
Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Conillon: Distributed Computing
Platform for Desktop Grids

Hélio Alexandre Dias da Silva

hadsa@iscte.pt

A Dissertation presented in partial ful�llment of the Requirements for the Degree of Master in Open

Source Software

Supervisors

Ph. D. Sancho Oliveira

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Ph. D. Anders Christensen

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

ISCTE - IUL, Junho 2011

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Conillon: Distributed Computing
Platform for Desktop Grids

Hélio Alexandre Dias da Silva

hadsa@iscte.pt

A Dissertation presented in partial ful�llment of the Requirements for the Degree of Master in Open

Source Software

Supervisors

Ph. D. Sancho Oliveira

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

Ph. D. Anders Christensen

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

ISCTE - IUL, Junho 2011

Agradecimentos

Exprimo os meus agradecimentos a todos os que, de certa forma, me ajudaram a concretizar este

objectivo.

Aos meus pais pelo apoio e eterna ajuda que sempre me demonstraram, devo-lhes um especial e

grande agradecimento. Sem eles este objectivo não teria o mesmo valor e propósito.

De maneira especial, agradeço à minha companheira e melhor amiga Patrícia, pela paciência e

sentido de companheirismo demonstrados ao longo do desenvolvimento deste objectivo.

Ao orientador Sancho Oliveira, quero dizer que leva o trabalho de orientador bastante a sério, o apoio

foi, desde o ínicio da tese, constante e teve sempre excelentes sugestões e com um acompanhamento

�rme na evolução deste trabalho e de todos os elementos que constituiram esta tese. Manifesto-

lhe a minha maior gratidão por me ter conduzido nesta experiência divertida e enriquecedora. Ao

co-orientador Anders Christensen quero dizer que o seu espírito crítico foi uma das mais valias na

discussão de resultados e das suas sugestões teóricas para os artigos. Devo um grande obrigado a esta,

excelente e pro�ssional, equipa.

A todos o meu sincero agradecimento pelo importante papel que desempenharam na concretização

de um objectivo a que me propus com todo o esforço e dedicação.

�A creative man is motivated by the desire to achieve, not by the desire to beat others.� -

Ayn Rand

III

Abstract

Grid computing enables organizations to integrate and share sets of heterogeneous resources

into one synergetic and powerful system, in order to deliver e�ciency and processing performance

to demanding parallel applications. The aggregation and the coordination of these resources need

to be integrated in a set of tools and protocols that reduce their complexity. Resource allocation

is performed by a centralized manager that has complete knowledge of system state.

Conillon is a distributed computing platform that manages and coordinates a set of actors. This

platform enables heterogeneous workstations to function as part of a distributed system. Conillon is

a lightweight, simple to use, and yet allows any number of di�erent applications to be deployed and

executed in parallel. Our platform maximizes the resource utilization in bene�t of the demanding

parallel applications. Parallel applications developers have access to a set of tools that simpli�es

the development process and the creation of tasks. The complexity related to the scheduling,

distribution, and fault tolerant management of tasks is shielded from the programmer. Conillom

platform has an integrated set of programms that work synergistically delivering a positivo ratio

between e�ciency and processing performance.

We present our platform in detail as well as the results of extensive experiments about perfor-

mance. The platform behaved relatively well and achieves an average speed up of up to x1.9 on

the time needed to complete a job each time the computational resources are doubled.

Keywords: Distributed computing, Parallel computing, High Performance Computing, Fault tol-

erance, Performance, Java

IV

Resumo

A computação paralela permite integrar e partilhar um conjunto de recursos heterogéneos num sis-

tema poderoso e sinergético, de forma a poder disponibilizar e�ciência e desempenho de processamento

às aplicações paralelas. A agregação e coordenação destes recursos devem integrados num conjunto

de ferramentas e protocolos que reduzam a complexidade inerente. A alocação de recursos é realizada

por um gestor centralizado que tem conhecimento de todo o estado do sistema.

Foi desenvolvida uma plataforma de computação distribuída, o Conillon, que coordena e gere um

conjunto de participantes. A nossa plataforma permite que estações de trabalho heterogéneas façam

parte de um sistema distribuído. A plataforma Conillon é simples, ocupando poucos recursos no

entanto permite que múltiplas e distintas aplicações sejam executadas em paralelo. A plataforma

maximiza a utilização de recursos em benefício das exigentes aplicações paralelas. Os programadores

de aplicações paralelas têm acesso a um conjunto de ferramentas simples para criação de tarefas.

