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Abstract

We prove an upper bound for angular-momentum and charge in
terms of the mass for electro-vacuum asymptotically flat axisymmetric
initial data sets with simply connected orbit space. This completes
the work started in [7] where this charged Dain inequality was first
presented but where the proof of the main result, based on the methods
of [5], was only sketched. Here we present a complete proof while
simplifying the methods suggested by [7].

1 Introduction

Gravitational collapse involving suitable1 matter is expected [11, 17, 18] to
generically result in the formation of an event horizon whose exterior solu-
tion approaches a Kerr-Newman metric asymptotically with time, here we
are assuming that the exterior region becomes electro-vacuum. Then, the
characteristic inequality

m∞ ≥
√
| ~J∞|2
m2∞

+ Q2
E,∞ + Q2

B,∞ , (1.1)

1What constitutes suitable matter is part of the challenge posed by the cosmic cen-
sorship conjectures, but some restrictions are clear, most notably, one should restrict to
matter models which do not develop singularities in the absence of gravity. For a detailed
discussion see [18].
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relating the mass, angular momentum and the Maxwell charges of such black-
holes should also be valid asymptotically with time. Now, mass is non-
increasing while the Maxwell charges are conserved quantities. If one further
assumes axisymmetry we are able to define the angular momentum using a
Komar integral which is also conserved, see, e.g., [7]. So, letting m, ~J , QE

and QB denote the Poncaré and Maxwell charges of axisymmetric initial data
for such a collapse we see that

m ≥ m∞ ≥
√
| ~J∞|2
m2∞

+ Q2
E,∞ + Q2

B,∞ ≥
√
| ~J |2
m2

+ Q2
E + Q2

B . (1.2)

Besides their own intrinsic interest, results establishing such inequalities pro-
vide evidences in favor of this “current standard picture of gravitational
collapse” [11], which is based upon weak cosmic censorship and a version of
black hole uniqueness considerably stronger than the ones available [6, 8, 10].

Dain [12, 13], besides providing the previous Penrose-like heuristic argu-
ment, proved an upper bound for angular-momentum in terms of the mass
for a class of maximal, vacuum, axisymmetric initial data sets. The analysis
of [12] has been extended in [5] to include vacuum axisymmetric initial data,
with simply connected orbit space, and manifolds which are asymptotically
flat in the standard sense, allowing moreover several asymptotic ends. Re-
cently a generalized Dain’s inequality including electric and magnetic charges
was obtained in [7]; there the proof of the main result, based on the methods
of [5], was only sketched. The aim of this work is to provide a complete
proof of this charged Dain inequality while simplifying the methods of [5]. A
few comments concerning the refereed simplifications are in order: Here, we
have been able to follow the strategy developed in [5] by relaying solely on
the estimates arising from asymptotic flatness and the inversion procedure
(to be described briefly, see (2.20)). By doing so, we have eliminated the
necessity of introducing an extra family of auxiliary maps (denoted by Ǔµ

in [5]) and we were also able to proceed without relaying on the weighted
Poincaré inequality provided by Proposition 2.4 of [5]. It should be noted
that while the introduction of charge leads to a more complicated mass func-
tional (2.13), dealing with an arbitrary finite number of asymptotically flat
ends, as dealt with in [5], leads to other difficulties, most notably the fact that
an explicit form for the comparison map, here the map defined by extreme
Kerr-Newman, is longer available in general. Nonetheless, the simplifica-
tions presented here may easily be implemented in [5] without weakening the
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results established there.
We will prove the following (we refer to Section 2 for the necessary inter-

mediary definitions and to [9, 10] for a more detailed exposition):

Theorem 1.1 Let (M, g, K, E, B) be a three dimensional, electro-vacuum,
smooth data set invariant under an action of U(1), where M is the union of
a compact set and of two asymptotically flat regions M1 and M2, in the sense
of (2.2) and (2.3), with k ≥ 6. Let m, ~J , QE and QB denote respectively the
ADM mass, the ADM angular momentum and the total electric and magnetic
charges of M1. If M/U(1) is simply connected, then

m ≥
√
| ~J |2
m2

+ Q2
E + Q2

B . (1.3)

Remark 1.2 We expect the equality to be attained only for the magneti-
cally and electrically charged extreme Kerr-Newman space-times, which do
not satisfy the hypotheses of Theorem 1.1. Indeed, any spacelike manifold
in an extreme Kerr-Newman space-time is either incomplete, or contains a
boundary, or a singularity, or an asymptotically cylindrical end.

