
JBotEvolver: A Versatile Simulation Platform for Evolutionary Robotics

Miguel Duarte1,2, Fernando Silva1,3, Tiago Rodrigues1,2,
Sancho Moura Oliveira1,2, and Anders Lyhne Christensen1,2

1Instituto de Telecomunicações, Lisboa, Portugal
2Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

3LabMAg, Faculdade de Ciências, Universidade de Lisboa, Portugal
miguel duarte@iscte.pt

This paper introduces JBotEvolver, a versatile simula-
tion platform for research and education in evolutionary
robotics (ER). JBotEvolver is a Java-based open-source,
cross-platform framework available at https://code.
google.com/p/jbotevolver/ under the GNU GPL.
JBotEvolver has been used in a number of previous ER stud-
ies of our research group, from offline evolution to online
evolution and learning, and from single to multirobot sys-
tems (for examples see Duarte et al. (2014a,b); Silva et al.
(2012a,b)), and in a number of undergraduate and graduate
courses at ISCTE-IUL.

JBotEvolver’s main features are its ease of installation and
use, and its versatility in terms of customization and exten-
sion. A fundamental design philosophy behind JBotEvolver
is to provide a basis for ER experiments without the need
for detailed framework-specific knowledge. Following this
philosophy, JBotEvolver enables the configuration of exper-
iments programmatically or via a plaintext file that specifies
which features will be included in the simulation. The cor-
responding classes are then seamlessly loaded in execution
time via Java’s Reflection API. In this way, JBotEvolver can
also make use of external, user-defined classes that extend
the base implementation. Additionally, JBotEvolver is self-
contained, but can also be used as an external library in other
applications. One example is the automation system that
allowed us to evolve hierarchical controllers by automati-
cally combining controllers from independent evolutionary
setups (Duarte et al., 2014a).

The user can extend the main components of JBotE-
volver such as the environments in which the robots op-
erate, the physical objects of the environment, the robot
models, the evaluation functions, the evolutionary algo-
rithms, and the type and structure of the controllers. For
instance, while our studies have focused on the evolution
of neural network-based controllers (Duarte et al., 2014b,a;
Silva et al., 2012a,b), JBotEvolver does not preclude other
approaches such as genetic programming or evolutionary
fuzzy systems. JBotEvolver features a 2D differential-drive
kinematics engine that has been used to simulate multi-
robot systems with up to thousands of robots (Duarte et al.,

Figure 1: Result Viewer GUI: (a) file tree for navigating ex-
perimental results, (b) options to load or edit files, and to
plot the fitness of controllers, (c) text area for overriding ex-
perimental arguments, (d) basic 2D visual renderer, (e) op-
tions to start/stop the experiments, quit the simulator, and
plot neural network activity, and (f) sliders to change the
speed of the simulation and to fast-forward/rewind.

2014b). The 2D engine can also be extended or replaced by
user-defined engines with different dynamics. With respect
to the experimental setup, JBotEvolver allows the user to
control the degree of realism of the simulations by allowing,
for instance, the use of sensors modelled based on samples
from real robots (Duarte et al., 2014a) and the configuration
of the robots’ control cycle frequency. In terms of robots,
JBotEvolver includes a model of the e-puck robot and al-
lows for fully customizable 2D robot models.

An important characteristic of JBotEvolver is that con-
troller evaluations are defined as tasks that can be executed
sequentially or in parallel on a workstation. We have also
included a connector for Conillon (Silva et al., 2011), a
lightweight platform for distributed computing that enables
a significantly speed-up of evolutionary processes through

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch035



Features | Simulator Simbad Webots ARGoS Player Enki JBotEvolver
2D/3D 3D 2D+3D 2D+3D 2D+3D 2D 2D

Open-source yes no yes yes yes yes
Dependencies Java 3D multiple multiple multiple multiple none

Platforms win/mac/linux win/mac/linux mac/linux mac/linux mac/linux win/mac/linux
Language Java multiple* C++ C++ C++ Java

Learning curve low intermediate high high intermediate low
Distributed evolution no no no no no yes

GUI rich rich medium medium basic rich

Table 1: Comparison of features between simulators. *Webots allows development in C, C++, Java, Python, Matlab, and URBI.

parallelization. We have used Conillon to distribute JBotE-
volver tasks to over 400 cores. Conillon’s dynamic request
of Java classes allows tasks with different codebases to be
submitted. Worker nodes can be added to the computing
network in an ad-hoc manner either through: (i) a stan-
dalone application, (ii) a Java applet running in a browser, or
(iii) as a screensaver on PCs. In addition, the Encog frame-
work1 implementation of the neuroevolutionary NEAT algo-
rithm (Stanley and Miikkulainen, 2002) has been interfaced
with JBotEvolver.