A complexidade relacionada com o escalonamento, distribuição e tolerância a falhas é encapsulada

do programador. A plataforma Conillon tem um conjunto integrado de programas que funcionam

sinergicamente, entregando um rácio positivo entre e�ciência e performance de computação.

Neste trabalho presentamos a nossa plataforma em detalhe, bem como os resultados de testes

extensivos sobre performance. A plataforma comporta-se relativamente bem, alcançando uma acel-

eração de até 1.9x no tempo necessário para terminar um serviço sempre que o número de recursos

computacionais é duplicado.

Palavras-Chave: Computação distribuída, Computação paralela, Computação de alta perfor-

mance, Tolerância a falhas, Performance, Java

V

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective . 2

1.3 Outline of this Thesis . 2

2 Background and Related Work 3

2.1 Background . 3

2.2 Javelin . 5

2.3 Bayanihan . 6

2.4 Seti@home . 6

2.5 BOINC . 6

2.6 Condor . 7

2.7 P3 . 8

2.8 Summary . 8

3 Conillon 9

3.1 The concept . 9

3.2 Architecture . 10

3.2.1 Task . 11

3.2.2 Result . 12

3.3 Coordinator . 12

3.4 Code Server . 14

3.4.1 Web Server . 15

3.5 Worker . 16

3.5.1 Worker Screen saver . 18

3.5.2 Worker data . 18

3.6 Client . 19

3.6.1 Client data . 21

3.7 Security . 22

3.8 Conillon administrator . 22

3.9 Summary . 23

4 Conillon programming model 24

4.1 Task . 24

4.2 Result . 25

4.3 Model . 25

4.4 Implementation . 26

4.5 Summary . 28

VI

5 Developed applications and performance evaluation 29

5.1 Developed applications . 29

5.1.1 Pi . 29

5.1.2 MandelBrot . 30

5.1.3 Image Processing . 31

5.1.4 P72 . 31

5.2 Experiments and results . 32

5.2.1 Hardware and Software . 32

5.2.2 Used metrics . 32

5.2.3 Pi . 33

5.2.4 Mandelbrot . 34

5.2.5 Image Processing . 35

5.2.6 P72 . 35

5.2.7 Four Clients running concurrently . 36

5.2.8 Results summary . 37

5.3 Summary . 38

6 Conclusion 39

6.1 Future Work . 39

7 Publications 40

References 40

8 Source code 44

8.1 Pi . 44

8.1.1 PiClient class . 44

8.1.2 PiTask class . 45

8.1.3 PiResult class . 46

8.2 Image Processing . 47

8.2.1 ImageProcessingClient class . 47

8.2.2 ImageProcessingTask class . 49

8.2.3 ImageProcessingResult class . 50

8.3 Mandelbrot . 50

8.3.1 MandelbrotClient class . 50

8.3.2 MandelbrotTask class . 52

8.3.3 MandelbrotResult class . 54

8.4 P72 . 55

8.4.1 ClientP72 class . 55

8.4.2 TaskP72 class . 56

8.4.3 ResultP72 class . 57

VII

List of Figures

1 Intragrids, extragrids, and intergrids. Image obtained from [11] 4

2 Javelin architecture. Image obtained from [9] . 5

3 BOINC architecture. Image obtained from [39] . 7

4 Condor major process - Image obtained from [37] . 8

5 Conillon grid layer concept . 10

6 Simple Conillon architecture . 10

7 Network topology . 11

8 Coodinator Services - Task Delivery engine, Worker engine with fault tolerance, Client

engine. The numbers indicate the initial sequence when the system is started, the lines

