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Abstract—This paper presents a ground vehicle capable of
exploiting haptic cues to learn navigation affordances from depth
cues. A simple pan-tilt telescopic antenna and a Kinect sensor,
both fitted to the robot’s body frame, provide the required haptic
and depth sensory feedback, respectively. With the antenna,
the robot determines whether an object is traversable by the
robot. Then, the interaction outcome is associated to the object’s
depth-based descriptor. Later on, the robot to predict if a newly
observed object is traversable just by inspecting its depth-based
appearance uses this acquired knowledge. A set of field trials show
the ability of the to robot progressively learn which elements of
the environment are traversable.

Keywords—autonomous robots, self-supervised learning, affor-
dances, terrain assessment, depth sensing, robotic antenna

I. INTRODUCTION

Since the first invertebrate ventured out of the Panthalassa,
the ability to navigate through the environment became crucial
for the species survival. Nature evolved in order to allow for
different means of interaction and learning mechanisms, some
insects developed antennas to sense the surroundings, while
mammal’s brains grew to support the big influx of information
provided by non-haptic feedback, like hearing, vision, and
olfactory perception.

Inspired by Nature, in which visual and haptic sensory
feedback are known to be jointly exploited in the Human
brain [1] this paper presents a haptic robot-environment in-
teraction system for self-supervised learning of vision skills
for safe navigation. For this purpose, the robot is provided
with a mechanism to learn a mapping between the volumetric
appearance of obstacles, given sensory data provided by a
depth sensor, and their bendability, perceived by physically
interacting with them with a small antenna (see Fig. 1). As in-
teractions unfold, the robot grows its ability to properly assess
the cost of navigating the environment from its depth sensor
and, consequently, reducing the need for physical interactions.
As a consequence, the robot’s spatial reasoning look-ahead
grows significantly, which is key to ensure a safe navigation.

From an engineering standpoint, this incremental learning
approach reduces considerably the design space. The robot
designer needs only to specify that the inability of the antenna
to reach a given point in space due to obstruction is a sufficient
cue that the object is not bendable and, thus, not traversable
by the robot. Conversely, designing a similar classifier but
operating directly on depth data would be a much more
complex endeavor.

Fig. 1. Proposed system’s major steps. (Left) The robot finding an object
with its depth sensor. (Middle) As the object’s class is still new to the robot,
the latter physically interacts with so as to learn its traversability. (Right) The
robot overcoming the traversable object.

Fig. 2. The robot prototype with its antenna stretched to its maximum range.

Having the handcrafted haptic classifier supervising the au-
tomatic learning of the depth-based classifier provides vision-
based far field terrain assessment without growing the en-
gineering design space. The incremental learning about the
bendability of the objects occur in a self-supervised way, in
the sense that the labels associated to each training data are
generated by the robot itself via haptics-based interactions.
In a way, the robot is learning what the objects present in
the environment afford in terms of successful motor actions,
i.e., can the object be overcome or not. This resembles the
affordance principle studied by Gibson for the animal kingdom
[2]. The concept of affordances link the ability of a subject
through its actions to the features of the environment and, so,
to learn an affordance the agent needs to interact with the
environment.

The affordances concept has been exploited with antenna-
based [3] and whiskers-based [4], [5] interactions for the
case of object manipulation and recognition. The application
to navigation cost, the core of this paper, has already been
reported as well [6]–[8]. However, this previous work consid-
ers learning affordances from full-body interactions, i.e., by
moving the robot against the objects. Conversely, this paper



proposes assessing navigation cost with a robotic antenna,
which reduces the robot’s risk of the getting stuck or damaged
as well as it allows a finer analysis of the object. To assess
the proposed system, a robotic prototype was developed (see
Fig. 2). The prototype is based on a 45 cm × 35 cm × 65 cm
4-wheeled robot with differential locomotion, fitted with a
custom telescopic antenna with pan tilt control. The antenna
is capable of stretching up to 1 m and its pan and tilt cover
180 in both axis, respectively. As depth sensor, the robot uses
a Microsoft Kinect, which employs modulated light to capture
tridimensional point clouds of the environment. This sensor
has been shown to be able to acquire accurate enough 3D
information for vegetation classification [9]. It is applicable
robustly outdoors during the night and at most in the presence
of dim daylight. For daylight operation the robot would have
to be equipped, for instance, with a binocular vision sensor.
As the noise model of these two sensory modalities is rather
similar, the proposed model should be easily applicable to
binocular vision and, as a result, enable daytime outdoors
operation. The system is implemented on top of Robotics
Operating System (ROS) [10] and relies on Point Cloud
Library (PCL) [11] for low-level point clouds processing.