A number of alternative simulators for evolutionary
robotics are available, including: (i) Simbad (Hugues and
Bredeche, 2006), (ii) Webots (Michel, 2004), (iii) AR-
GoS (Pinciroli et al., 2012), (iv) Enki2, and (v) the Player
Project (Gerkey et al., 2003), which includes the 2D simula-
tor Stage and the 3D simulator Gazebo. In comparison with
such platforms, as described in Table 1, the key advantages
of JBotEvolver are its extensibility, ease of use, and versa-
tility. JBotEvolver has a number of expert-oriented features,
such as the mechanisms for the distributed execution of ex-
periments, and non-expert-oriented features. From the GUI
(Fig. 1), it is, for instance, possible to navigate between re-
sults of different evolutionary runs or setups, analyze fitness
score plots, visualize the controllers’ input and output val-
ues, stop and resume experiments, and modify experimental
configurations on-the-fly.

To summarize, JBotEvolver is a versatile, easy to deploy
and operate simulation platform intended for both expert
and non-expert users. In our ongoing work, we continue to
use JBotEvolver, and we are extending it to support different
robot models and types of robots, including aquatic drones.

Acknowledgements This work was partially supported
by Fundação para a Ciência e Tecnologia under the
grants SFRH/BD/76438/2011, SFRH/BD/89573/2012, PEst-
OE/EEI/LA0008/2013, PEst-OE/EEI/UI0434/2014, and
EXPL/EEI-AUT/0329/2013.

References
Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014a). Evolu-

tion of hybrid robotic controllers for complex tasks. Journal
of Intelligent and Robotic Systems. In press.

1Encog: http://www.heatonresearch.com/encog
2Enki: http://home.gna.org/enki/

Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014b). Hybrid
control for large swarms of aquatic drones. In Proceedings
of the Fourteenth International Conference on the Synthesis
& Simulation of Living Systems (ALIFE). MIT Press, Cam-
bridge, MA. In press.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). The
player/stage project: Tools for multi-robot and distributed
sensor systems. In Proceedings of the Eleventh International
Conference on Advanced Robotics (ICAR), pages 317–323.
FCT/UC, Coimbra, Portugal.

Hugues, L. and Bredeche, N. (2006). Simbad: an autonomous
robot simulation package for education and research. In
Proceedings of the Ninth International Conference on the
Simulation of Adaptive Behaviour (SAB), pages 831–842.
Springer, Berlin, Germany.

Michel, O. (2004). Webots: Professional mobile robot simulation.
International Journal of Advanced Robotic Systems, 1(1):39–
42.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A.,
Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G.,
Ducatelle, F., Birattari, M., Gambardella, L., and Dorigo, M.
(2012). ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems. Swarm Intelligence, 6(4):271–295.

Silva, F., Urbano, P., and Christensen, A. L. (2012a). Adapta-
tion of robot behaviour through online evolution and neuro-
modulated learning. In Proceedings of the Thirteenth Ibero-
American Conference on Artificial Intelligence (IBERAMIA),
pages 300–309. Springer, Berlin, Germany.

Silva, F., Urbano, P., Oliveira, S., and Christensen, A. L. (2012b).
odNEAT: An algorithm for distributed online, onboard evo-
lution of robot behaviours. In Proceedings of the Thirteenth
International Conference on the Simulation & Synthesis of
Living Systems (ALIFE), pages 251–258. MIT Press, Cam-
bridge, MA.

Silva, H., Oliveira, S. M., and Christensen, A. L. (2011). Conil-
lon: A lightweight distributed computing platform for desk-
top grids. In Proceedings of the Sixth Iberian Conference on
Information Systems and Technologies (CISTI), pages 1–6.
IEEE Press, Piscataway, NJ.

Stanley, K. and Miikkulainen, R. (2002). Evolving neural networks
through augmenting topologies. Evolutionary Computation,
10(2):99–127.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems




