the global financial crisis in

2007-2009. In fact, during the first semester of 2008 the spot prices of petroleum products (brent or crude oil)
achieved 140$/bbl and few months later these prices dropped abruptly to 35$/bbl in the global markets. In April
of 2011 the spot prices of petroleum products achieved 120$/bbl as the recovery of the global economy occurred.
However, in June of 2014 the spot prices of this commodity dropped once again, until 27$/bbl in the beginning of
2016. A large period of higher prices encouraged oil production by the major countries/firms, so there was an oil
glut in 2014 after demand from emerging markets declined.
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Figure 4.1: Histogram of brent log-returns during 1990-2017 and simulated JGBM process
using estimated parameters and Q-Q plot of the series.

estimated via ML for brent during 1990-2017 is used to simulate the stochastic paths

of this framework. This goodness-of-fit is depicted in Figure 4.1 by showing the Q-Q

plot of the simulated returns from the JGBM process against the historical continuous

returns of brent. The quantiles of the empirical distribution are plotted in the Y-axis,

whereas the quantiles of the Merton (1976) distribution are presented in the X-axis.

Even though the JGBM process provides a slightly better performance when com-

pared with the standard GBM—as documented in Table I.2—, this Q-Q plot shows that

the model suggested by Merton (1976) does not capture all features of the empirical

distribution. Similar conclusions are achieved for the others strategic commodities.

4.3.2 The jump-diffusion model of Kou (2002)

In this subsection, we present and test the Double Exponential Jump-Diffusion (DEJD,

hereafter) model suggested by Kou (2002). The DJED model is a particular case

of Lévy processes with two-sided jumps. Comparing with the Poisson jump-diffusion

approach introduced by Merton (1976), the DEJD model incorporates a highly skewed

and leptokurtic distribution for the log-returns and, consequently, allows to model the

spot prices of commodity prices.
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In this paper, we adopt this DEJD approach to model our integrated O&G commodity

prices for two reasons. First, the statistical nature of the double exponential distribution

allows to capture the leptokurtic feature in the jump size distribution. Second, the

double exponential distribution has the advantage of incorporating the memoryless

property, which explains the success of this approach for both modeling and pricing

under the DEJD approach Kou (2007).

This special case of Lévy processes with two-sided jumps is governed by the following

SDE (under the physical measure P)

dSt = µSt−dt+ σSt−dWt + St−d(
Nt∑
i=1

(Yi − 1)), (4.9)

and solving this SDE using the Itô’s lemma, the following solution is obtained

St+∆t = St exp

[
(µ− 1

2
σ2)∆t+ σW∆t

]N∆t∏
i=1

Yi, (4.10)

where µ, σ and Wt have the same meaning as before, St− is the value of the under-

lying asset just before the possible jump event, Nt is the usual Poisson process with

intensity λ and {Yi} denotes a sequence of independent and identically distributed (iid,

hereafter) random variables assuming non-negative values. The parameters µ and σ

are constant over time, while the standard Brownian motion and the jumps are one-

dimensional Kou (2002). The introduction of randomness occurs by considering Nt,

Wt and log Y (hereafter, Υ := log Y ), which we assume to be independent.

Therefore, Υ has the following density based on an asymmetric double exponential

distribution

fΥ(y) = pη1e
−η1y11{y≥0} + qη2e

−η2y11{y<0}, (4.11)

where η1 > 1, η2 > 0, p and q represent the probability of upward and downward jumps,

107



respectively, and the constrains p, q ≥ 0 and p + q = 1 are needed. In order to impose

that E(Y) and E(St) < ∞, we need to use the assumption that η1 > 1. Without these

requirements, we cannot ensure that the average upward jump exceed 100%, which

is not reasonable in commodity markets. Hence, 1
η1

and 1
η2

represent the mean values

of the two exponential distributions, respectively. The estimation of the parameters for

the DEJD model involves the inverse Fourier transform of the characteristic function

to compute an approximation for the density of the model since it is not known in a

closed-form setting. Hence, the (unique) representation of the characteristic function

and the corresponding inverse Fourier transform are expressed respectively by

φx∆t
(u) = E[eiuX∆t ]

= exp

[
∆t

(
iuµ− σ2u2

2
+ λ

{
pη1

η1 − iu
+

pη2

η2 − iu
− 1

})]
(4.12)

and

fX∆t
(X) =

1

2π

∫ ∞
−∞

(eiuXφX∆t
(u))du

=
1

π

∫ ∞
0

(eiuXφX∆t
(u))du. (4.13)

The implementation and evaluation of the integral in equation (4.13) is performed us-

ing the built-in function quadgk available in Matlab. Table 4.3 shows the parameter

estimates under the DEJD model for our O&G commodities and via the ML approach.

Overall, the estimated parameters have realistic values and are coherent with the pre-

vious processes. For all commodities under analysis, the probabilities of upward and

downward jumps are quite similar in each subsample. Additionally, we find that the

average upward jump did not exceed 100%, given the estimates for η1, which is true for

all the commodities. In the second step of this analysis, we provide in Figure 4.2 the

graphical performance of the DEJD process comparing with the real data. For this pur-
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pose, we use the histogram of entire sample of brent and compare with the simulated

DEJD process.

Similarly to the case of the jump-diffusion model with compound Poisson jumps, the

Q-Q plot of the empirical returns of brent in the entire sample and the simulated DEJD

returns show that this jump-diffusion framework offers similar results to the Merton

(1976) model, i.e., it does not capture all features of the empirical distribution since the

Q-Q-plot does not fully approximates a straight line.

Table 4.3: Estimation of the parameters under the jump-diffusion model of Kou (2002) and via the
ML approach.