2 A lower bound for the ADM mass of electro-

vacuum and axisymmetric initial data

An electro-vacuum initial data set is a quintuplet (M, g, K, E, B), with (M, g)
a Riemannian manifold, K a symmetric two-tensor on M , and E, B ∈ TM
divergence free, satisfying the Einstein-Maxwell scalar constraint equation,
which, for maximal initial data (trgK = 0), reads

(3)R = 16πµ + |K|2g + 2
(
|E|2g + |B|2g

)
. (2.1)

In the previous equation, (3)R is the scalar curvature of g, the function µ ≥ 0
represents the non-electromagnetic energy density and | · |g denotes the norm
with respect to the metric g.

Recall also that an asymptotically flat end is a region Mext ⊂ M diffeo-
morphic to R3 \B(R), where B(R) is a coordinate ball of radius R, such that
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in coordinates on Mext obtained from R3 \B(R) we have, for some k ≥ 1,2

gij = δij + ok(r
−1/2) , ∂kgij ∈ L2(Mext) , Kij = Ok−1(r

−β) , β >
5

2
. (2.2)

It will be necessary to request that, in the previous asymptotically flat coor-
dinates,3

Ei = Ok−1(r
−γ−1) , Bi = Ok−1(r

−γ−1) , γ > 3/4 . (2.3)

We will be dealing with axisymmetric initial data, i.e., data which is
invariant under an action of U(1). By further assuming that M/U(1) is
simply connected we are able to rely on [3]4 for the existence of a coordinate
system, with controlled asymptotic behavior, in which the metric takes the
form

g = e−2U+2α
(
dρ2 + dz2

)
+ ρ2e−2U (dϕ + ρ Wρdρ + Wzdz)2 , (2.4)

where
η := ∂ϕ ,

is the axial Killing vector; such coordinates are global in M1, with M2 being
represented by the “puncture” {ρ = z = 0}.

To obtain our inequality we start by bounding the ADM mass from below
by a mass functional depending on U , the unknown in (2.4) determining the
norm of the axial Killing vector, and on global (electromagnetic) potentials
χ, ψ and v whose definition we will now recall: The electric and magnetic
fields E and B are the orthogonal projections to TM of their space-time
analogues

Eµ = F µ
νn

ν , Bµ = ∗F µ
νn

ν , (2.5)

where F is the Maxwell two-form, and where n is a unit normal to M , when
embedded in an electro-vacuum space-time.5 Then, relaying on Maxwell’s

2We write f = ok(r−α) if the limits limr→∞ rα+`∂k1 . . . ∂k`
f vanish for all 0 ≤ ` ≤ k,

and f = Ok(r−α) if there exists a constant C such that |rα+`∂k1 . . . ∂k`
f | ≤ C for all

0 ≤ ` ≤ k.
3The need to impose this unusual ranges for β and γ will became apparent in the

proof of the main result, see, e.g., (2.24). Also, an identical decay rate for the second
fundamental form was already needed in vacuum [5].

