
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2019-12-11

 
Deposited version:
Post-print

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Acebron, J. A. (2019). A Monte Carlo method for computing the action of a matrix exponential on a
vector. Applied Mathematics and Computation. 362, 1-13

 
Further information on publisher's website:
10.1016/j.amc.2019.06.059

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Acebron, J. A. (2019). A Monte Carlo
method for computing the action of a matrix exponential on a vector. Applied Mathematics and
Computation. 362, 1-13, which has been published in final form at
https://dx.doi.org/10.1016/j.amc.2019.06.059. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1016/j.amc.2019.06.059


A Monte Carlo method for computing the action

of a matrix exponential on a vector

Juan A. Acebrón1,2,

1 Dept. Information Science and Technology, ISCTE-University Institute of Lisbon,
Portugal
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Abstract

A Monte Carlo method for computing the action of a matrix exponen-
tial for a certain class of matrices on a vector is proposed. The method
is based on generating random paths, which evolve through the indices
of the matrix, governed by a given continuous-time Markov chain. The
vector solution is computed probabilistically by averaging over a suitable
multiplicative functional. This representation extends the existing linear
algebra Monte Carlo-based methods, and was used in practice to develop
an efficient algorithm capable of computing both, a single entry or the
full vector solution. Finally, several relevant benchmarks were executed
to assess the performance of the algorithm. A comparison with the results
obtained with a Krylov-based method shows the remarkable performance
of the algorithm for solving large-scale problems.

Keywords— Monte Carlo methods, matrix functions, network analysis, commu-
nicability

1 Introduction

Computing the action of a matrix function on a vector is experiencing these days a
reborn interest. This is not because of the absence of relevant applications in science
and engineering in the past, but rather because the improvement in the numerical
methods, along with the advent of highly massive parallel computers, now allows one
to be able to attack more realistic problems on a large scale, far beyond the merely
academic problems capable of being simulated in the past. These applications include
circuit simulations [36]; power grid simulation [37, 33]; nuclear reaction simulations
[31]; analysis of transient solutions in Markov chains [34]; simulations of quantum
systems [32]; numerical solution of partial differential equations (PDEs) [24, 27]; and
analysis of complex networks [5].

Circuit and power grid simulation play an important role during the design of in-
tegrated circuits, being in general a heavy computationally task of the whole design
process. In the analysis of a reactor fuel, a computational heavy task of the analysis
consists in solving the burnup equations describing the rates of the concentration of
the different nuclides of the nuclear fuel. Computing the action of a matrix expo-
nential over the initial state appears as an important numerical alternative among the
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different available techniques, such as integrating the Chapman-Kolmogorov system of
differential equations for obtaining the transient solution of homogeneous irreducible
Markov chains. In the field of partial differential equations, numerically solving a
boundary-value PDE problem by means of the method of lines requires in practice
to compute the action of a matrix exponential over the initial condition. Finally, in
network analysis, determining some important metrics of the network, such as for
instance the total communicability which characterizes the importance of the nodes
inside the network, entails computing the exponential of the adjacency matrix of the
network.

Over the last few years many numerical methods have been proposed for computing
the action of a matrix function over a vector. There are already excellent reviews in the
literature describing the different numerical methods proposed so far (see [10, 20, 22,
23], e.g.); therefore it is not intended to go into any details here. Instead we will briefly
describe some of them for those readers not familiar with the topic. Essentially we can
classify these methods as follows: Krylov-based subspace methods, contour integration
methods, ordinary differential equation methods, and polynomial or rational methods.
One of the most studied methods in theory, and used in practice, are those based on
the Krylov subspace method. The idea behind the method consists in projecting the
given (typically large) matrix onto a Krylov subspace. For the specific case of an
exponential function, through a basis of the subspace constructed using the Arnoldi
process, the exponential of the projected matrix is computed by using a standard
technique based typically on the squaring and scaling method [22].

The idea of using probabilistic methods based on Monte Carlo simulations for
computing functions of matrices goes back to the pioneering work of von Neumann
and Ulam during the 1940’s [18]. Although initially the method was proposed merely
for computing the inverse of a matrix, it was later generalized for solving linear algebra
problems in a series of seminal papers, see [13] e.g., and [12] for further references.
Briefly the underlying idea consists in generating a discrete Markov chain which evolves
by random paths through the different indices of the matrix. Mathematically, the
method can be seen in a way as a Monte Carlo sampling of the Neumann series
of the matrix. The convergence of the method was rigorously established in [26],
and improved further more recently (see for instance [15], and [7] just to cite a few
references). More recently, and for the specific case of computing the action of a
Hermitian matrix exponential over a vector, which is of interest in Quantum Physics,
it has been proposed in [32] an efficient algorithm based on a novel randomized linear
algebra technique known in the literature as the Nyström method.

These probabilistic methods offer important computational advantages. Further-
more, the algorithms are much simpler to code than their deterministic counterparts,
which impact positively in promoting an easy further optimization of the codes; it
turns out that they are specially suited for parallel computing. This is because the
solution is often computed through an expectation value of a given finite sample, the
simulations are independent from each other. This is of paramount importance be-
cause it allows for the development of parallel codes with extremely low communication
overhead among processors, and has a positive effect on properties such as scalability
and fault-tolerance. For the parallel implementation of the Monte Carlo method for
solving linear algebra problems see [14] e.g.

Another important advantage of the probabilistic methods consists in the feasi-
bility of computing the solution of the problem at specific chosen points, without the
need for solving globally the entire problem. This remarkable feature offers important
advantages in dealing with some specific applications found in science and engineering,
and it has been explored for efficiently solving continuous problems such as boundary-
value problems for PDEs in [1, 2, 3], and references therein. However, this is not an
exclusive advantage of the probabilistic methods. In fact, for the specific problem of
matrix functions, it has been proposed in the literature several methods [19] capable
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also of estimating individual entries of the matrix function. The main idea consists
in applying several quadrature rules along with a single iteration step of the Lanczos
algorithm to obtain a priori lower and upper bounds. Moreover the bounds can be
further improved a posteriori using several iterations of the Lanczos algorithm in the
quadrature formula. This idea has been applied succesfully to the problem of esti-
mating different metrics of complex networks in [8]. The computational cost has been
estimated to grow linearly with the matrix size in the best case, since for each iteration
of the Lanczos algorithm is required to compute a matrix-vector multiplication.