µ σ η1 η2 p λ

Brent

1990-2017 0.0010 0.0256 125,171,402 94,755,845 0.4996 380,382
1990-1999 0.0014 0.0249 92,087,251 65,698,804 0.5174 273,185
2000-2007 -0.0000 0.0240 171,281,116 191,366,571 0.4950 588,230
2008-2017 0.0006 0.0268 153,180,987 130,028,887 0.5049 472,783

Natural gas

1996-2017 0.0032 0.0779 101,932,483 131,681,718 0.5006 98,137
1996-1999 0.0023 0.0732 131,078,029 224,979,723 0.4901 278,963
2000-2007 0.0119 0.0434 113,034,397 248,767,439 0.4956 119,435
2008-2017 0.0007 0.0451 65,031,631 63,467,985 0,5571 205,869

Jet fuel

1990-2017 0.0002 0.0255 95,776,081 124,855,153 0.4561 370,455
1990-1999 -0.0002 0.0224 38,870,816 52,992,392 0.4962 152,076
2000-2007 0.0000 0.0223 22,843,633 36,267,233 0.5000 97,865
2008-2017 -0.0003 0.0216 131,955,369 161,829,333 0.4998 493,296

Diesel
2002-2017 0.0008 0.0225 84,900,204 67,506,820 0.4991 245,908
2002-2007 0.0020 0.0233 55,589,651 33,743,654 0.5017 135,984
2008-2017 0.0012 0.0219 89,279,721 41,259,725 0.5126 200,203

4.3.3 The VG model

Jump-diffusion models have two relevant drawbacks to model commodity prices: (i)

they do not include the features of time-varying and stochastic volatility models; and
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Figure 4.2: Histogram of brent log-returns during 1990-2017 and simulated DEJD process using
estimated parameters and Q-Q plot of the series.

(ii) they only allow to model finite large jumps. Although the good performance shown

by the jump-diffusion models, both limitations are significant disadvantages since com-

modity markets exhibit skewness and leptokurtosis features and probably shows infinite

small jumps.

The VG process, introduced by Madan and Seneta (1990), Madan et al. (1998) and

Seneta (2004), belongs to the subclass of the generalized hyperbolic distributions and

allows to complement the class of fat tails models. In fact, the VG process has expo-

nential tails and the rate for the tail decay is smaller than for the normal distribution.

This allows to introduce more flexibility in order to capture the fat tails phenomenon and

the high kurtosis exhibited in the commodity markets. Compared with other theoretical

frameworks—e.g. the GARCH family or jump-diffusion models where we can find state-

dependent volatility and by introducing randomness considering jumps, respectively—

the VG process exhibits market activity time (also known as a subordinator), which is

an increasing process and has independent and stationary increments. Moreover, this

process can be considered a mixture of normal distributions, where the weighting den-

sity is given by the Gamma distribution of the market time. Indeed, this philosophy is

similar to the framework of the GBM with jump-diffusion since the return process is a

mixture too.
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The SDE which governs the continuous log-returns of our commodity prices under the

VG process is expressed as

d log(St) = µ̄dt+ θ̄dgt + σ̄dW (gt), (4.14)

where µ̄ ∈ R, θ̄ ∈ R and σ̄ ∈ R+ represent the log-return drift in calendar-time, the

log-return drift in market-activity-time and the volatility, respectively, and gt denotes a

positive and increasing random process, the market time. For u ≥ t ≥ 0, this random

process has stationary increments gu − gt. Since E[gu − gt] = u− t and conditional on

the market time’s g, it follows that

σ̄(W (gu)−W (gt))|g ∼ σ̄
√

(gu − gt)ε, (4.15)

where ε represents the traditional Gaussian shock and, consequently,

(
log

(
Su
St

)
− µ̄(u− t)

)
|g ∼ N

(
θ̄(gu − gt), σ̄2(gu − gt)

)
. (4.16)

Table 4.4 shows the estimations of the VG process via the ML approach.4.4 The esti-

mated volatility parameters for each commodity ˆ̄σ show higher estimates that the ones

for the mean value of returns and this finding is coherent with the previous results and

the descriptive statistics for the continuous log-returns. Excluding the entire sample,

the analysis of each subsample shows that the volatility in the last subsample is lower

than the previous subsamples. This finding is aligned with the results of the previous

stochastic models.

The symmetry feature of the log-returns of our commodities is tested with the esti-

mation of the parameter θ. The estimates for θ confirm the asymmetric nature of the
4.4Appendix J of the provides the technical details of the VG estimation through ML.
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log-returns, since the estimation for almost all subsamples is negative. Exemplifying

for brent, we obtain negative estimations for θ, which are consistent with the skewness

estimations in these subsamples—the unique exception is the subsample 2008-2017,

where the skewness is close to zero.

Finally, we find a significant value for the time change parameter ν, which controls the

tail fatness. The subsample which is showing a higher level of kurtosis is the first one

for brent, natural gas and jet fuel (it is not applicable for diesel since this empirical

analysis only starts in 2002). For diesel, we find a higher level of tail fatness in the

last subsample, i.e., in 2008-2017. In fact, this is coherent with the kurtosis of the

continuous log-returns for the same period of analysis.

The fit of the simulated continuous returns from the VG process is performed in the

left-hand side of Figure 4.3. The leptokurtic and the fat tails features identified in

commodity markets are better achieved with the VG process, though not completely

replicating the original data. In the right-hand side of Figure 4.3, the quantiles from

the simulated returns of the VG distribution are closer to the quantiles of the historical

empirical distribution of brent’s returns. Given this goodness-of-fit test, the VG process

achieves a better performance when compared with the previous two jump-diffusion

models by allowing for infinitely many jumps in finite time interval. Similar observations

are also found in the other commodities.
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Figure 4.3: Histogram of brent log-returns during 1990-2017 and simulated VG process using
estimated parameters and Q-Q plot of the series.

Table 4.4: Estimation of the parameters under the VG process and via the ML approach.

µ̄ σ̄ θ̄ ν

Brent

1990-2017 0.0013040 0.0221 -0.0011570 0.7954
1990-1999 0.0005270 0.0225 -0.0004810 1.0351
2000-2007 0.0077140 0.0222 -0.0070500 0.3865
2008-2017 0.0003520 0.0211 -0.0005270 0.8913

Natural gas

1996-2017 0.0007665 0.0650 -0.0009357 1.8654
1996-1999 0.0044445 0.0804 -0.0366245 2.4996
2000-2007 -0.0042000 0.0938 0.0055000 1.3539
2008-2017 0.0000000 0.0402 -0.0007000 1.6490

Jet fuel

1990-2017 0.0000000 0.0190 0.0000327 3.3386
1990-1999 0.0028000 0.1727 -0.0104000 5.2855
2000-2007 0.0023280 0.0191 -0.0017410 0.2501
2008-2017 0.0007010 0.0177 -0.0008600 0.8290

Diesel
2002-2017 0.0032160 0.0206 -0.0022750 0.3503
2002-2007 0.0009850 0.0193 -0.0007780 0.6758
2008-2017 0.0002660 0.0185 -0.0004360 0.8155

4.3.4 GBM with nonlinear GARCH volatility

Over the years, several models have followed the seminal research of Bollerslev (1986)

on GARCH models, which are considered to be an important modeling tool when deal-

ing with high frequency financial data. These models capture the autocorrelation in
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the volatility (volatility clustering). In other words, a period of high (resp., low) volatility

will be followed by high (resp., low) volatility. Three popular extensions of the tradi-

tional GARCH models are the threshold GARCH (hereafter, TGARCH), the exponen-

tial GARCH (henceforth, EGARCH) and NGARCH models. In particular, the NGARCH

model suggested by Engle and Ng (1993) plays a significant role in the literature since

this model captures the asymmetric feature in the volatility. Thus, it implies that positive

(resp., negative) returns yield subsequently lower (resp., higher) volatility.