represents a network connection. 12

9 Round robin scheduling . 13

10 Tracing task status . 13

11 Conillon ping pong protocol . 13

12 Code �ow from all actors. The numbers indicate the order by the �ow of code is traded. 15

13 Code Server module: Web server . 16

14 Cache size test . 17

15 Worker asking for classes and dispatching the results. 18

16 Conillon Screen saver . 18

17 Class WorkerData - Worker attributes used to identify a compute node 19

18 Client interacting with Conillon servers - Submitting and receiving tasks 20

19 Class diagram - Client class . 21

20 Class ClientData: Client attributes used to identify a user that needs large amount of

resources . 21

21 Conillon administration panel . 22

22 Class diagram - Task . 24

23 Abstract class Task and two subclasses: ImageProcessing task and Mandelbrot task . . 24

24 Class diagram - Result . 25

25 Abstract class Result and two subclasses: ImageProcessing result and Mandelbrot result 25

26 Class diagram of the simple client and considering the inheritance 26

27 Formula used to calculate the nth digit of π. Image obtained from [6] 29

28 Class diagram for the Pi client . 29

29 Mandelbrot representation . 30

30 Class diagram for the Mandelbrot client . 31

31 Class diagram for the Image processing client . 31

32 Class diagram for the P72 client . 32

33 Network topology used for the experiments . 32

34 Average runtime in 5 runs for each set of cores of the Pi Client 33

35 Average runtime in 5 runs of each set of cores for the Mandelbrot Set Client 34

36 Average runtime in 5 runs of each set of cores for the Image Processing Client 35

37 Average runtime in 5 runs with each set of cores for the P72 Client 36

VIII

38 Average runtime in 5 runs of the four Clients running concurrently 37

39 Performance summary � sums of average times when run individually vs. running all

Clients concurrently . 38

IX

List of Algorithms

1 MulResult Class . 27

2 MulTask Class . 27

3 MulClient Class . 28

X

List of Tables

1 Average obtained times from the cache experiment . 17

2 Average runtime in 5 runs of each set of cores for the Pi Client 33

3 Average runtime in 5 runs of each set of cores for the Mandelbrot Client 35

4 Average runtime in 5 runs of each set of cores for the Image Processing Client 35

5 Average runtime in 5 runs with each set of cores for the P72 Client 36

6 Average runtime in 5 runs of each set of cores for the four Clients running concurrently 37

XI

Conillon: Distributed Computing Platform for Desktop Grids

1 Introduction

Scientist and engineers are building more and more complex applications, to process this large data

sets and execute scienti�c experiments, massive computational resources are required, in order to meet

this demand the computing power had to change the computing paradigm. This paradigm is known

as distributed computing, and it is present in many areas where high computing power is key factor

in obtaining value.

Nowadays, this important factor is extremely decisive in areas such as drug design, weather pre-

vision, ecological modeling, operation research, search for extraterrestrial intelligence, among others,

[1, 7]. This paradigm is so critical that the scienti�c community asks, sometime, for help from vol-

unteers for these demanding computing processes. This request for help, became possible because

the Internet connections started to have su�cient bandwidth to transfer the necessary applications,

and more importantly, current processors are true processing machines. However, with the evolution

of computing, GPUs have been presenting strong arguments in support of volunteer computing and

large-scale computing.

Distributed computing presents an added value for science, and for those who need to compute large

amounts of data within a reasonable amount of time. Despite the constant evolution of hardware, a

single machine may not have enough computing power to compute a massive volume of parallel data.

We cannot forget the price that a super computer can have, a high performance machine, with special

features for the purpose it was intended, has a high price. Here arises the problem of companies

with insu�cient resources to enter into this kind of systems. There has been an increasing interest in

utilizing existing workstations for distributed computation when they would otherwise be idle (such

as outside o�ce hours, during breaks and so on). Depending on the organization, a workstation may

be idle for a signi�cant part of the time, normally 95% [36].

1.1 Motivation

Over the years the technology development presented an abrupt progress, this contributed to the

increase in network bandwidth, processing power via CPU or GPU, and also the storage capacity. This

combined with a system that allows the interconnection of various systems, heterogeneous or not, makes

it possible to build a Grid of computers that can be used in parallel and distributed computations.

Typically, these computations are intensive, complex and require system capabilities beyond what a

single machine could not in good response time. Many applications can bene�t from such approach

[13]. A parallel system can be easily built with home computers and networking equipment. Such

systems have a much lower cost than a super computer. This process is called cluster, which is de�ned

by a set of interconnected computers, dedicated to a common resource. However, speci�c software is

required to maximize these resources, the parallel distribution of tasks and the use of processing units

must be maximized. This software optimization is called grid computing. Conillon has born from the

need to create a low cost Grid computing system for small and medium enterprises. This aims to link

workstations sub harnessed to contribute to the required computation locally. Conillon is designed to be

opportunistic in obtaining resources. Conillon is multi-platform and is developed in Java. Although

this system is designed to work in LANs, it also o�ered the possibility to interconnect workers via

1

Conillon: Distributed Computing Platform for Desktop Grids

WAN, this feature allows external users to provide their computing resources of the institution. This

platform was designed to o�er developers easy development of parallel applications without having to

worry about issues of synchronization and distribution of tasks among the available resources. Thus,

it is possible to develop a wide range of parallel applications with the same programming model.