The purpose of this paper is to extend the existing aforementioned Monte Carlo
methods for dealing with other functions of matrices, such as the matrix exponential,
and more specifically for the problem of computing the action of a matrix exponential
on a vector for a certain class of matrices. This is done by resorting to a probabilistic
representation of the vector solution based on generating random paths correspond-
ing to samples of a suitable continuous-time Markov chain. The convergence of the
method was conveniently analyzed, as well as the computational cost estimated. In
addition, several relevant numerical examples, extracted from network analysis are
given, focusing on both, the accuracy and performance of the method.

The paper is organized as follows. The probabilistic representation of the vector
solution is presented in Sec. 2. In Sec. 3, it is explained how the probabilistic repre-
sentation can be implemented in practice. Secs. 4 and 5 are devoted to the analysis
of the computational cost of the algorithm, and the associated numerical errors of the
method, respectively. Finally in Sec. 6 several benchmarks are executed to assess the
performance of the method in comparison with the performance obtained by the clas-
sical Krylov-based method. To conclude we summarize the main results and discuss
potential directions for future research.

2 The numerical method

Let A = {aij}
n
i,j=1 a given sparse n-by-n symmetric matrix, v an n-dimensional vector,

and x an n-dimensional vector solution of evaluating eβA v. We assume that A can be
decomposed as A = D−L, where L is the Laplacian matrix symmetric and irreducible
[28], and D a diagonal matrix with entries di, i = 1, . . . , n. Since in general both
matrices do not commute, it does not hold that eβA v = e−βL eβDv. However, an
approximation of the matrix exponential can be easily obtained by resorting to the
exponential Lie splitting, and yields

x̄L = (e−∆tLe∆tD)N v ≈ eβA v. (1)

Here ∆t = β/N , and in the following for convenience it will termed as the time step.
It is known that the local error εL = x− x̄L of the Lie splitting after one time step is
given by

εL =
∆t2

2
[D,L] v +O(∆t3), (2)

being in general of order of O(∆t) for the global error. A higher order approximation
does exist, and in view of being the matrix D diagonal, it can be computed without
any additional computational cost. In fact, the well known Strang splitting yields,

x̄S =
(

e∆tD/2e−∆tLe∆tD/2
)N

v. (3)

The local error after one time step εS = x − x̄S of this approximation is known [25]
to be

εS = ∆t3(
1

12
[D, [D,L]]−

1

24
[L, [L,D]]) v +O(∆t4), (4)

and globally of order of O(∆t2). The next lemma will be used to derive a probabilistic
representation for the vector solution x̄S , in the following denoted as x̄ for simplicity.
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To this purpose we need first to prove the following useful fact for the partial solution
e∆tD/2e−∆tLe∆tD/2 v.

Lemma 1 Assume j is a discrete random variable that takes values on S = {1, 2, · · · , n}
with probability pij(t) given by the transition probabilities of a continuous-time Markov
chain generated by the infinitesimal generator Q = −(L)ij and evaluated at time ∆t.
Then, any entry i of the vector

y = e∆tD/2e−∆tLe∆tD/2 v, (5)

can be represented as yi = e∆t di/2E[η], with η = e∆t dj/2 vj , and E[η] its expected
value.

Proof. Since D is a diagonal matrix, yi can be computed as follows

yi =

n
∑

j=1

e∆t di/2(e−∆tL)ije
∆t dj/2 vj . (6)

By the definition of the unnormalized Laplacian matrix of a graph G, L(G) is a matrix
with diagonal elements Lii equal to the degree of each vertex di, and the off-diagonal
Lij , −1 if (i, j) is an edge, or 0 otherwise. Therefore, it follows that

∑

j Lij = 0, and
Lii > 0, and hence the matrix Q = −L can be assumed to be a generator of a suitable
continuous-time Markov chain on the state space S = {1, 2, . . . , n}. Then,

yi = e∆t di/2
n
∑

j=1

pij (∆t)e∆t dj/2 vj , (7)

where pij(t) are the corresponding transition probabilities of the Markov chain evalu-
ated at time ∆t, solution of the Kolmogorov’s backward equations,

P ′(t) = QP (t), P (0) = 1 (t ≥ 0), (8)

for the matrix transition probability P = (pij). �

Note that such a probabilistic representation allows in practice to compute a single
entry i of the vector solution. This is done by generating suitable random paths,
corresponding to a continuous-time Markov chain, which evolve backward in time
from the state i at t = ∆t to a final state on S for t = 0. Finally, the chosen entry is
computed by averaging the functional η over the sample. Such a functional depends
on the initial vector v and the diagonal matrix D. Moreover, applying this Lemma to
Eq. (3) allow us to derive the following general theorem.