The GBM with NGARCH volatility is expressed as

∆Sti = µSti∆ti + σtiSti∆Wti , (4.17)

σ2
ti

= ω + ασ2
ti−1

+ β(εti−1
− γσti−1

)2 (4.18)

and

ε2ti = (σti∆Wti)
2, (4.19)

where α, β and ω are positive parameters and γ is defined such that the inequality

β(γ2 + 1) + α < 1 is valid. In the framework of the GBM with NGARCH, the parameter

γ denotes an adjustment to the return innovations. Hence, a particular case of this

framework is obtained when γ = 0, since it yields the symmetric GARCH(1,1) process.

The statistical significance of this parameter implies that positive and negative return

innovations have not the similar effect on the conditional variance, which is coherent

with most financial and energy markets. On the other hand, when γ is positive, it

increases the impact of negative returns on the variance.

For estimation purposes, the LL function for the sample of continuous log-returns is

given by

L?(Θ) =
n∑
i=1

logfΘ(xi;xi−1), (4.20)
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fΘ(xi;xi−1) = fN(xi;µ, σ
2
i )

=
1√

2πσ2
i

exp

(
−(xi − µ)2

2σ2
i

)
(4.21)

and

L?(Θ) = k + 0.5(− log σ2
i − (xi − µ)2/σ2

i ), (4.22)

where x1, x2, x3, ..., xn represent the sample of continuous log-returns, fΘ is the density

function of the normal distribution and k is a constant. The set of parameters is rep-

resented by θ ≡ (µ, ω, α, β, γ), where θ is an unknown parameter represented in the

bounded set Θ ⊂ R5.

Table 4.5 reports the estimations of the GBM with the NGARCH approach and via the

ML prodedure. From the results of this estimation and since γ plays a significant role

in this framework, it is relevant to focus on the signal related to γ̂. Considering all the

entire samples for brent, natural gas and diesel, all the γ̂ assume positive estimates.

Hence, it implies that this adjustment to the continuous log-return innovations reduces

the impact of positive returns and increases the effect of negative returns. Considering

the natural gas market, we can find an exception in the subsample of 1990-1999. In-

deed, the historical data covering this period also supports the idea that this parameter

allows a reduction in the impact of negative returns. As previously mentioned, the sea-

sonality effect covering this commodity may explain this finding. For the jet fuel market,

we find two subsamples with negative estimates for γ̂: 1990-2017 and 1990-1999.

While the estimate for 1990-1999 is almost zero—denoting that this data is governed

by a GBM with symmetric effects, i.e., positive and negative innovations have the same

effect on the conditional variance—, the second one clearly shows that the parameter

is increasing the impact of good news in the volatility.

The histogram of the simulated continuous returns against the historical data for brent

in 1990-2017 depicted in Figure 4.4 shows that the GBM with NGARCH volatility
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achieve a significantly better performance when compared with the previous jump-

diffusion model (JGBM or DEJD) and even the infinite-activity jump model of the VG

approach. Analyzing the Q-Q plot in Figure 4.4, we confirm the quantiles of the simu-

lated GBM with NGARCH volatility distribution are much more coherent with the quan-

tiles of the empirical return distribution for the entire sample for this commodity. To

validate these results against the standard Gaussian distribution, the information cri-

teria for the GBM and GBM with NGARCH is provided in the Appendix K.1. The re-

sults show that the GBM with the NGARCH volatility outperforms the standard GBM

model. Consequently, the autocorrelation in volatility and the asymmetric feature of the

GARCH models are two powerful drivers in our strategic commodities.

Table 4.5: Estimation of the parameters under the GBM with NGARCH volatility process and via
the ML approach.

µ ω α β γ LL

Brent

1990-2017 -0.00012860 0.00000182 0.9363 0.0216 1.3474 17,587
1990-1999 -0.0007712 0,00008424 0.4844 0.4714 0.2668 6,208
2000-2007 0.00120000 0.00031161 0.2134 0.2126 0.0780 4,883
2008-2017 -0.00001706 0.00007507 0.4578 0.5079 0.1796 6,267

Natural gas

1996-2017 0.00017379 0.00002502 0.8723 0.1244 0.0478 8,283
1996-1999 0.00360000 0.00055336 0.3516 0.6343 -0.0196 1,347
2000-2007 0.00110000 0.00042924 0.8396 0.1351 0.0709 1,999
2008-2017 -0.00066432 0.00003264 0.7908 0.1977 0.1652 5,044

Jet fuel

1990-2017 0.00026781 0.00000325 0.9230 0.0673 -0.1273 19,150
1990-1999 -0.00016645 0.00005328 0.3972 0.5936 -0.0092 7,063
2000-2007 0.00077217 0.00023702 0.1937 0.1705 0.2447 5,134
2008-2017 -0.00055149 0.00006897 0.3735 0.3986 0.6010 6,647

Diesel
2002-2017 0.00006429 0.00009993 0.4191 0.3456 0.4242 9,668
2002-2007 0.00130000 0.00033606 0.0773 0.1323 0.0251 3,168
2008-2017 -0.00045225 0.00000048 0.9551 0.0187 1.1692 6,746
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Figure 4.4: Histogram of brent log-returns during 1990-2017 and simulated GBM with
NGARCH volatility using estimated parameters and Q-Q plot of the series.

4.4 Multivariate processes

This section addresses the estimation of multivariate processes for our portfolio of

commodities.