This paper is organized as follows. Section II describes the
proposed system. Then, the results obtained from a set of field
trials are presented in Section III. Finally, a set of conclusions
and future work avenues are given in Section IV.

II. THE PROPOSED SYSTEM

A. System Workflow

This section describes the proposed system. The system
aims at incrementally developing the ability to assess the
cost of navigating in natural ground environments. For this
purpose the robot learns a mapping between the appearance
of obstacles, given sensory data provided by a depth sensor,
and their bendability, perceived by physically interacting with
them with a small antenna.

Fig. 3 shows an overview of the system’s workflow. While
executing a given mission, e.g., moving towards a specified
waypoint, the robot may face an object. This object can be
traversable (e.g., vegetation) or not (e.g., a rock). To assess it,
the robot creates a 3D descriptor of the found object and uses it
to search its memory for the outcome of previous encounters
with similar objects. If these previous encounters taught the
robot that the object is traversable then the robot does not
expend the effort of avoiding it. However, while traversing
the object the robot may find itself stuck and, consequently,
needs to update the memory to report that the object is
not traversable. The outcome of consulting the memory may
produce a low confidence result when the object is being
seen for the first time or there have been ambiguous previous
interactions with it. In this case the robot opts to perform an
haptic interaction with the object. The higher the confidence
the robot is on the contents of the memory, the coarser the
haptic interaction must be. This allows the robot to reduce
the time of interaction as the object gets known and, in the
limit, when confidences rises to a certain level the interaction
is skipped altogether, The result of the interaction is then used
to update the memory in terms of how traversable is the object.

Fig. 3. Proposed system’s workflow.

B. Haptic-Visual Mapping

With only 3 degrees of freedom, the telescopic pan-tilt
controlled antenna’s inverse-kinematics can be sufficiently ap-
proximated with a simple tridimensional transformation from
cartesian to polar coordinates. This transformation allows the
antenna to reach a given tridimensional point in its workspace.
These points are those determined as interesting in the tridi-
mensional point cloud extracted from the depth sensor. A
homogeneous point p = [x y z 1]T in the robot’s workspace
is described with respect to the antenna and sensor frames of
reference as pS = [xS yS zS 1]T and pA = [xA yA zA 1]T ,
respectively. Given the point coordinates in the camera frame
of reference, the robot uses a 4× 4 rigid body transformation
matrix M to get the corresponding coordinates in the antenna’s
frame of reference, pA = MpS .

To learn matrix M, the robot antenna performs a babbling
behaviour in order to cover its configuration space. Simulta-
neously, the robot tracks the antenna’s end effector with the
depth sensor. This allows the robot to accumulate a set of n
correspondences between points in the antenna’s and in the
sensor’s frames of reference, pj

A ↔ pj
S ,∀j = 1, 2, . . . , n.

Matrix M is estimated with a least-square SVD-based closed-
form solution to the problem

∑n
j=1 ||p

j
A −Mpj

S ||2 [12].

Before tracking the end effector, which takes a spheroid
shape, the background is learned. This is done by storing an
octree representation of the environment within the antenna’s
reach. Then, changes in the octree structure occurring while the
antenna moves in the environment are taken as representative
of foreground points. These correspond to the antenna and
potential background moving objects. To reject false positives,
a RANSAC [13] procedure is applied to all foreground points
so as to extract the pose of the antenna’s spheroid end-effector.