Theorem 2 Let ik, k = 1, . . . , N , a sequence of N discrete random variables with
outcomes on S = {1, 2, · · · , n}. The probabilities pik−1 ik (t), k = 2, . . . , N , and pi i1(t)
for k = 1, correspond to the transition probabilities of a continuous-time Markov chain
generated by the same infinitesimal generator Q = −L and evaluated at time ∆t for
each k. Then, we have that any entry i of the vector solution x̄ in Eq. (3) can be
represented probabilistically as

x̄i = e∆t di/2E[

N
∏

k=1

ηk], (9)

where ηk = e∆t dik , k = 1, . . . , N − 1, and ηN = e∆t diN /2 viN .
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Proof. In view of D being a diagonal matrix, from Eq. (3) the entry i of the vector x̄
is given by

x̄i = e∆t di/2
n
∑

i1=1

n
∑

i2=1

· · ·

n
∑

iN=1

(e−∆tL)ii1e
∆t di1/2e∆t di1/2(e−∆tL)i1i2e

∆t di2/2 · · ·

×e
∆t diN−1

/2
(e−∆tL)iN−1iN e∆t diN /2 viN . (10)

As proved in the Lemma above, the matrix −L can be assumed to be the generator of
a continuous-time Markov chain with transition probability matrix P (t). Therefore,
the equation above can be rewritten as

x̄i = e∆t di/2
n
∑

i1=1

n
∑

i2=1

· · ·
n
∑

iN=1

pi i1 e
∆t di1 pi1 i2 e

∆t di2 · · ·

× piN−1 iN (∆t)e∆t diN /2 viN . (11)

�

Similarly to Lemma 1, a neat picture of this general probabilistic representation
can be described as follows: A random path starting at the chosen entry i is generated
according to the continuous-time Markov chain governed by the generator Q, and
evolves in time by jumping randomly from i to any state on S. Along this process, N
given functions ηk are evaluated, and the solution is obtained through the expected
value of a suitable multiplicative functional.

The Lemma 1 and Theorem 2 can be conveniently modified to represent prob-
abilistically the complete vector solution x̄. In fact, it is worth observing that the
transpose of the generator Q, Q⊺, corresponds to the generator of the continuous-time
Markov chain generated rather forward in time, being in this case the matrix transition
probability P solution of Kolmogorov’s forward equations,

P ′(t) = Q⊺ P (t), P (0) = 1 (t ≥ 0). (12)

This can be used to generate instead a random path that starts at a given state
according to a specific initial distribution, and evolves forward in time governed by
a continuous-time Markov chain generated by a suitable generator, which in practice
corresponds to the transpose of the generator of the backward equation. However,
note that Q = Q⊺, since the matrix A is symmetric, and therefore it holds that the
generator of the continuous Markov chain forward in time coincides with the generator
backward in time. This is mathematically formalized through the following Lemma:

Lemma 3 Let i and j be discrete random variables on the state space S = {1, 2, · · · , n}.
The random variable j is governed by the probability function pj = vj/

∑n
l=1

vl provided
vj ≥ 0, while the random variable i by the probability function pij(t) being the transition
probabilities of a continuous-time Markov chain generated by the infinitesimal gener-
ator Q = −L and evaluated at time ∆t. Then, the vector y = e∆tD/2e−∆tLe∆tD/2 v,
can be represented probabilistically as

yi = e∆t di/2V E[η], (13)

where V =
∑n

l=1
vl, η = e∆t dj/2, and E[η] its expected value.

Proof. Since the proof is similar of the previous Lemma’s proof, for completeness we
sketch here only the main differences. From Eq. (6) in Lemma 1, yi can be rewritten
as follows

yi =

(

n
∑

l=1

vl

)

n
∑

j=1

e∆t di/2(e−∆tL)ije
∆t dj/2 vj

∑n
l=1

vl
. (14)
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Whenever vj ≥ 0, vj/
∑n

l=1
vl can be defined as a suitable probability function pj for

the discrete random variable j on S. Similarly than in the previous Lemma, P is the
transition probability matrix for the continuous-time Markov chain generated by −L,
therefore it holds

yi =

(

n
∑

l=1

vl

)

n
∑

j=1

e∆t di/2pjie
∆t dj/2 pj , (15)

and hence yi can be represented as e∆t di/2
(
∑n

l=1
vl
)

E[e∆t dj/2]. �

As before, we used the Lemma 1 to formulate a general theorem, which allows in
practice to represent probabilistically the vector solution x̄.

Theorem 4 Let ik, k = 1, . . . , N , and j, N + 1 be discrete random variables with
outcomes on
S = {1, 2, · · · , n}. The probabilities pik−1 ik (t), k = 2, . . . , N , and pi i1(t) for k = 1
correspond to the transition probabilities of a continuous-time Markov chain generated
by the same infinitesimal generator −L for each ∆t and k, while for the random
variable j the probability pj is given by pj = vj/

∑n
l=1

vl provided vj ≥ 0. Then, we
have that the vector solution x̄ in Eq. (3) can be represented as

x̄i = e∆t di/2V E[
N
∏

k=1

ηk], (16)

where ηk = e∆t dik , k = 1, . . . , N − 1, and ηN = e∆t diN /2, and V =
∑n

l=1
vl.

3 The algorithm

To implement the theorems above in order to obtain numerically a single entry or
rather the full vector solution, we need to choose a finite sample of given size M ,
replacing in such a way the expected value by the arithmetic mean. Accordingly this
entails a statistical error that it will be discussed in the next section. Here we present
the algorithm implemented so far to compute the solution, but before doing that
we describe the numerical method used to generate in practice the continuous-time
Markov chain. Let pij(t) be the transition probability matrix, then the Kolmogorov
backward equation in Eq. (8) can be equivalently represented as the following system
of integral equations

pij(t) = δije
−dit +

∑

j 6=i

∫ t

0

ds di e
−di skijpij(t− s), (17)

where kij = Lij/di. Let S0, S1, . . . be a sequence of independent exponential random
times picked up from the exponential probability density p(Si) = di e

−diSi . The
integral equations above, along with the sequences of random times, can be used
to simulate a path according to the following recursive algorithm: Generate a first
random time S0 that obeys the exponential density function. Then, depending on
whether S0 < t or not, two different routes are taken. If S0 > t, the algorithm is
stopped, and no jump from the state i to a different state is taken. If, on the contrary,
S0 < t, then the state i jumps to a different state j according to the probability function
kij , and a new second random number exponentially distributed S1 is generated. If
S1 < (t− S0) the algorithm proceeds repeating the same elementary rules, otherwise
it is stopped. To illustrate the procedure above, in Fig. 1 we show two random paths
of a continuous-time Markov chain corresponding to an adjacency matrix of a small
world network of size 100.

Algorithm 1 describes a pseudocode corresponding to the implementation of The-
orem 2, which allows one to compute single entries of the vector solution, while Algo-
rithm 2 describes the pseudocode for computing probabilistically the complete vector
solution x̄, mathematically formalized in Theorem 4.
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Algorithm 1 Algorithm to compute a single entry i of the vector solution x

Require: i,∆t,N,M
xi = 0
for l = 1,M do

η = 1,j = i
for n = 1, . . . , N do

η = ηedj∆t/2

generate(τ)
while τ < ∆t do

generate(S), generate(j)
τ = τ + S

end while
η = ηedj∆t/2

end for
xi = xi + (vjη)/N

end for

Algorithm 2 Algorithm to compute the complete vector solution x

Require: ∆t,N,M, n
xi = 0, V =

∑n
j=1

vl
for l = 1,M do

generate(i)
η = V, j = i
for n = 1, . . . , N do

η = ηedj∆t/2

generate(τ)
while τ < ∆t do

generate(S), generate(j)
τ = τ + S

end while
η = ηedj∆t/2

end for
xi = xi + η/N

end for
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Figure 1: Two different sampled paths obtained for computing the first entry of
the vector e4A1. The paths correspond to random jumps to different states of
a small-world network. The size of the network is 100, the initial state is i = 1,
and the discretization parameter ∆t = 0.25.

4 Computational complexity of the Monte Carlo

algorithm

To estimate properly the computational cost of the algorithms above, the tasks inside
the two nested loops were analyzed separately from those that were composed inside
the do-while loop, and those outside it. Hence,

TCPU = Tin + Tout =
M
∑

l=1

N
∑

n=1

(tinln + toutln ). (18)

Note that the computational cost Tin of the inside task, which accounts for the time
spent in generating the sequences of random times for the evolving paths, depends on
the given matrix, while the cost of the outside tasks Tout are totally independent. In
fact, the computational time requires to generate a random paths is random, and in
practice depends on the specific entries of the row of the matrix j randomly visited
by the paths, including the connectivity and degree dj of the adjacency matrix of the
associated graph. More specifically, the degree affects directly the time spent by the
algorithm inside the do-while loop, since the mean time < Sj > of the exponential
probability density governing the random time Sj is given by 1/dj . In view of the
random jumping through the rows of the matrix, in the following let us assume that the
computational time spent in total for all random paths can be reasonably approximated
as

Tin = αin
∆t

τ̄
N M. (19)
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Here τ̄ = 1/d̄ is the corresponding mean time value obtained for a suitable matrix,
and its associated adjacency matrix, with an average degree d̄ given by

d̄ =
1

n

n
∑

i=1

di, (20)

and αin the corresponding proportionality constant. Such a constant takes into ac-
count the computational cost for evaluating the two functions (generate(S), generate(j))
in Algorithms 1 and 2. These functions are responsible for generating both, a random
time for the evolving paths (generate(S)), and a random number j governed by the
probability function kij defined in Eq. (17), which determines the row of the matrix
where to jump (generate(j)). Note that the cost for generating the exponential ran-
dom time using the function generate(S) is fully independent of the matrix size, which
is not the case when generating the random jumping using the function generate(j).
In fact, for a matrix with arbitrary different matrix coefficients the probability func-
tion described by kij is in general nonuniform, and therefore the cost for generating
a random j increases at most linearly with the matrix size. However, to improve the
performance of this function more efficient algorithms can be implemented, such as the
row-searching method based in practice in a binary search tree method as proposed
in [32]. Nevertheless, interestingly, for the specific case of the adjacency matrix of
undirected networks it turns out that such a probability function becomes uniform,
since all nodes are equally probable to jump, and therefore the computational cost for
generating the random j becomes fully independent of the matrix size. Indeed such a
random j can be trivially generated by simply multiplying a random number uniformly
distributed between 0 and 1 by the degree of the i node, and finally rounding to the
nearest integer.

Concerning the time spent by the remaining outside tasks, it can be readily esti-
mated as

Tout = αoutN M, (21)

where αout is the corresponding proportionality constant. Recall that ∆t = β/N ,
therefore it holds that

TCPU = αinβd̄M + αout
β

∆t
M. (22)

Note that for a sufficiently small ∆t, the predominant term is the second one, which
appears to be almost independent of the matrix, while for a large ∆t the opposite
behavior occurs. This is in good agreement with the results shown in Table 1, cor-
responding to the CPU time spent by the Monte Carlo algorithm when computing
the total communicability of two different networks characterized by different average
degrees.

∆t CPU Time SM (s) CPU Time SC (s)
0.5 2.08 2.91
0.25 2.88 3.85
0.125 4.11 4.96
0.0625 6.33 6.86
0.03125 10.71 11.05
0.0156 19.51 19.59

Table 1: CPU time spent by the Monte Carlo algorithm for computing the total
communicability of a small-world network (SM), and a scale-free network (SC)
of size 106 nodes. The average degree of the small-world network is d̄ = 2.4,
while for the scale-free network is d̄ = 4. The sample size is M = 106
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5 Numerical errors

In computing a single entry of the vector solution or the complete vector, we should
consider, in practice, two sources of numerical error. In fact, we have to face the error
due to the splitting in Eq. (2) and (4), and the error coming from necessarily replacing
the expected value in (16) by a finite sum over a given finite sample of size M . In the
following we focus exclusively on the numerical scheme for computing the full vector
solution, since the analysis of the error for the companion method for computing a
single entry turns out to be identical. To be more precise, the global error made in
computing probabilistically the vector solution can be evaluated as

ε = x− e∆t di/2V
1

M

M
∑

l=1

[
N
∏

k=1

ηl
k] = ε1 + ε2, (23)

where ηl
k corresponds to the l realization of the ηk random variable defined in Theorem

4, and

ε1 = x−
(

e∆tD/2e−∆tLe∆tD/2
)N

v (24)

ε2 =
(

e∆tD/2e−∆tLe∆tD/2
)N

v − e∆t di/2V
1

M

M
∑

l=1

[
N
∏

k=1

ηl
k] (25)

As mentioned already in Sec. 2, the first error ε1 is due merely to the splitting
procedure, and the error is of the order of O(∆t) or O(∆t2) depending on whether the
Lie or the Strang splitting is used.

The second error, ε2 , is the pure Monte Carlo statistical error, and of order
of O(M−1/2). In fact, it is well known that the arithmetic mean appearing in (23)
provides the best unbiased estimator for the expected value in (16). In practice, one
should simulate on the computer the random variables, based on generating random
numbers. By doing so, the error made in replacing the expected value with the mean
over a finite size sample is statistical in nature. More precisely, ε2 turns out to be, for
a large M value, approximately a random Gaussian variable with standard deviation
proportional to M−1/2 , i.e.,

ε2 ≈
σν

M1/2
, (26)

where σ denotes the square root of the variance, and ν is a standard normal (i.e.,
N(0, 1)) random variable. All this clearly shows that the proposed Monte Carlo
method could in principle have a poor numerical performance, and also that the error
is merely statistical, so it can only be bounded by some quantity with a certain degree
of confidence. However, there already exist many available statistical techniques, such
as variance reduction, multilevel Monte Carlo, and quasi-random numbers, that can
be used, in practice, to improve greatly the order of the global error, and consequently
the overall performance of the algorithm.

To illustrate the global error of the numerical method, and its convergence, several
examples were run to examine the specific problem of computing the total communi-
cability of a complex network (see [6] e.g.) for different network sizes. The error was
computed assuming the solution obtained using the built-in function expm of Matlab
as if it were the theoretical solution. The underlying algorithm consists essentially
of a rational approximation by means of the Padé approximation of an underlying
series expansion of the matrix, along with a direct method for computing the inverse
of a suitable linear algebra problem, which in practice entails an LU decomposition.
Therefore, since it is based on more highly accurate methods, we can assumed it to
be a highly accurate approximation of the generally unavailable theoretical solution.
In Fig. 2 the absolute error is plotted as a function of the time step ∆t for a network
of 100 nodes in (a), and 1000 in (b), and the two different splitting methods. The
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solid line corresponds in practice to the purely splitting error ε1, while the dashed line
corresponds to the error of the complete Monte Carlo method ε. Surprisingly, both
the Lie and Strang splitting seem to show the same order of the error (which is 2
as can be seen from the slope of the ancillary function plotted in the figure to help
the reader). This can be readily explained from Eq. (2) and the definition of total
communicability. Indeed, by definition of the total communicability of a network [6]

TC = (1, eA 1), (27)

where 1 is a vector of ones, (·, ·) the scalar product, and since L1 = 0, it holds that

[(1, D L1)− (1, LD1)] = 0. (28)

Therefore, from (2) the order of the local error for the Lie splitting turns out to be of
order O(∆t3), and in particular of order O(∆t2) as the global error, as it happens for
the Strang splitting. However, quantitatively the global error for the Strang splitting
appears to be smaller than the error obtained with the Lie splitting. The reason can
be found in that the proportionality constant multiplying ∆t2 for the Strang splitting
is smaller. Rather, this does not occur when computing the communicability of a
single node, which in practice entails computing a single entry of the vector solution.
In fact, Fig. 3 shows that the error of the Strang splitting is one order of magnitude
larger than for the Lie splitting, being in both cases the order of convergence as was
theoretically expected.

Moreover, it is worth observing that the absolute error tends to a constant value
for sufficiently small values of ∆t, being such a critical value larger when a smaller
sample size is used. This is because for this range of values of ∆t the global error
comes predominantly from the statistical error (which is independent of ∆t), since
the splitting error is already much smaller than the statistical error. In practice this
means that from a given value of ∆t it becomes useless to reduce further the time
step ∆t, and consequently increase the computational cost. From that point the error
becomes mostly statistical, being therefore required rather to increase the sample size
M in order to continue reducing the global error. In fact, in Fig. 4 the time step
∆t was chosen to be sufficiently small, 10−3. This makes the splitting error negligible
compared with the statistical error, and therefore the absolute error shown is mostly
statistical, decreasing as M−1/2 as expected by theory.

For the specific problem of computing the total communicability of a network in
Eq. (27), it can be analytically estimated how the numerical error depends on the
network size. Concerning the error due to exponential splitting, from Eq. (4) and
since L1 = 0, we obtain

ǫTC ≤ |(1, D LD,1)|∆t2. (29)

By using the Cauchy-Schwarz inequality, the error can be bounded as follows

ǫTC ≤ ‖D‖2∞ ‖L‖∞ ∆t2 = 2d3max ∆t2, (30)

where dmax corresponds to the maximum degree of the network. Therefore, for those
networks characterized by having a maximum degree almost independent of the net-
work size, such as the small-world networks, the error is almost independent of the
size. In fact, this is in agreement with the results plotted in Fig. 2, where the total
communicability has been computed for two different network sizes. Rather for those
other networks where the maximum degree increases with the network size, the error
increases with the network size requiring therefore to reduce ∆t accordingly to keep
constant the error. Concerning the other source of errors, as it was mentioned above
this concerns the statistical error due to the finite sample of the Monte Carlo simu-
lations. However, this error turns out to be independent of the network size as it is
shown in Fig. 4. This should not be so surprising since as it happens for Monte Carlo
integration of definitive integrals, the underlying error when computing numerically
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Figure 2: Absolute numerical error obtained when computing the total commu-
nicability of a small-world network for different values of the time step ∆t. The
networks are composed of (a) 100 nodes and (b) 1000 nodes, respectively. The
solid and dashed lines correspond to the theoretical solution obtained with the
Lie splitting, and the Strang splitting, respectively, while the points denote the
errors obtained when simulating using Monte Carlo. The gray line corresponds
to an ancillary function of slope 2.
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Figure 3: Absolute numerical error obtained when computing the communica-
bility of a single node (i = 1) of a small-world network for different values of
the discretization step ∆t. The networks are composed of (a) 100 nodes and (b)
1000 nodes, respectively. The solid and dashed lines correspond to the theoreti-
cal solution obtained with Lie splitting, and Strang splitting, respectively, while
the points denote the errors obtained when simulating using Monte Carlo. The
gray lines correspond to ancillary functions of slope 1 and 2.