4.4.1 The DCC-GARCH

Correlations between the spot prices in the portfolio of integrated O&G companies

are crucial for decision makers. A relevant example of the role of correlations is for

hedging purposes: if the structure of correlations is changing, the hedge ratio should

incorporate the recent information. Until now, we modeled our strategic commodities

individually and, therefore, we do not use multivariate processes, such as the multivari-

ate ARCH family or multivariate stochastic volatility models. Hence, we consider now

the DCC-GARCH family models.

This choice is motivated by the flexibility of the univariate GARCH estimators but avoid-

ing the higher complexity of multivariate GARCH models. The flexibility and the sim-

plicity is ensured by the two-step procedure proposed by Engle (2002): (i) univariate
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GARCH models are fitted to the data set of our commodities and then (ii) the standard-

ized residuals are used to estimate the time-varying correlation matrix.

According to the DCC-GARCH approach suggested by Engle (2002), this model can

be expressed as

yt = Cxt + εt, (4.23)

and

εt = H
1
2
t νt, (4.24)

where yt is a m × 1 vector which represents the dependent variables, xt is a k × 1

vector representing the independent variables, which incorporates the lags of yt, C

denotes the parameters by a m × k matrix and ν is a vector of iid innovations with

dimension m × 1. Moreover, the matrix generalization of univariate GARCH models,

Ht, is expressed as

Ht = D
1
2
t RtD

1
2
t , (4.25)

Rt = diag(Qt)
− 1

2Qtdiag(Qt)
− 1

2 (4.26)

and

Qt = (1− λ1 − λ2)R + λ1ε̃t−1ε̃
′
t−1 + λ2Qt−1, (4.27)

where H
1
2
t denotes the Cholesky factor of the time-varying conditional covariance ma-

trixHt, Qt represents the dynamic of the correlation coefficient (where λ1 and λ2 denote

the two dynamics that determine the conditional quasicorrelations) and Dt is the diag-
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onal matrix of conditional variances, which can be described by

Dt =



σ2
1,t 0 . . . 0

0 σ2
2,t . . . 0

...
... . . . ...

0 0 . . . σ2
m,t


, (4.28)

and where σ2
i,t changes in accordance to a standard univariate GARCH family frame-

work such as

σ2
i,t = ωi +

qi∑
j=1

αjε
2
i,t−j +

qi∑
j=1

βjσ
2
i,t−j. (4.29)

Table 4.6 reports the DCC-GARCH parameter estimates for our commodities obtained

via the ML approach. Appendix L provides the parameter estimations for the adjust-

ment parameters λ1 and λ2. We are assuming that the error term follows a normal dis-

tribution. For comparison purposes, we have estimated the same model with the error

term assuming a student-t distribution, but both models show similar results (outputs

are available upon request). Furthermore, the technical conditions needed for stability

and required by the parameters that affect the dynamics of the conditional quasicorre-

lations are satisfied, since λ1 > 0, λ2 > 0 and 0 ≤ λ1 + λ2 < 1 as shown in Panel A of

Table L.1 of the corresponding appendix. In addition, λ1 and λ2 are largely statistically

significant and a usual Wald test can reject the null hypothesis λ1 = λ2 = 0 and, there-

fore, the assumption that time-invariant conditional correlations is too restrictive for our

commodities and the use of the DCC-GARCH is pertinent.
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Table 4.6: Estimation of the parameters under the DCC-GARCH framework in 2002-2017 and via
the ML approach.

Brent Natural gas Jet fuel Diesel
Mean equation:
µ 0.000387 0.000062 0.000311 0.000272
Variance equation:
ω 0.000001 0.000007 0.000001 0.000001
α 0.042088 0.169638 0.039954 0.042553
β 0.955489 0.869268 0.958552 0.955717
LL 9,624.46 6,112.75 10,108.84 9,921.90
AIC -19,240.91 -12,217.49 -20,209.68 -19,835.81
BIC -19,215.96 -12,192.54 -20,184.73 -19,810.86

The historical conditional correlations using the DCC-GARCH approach for the pairs

of our strategic commodities are available in Figure L.1 of the corresponding appendix.

The graphical analysis shows a similar dynamic conditional correlation between the

pairs jet fuel-diesel, brent-jet fuel and brent-diesel, however it is different for the dy-

namic correlation between brent-natural gas, jet fuel-natural gas and diesel-natural

gas. Besides the different dynamic, the correlation between brent (or its derivatives)

and natural gas reveals that an obvious relationship between both commodities is not

found. Indeed, for the most of the trading days, this dynamic correlations assumes

values between -0.4 and 0.6.

In order to explain the price signal between both commodities, we note that it depends

on several effects, such as the fuel substitution and resource competition. First, since

integrated O&G companies produce both brent and natural gas, a positive shock in

brent prices may likely lead to an increase in natural gas extraction and production

which would likely exert downward pressure on natural gas prices. However, the same

movement in brent prices may lead to increase oil drilling which would decrease natural

gas drilling, potentially leading to higher natural gas prices. This effect is an example of
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the uncertainty effect of the crude oil prices in the natural gas. Second, fuel substitution

also matters since some refined products are competitive substitutes to natural gas.

As a consequence, an increase in brent prices would likely promote the substitution of

natural gas for some refined products, which would increase the natural gas demand

and, consequently, the spot prices.4.5

In this part, it is also interesting to compare the fitting results of the DCC-GARCH

model with the performance of the best model presented in the previous section, i.e.,

GBM with non-linear GARCH effect in volatility. For this purpose we adopt the AIC and

BIC rules. Exemplifying with the brent case and re-estimating the univariate GBM with

the NGARCH volatility for the period 2002-2017, we achieve 9,460 for the maximum

LL and it corresponds to -18,802.20 for the AIC and -18,771.01 for the BIC. In other

words, the standard DCC-GARCH seems to present a slightly better performance than

the best univariate model, since this approach allows to model the joint dynamics of

integrated O&G commodities. The same conclusion is valid for natural gas, jet fuel and

diesel.

4.4.2 Alternative multivariate approaches

In order to complement the previous multivariate processes, we also test alternative

frameworks in the DCC framework. More specifically, we adopt the following asymmet-

ric approaches to capture the leverage effects in commodity markets in two different

ways: (i) the GJR-GARCH model suggested by Glosten et al. (1993) and the EGARCH

model proposed by Nelson (1991). Both univariate processes allow for threshold ef-
4.5In fact, some refined products obtained from brent or crude oil are competitive substitutes to natural gas.