4To invoke [3] we also need to assume asymptotic flatness with k ≥ 6.
5The existence of an electro-vacuum and axisymmetric evolution of the data follows

from its smoothness by [2] and [4]. This will, in particular, allow us to use the (space-time)
computations in [19].
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equations, axisymmetry and simple-connectedness of M/U(1), we are able
to find χ, ψ, v : M → R satisfying

∂αχ = Fµαηµ , ∂αψ = ∗Fµαηµ , (2.6)

and

dv =
1

2
λ− χdψ + ψdχ , (2.7)

where
λ := 2εijkK

j
`η

kη`dxi . (2.8)

The desired lower bound on mass was established in [7], based on the
results of [3] (compare [1, 12, 15]), and reads

m ≥ 1

8π

∫ [
(DU)2+

e4U

ρ4
(Dv + χDψ − ψDχ)2+

e2U

ρ2

(
(Dχ)2 + (Dψ)2

) ]
d3x ,

(2.9)
where, from now on, we use the symbol Df to denote the gradient of a
function f with respect to the flat metric δ = dρ2 + dz2 + ρ2dϕ2, and we
will use both (v)2 and |v|2 in alternative to |v|2δ , the squared norm of v with
respect to δ.

Remark 2.1 As discussed in [9], see also [11], for stationary data with
vanishing non-electromagnetic energy density (µ = 0) equality is attained
in (2.9).

We have the following, from which Theorem 1.1 immediately follows:

Theorem 2.2 Let (M, g, K, v, χ, ψ) be a three dimensional smooth data set
invariant under an action of U(1), where M is the union of a compact set
and of two asymptotically flat regions M1 and M2, in the sense of (2.2), with
k ≥ 6, and where v, ψ and χ are global potentials as in (2.6) and (2.7),

satisfying (2.3). Let m and ~J denote the ADM mass and ADM angular
momentum of M1, and let QE and QB be the global electric and magnetic
charges of M1. If (2.9) holds and M/U(1) is simply connected, then

m ≥
√
| ~J |2
m2

+ Q2
E + Q2

B .
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Remark 2.3 We stress the fact that, in the previous result, no constraints
are assumed. Nonetheless the parallelism with Einstein-Maxwell is clear and
the use of the electromagnetic terminology seems appropriate.

For future reference we take the chance to provide formulas for the Maxwell
2-form and the global charges in terms of the axial potentials: in an orthonor-
mal basis {n, ei}, with ei ∈ TM , e3 proportional to η, and n normal to M ,
when embedded in a space-time not necessarily satisfying Einstein equations,
the Maxwell 2-form is given by

Fµν =
eU

ρ




0 ∂2ψ −∂1ψ −∂1χ
−∂2ψ 0 0 −∂2χ

∂1ψ 0 0 0
∂1χ ∂2χ 0 0


 .

Since ψ, χ and v are constant on each connected component Aj of the “axis”,
we set

vj := v|Aj
, ψj := ψ|Aj

, χj := χ|Aj
, j = 1, 2 , (2.10)

where A1 = {ρ = 0} ∩ {z < 0} and A2 = {ρ = 0} ∩ {z > 0}. Then, using
equations (2.6) we see that (compare [19])

QE := − 1

4π

∫

S∞
∗F = −−2π

4π

∫

S∞/U(1)

iη ∗ F

=
1

2

∫

S∞/U(1)

dψ =
ψ2 − ψ1

2
, (2.11)

with a similar computation yielding

QB :=
1

4π

∫

S∞
F =

χ1 − χ2

2
. (2.12)

Proof: If the mass is infinite there is nothing to prove, otherwise by (2.9)
we need to find a lower bound on

I :=

∫

R3

[
(DU)2 +

e4U

ρ4
(Dv + χDψ − ψDχ)2 +

e2U

ρ2

(
(Dχ)2 + (Dψ)2

) ]
d3x .

(2.13)
Let (Ũ , ṽ, χ̃, ψ̃) be the map associated with the extreme Kerr-Newman

with angular momentum along the z–axis equal to (v2 − v1)/8 and electric
charge (ψ2 − ψ1)/2. We wish to show that the action I := I(U, v, χ, ψ)
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is larger than or equal to that of (Ũ , ṽ, χ̃, ψ̃), which shall be denoted by
Ĩ. As we shall see I differs form an harmonic map action H (2.33) by a
boundary term; the idea is then to use a result of [16], that the action H
is minimized by the solution of the Dirichlet problem which is expected to
be (Ũ , ṽ, χ̃, ψ̃); however, that result does not apply directly because of the
singularity of the equations at the axis ρ = 0; moreover, we are working
in an unbounded domain. We will overcome such problems by constructing
a controlled sequence of integrals over compact domains which avoid the
singular set and saturate R3. Such strategy was developed in [5]; here we
generalize it to the electro-vacuum setting.