the expected value of the function does not depend on the number of dimensions of the
integral. In fact, this is the main advantage of Monte Carlo integration against most
deterministic methods, which it is known to grow exponentially with the dimensions.
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Figure 4: Statistical error obtained when computing the total communicability
of a small-world network for different values of the sample size M . The networks
are composed of 100 nodes and 1000 nodes, respectively. The time step is kept
fixed to ∆t = 10−3. The gray line corresponds to an ancillary function of slope
−1/2.

6 Some results and benchmarks

To illustrate the numerical method and performance of the underlying algorithm, in
the following we show the results corresponding to several benchmarks run so far. They
concern the numerical computation of the metric communicability in both synthetic
and real complex networks. For comparison with other methods, and to estimate the
numerical errors, the Matlab toolbox funm kryl developed in [4], and freely available
in [21], has been used. Such a code implements a Krylov subspace method with de-
flated restarting for matrix functions. Concerning the Monte Carlo algorithm, it was
implemented in Fortran 90, and for a fair comparison with the performance obtained
with the Matlab code, no further optimization of the code or the Fortran compiler
was performed. Moreover, Fortran is purely sequential, while Matlab by default em-
ploys multi-threading architecture for running simulations. Therefore, to make a fair
comparison between the systems, Matlab’s multi-threading feature was completely
disabled. The simulations were run on a computer equipped with an Intel Xeon CPU
E5620 at 2.40 GHz and 96 GB of RAM.
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Small-world networks. These networks were generated in Matlab using the function
smallw, freely available through the toolbox CONTEST [11]. In Table 2 the computa-
tional time to compute the total communicability of the network for about the same
error is shown for different network sizes. Up to a network size of 10, 000 nodes, the
error was estimated using Matlab’s built-in function expm as if it were the theoretical
solution. For increasingly larger networks however, the high computational cost of
this function makes its computation a formidable task, making it necessary therefore
to resort to other methods to estimate the numerical error. For such a purpose, the
aforementioned Krylov-based method was used by setting a very small value of the
stopping-accuracy parameter, 10−16, as well as the restart parameter to 40. These are
also the parameters that have been modified in order to obtain a similar error with
the Monte Carlo simulations.

Table 2: CPU time spent for computing the total communicability of a small-
world network. For the Monte Carlo method the parameters are M = 106 and
∆t = 0.03125. The error was kept fixed to 10−3.

Network size CPU Time MC (s) CPU Time Matlab (s)
103 0.52 0.009
104 0.83 0.011
105 0.85 0.050
106 0.95 0.491
107 0.98 6.036
108 1.07 73.22

It is remarkable to note that the computational cost of the Monte Carlo method
appears to be almost independent of the size of the network, while increasing almost
linearly for the Krylov-based method. For the Monte Carlo method this can explained
by the fact that the maximum degree of the network is almost independent of the
network size, and consequently as explained in Sec. 5, the numerical error. Therefore,
to compute the solution within a given prescribed accuracy it is not required to modify
the values of the sample size M , and the time step ∆t for increasingly larger sizes,
thereby ensuring the same computational cost of the algorithm for any network size.
Such a feature allows the Monte Carlo method to achieve a computational performance
which is notably higher than the classical counterpart, based on the Krylov-based
method, for large scale problems. In fact, it has been pointed out in the literature
[8, 32] and more specifically in [30] through a suitable Theorem, that there exists an
algorithm based on the Lanczos method capable of computing the vector solution of the
action of a matrix exponential over a given vector in a time that grows linearly with the
matrix size. This is mostly due to the sparsity of the adjacency matrix of the network,
which simplifies considerably the cost of the matrix-vector products associated to each
Lanczos iteration. These theoretical findings are therefore numerically confirmed in
Table 2, where it can be seen indeed that the CPU time for the Krylov-based method
increases almost linearly with the network size.

As discussed in Sec. 3, the Monte Carlo method can be used as well to compute
the full vector solution eβA v. In the particular case of complex networks, and when
v is the vector with all entries equal to 1, the vector solution represents the total
subgraph communicability of each node of the network [6]. More important than the
quantitative values of the entries of the vector, it is the insight obtained through the
ranking of the network organized by the importance of its nodes in terms of being
more or less communicable inside the network, which could be of primary importance
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in the field of complex networks. For this purpose, and to evaluate the similarities
between the rankings obtained with the Monte Carlo method and the Krylov-based
method, we use the intersection distance method [9] on both the full set of nodes of
the network, and on 10% of them. The intersection similarity distance for the top K
nodes of two vectors x and y is defined as

isimK(x, y) :=
1

K

K
∑

i=1

|xi∆ yi|

2i
. (31)

Here ∆ is the symmetric difference operator between the two vectors. In practice, small
values of the intersection distance denote large similarities between the vectors, while
the limiting value of 1 suggests vectors that are totally disjointed. Since computing the
intersection distance could be computationally costly for increasingly large networks,
only relatively small sizes of the network were analyzed so far. In Table 3 the results
corresponding to networks composed of 1000 and 10, 000 nodes are shown. Note that
the two ranked vectors show strong similarities, being even stronger for larger network
sizes.