For example, notice that the residual fuel oil competes with natural gas for electric power generation purposes.
Therefore, a positive shock in brent prices would likely encourage the substitution between natural gas and some
refined products, which would increase the demand for natural gas and, consequently, the corresponding price of
this commodity. This substitution effect is also known in the literature as the burner-tip parity.
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fects, though with alternative powers of variance in the variance equation.

The GJR-GARCH model is intended to capture the potential presence of an asymmet-

ric leverage effect, which is known to potentially improve the forecast performance of

the standard GARCH approach, as documented, for instance, in Wei et al. (2010). In

this model setup, the variance equation is given by

σ2
t = ω + (α + γ11{εt−1<0})ε

2
t−1 + βσ2

t−1. (4.30)

where γ is the parameter that controls the asymmetric leverage effect and 11{.} is the

indicator function. When γ = 0, the GJR-GARCH model is reduced to the standard

GARCH framework. The usual restrictions on the parameters are ω, α, γ, β > 0.

The EGARCH approach assumes a specific parametric form for the conditional het-

eroskedasticity. More specifically, we say εt ∼ EGARCH if the variance equation is

governed by

log(σ2
t ) = ω + α

εt−1√
σt

+ γ
εt√
σt

+ β log(σ2
t−1). (4.31)

Given the log variance feature of the univariate EGARCH, the model does not require

any restrictions on the parameters.

Despite being models of asymmetric leverage effect, a particular feature matters for

the stylized facts of our strategic commodities: in the GJR-GARCH approach, if the

condition α + γ
2

+ β < 1 is valid, the volatility itself shows the mean-reverting feature

and it fluctuates around the square root of the unconditional variance, which is defined

as σ2
t = ω

1−α− γ
2
−β .

Since the standard DCC-GARCH does not incorporate asymmetries, the theoretical

framework is modified to include the asymmetries and the corresponding impact of

news. These further developments are detailed in the research of Cappiello et al.
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(2006), where the authors considered an asymmetric form of the standard DCC ap-

proach. Therefore, following Cappiello et al. (2006) we show the numerical results of

the estimates for the DCC-GJR-GARCH and the DCC-EGARCH in Tables 4.7 and 4.8,

respectively.

Table 4.7: Estimation of the parameters under the DCC-GJR-GARCH framework in 2002-2017
and via the ML approach.

Brent Natural gas Jet fuel Diesel
Mean equation:
µ 0.000087 -0.000401 0.000144 0.000136
Variance equation:
ω 0.000001 0.000007 0.000001 0.000001
α 0.009203 0.138275 0.023305 0.030501
γ 0.048336 0.064176 0.029764 0.021643
β 0.964837 0.869356 0.961313 0.957653
LL 9,650.47 6,118.25 10,119.02 9,926,55
AIC -19,290.94 -12,226.51 -20,228.04 -19,843.11
BIC -19,259.76 -12,195.32 -20,196.85 -19,811.92

Table 4.8: Estimation of the parameters under the DCC-EGARCH framework in 2002-2017 and
via the ML approach.

Brent Natural gas Jet fuel Diesel
Mean quation:
µ -0.000073 0.000141 0.000104 0.000021
Variance equation:
ω -0.098809 -5.108350 -0.106009 -0.122564
α -0.079612 0.010000 0.089766 0.098892
γ -0.041511 0.010000 -0.026227 -0.022822
β 0.995281 0.010000 0.995502 0.994237
LL 9,647.72 4,326.03 10,115.97 9,916.66
AIC -19,285.44 -8,642,07 -20,221.94 -19,823.32
BIC -19,254.25 -8,610.88 -20,190.75 -19,792.14

Two concluding remarks can be drawn from this tables. First, the inclusion of asym-
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metric effects contributes for improving the performance of the standard DCC-GARCH

(and the best univariate model as well). More specifically, the performance of the

DCC-GJR-GARCH seems slightly better than the remaining models. In other words,

our numerical results show that negative multivariate innovations at time t − 1 have a

stronger impact in the variance at time t than positive multivariate innovations. Since

the DCC-GJR-GARCH highlights in the fitting performance of our strategic commod-

ity prices, there is evidence that the volatility of our commodities is mean-reverting for

brent, jet fuel and diesel.

The second finding is relevant for the pertinence of the DCC in both setups. Panels B

and C of Table L.1 of the corresponding appendix show that a Wald test rejects the null

hypothesis that λ1 = λ2 = 0 at all conventional statistical levels and, therefore, there is

no evidence to support the idea that the DCC approach reduces to constant conditional

correlation between the volatility of our strategic commodity prices. This finding is

coherent to the standard DCC-GARCH, where we obtained the same conclusion for all

commodities.

4.4.3 Out-of-sample multivariate forecasting results

This subsection performs an out-of-sample forecasting exercise to evaluate the perfor-

mance of the multivariate models in our strategic commodities. Here we compare the

last three multivariate models using the Root Mean Square Error (RMSE). More specif-

ically, given the data of 2016 for our commodity log-returns, we compute the one-step

ahead predictive variance in 2017. The predicted variance is then compared with the

real volatility. The evaluation period for the forecasting exercise is from January 2017

to the end of the sample (November 2017). The results are reported in Table 4.9.

These out-of-sample forecasting results are broadly similar to the model comparison
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results using the LL, AIC and BIC. In particular, the DCC-GJR-GARCH multivariate

models provide better forecasts than their GARCH counterparts (the standard DCC-

GARCH and the DCC-EGARCH) for all the strategic commodities. Other evaluation

metrics such as the Mean Absolute Error (MAE) and the Mean Absolute Percent Er-

ror (MAPE) have highlighted that the best forecasting performance is achieved for the

DCC-GJR-GARCH and are available upon request. As previously mentioned, the rel-

evance of the DCC-GJR-GARCH is related to the mean-reverting feature of our com-

modity prices.

Table 4.9: Root mean square error from the out-of-sample forecasting exercise.