So, let σ > 0, r =
√

ρ2 + z2 and let fσ ∈ C∞(R3) be any family of
functions satisfying

• ∂ϕfσ ≡ 0 ;

• 0 ≤ fσ ≤ 1;

• fσ = 0 on the set {r ≤ σ/2} ∪ {r ≥ 2/σ};
• fσ = 1 on the set {r ≥ σ} ∩ {r ≤ 1/σ};
• |Dfσ| ≤ C/σ for σ/2 ≤ r ≤ σ ; and

• |Dfσ| ≤ Cσ for 1/σ ≤ r ≤ 2/σ .

Let θ = U, v, χ, ψ and write

θσ := fσθ + (1− fσ) θ̃ = fσ(θ − θ̃) + θ̃ .

We claim that Iσ := I(Uσ, vσ, χσ, ψσ) satisfies

Lemma 2.4 limσ→0 Iσ = I.

Proof: Indeed, for

λσ := Dvσ + χσDψσ − ψσDχσ , (2.14)
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we have∫

R3

e4Uσ

ρ4
|λσ|2 =

∫

{0≤σ/2}

e4Ũ

ρ4
|λ̃|2

︸ ︷︷ ︸
I

+

∫

{σ/2≤r≤σ}

e4Uσ

ρ4
|λσ|2

︸ ︷︷ ︸
II

+

+

∫

{σ≤r≤1/σ}

e4U

ρ4
|λ|2

︸ ︷︷ ︸
III

+

∫

{1/σ≤r≤2/σ}

e4Uσ

ρ4
|λσ|2

︸ ︷︷ ︸
IV

+

∫

{2/σ≤r}

e4Ũ

ρ4
|λ̃|2

︸ ︷︷ ︸
V

.

Since the maps under consideration have finite energy, the integrals I and V
converge to zero, by the dominated convergence theorem. III converges to
the integral over R3 of e4U

ρ4 |λ|2 by, e.g., the monotone convergence theorem.
We will now show that

II =

∫

{σ/2≤r≤σ}

e4Uσ

ρ4
(Dvσ + χσDψσ − ψσDχσ)2 →σ→0 0 . (2.15)

The key identity is6

λσ = fσλ + (1− fσ)λ̃ + Dfσ(v − ṽ) + Dfσ(χ̃ψ − ψ̃χ) (2.16)

+fσ(1− fσ)
{

(ψ − ψ̃)D(χ− χ̃)− (χ− χ̃)D(ψ − ψ̃)
}

,

which will allow to establish (2.15) by a step-by-step estimation of the in-
tegrals obtained by replacing λσ by each of its five summands. We will
exemplify this by dealing with the most delicate case.

The existence of multiple ends manifests itself in the asymptotic behavior

U = 2 log r + O(1) , r → 0 , (2.17)

established in [3, Theorem 2.9, p. 2580]. Then, using the decay rates of the
extreme Kerr-Newman map, compiled in Table 1 of Appendix A, we get7

e4Uσ = e4fσUe4(1−fσ)Ũ

. r8fσr4(1−fσ)

= r4(fσ+1) ≤ r4 , r → 0. (2.18)

6The computations leading to this identity are presented in Appendix B.
7We will write f . g if and only if f = O(g).
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From (2.8) and asymptotic flatness (compare [3, Theorem 2.7, p. 2580])
we see that

|λ|δ = ρ2O(r−β) , r → +∞ . (2.19)

To control the behavior for small r we proceed as follows: Recall that near r =
0 the coordinates (ρ, z) can be obtained from the usual cylindrical coordinates
in the other asymptotically flat region, which we denote by (ρ̂, ẑ), by an
inversion (ρ̂, ẑ) = ( ρ

r2 ,
z
r2 ) (see the proof of [3, Theorem 2.9]). This leads to

estimates for small r, equivalently for large r̂, such as

|λ|δ =
1

r2
|λ|δ̂ . 1

r2
ρ̂2r̂−β . 1

r2

ρ2

r4
rβ = ρ2rβ−6 , r → 0 , (2.20)

where δ̂ = dρ̂2 + dẑ2 + ρ̂2dϕ2.
The same procedure yields

|Dχ|δ, |Dψ|δ = ρO(rγ−3) , r → 0 , (2.21)

and we see that, for small r,

|Dv|δ ≤ |λ|δ + |χDψ − ψDχ|δ . ρ2rβ−6 + ρ r2γ−4 . (2.22)

From this and the known asymptotic behaviour of extreme Kerr-Newman
one obtains, when β ≥ 2γ + 1,

v − ṽ = O(r2γ−2) , (2.23)

and we are now able to see that the contribution of the term Dfσ(v − ṽ) in
the region ρ ≥ z, where r is comparable to ρ, is estimated by

∫ σ

σ/2

r4

ρ4r2

(
r2γ−2

)2
r2dr . σ4γ−3 →σ→0 0 provided that γ > 3/4 . (2.24)

This explains our ranges of β and γ in (2.2) and (2.3)8.
Since v and ṽ have the same axis data, Taylor expanding on ρ along the

axis yields

(v − ṽ)(ρ, z) = (v − ṽ)(0, z)︸ ︷︷ ︸
=0

+∂ρ(v − ṽ)(c(ρ), z)ρ , |c(ρ)| ≤ |ρ| . (2.25)

8For β < 2γ + 1 the dominating behaviour in (2.22) is governed by λ, which leads to
v − ṽ = O(rβ−3) and the necessity to impose β > 5/2, as in vacuum [5, p. 2602].
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Also, again for β ≥ 2γ + 1,

∂ρv = ρO(r2γ−4) ,

with the same estimate holding for the ρ-derivative of the difference. Then,
in {ρ ≤ z},

v − ṽ = ρ2O(r2γ−4) , r → 0 . (2.26)

We see that, in this region, the integral under consideration is estimated by
∫

{θ:ρ<z}

∫ σ

σ/2

r4

ρ4r2

(
ρ2r2γ−4

)2
r2 sin θ drdθ . σ4γ−3 →σ→0 0 ,

and (2.15) follows.
The proof that

IV →σ→0 0 ,

follows along the lines of the proof of (2.15) with the necessary estimates for
the terms appearing in equation (2.16) following directly from asymptotic
flatness. The remaining terms in Iσ can be controlled in a similar, although
considerably more direct and simpler, fashion. For instance, when controlling
the |DUσ|2 term one of the steps requires to estimate the integral

∫

{σ/2≤r≤σ}
|DUσ|2 =

∫

{σ/2≤r≤σ}
|(U − Ũ)Dfσ + fσDU + (1− fσ)DŨ |2

.
∫

{σ/2≤r≤σ}

(
(U − Ũ)2r−2 + |DU |2 + |DŨ |2

)
,

where in fact the second and third term go to zero by the Lebesgue domi-
nated convergence theorem while the vanishing of the first follows by direct
estimation using (2.17) and the decay rates presented in Table 1.

¤
We now show that:

Lemma 2.5 Iσ ≥ Ĩ for all σ small enough.

Proof: This time consider, for 0 < ε < 1,

f̂ε =





0, ρ ≤ ε ;
log ρ

ε

log
√

ε
ε

, ε ≤ ρ ≤ √
ε ;

1, ρ ≥ √
ε .
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Set, for θ = U, v, χ, ψ,

θσ,ε = f̂εθσ + (1− f̂ε)θ̃ ,

and let Iσ,ε denote the action of (Uσ,ε, vσ,ε, χσ,ε, ψσ,ε) and

λσ,ε = Dvσ,ε + χσ,εDψσ,ε − ψσ,εDχσ,ε .

We claim that∫

{ρ≤√ε}

[
(DUσ,ε)

2 +
e4Uσ,ε

ρ4
(λσ,ε)

2 +
e2Uσ,ε

ρ2

(
(Dχσ,ε)

2 + (Dψσ,ε)
2
) ]

d3x →ε→0 0 .

(2.27)
Equivalently,

Iσ,ε →ε→0 Iσ . (2.28)

In order to see this, note that the integral over the set {0 ≤ ρ ≤ ε}, where
θσ,ε = θ̃, approaches zero as ε tends to zero by the Lebesgue dominated
convergence theorem; the same happens away from the set {σ/2 < r < 2/σ}.
So it remains to consider the integral over

Wσ,ε := {ε ≤ ρ ≤ √
ε} ∩ {σ/2 < r < 2/σ} .

The computations leading to (2.16) now give

λσ,ε = f̂ελσ + (1− f̂ε)λ̃ + Df̂ε(vσ − ṽ) + Df̂ε(χ̃ψσ − ψ̃χσ) (2.29)

+f̂ε(1− f̂ε)
{

(ψσ − ψ̃)D(χσ − χ̃)− (χσ − χ̃)D(ψσ − ψ̃)
}

.

Since Iσ → I, we see that Iσ must be finite, at least for all small enough
σ. Fix such a σ > 0. As before the first two terms in the right-hand side
of (2.29) constitute no problem. To control the others note that, for all ε
such that

√
ε < σ/2, we have, in the (ρ, z, ϕ) coordinates,

Wσ,ε ⊆ [ε,
√

ε ]× ([z0(σ), z1(σ)] ∪ [z2(σ), z3(σ)])× [0, 2π] , (2.30)

for a good choice of zi’s satisfying zi(σ) 6= 0; e.g., the z–coordinate value, in
increasing order, of the points in the intersection of ρ = ε with both r = σ/2
and r = 2/σ. We then see that
∫

Wσ,ε

e4Uσ,ε

ρ4

(
Df̂ε(vσ − ṽ)

)2

d3x ≤ 2π
∑
i=0,1

∫ z2i+1(σ)

z2i(σ)

∫ √
ε

ε

e4Uσ,ε

ρ4

(
Df̂ε

)2

(vσ − ṽ)2 ρ dρ dz

≤ 2π
∑
i=0,1

∫ z2i+1(σ)

z2i(σ)

∫ √
ε

ε

C(σ)

ρ3

1

ρ2(log ε)2
(vσ − ṽ)2 dρ dz

11



Since zi(σ) 6= 0 we see that vσ and ṽ are smooth on the set {ρ ≤ √
ε , z ∈

∪i[z2i, z2i+1]}. Then, Taylor expanding on ρ along the axis, while noting
that vσ and ṽ have the same axis data and that fσ is, by construction,
axisymmetric, yields (compare (2.25))

vσ − ṽ = O(ρ2) , ρ → 0 , in {ρ ≤ √
ε , z ∈ ∪i[z2i, z2i+1]} , (2.31)

hence

2π
∑
i=0,1

∫ z2i+1(σ)

z2i(σ)

∫ √
ε

ε

C(σ)

ρ3

1

ρ2(log ε)2
(v − ṽ)2 dρ dz . C(σ)

(log ε)2

∫ √
ε

ε

1

ρ5
ρ4 dρ

. C(σ)

(log ε)2
log ε →ε→0 0 .

The remaining terms are controlled in an analogous way, with the (DUσ,ε)
2

term behaving exactly as in vacuum [5]. This ends the proof of (2.27).

Using the rescaling U = u + ln ρ we have

IΩ(U, v, χ, ψ) = HΩ(u, v, χ, ψ) + BΩ(U) , (2.32)

where

HΩ =

∫

Ω

[
(Du)2 + e4u (Dv + χDψ − ψDχ)2 + e2u

(
(Dχ)2 + (Dψ)2

) ]
d3x ,

(2.33)
is the energy, over Ω ⊂⊂ R3 \A , of the harmonic map

Φ = (u, v, χ, ψ) : R3 \A −→ H2
C , (2.34)

which differs from I by the boundary term

BΩ(U) =

∫

∂Ω

∂ ln ρ

∂N
(2U − ln ρ)dS , (2.35)

where N is the outward pointing unit normal to ∂Ω. Consequently for both I
and H the associated variational equations are the harmonic map equations,
with target space the two-dimensional complex hyperbolic space. Hence the
target manifold satisfies the convexity conditions of [16] (see Remark (i), p. 5
there). For compact Ω away from the axis we can thus conclude from [16]
that action minimisers of HΩ with Dirichlet boundary conditions exist, are
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smooth, and satisfy the variational equations. It is also well known (see [5]
and references therein) that solutions of the Dirichlet boundary value problem
are unique when the target manifold has negative sectional curvature, which
is the case here. All this implies that (Ũ , ṽ, χ̃, ψ̃), with its own boundary
data, minimizes the action integral H , and consequently of I, over the sets

Cσ,ε := {ρ ≥ ε} ∩ {σ/2 ≤ r ≤ 2/σ} .

In particular, since the maps (θσ,ε) and (θ̃) coincide on ∂Cσ,ε but are mani-
festly distinct, we conclude that

ICσ,ε(Uσ,ε, vη,ε, χη,ε, ψη,ε) > ICσ,ε(Ũ , ṽ, χ̃, ψ̃) .

In fact the maps under consideration coincide on the closure of the comple-
ment of Cσ,ε and therefore

Iσ,ε > Ĩ . (2.36)

Recalling (2.28) we obtain

Iσ = lim
ε→0

Iσ,ε ≥ lim
ε→0

Ĩ = Ĩ . (2.37)

¤

Returning to the proof of Theorem 1.1, Lemmata 2.4 and 2.5 yield

I = lim
σ→0

Iσ ≥ Ĩ ,

and the result is a consequence of Remark 2.1 followed by a duality rotation.
¤

3 Concluding remarks

The study of Dain inequalities is still in an early stage with important ques-
tions still needing to be settled even for pure vacuum; also, some impressive
generalization can be easily formulated and justified by the heuristic argu-
ment presented in the introduction. We finish this chapter by addressing
some of this issues:
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1. Extreme Kerr-Newman as a minimum of the mass functional.
Our class of data does not include extreme Kerr-Newman and con-
sequently eliminates a priori the possibility of establishing it as the
unique minimum for the mass functional. This difficulty is not present
in Dain’s original work where a class of “Brill” data is considered; how-
ever, this is done at the cost of a considerably longer list of (stronger)
technical assumptions, some of which are derivable properties of asymp-
totic flatness and the existence of multiple ends as was first observed
and established in [3]. To obtain the desired result within the spirit
of the program initiated by Chruściel one could start by generalizing
the results in [3] for data allowing for both asymptotically flat and
asymptotically cylindrical ends, and then try to adapt the arguments
presented here.

From what as been said, we expected inequality (1.3) to be strict within
the class of data considered in this work.

2. Multiple asymptotically flat ends. Even for vacuum the question
of multiple ends requires further work. Although a Dain inequality was
already established in [5] it depends on a function of the angular mo-
menta for which an explicit expression remains unknown for all N > 2,
where N is the number of asymptotically flat ends. This is clearly an
unsatisfactory situation since the Penrose-like argument, presented at
the beginning of this paper, provides evidence that the unknown func-
tion should simply be the square root of the total angular momentum.
In fact, for the two body problem, N = 3, such expectation as been
recently supported by numerical evidences [14].