C. Object Descriptor

The robot is equipped with a depth sensor that produces a
3D point cloud of its surroundings. To ensure fast processing,



Fig. 4. Typical interaction points suggested by the system as motion plan.
Red and blue filled squares represent the higher and lower scored points for
the robot to interact, respectively.

the point cloud is down-sampled so as to ensure that no point
is within a 1 cm radius of another point. Then, the object is
segmented from the background by simply dropping all the 3D
points that are out of the antenna’s reach. Finally, a descriptor
of the object is built. The object’s descriptor will represent the
object in memory and will be used for comparisons with other
objects. It must be rich enough for a robust comparison but
simple enough for fast computations. Bearing this in mind,
a set of four simple metrics based on two bidimensional
histograms built from the 3D points distribution are considered.

Let us assume that the optical axis of the depth sensor
is aligned with the robot’s forward motion, i.e., parallel to
the ground plane. The z-axis of the sensor is aligned with
its optical axis, the y-axis is perpendicular to the ground
plane pointing downwards, and the x-axis pointing to the right
of the robot. Consider that all 3D points are projected to a
bidimensional histogram coinciding with the xy-plane. A bin
in this histogram represents the number of 3D points that are
encompassed by the parallelepiped that crosses the correspond-
ing small squared region of the xy-plane and extends to the
sensor’s maximum range. In the current implementation the
histogram is composed of 16 x 14 bins.

Let us call line to the set of histogram’s bins sharing the
same y-coordinate. Let us call cluster to a set of adjacent
occupied bins, in a given line, that are separate from other
clusters by empty bins. The number of clusters found in line l
is nl. The number of bins corresponding to the largest cluster
found in l is ll. The density of points in a line l is dl. Density
is computed as the number of points in a line divided by the
number of bins composing the line. The object’s descriptor
is a j-dimensional vector composed by these four metrics as
computed for the hx lines, j = 4hx.

D. Memory Recall

The memory is composed of descriptor-traversability tu-
ples. A tuple is built by associating the descriptor of the
observed object and the physical interaction binary-valued
outcome. In the current implementation, forgetting has not
been implemented. Therefore, all interactions are stored and
maintained throughout the robot’s lifecycle.

When facing an object, the robot will search for similar
objects stored in memory in order to determine the most
likely navigation cost of the object. The recall is done with
a simple k nearest neighbour approach based on a similarity
score computed between the descriptor of the observed object
and the descriptors of the objects stored in memory. The
similarity score is computed with the L1-distance, divided

by the number of lines. To provide different relevance to
each dimension of these vectors, they are weighted according
to a set of empirically defined scalars prior to the distance
calculation. These scalars sum up to the unity and, ideally,
would be learned from data.

To determine whether the observed object is bendable or
not, similarity scores of the neighbours that are traversable
and that are not traversable are accumulated separately. Then,
the final classification is the one associated to the highest
accumulated score. The accumulated score associated to the
obtained classification is taken as its confidence level. This
confidence level serves the purpose of deciding whether the
robot should traverse/avoid the object according to the memory
recall output or it should physically interact with the object in
order to improve its knowledge about it.

E. Haptic Interaction Motion Planning

The interaction between the robotic antenna and the object
under assessment should be as efficient as possible, otherwise
haptic interactions become time and energy over consuming.
That is to say that the antenna’s motion plan should be short yet
still capable of allowing the robot to assess whether the object
is bendable or not. The antenna’s motion plan is defined by
a set of 3D positions that must be reached in sequence. The
order of the sequence is defined by the likelihood the robot
has of assessing the bendability of the object when reaching
the positions in question. Reaching the first position in the
sequence has the highest chances of blocking the antenna’s
motion when the object is not bendable. If the motion gets
blocked, then the robot does not need to check the next position
in the sequence to reach a conclusion.

The position of each 3D point present in the point cloud
is a candidate for the motion plan. However, as most 3D
points are redundant in terms of interaction results, a 3D
point is only considered if away from a 5 cm radius from any
other previously selected point. Each 3D point is scored for
interaction according to an objective function and then sorted
in the motion plan according to it. The objective function
is composed of three weighted parcels, whose weights sum
up to one and have been defined empirically. The first parcel
builds from the intuition that bending higher areas of the object
(e.g., leafs) is usually easier than their lower areas (e.g., log).
Therefore, the first parcel is defined as the inverse of the height
of the 3D position in question. The second parcel builds on the
intuition that the object’s centroid should be the most dense
and, thus, difficult to bend. As a result, the second parcel is
defined by the inverse of distance from the point in question
to the object’s centroid. Finally, the third parcel is defined as
the density of points in the neighbourhood of the position in
question. The higher the density, the more likely the position
is of belonging to the most difficult-to-bend object’s part.