Brent Natural gas Jet fuel Diesel
DCC-GARCH 0.015882 0.033569 0.013590 0.014336
DCC-GJR-GARCH 0.015844 0.033514 0.013559 0.014292
DCC-EGARCH 0.015898 0.033729 0.013559 0.014306
Out-of-sample trading days 224 224 224 224

4.5 Concluding remarks

Much of the research on modeling spot prices in commodity markets considers each

commodity individually. This paper uses a standard integrated O&G company with a

portfolio of assets representing the main strategic commodities in the industry: brent

for the exploration and production activities, natural gas for trading purposes and the

main refined products to represent the refining margin in downstream operations. We

tested a few classes of alternative models, including the log-normal and the double

exponential jump-diffusion approaches, the VG process and the GBM with nonlinear

GARCH volatility. We obtain two relevant concluding remarks for the literature.
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The first contribution is about the jump-diffusions in our strategic commodities. It is well

known that several market anomalies affect commodity prices, such as jumps, bubbles

and other plausible reasons which cause structural breaks. We find strong evidence

to support the idea that jumps heavily affect the results of the standard GBM and

the features of the Gaussian distribution. Under these frameworks, one fat tails model

emerges as the preferable one: the GBM with non-linear effects. Its fitting performance

shows that all commodities exhibit returns with asymmetric behaviour in the volatility.

Second, we also contribute by testing the pertinence of three different multivariate

models in a context of non-perfectly positive correlated commodities. The nonlin-

ear combination of univariate GARCH models (standard GARCH, GJR-GARCH and

EGARCH) and the conditional covariance matrix of the errors modeled by time-varying

cross-equation weights allows to obtain a better fitting performance than univariate

frameworks. Overall, the DCC-GJR-GARCH is the best model for our four strategic

commodity prices.

Given these promising findings, future research should incorporate the performance of

the jump-diffusion and fat tails processes to pricing the most usual financial derivatives

for the O&G companies, such as spread options and swing options. This avenue for

future research is particularly relevant for hedging purposes in integrated O&G compa-

nies. To introduce more realistic assumptions, these findings also allow to expand the

evaluation of investment projects in the O&G industry based on the incorporation of the

jump-diffusion processes in the real options theory. The events of the following decade

in the O&G industry, namely with some disinvestment in upstream activities and the

new challenges with the energy transition will require the update of our results.

126



Appendix I

For stochastic processes, the Markov property is generally sufficient to define the like-

lihood along a time series of observations as a product of transition probabilities on

single time steps between two adjacent periods. Consequently, for a Markov process

xt, we can write the likelihood function, L(Θ), based on the probability density f of the

vector random sample, as

L(Θ) = fX(t0),X(t1) , ...,X(tn);Θ

= fX(tn)|X(tn−1);Θ×fX(tn−1)|X(tn−2);Θ×...× fX(t1)|X(t0);Θ×fX(t0);Θ . (I.1)

A particular case occurs for independent and identically distributed (hereafter, iid) data,

in which we can simplify the problem since the likelihood function L(Θ) is represented

by the product of the probability density of each data point in our sample. For the

GBM framework, it occurs if and only if the Maximum Likelihood (henceforth, ML) is

implemented based on the log-returns of the prices (in opposition to the series in levels,

i.e., prices), that is

Xti := log(Sti)− log(Sti−1
), (I.2)

and since these returns respect the iid assumption, we do not need to apply equation

(I.1) through transitions. Therefore, for iid random variables, the likelihood function is

described by

L(Θ) = fΘ(x1, x2, ..., xn)

=
n∏
n=1

fΘ(xi). (I.3)
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In order to avoid numerical problems in the maximization of the likelihood function

(the resulting product of density values could tend to zero), the likelihood function is

frequently adapted to the log-likelihood (LL, hereafter) framework as follows

L?(Θ) =
n∑
i=1

log fΘ(xi), (I.4)

where L?(Θ) denotes the LL. Notice that the transformation to the LL function is valid

since maxima is not affected by monotone changes. Hence, the parameter set of the

GBM framework is determined as

m =

[
µ̂− 1

2
σ2

]
∆t (I.5)

and

v = σ̂2∆t. (I.6)

Based on Gaussian iid samples, the ML method allows to achieve closed-form solu-

tions for m and v. The estimations for m and v result from the differentiation of the

Gaussian density function with respect to the set of parameters individually and thus

equaling to zero. Therefore, the estimations for the mean and variance for the log-

returns xi— taking Xi = log(St)− log(St−1)—are described as

m̂ =
n∑
i=1

xi
n
, (I.7)

and

v̂ =
n∑
i=1

(xi − m̂)2

n
. (I.8)

Focusing now on the jump-diffusion model with compound Poisson jumps, we first
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rewrite the stochastic equation with logarithm of the asset price as

d logSt = (µ− 1

2
σ2)dt+ σdWt + log(YNt)dNt, (I.9)

which is equivalent to

d logSt = (µ+ λµJ −
1

2
σ2)dt+ σdWt + [log(YNt)dNt − µJλdt] , (I.10)

where the jump-diffusion component (inside the square brackets on the right-hand side

of the previous expression) and the diffusion shock (given by the standard Brownian

motion) have null mean.

Similarly to the standard GBM process, we apply also the ML method in log-returns

space to the JGBM process. Integrating both sides, the solution for the SDE incorpo-

rating a jump-diffusion for St is given by

ST = S0 exp

[
(µ− 1

2
σ2)T + σWT

] NT∏
j=1

Yj, (I.11)

which can be discretized as

St = St−∆t exp

[
(µ− 1

2
σ2)∆t+ σ

√
∆tεt

] nt∏
j=1

Yj, (I.12)

where ∆t represents the time step, ε follows a normal distribution with zero mean and

variance one and nt denotes the number of jumps during t − ∆t and is described by

nt = Nt − Nt−∆t. The discretization is also valid for the expression in log-returns, that

is

Xt = ∆ log(St)

= µ?∆t+ σ
√

∆tεt + ∆J?t , (I.13)
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where Xt represents the returns, described by

Xt := ∆ log(St)

= log(St)− log(St−∆t), (I.14)

and where the jump disturbance in ∆t and the µ? are given by

∆J?t =
nt∑
j=1

log(Yj)− λ∆tµJ , (I.15)

and

µ? = (µ− 1

2
σ2 + λµJ). (I.16)

Since the estimation of the parameter set is performed in discrete time and assuming

that the number of jump innovations occurring in the fixed small time interval ∆t has

the expectation λ∆t, we get

E[∆J?t ] = E(ntµJ)− λ∆tµJ = 0. (I.17)

Moreover, the jump disturbance J?t —which is conditional on the jumps occurrence—is

normally distributed, that is

∆J?t |nt ∼ N((nt − λ∆t)µJ , ntσ
2
J). (I.18)

Therefore, the conditional distribution of Xt is also normally distributed and we can
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write the two most relevant moment conditions—mean and variance—as follows

E [∆ log(St|nt)] = µ?∆t+ (nt − λ∆t)µJ

= (µ− 1

2
σ2)∆t+ ntµJ (I.19)

and

V ar [∆ log(St|nt)] = σ2∆t+ ntσ
2
J . (I.20)
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Table I.1: Estimation of the parameters under the GBM diffusion and via the ML approach.