Table 3: Similarity results of the two computed ranked communicability vectors
obtained with the Krylov-based method, and the Monte Carlo method for dif-
ferent sample sizes. The network is a small-world network of size a) 1000 nodes,
and b) 10, 000 nodes. For the Monte Carlo method ∆t = 0.03125.

(a)

Sample size M isim (100%) isim (10%)
105 0.0037 0.0279
106 0.0022 0.020
107 0.0014 0.011

(b)

isim (100%) isim (10%)
4.89× 10−4 0.00379
3.39× 10−4 0.0021
2.24× 10−4 0.0014

Scale-free networks. Such networks have been generated using the function pref
belonging to the aforementioned toolbox CONTEST. In contrast to the small-world
network, these networks are characterized by the presence of hubs, which in practice
entail a much larger maximum degree, and correspondingly larger maximum eigenvalue
than for the small-world networks. For this reason, and to avoid dealing with very
large values when computing the total network communicability for large networks, it is
more convenient instead to analyze the so-called normalized total communicability [6],
which corresponds in practice to the average total communicability of the network per
node. This metric can be readily obtained dividing the total network communicability
by the network size, that is TCn = TC/n. Since the value of the maximum degree
increases with the network size, then in order to keep constant the numerical error
it may be necessary for the Monte Carlo method to reduce the time step ∆t (or
equivalently increasing the parameter N) accordingly. From Eq. (30), and assuming
dmax ≈ n as an upper-bound approximation, it holds that the time step ∆t should
reduce, at most, as n−1 (or equivalently the parameter N increase linearly with n),
to ensure a constant numerical error when computing the normalized total network
communicability for arbitrary large scale-free networks. As a result, the computational
cost of the algorithm, estimated in Sec. 4 as being TCPU ≈ Tout for sufficiently small
∆t, increases therefore linearly with the network size n for these type of networks.

To avoid such a computationally costly procedure, a reasonable alternative relies
on computing a generalization of the communicability, that is eβA, where β is typically
interpreted as an effective ”temperature” of the network (see [17], e.g.). Essentially
the idea is to use the inverse of the maximum eigenvalue as the value of the parameter
β, which in practice will control the rapid growth of the norm of the matrix A with
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the size of the network. To ensure fast convergence of the Monte Carlo solution, using
β = 1/λmax, where λmax is the maximum eigenvalue of A, should suffice. However,
finding the maximum eigenvalue for large networks is computationally costly, and in
the following a faster alternative, based on computing the maximum degree of the net-
work, dmax, was used instead as an upper bound value. Note that in doing that the
numerical error obtained when computing the normalized total network communica-
bility becomes independent of the network size. This can be proved readily as follows:
From Eq. (30), the error to compute the normalized total network communicability is
given by,

ǫTCn ≤ 2d3max ∆t2/n =
2dmax

N2n
. (32)

where the time-step ∆t defined in Eq. (1) was replaced by 1/(dmax N). Now using
dmax ≈ n as an upper-bound approximation, then it follows that the error becomes
indeed totally independent of the network size, and hence the computational cost of
the algorithm.

However, different values of β could have a direct impact not only on the entries
of the communicability vector, but also on the ranking of the nodes according to their
communicability values, and therefore it becomes essential to analyze at least qualita-
tively such an issue. In Table 4 the similarity results of two ranked communicability
vectors are shown for two different network sizes. All the vector solutions are com-
puted this time using the function expm of Matlab to minimize the error, and the
comparison is done by choosing as the reference vector the ranked communicability
vector with β = 1.

Table 4: Similarity results of two computed ranked communicability vectors
obtained for different values of β. The reference vector used for comparison
corresponds to β = 1. The network is a scale-free network of size a) 1000 nodes,
and b) 10, 000 nodes.

(a) λmax = 10.22, dmax = 69

β isim (100%) isim (10%)
1 0 0
0.5 0.0025 0.0137

0.125 0.0026 0.0145
1/λmax 0.0026 0.0145
1/dmax 0.0026 0.0145

(b) λmax = 19.52, dmax = 357

isim (100%) isim (10%)
0 0

3.74× 10−4 0.0026
4.01× 10−4 0.0029
4.01× 10−4 0.0029
4.27× 10−4 0.00315

From Table 4 it is worthwhile to observe the close similarity of the ranked vectors
for different values of β, being even closer for larger values of the network size. Recall
that for the typical accuracy asked for Monte Carlo simulations, the error is already
higher (10−3 in the previous examples) than the values obtained for the intersection
similarities. This fact can be exploited in practice to choose values of β smaller, and
consequently ∆t larger, and still be able to characterize properly the communicability
of the network, being indeed indistinguishable within the prescribed accuracy for the
Monte Carlo simulations.

In Table 5 the times spent to compute the normalized total communicability of
scale-free networks of different sizes are shown. As for small-world networks, in all
Monte Carlo simulations the error has been kept fixed to 10−3. Similar to the re-
sults obtained for the small-world network, the Monte Carlo method outperforms the
Krylov-based method for large size networks, having also a computational time inde-
pendent of the network size, in agreement with the theoretical considerations discussed
above.
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Table 5: CPU time spent for computing the normalized total communicability of
a scale-free network. For the Monte Carlo method the parameters are M = 106

and ∆t = 0.03125. The error was kept fixed to 10−3.

Network size CPU Time MC (s) CPU Time Matlab (s)
103 0.62 0.0068
104 0.71 0.016
105 0.68 0.038
106 0.71 0.469
107 0.75 4.08
108 0.76 52.59

Real networks. In Table 6 the results corresponding to a few real networks of
arbitrary large size are shown. These networks were downloaded from the freely avail-
able sparse matrix repository SuiteSparse Matrix Collection [35], and correspond to
undirected graphs describing the largest strongly connected components of the corre-
sponding Open Street Map road networks in Europe (Europe OSM), the USA roads
(USA roads), and finally a directed graph corresponding to Wikipedia. The latter
network was conveniently symmetrized following the procedure described in [5]. As in
the previous examples, the performance of the Monte Carlo method is notably superior
to the Krylov-based method, being that the differences are even more pronounced for
large network sizes.