Fig. 4 shows that the set of most priority interaction points
in a typical situation, i.e., with score above 0.7, do correspond
to the portions of the object that are more likely to block the
antenna. These points are located in the central and denser
region of the object. A random point selection policy could
lead the robot to perform uninformative interactions first, such
as pushing the leafs of a bush. These are non-obstructive
despite the fact that the bush itself might be.



Fig. 5. Typical haptic interaction execution. The antenna stretches to the
distance of the furthest interaction point then follows the plan. Note that this
behaviours results in a scanning pattern that bends traversable obstacles.

F. Haptic Interaction Plan Execution

If the confidence level on the memory recalled classifica-
tion is high, then the physical validation by haptic interaction
can be shortened. Conversely, very low confident classifica-
tions demand for a thorough physical validation. This principle
is implemented by exploiting the fact that the sequence of
points to analysed, i.e., motion plan, is ordered by relevance.
Concretely, only the m-first points are considered, given that
m is the position of the point whose interaction score is below
α· c and α is an empirically defined scalar and c is the memory
recall’s confidence level. With a high α, the system reduces
the number of interaction points and favours past experiences,
whereas a low α increases the number of interactions, making
the system to behave more cautiously. As a result, α can
be used by a higher-level reasoning system to adapt the
speed-accuracy of the system depending, for instance, on
environmental stress. Haptic interactions are slower but more
accurate than visual cues.

Once the interactions have been selected, the robot pro-
ceeds with the actual haptic interaction. The interaction is
made by picking the rightmost point found and successively
moving the antenna to the closest point, until all it reaches
every point. If throughout the process the antenna gets blocked,
then the object is labeled as non-traversable and traversable
otherwise. To raise the chances of getting the antenna blocked
due to the presence of a non-traversable object, the points
to be reached are translated towards the object’s centroid by
an amount of 5 cm. The motion resulting from following the
plan scans the environment in a way that raises the chances
of getting the antenna blocked when in the presence of a
non-traversable object that it would have if the points were
sequentially pushed by the antenna. Fig. 5 depicts such a
typical haptic interaction.

G. Environment Change Detection

If the object in front of the robot is considered traversable,
either via highly confident memory recall or via haptic in-
teraction, the robot will try to traverse it. If the object is in
fact a large extension of vegetation, then at each new step
of its progression, the robot will recurrently face the same
object. Thus, it is thus necessary to provide the robot with a
mechanism that hampers it from reassessing the same object at
each new progression step. Gating the assessment process until
the robot’s surroundings change considerably does this. Due
to the robot’s small size, surrounding vegetation covers most

Fig. 6. Objects used for classification accuracy analysis in a controlled
environment, as seen from the robot with its depth sensor. The yellow rect-
angles represent the objects’ bounding boxes. (a) Wall (non-traversable); (b)
Rock (non-traversable); (c) Big plant (non-traversable); (d) Shrub (traversable);
(e) Small shrub (traversable); (f) Tall plants (traversable); (g) Tall Plant
(traversable); (h) Vertical logs (non-traversable); (i) Horizontal logs (non-
traversable).

of its sensor’s field of view, thus, the changes to be captured
are scene-wise. As a result, a global descriptor of the scene,
known as gist, is adequate.

A scene’s reference gist is computed before the robot
starts traversing the object. Then, at each progression step,
the reference gist is compared against the current scene’s
gist. If they differ greatly, then the robot is taken as out of
the object and the gating process can be unlocked. The gist
descriptor is simply the point cloud’s overall density, which is
computed as the ratio of points obtained from a down-sampled
version of the point cloud over the number of points in the
original point cloud. Two gist descriptors are said to differ if
their associated point densities differ more than an empirically
defined threshold, ρ.

III. EXPERIMENTAL RESULTS

A. Classification Accuracy from Haptic Interactions

To assess the system’s classification accuracy based on
haptic interactions, the robot was asked to move forward in
a controlled environment until an object is found. Throughout
the process the robot faced 9 different objects, (a). . . (i), one
at a time. Let us call these 9 objects data set 1. With each
of them, the robot engaged on the interaction process so as to
determine whether the object is traversable or not. The set of
objects includes four traversable plants, a non-traversable wall,
a non-traversable plant, two piles of non-traversable logs, and
a non-traversable rock (see Fig. 6).

Table I shows the number of interaction points within a
given score interval (see Section II-E) selected by the system
for each tested object. The table shows that the number of
points grows from higher scores to lower scores. This is
consistent with the intuition that the good interaction points
are fewer than the poor interaction points. Fig. 4 illustrates this
phenomenon on a typical vegetated object. As expected, denser
objects, such as logs and rocks, tend to exhibit a higher number
of high scoring points than thin vegetation. For all objects,
interacting with points with a score above 0.7 was enough to
give a correct traversable/non-traversable classification.



Score (a) (b) (c) (d) (e) (f) (g) (h) (i)
[0.9, 1.0] 3 0 0 0 0 0 0 0 0
[0.7, 0.9[ 5 3 2 1 3 2 2 4 2
[0.5, 0.7[ 11 2 14 11 4 14 10 2 2

TABLE I. NUMBER OF POINTS SELECTED FOR HAPTIC INTERACTION
WITHIN A GIVEN SCORE INTERVAL.

Fig. 7. Confusion matrix obtained from leave-one-out cross-validation.

B. Classification Accuracy from Learning

To assess the robustness of the object descriptor (see Sec-
tion II-C) and the memory recalling process (see Section II-D),
a leave-one-out cross-validation analysis was undertaken based
on the 9 objects. The principle used is to leave one of the
objects out of the training set and then classify it based on
the training set, which has been hand-labelled. As depicted
in Fig. 7, the system produced a correct traversable/non-
traversable classification 67% of the times for k = 1 and
78% of the times for k = 3. This an interesting result given
the lack of redundancy present in the data set. That is, for
k = 3, the system recognises the objects based on their intra-
and inter-class resemblance.

To evaluate the ability of the system to incorporate new
knowledge on the top of the 9 already known objects, the
robot was asked to travel towards two unseen objects (see
Fig. 8). In a first test, the robot approaches the first object
from various angles and for each approach it tries to recall it
from memory. The memory grows with the result of each of
the new interactions. Fig. 9 shows that the system managed
to recognise the object with a tendentially growing confidence
as the number of interactions unfolded. The variability in the
confidence level results from the fact that in each approach the
object looked different to the robot - the object is anisotropic
and the depth sensor is impinged with considerable noise. After
20 encounters with the first object, the robot was presented
for the first time to the second object, which resulted in a
low confident classification. As for the first object, the system
managed to recognise the second object with a confidence level
that tendentially grew with the number of encounters. Also as
for the first object, the second object was approached from
various angles. Let us call the several samples obtained from
the novel two objects data set 2.

Let us now assume that the robot’s memory is filled with
the samples from the two novel objects, i.e., data set 2. Let
us also assume that the robot is unaware of the original 9

Fig. 8. Novel traversable (left) and non-traversable (right) learned objects.

Fig. 9. Classification confidence when progressively incorporating two new
objects into memory. The two interrupted lines represent the linear regression
for the confidence level before and after meeting the second object.

Object Traversable Confidence Classification
(a) No 0.42 Not Traversable
(b) No 0.37 Traversable
(c) No 0.33 Not Traversable
(d) Yes 0.65 Traversable
(e) Yes 0.48 Traversable
(f) Yes 0.49 Traversable
(g) Yes 0.60 Traversable
(h) No 0.44 Traversable
(i) No 0.23 Traversable

TABLE II. CLASSIFICATION OF OBJECTS IN DATA SET 1 GIVEN
KNOWLEDGE ABOUT OBJECTS IN DATA SET 2 WITH k = 5.

MIS-CLASSIFIED OBJECTS: (B), (H), AND (I).

objects, i.e., data set 1. In this case the robot is said to
be knowledgeable of an environment composed of objects
contained in data set 2. In a real situation, when entering
a new environment, the robot will progressively find new
objects that must be capable of classifying and, potentially,
integrate in its knowledge base. Table II shows that in most
situations the robot is capable of properly classifying novel
objects from data set 1 as traversable or non-traversable, given
its prior knowledge about different objects from data set 2. This
owes greatly to the redundancy in the appearance of objects
in natural environments. Interestingly, erroneous classifications
are also low confident, which forces the robot to interact with
its haptic actuator to carefully assess the actual navigation
affordances of the object.

C. Haptic Interaction Plan Execution

Low classification confidence compels the robot to engage
on haptic interactions so as to robustly classify the object
as traversable or non-traversable. The lower the confidence
the higher the number of haptic interactions are engaged.
This relationship is scaled by an empirically determined scalar
α (see Section II-F). To provide some intuition about the
parameterisation of this scalar, Fig. 10 shows its effect on the
number of haptic interactions. The plot was built by varying
the number of samples from object 1 of data set 2 provided
to the robot. This variation emulates the effect of learning
from various interactions. The higher the number of samples
in memory the higher the confidence on the classification and,
hence, the fewer the required haptic interactions. The figure
also shows that the higher the value of α the more the system
values memory over haptic interactions. As expected, α shows
itself as a good modulator for the speed-accuracy trade-off.



Fig. 10. Impact of different α on the number of haptic interactions.

Fig. 11. Objects used for environment change detection tests. (A) Small
shrub; (B) Flimsy canes; (C) Twigs with thin leaves.

D. Environment Change Detection

To avoid repeating haptic interactions while traversing a
given object, the robot determines an environment density
change before reconsidering a new haptic interaction (see
Section II-G). Fig. 11 depicts three objects used to assess
this capability with a density change detection threshold of
ρ = 0.03. For this test, the robot was asked to move across the
object. To do that, the robot meets the object, performs a haptic
classification, which returned traversable for all cases, and then
tries to traverse the object. While doing it, the robot evaluates
periodically if an environment density change occurred. If it
occurs the robot stops and performs a new haptic verification.

Two situations were studied for object A. In the first
situation, A-1, the robot met open space when leaving the
object, whereas in the second situation, A-2, the robot met
an introduced wall-like object. In both situations the robot
detected the density change, i.e., from object to open safe
and from object to wall. When traversing object B the robot
got stuck hampering it from progressing across the object.
Correctly, the system remained without reporting any environ-
ment density change. As the robot gets stuck it becomes clear
that the object is non-traversable despite did not look like it
in the first haptic interaction. Corrective measures should be
triggered correspondingly. Object C offered no difficulties to
the robot resulting in a fast traversal and easy change detection.
These results are summarised in Table III and they show that
environment density is a simple yet effective metric for change
detection in the context of object traversal.

Object 1st Eval. 2nd Eval. 3rd Eval. 4th Eval. Change Detected
A-1 0.019 0.013 0.014 0.055 Yes
A-2 0.011 0.009 0.021 0.031 Yes
B 0.020 0.018 0.008 - No
C 0.014 0.059 - - Yes

TABLE III. ENVIRONMENT DENSITY CHANGE DETECTION RESULTS.
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IV. CONCLUSION

A ground vehicle capable of exploiting haptic cues to learn
navigation affordances from depth cues was presented and
validated on a set of field trials. For acquisition of haptic
cues the robot employs a low-cost pan-tilt telescopic antenna,
whereas for distal sensory feedback the robot recurs to a low-
cost depth sensor. Although not limited to them, the simplicity
of the proposed system allows its application in small sized
robots, which are useful tools for domains like environmental
monitoring and search & rescue. These domain applications
require from robots the ability to cope with the unstruc-
tured configuration of natural environments. This challenge
is mitigated by the incremental learning of perceptual skills
ensured by the proposed system. We are currently analysing
alternative depth descriptors, machine learning mechanisms,
and haptic motion planning and execution policies. We are
also addressing the set of challenges related to the application
of the proposed system to robotic platforms endowed with
different manipulation and sensory modalities.
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