µ σ LL

Brent

1990-2017 0.0001502 0.0230 16,756
1990-1999 0.0000484 0.0246 5,867
2000-2007 0.0006672 0.0228 4,855
2008-2017 -0.0001718 0.0215 6,059

Natural gas

1996-2017 0.0002360 0.0779 6,088
1990-1999 0.0000112 0.0731 1,003
2000-2007 0.0006255 0.1066 1,666
2008-2017 0.0000071 0.0444 4,231

Jet fuel

1990-2017 0.0001240 0.0186 18,121
1990-1999 0.0000373 0.0187 6,517
2000-2007 0.0005844 0.0192 5,116
2008-2017 -0.0001585 0.0180 6,493

Diesel
2002-2017 0.0002084 0.0194 9,548
2002-2007 0.0009368 0.0206 3,155
2008-2017 -0.0001738 0.0187 6,403
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Table I.2: Information criteria for GBM and JGBM processes.

AIC BIC
GBM JGBM GBM JGBM

Brent

1990-2017 -33,508 -33,767 -33,495 -33,727
1990-1999 -11,730 -11,850 -11,719 -11,814
2000-2007 -9,706 -9,714 -9,696 -9,680
2008-2017 -12,113 -12,280 -12,102 -12,245

Natural Gas

1996-2017 -12,172 -13,137 -12,159 -13,098
1990-1999 -2,003 -2,099 -1,993 -2,069
2000-2007 -3,329 -3,659 -3,318 -3,625
2008-2017 -8,458 -8,792 -8,447 -8,757

Jet Fuel

1990-2017 -36,239 -36,552 -36,225 -36,513
1990-1999 -13,030 -13,225 -13,019 -13,190
2000-2007 -10,229 -10,234 -10,218 -10,200
2008-2017 -12,983 -13,129 -12,971 -13,095

Diesel
2002-2017 -19,093 -19,164 -19,080 -19,126
2002-2007 -6,307 -6,308 -6,296 -6,276
2008-2017 -12,802 -12,919 -12,790 -12,884
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Appendix J

We notice that the VG framework assumes a Gamma process, such that {gt} ∼ Γ( t
ν
, ν)

and where the parameter ν is an independent parameter from {Wt; t ≥ t0}. For any

values of u and t and since E[gu − gt] = u − t and V ar(gu − gt) = ν(u − t), then

{gu − gt} ∼ Γ(u−t
ν
, ν). Given the law of iterated expectations, it is easy to check that

E [logSu − logSt] = (µ̄+ θ̄)(u− t) (J.1)

and

V ar [logSu − logSt] = (σ̄2 + θ̄2ν)(u− t). (J.2)

Using equation (4.16) of the paper and integrating out the term g through its Gamma

density, we can obtain the unconditional density. By setting ∆t := u − t and X∆t :=

log(St+∆t/St), it is possible to obtain the density function as follows

f(X∆t)(x) =

∫ ∞
0

fN(x; θ̄g, σ̄2g)fΓ(g;
∆t

ν
, ν)dg. (J.3)

As previously mentioned, this is an infinite mixture of Gaussian densities weighted by

Gamma densities. In fact, the integral in equation (J.3) converges and the pdf of a VG

model is described by

f(X∆t)(x) =
2e

θ(x−µ̄)

σ̄2

σ̄
√

2πν
∆t
ν Γ 1

ν

(
|x− µ̄|√
2σ̄2

ν
+ θ̄2

)
∆t
ν
− 1

2K∆t
ν
− 1

2
(
|s− µ̄|

√
2σ̄2

ν
+ θ̄2

σ̄2
), (J.4)

where kη (.) denotes a modified bessel function of the third kind with index η described
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by

Kη(x) = 0.5

∫ ∞
0

yη−1 exp
{
−x

2
(y−1 + y)

}
dy. (J.5)

Once again, we introduce the assumption of independence in the continuous returns

(x1, x2, x3, ..., xn) and we define the pdf of a VG process by Θ ≡ (µ̄, σ̄, θ̄, ν) to estimate

under the ML technique. Thus, the moment generating function E
[
ezX
]

for X∆t is

expressed as

MX(z) = eµ̄z(1− θ̄νz − 0.5νσ̄2z2)−
∆t
ν , (J.6)

where the moments of the returns in the period ∆t are given by

E [X] = X̄ = (µ̄+ θ̄)∆t, (J.7)

E
[
(X − X̄)2

]
= (νθ̄2 + σ̄2)∆t, (J.8)

E
[
(X − X̄)3

]
= (2θ̄3ν2 + 3σ̄2νθ̄)∆t, (J.9)

and

E
[
(X − X̄)4

]
= (3νσ̄4 + 12θ̄2σ̄2ν2 + 6θ̄4ν3)∆t+ (3σ̄4 + 6θ̄2σ̄2ν + 3θ̄4ν2)(∆t)2, (J.10)

where the skewness and kurtosis are equal to

S =
∆t3θ̄ν

((νθ̄2 + σ̄2)∆t)
3
2

, (J.11)

and

K =
3νσ̄4 + 12θ̄2σ̄2ν2 + 6θ̄4ν3)∆t+ (3σ̄4 + 6θ̄2σ̄2ν + 3θ̄4ν2)(∆t)2

((νθ̄2 + σ̄2)∆t)2
. (J.12)

Using the assumption that θ̄ assumes small values and, hence, ignoring the terms θ̄2,
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θ̄3 and θ̄4, it is possible to simplify the skewness and kurtosis to

S =
3θ̄ν√
∆tσ̄

(J.13)

and

K = 3 +
3ν

∆t
. (J.14)

Finally, we consider the following initial values in order to solve the optimization problem

σ̄ =

√
V

∆t
, (J.15)

ν = ∆t(
K

3
− 1), (J.16)

θ̄ =

√
∆tSσ̄

3ν
(J.17)

and

µ̄ =
X̄

∆t
− θ̄. (J.18)
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Appendix K

Table K.1: Information criteria for GBM with NGARCH volatility.