One also expects the ideas in [5] to generalize to electro-vacuum by
using the methods developed here, but in this case it seems hard to
speculate what the exact expression for the lower bound function, this
time of both angular momenta and Maxwell charges, should be. This
problem is related to the fact that the Majumdar-Papapetrou met-
rics provide the existence of regular and extreme multiple black hole
solutions; analogous difficulties have been found for the Penrose in-
equality [20].

3. Asymptotically electro-vacuum data. The heuristic argument
leading to the Dain inequality presented here works for other data, in-
volving far more general matter models: axisymmetric asymptotically
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electro-vacuum initial data whose domain of outer communications be-
comes electro-vacuum asymptotically with time. Establishing a Dain
inequality in such generality would be quite impressive but, at this
moment, such a goal seems unreachable.

Acknowledgements: The author is grateful to Piotr Chruściel for
making him a part of this challenging project. He would also like to thank
José Natário, Paul Tod and Harvey Reall for numerous comments on a pre-
vious version of this work.

A Decay rates for Extreme Kerr-Newman

r → 0 r → +∞

Ũ = log(r) + O(1) Ũ = −m
r

+ O(r−2)

χ̃ = ρ2O(r−2) = O(1) χ̃ = ρ2O(r−3) = O(r−1)

ψ̃ = O(1) ψ̃ = ρO(r−2) = O(r−1)

∂ρχ̃ = ρO(r−2) ∂ρχ̃ = ρO(r−3)

∂ρψ̃ = ρO(r−2) ∂ρψ̃ = ρO(r−2)

|Dχ̃|δ = ρO(r−2) |Dχ̃|δ = ρO(r−3)

|Dψ̃|δ = O(r−1) |Dψ̃|δ = O(r−1)

ṽ = O(1) ṽ = O(1)

∂ρṽ = ρO(r−2) ∂ρṽ = ρO(r−2)

Table 1: Decay rates for Extreme Kerr-Newman

B Identity (2.16)

Here we present the computations leading to equation (2.16). Let θ = v, χ, ψ
and write

θσ := fσθ + (1− fσ)θ̃ = fσ(θ − θ̃) + θ̃ .
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Then

λσ := Dvσ + χσDψσ − ψσDχσ

= Dfσ(v − ṽ) + fσD(v − ṽ) + Dṽ

+[fσ(χ− χ̃) + χ̃][Dfσ(ψ − ψ̃) + fσD(ψ − ψ̃) + Dψ̃]

−[fσ(ψ − ψ̃) + ψ̃][Dfσ(χ− χ̃) + fσD(χ− χ̃) + Dχ̃]

= Dṽ + χ̃Dψ̃ − ψ̃Dχ̃ + Dfσ(v − ṽ) + fσD(v − ṽ)

+fσDfσ(χ− χ̃)(ψ − ψ̃)− fσDfσ(ψ − ψ̃)(χ− χ̃)

+f 2
σ(χ− χ̃)D(ψ − ψ̃)− f 2

σ(ψ − ψ̃)D(χ− χ̃)

+fσ(χ− χ̃)Dψ̃ − fσ(ψ − ψ̃)Dχ̃

+Dfσχ̃(ψ − ψ̃)−Dfσψ̃(χ− χ̃)

+fσχ̃D(ψ − ψ̃)− fσψ̃D(χ− χ̃)

= λ̃ + Dfσ(v − ṽ) + Dfσ(χ̃ψ − ψ̃χ)

+f 2
σ

{
(χ− χ̃)D(ψ − ψ̃)− (ψ − ψ̃)D(χ− χ̃)

}

+fσ

{
(χ− χ̃)Dψ̃ − (ψ − ψ̃)Dχ̃

}

+fσ

{
D(v − ṽ) + χ̃D(ψ − ψ̃)− ψ̃D(χ− χ̃)

}

︸ ︷︷ ︸
∗

.

The last line reads

∗ = −Dṽ − χ̃Dψ̃ + ψ̃Dχ̃ + Dv + χ̃Dψ − ψ̃Dχ

= λ− λ̃− (χ− χ̃)Dψ + (ψ − ψ̃)Dχ ,

and the desired identity follows.
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