Table 6: CPU time spent for computing the normalized total communicability
of real complex networks. For the Monte Carlo method the parameters are
M = 106 and ∆t = 0.03125. The error in the norm L∞ was kept fixed to 10−3.

Network type Size CPU Time MC (s) CPU Time Matlab (s)
Wikipedia 7, 133, 814 0.75 5.104
USA roads 23, 947, 347 0.77 9.925
Europe OSM 50, 912, 018 0.79 11.79

7 Conclusion

A new Monte Carlo method for computing the action of an exponential matrix on a
vector has been proposed. The method is based on generating suitable random paths
corresponding to a continuous-time Markov chain governed by the associated Laplacian
matrix. It extends the existing Monte Carlo methods discussed so far in the literature
for solving linear algebra problems, for dealing now with more involved functions of
matrices such as the matrix exponential. An important advantage of the Monte Carlo
method is that the probabilistic representation of the solution allows for efficiently
computing single entries of the vector solution, along with global metrics involving
the full matrix, such as the total communicability in the field of complex networks.
Moreover, since the solution is obtained through averaging independent calculations it
is especially well suited for parallel computation. In fact, it is known that the Monte
Carlo algorithm turns out to be fully scalable and naturally fault tolerant. To test
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the performance of the algorithm, several benchmarks have been used, consisting of a
variety of complex networks (real and synthetic) for computing the communicability
of the network. The numerical errors of the method have been analyzed through the
paper. The results have been compared with a classical Krylov-based method, showing
a notably superior performance of the algorithm for large-scale matrices, both in terms
of computational time and memory requirements.
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restarted Krylov subspace method for the evaluation of matrix functions, Linear
Algebra Appl., 429 (2008) pp. 2293-2314

[5] M. Benzi, E. Estrada, and C. Klymko,Ranking hubs and authorities using matrix
functions, Linear Algebra Appl., 438 (2013) pp. 2447-2474.

[6] M. Benzi, and C. Klymko, Total communicability as a centrality measure, J.
Complex Networks, 1 (2013) pp. 124149.

[7] M. Benzi, T.M. Evans, S.P. Hamilton, M.L. Pasini, and S.R. Slattery, Analysis
of Monte Carlo accelerated iterative methods for sparse linear systems, Numerical
Linear Algebra with Appl., 24 (2017).

[8] M. Benzi, and P. Boito, Quadrature rule-based bounds for functions of adjacency
matrices, Linear Algebra Appl., 433 (2010) pp. 637-652.

[9] P. Boldi, TotalRank: Ranking without Damping, Tracks and Posters of the 14th
International Conference on World Wide Web (2005), New York: ACM Press,
pp. 898899.

[10] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, The Leja Method Revisited:
Backward Error Analysis for the Matrix Exponential, SIAM J. Sci. Comput., 38
(2016), A1639A1661.

[11] http://www.maths.strath.ac.uk/research/groups/numerical_analysis/

contest

[12] I.T. Dimov, Monte Carlo Methods for Applied Scientists,World Scientific, (2008).

[13] I. T. Dimov, and V.N. Alexandrov,A new highly convergent Monte Carlo method
for matrix computations, Math. Comput. Simulation, 47 (1998) pp. 165-181.

[14] I. T. Dimov, V.N. Alexandrov, and A. Karaivanova, Parallel resolvent Monte
Carlo algorithms for linear algebra problems, Math. Comput. Simulation, 55
(2001) pp. 25-35.

18



[15] I. Dimov, S. Maire, and J.M. Sellier, A new Walk on Equations Monte Carlo
method for solving systems of linear algebraic equations, Appl. Math. Model., 39
(2015) pp. 4494-4510.

[16] M. Evans, and T. Swartz, Approximating Integrals Via Monte Carlo and Deter-
ministic Methods, Oxford University Press, (2000).

[17] E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex
networks, Phys. Rep., 514 (2012) pp. 89-119.

[18] G. Forsythe, and R. Leibler, Matrix inversion by a Monte Carlo method, Math.
Tables Other Aids Comput., 4 (1950) pp. 127129.

[19] G.H. Golub, and G. Meurant, Matrices, Moments and Quadrature with Applica-
tions, Princeton University Press, (2010).

[20] N.J. Higham, and A. H. Al-Mohy, Computing matrix functions, Acta Numer., 19
(2010) pp. 159208.

[21] http://guettel.com/funm_kryl/

[22] N.J. Higham, and A. H. Al-Mohy, Functions of matrices: Theory and Computa-
tion, SIAM , (2008)

[23] A. H. Al-Mohy, and N.J. Higham, Computing the Action of the Matrix Expo-
nential with an Application to Exponential Integrators, SIAM J. Sci. Comput., 3
(2011) pp. 488511.

[24] M. Hochbruck, and A. Ostermann, Exponential integrators, Acta Numer.,19
(2010) pp. 209286.

[25] T. Jahnke, and C. Lubich, Error bounds for exponential operator splittings, BIT,40
(2000) pp. 735744.

[26] H. Ji, M. Mascagni, and Y. Li, Convergence Analysis of Markov Chain Monte
Carlo Linear Solvers Using Ulam–von Neumann Algorithm, SIAM J. Numer.
Anal., 51 (2013) pp. 21072122.

[27] R.M.M. Mattheij, S.W. Rienstra, and J.H.M. ten Thije Boonkkamp, Partial
Differential Equations: Modeling, Analysis, Computation, SIAM monographs,
(2005).

[28] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl., 197
(1994) pp. 143-176.
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