AIC BIC

Brent

1990-2017 - 35,163 - 35,128
1990-1999 - 12,406 - 12,377
2000-2007 - 9,755 - 9,727
2008-2017 - 12,523 - 12,494

Natural gas

1996-2017 - 16,555 - 16,522
1996-1999 - 2,685 - 2,661
2000-2007 - 3,987 - 3,959
2008-2017 - 10,078 - 10,049

Jet fuel

1990-2017 - 38,289 - 38,254
1990-1999 - 14,116 - 14,087
2000-2007 - 10,258 - 10,230
2008-2017 - 13,283 - 13,254

Diesel
2002-2017 - 19,325 - 19,293
2002-2007 - 6,326 - 6,300
2008-2017 - 13,482 - 13,453
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Appendix L
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Figure L.1: Dynamic conditional correlation between the returns of our commodities.
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Table L.1: Estimation of the parameters under the DCC models.

Coefficient Standard error z-statistic p-value
Panel A: DCC-GARCH model

λ1 0.100072 0.0000 10,057.27 0.0000
λ2 0.850230 0.0000 15,359.31 0.0000

Panel B: DCC-GJR-GARCH model
λ1 0.099979 0.0000 9,652.20 0.0000
λ2 0.849969 0.0000 14,840.26 0.0000

Panel C: DCC-EGARCH model
λ1 0.100110 0.0000 17,217.91 0.0000
λ2 0.850361 0.0000 20,015.06 0.0000
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5. Conclusion

This thesis provides important results concerning on modeling energy prices with time-

varying volatility and jumps in three separate articles.

The first paper tests several time-varying volatility processes based on a formal Bayesian

model comparison exercise for modeling the volatility of future contracts for energy

firms: oil, natural gas and electricity. This paper offers four relevant findings for the

current literature. First, by adopting the Bayes factor criteria to rank our list of models,

we find that SV models almost always outperform the corresponding GARCH models.

This finding consolidates the main conclusion of Chan and Grant (2016) for a list of

similar models but applied to spot prices in several commodity markets. Second, the

SV model with a t-distribution seems to be the best model to replicate the volatility of

futures contracts on the adopted commodities and utilities. Third, the maturity of fu-

ture contracts seems significant since it impacts the fitting performance of our models.

Finally, given the previous concluding remarks, these findings have relevant implica-

tions for hedging purposes, mainly when investors and risk managers are computing

extreme risk measures, such as the CVaR. Our results show the relevance of adopt-

ing the accurate stochastic process for computing the corresponding risk measures for

both hedged and unhedged positions.

In the second paper, we have proposed a stochastic framework for modeling electricity

(and natural gas) prices in a context of energy transition. The model allows to capture
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the three most relevant features in these markets: the mean reversion in the prices, the

spikes and drops modeled as a jump-diffusion process and the seasonality effects. Our

empirical analysis was addressed for the day-ahead prices of the Nord Pool electricity

market and natural gas prices. Using the suggested stochastic model for multiple day-

ahead prices, we estimate the parameters under ML estimation. The out-of-sample

exercise shows that the mean-reverting and jump-diffusion process outperforms the

corresponding standard geometric Brownian motion with jumps and the GARCH-EVT.

Given the recent forecasts about the increasing in the global demand of natural gas

(and liquefied natural gas) and since this is the unique fossil fuel in the context of energy

transition (and the goals for decreasing the CO2 emissions), we propose a copula

approach (by incorporating mean reversion and jumps) to model a simulated portfolio

of electricity (from renewable energy sources) and natural gas assets. Our estimations

for several copula functions show the best suitable copulas are the Gumbel’s and the

t-Student’s. Our findings are also relevant for risk management purposes. Based on

extreme risk measures, the portfolio risk analysis simulates multiple energy portfolios in

a context of energy transition by decreasing the energy sources from fossil fuels (i.e.,

natural gas) and increasing the weight of electricity assets (representing renewable

energy sources). One of the main findings is about the relevance of the accurate

copula-stochastic approach: when the unitary results of the adopted risk measures are

transposed to a real portfolio of an energy firm, the importance of fitting the accurate

model to the underlying prices becomes crucial.

To complement the risk analysis, we have performed an optimization problem to com-

pute the optimal energy mix of energy based on a portfolio manager that seeks to max-

imize his return-risk ratio. The results show that decision makers tend to avoid a high

level of exposure to electricity prices, since electricity is known to be an high-volatility

utility. This finding has relevant implications in energy transition since the most relevant
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investments enhancing carbon neutrality involve electricity production with renewable

energy sources (assets). Therefore, in addition to the large required capital expendi-

tures in renewable projects, the high level of volatility in electricity markets highlights

that the existence of incentive schemes provided by governments to new investments

in renewable projects are of pivotal importance or, in the absence of such mechanisms,

an accurate risk management policy is needed for hedging electricity positions as long

as energy transition is done based on electricity assets.

Finally, the last paper provides several findings about the dynamics of several univari-

ate and multivariate approaches to model the commodity prices. Much of the research

on modeling spot prices in commodity markets considers each commodity individually.

This paper uses a standard integrated O&G company with a portfolio of assets repre-

senting the main strategic commodities in the industry: brent for the exploration and

production activities, natural gas for trading purposes and the main refined products to

represent the refining margin in downstream operations. We tested a few classes of

alternative models, including the log-normal and the double exponential jump-diffusion

approaches, the VG and the GBM with nonlinear GARCH volatility. In this paper we

obtain two relevant concluding remarks for the literature.

The first contribution is about the jump-diffusions in our strategic commodities. It is

well known that several market anomalies affect commodity prices, such as jumps,

bubbles and other plausible reasons that causes structural breaks. We find strong

evidence to support the idea that jumps heavily affect the results of the standard GBM

and the features of the Gaussian distribution. Under these frameworks, one fat tails

model highlights: the GBM with nonlinear effects. Their fitting performance show that

all commodities exhibit returns with asymmetric behaviour in the volatility.

Second, we also contribute by testing the pertinence of three different multivariate mod-

els in a context of non-perfectly positive correlated commodities. The nonlinear com-

142



bination of univariate GARCH models (standard GARCH, GJR-GARH and EGARCH)

and the conditional covariance matrix of the errors modeled by time-varying cross-

equation weights allows to obtain a better fitting performance than univariate frame-

works. Overall, the DCC-GJR-GARCH is the best model for our four strategic com-

modity prices.
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