1.2 Objective

This work aims to develop the following objectives:

� Research and develop a distributed computing platform;

� Scalable - dynamic addition of nodes

� Maximize the use of the CPU;

� Fault-tolerant engine;

� Ability to cope with multiple problems simultaneously;

� Easy to use and manage;

� Support for di�erent programming languages;

� Maximize performance and e�ciency;

� User accessibility:

� Multi-platform;

� Applet - ability to use the web browser to explore the CPU cycles;

� Screen-saver application - to use in the di�erent Operative Systems;

1.3 Outline of this Thesis

This document begins by introducing the background needed to understand this thesis, also it is

presented some of the di�erent distributed computing platforms, in Chapter 2.

In Chapter 3, it is described Conillon architecture and all the involved actors in detail. We discuss

the Coordinator, the Code Server, the Client and the Workers, these are all the actors that take part

of our platform. We focus on the details of each actor. The chapter is based in all the development

work done during the completion of the thesis. Parts of this chapter have been published in [31] and

[33].

Chapter 4, describes the Conillon programming model, in here all the information needed to develop

a parallel application using the Conillon platform is presented. An simple example is presented and

explained.

In Chapter 5, we present the developed parallel applications used to evaluate Conillon. Various ex-

periments have been performed to show how the platform behaves in a single and multiple applications

running. Parts of this chapter have been published in [32].

Finally, in Chapter 6, conclusions are drawn and it is presented the achieved goals, furthermore it

is also presented a new area where this platform could bene�t as future work.

2

Conillon: Distributed Computing Platform for Desktop Grids

2 Background and Related Work

Currently there are numerous distributed computing platforms, some of them have been playing an

important role in the scienti�c community. I will present the necessary background to understand this

thesis and the most important platforms in the context of this work. We also give an overview about

grid computing, existent topologies, security and advantages.

2.1 Background

Grid computing belongs to class of distributed systems. Andrew Tanenbaum de�nes a distributed

system as:

�A collection of independent computers that appears to its users as a single coherent sys-

tem.� [35]

A good analogy is presented by Foster and Kesselman:

�The word Grid is used by analogy with the electric power grid, which provides pervasive

access to electricity and has had a dramatic impact on human capabilities and society.

Many believe that by allowing all components of our information technology infrastructure-

computational capabilities, databases, sensors, and people-to be shared �exibly as true

collaborative tools the Grid will have a similar transforming e�ect, allowing new classes of

applications to emerge.�[13]

According to IBM's de�nition:

�Grid computing, most simply stated, is distributed computing taken to the next evolu-

tionary level. The goal is to create the illusion of a simple yet large and powerful self

managing virtual computer out of a large collection of connected heterogeneous systems

sharing various combinations of resources.� [11]

Grid computing provides access to advanced heterogeneous computational resources to scienti�c com-

munity. Aims sharing and aggregation of distributed resources, based on the cost, performance and

on the organization processing requirements [20].

Grid computing can explore underutilized resources, a batch job that needs signi�cant amount of

resources is perhaps the ideal use for a grid. Explore the parallel CPU capacity is one of the most

attractive features of a grid, a CPU intensive grid application can be divided in small jobs and executed

on di�erent CPU resources. For example, a good scalable operation, �nish twice as fast than if it uses

twice the number of processors, see Chapter 5.2, for more information about performance. However,

not all applications can be transformed to run on a grid, application designers must identify and

explore parallelizable algorithms for the developed application. Another important grid computing

contribution is the collaboration of other identities, for example, organizations can share resources

collectively as a larger grid, CERN 1 explores this feature [30]. Grids can access to additional resources,

CPU's are not the only necessary resource, storage resources are also important.

1CERN European Organization for Nuclear Research, is a centre for scienti�c research. Visit www.cern.ch, for more
information about CERN

3

Conillon: Distributed Computing Platform for Desktop Grids

Grids are organized in three topologies, as illustrated in Figure 1, the simplest topology is the

intragrid, which is limited to single organization. This organization can be made up of number of

computers and network devices and is relatively easy to share data between nodes. The extragrid

is based on the intragrids, expanding the fact by connecting two or more intragrids. This topology

involves a more complex management and security cares. The intergrid is the biggest topology and

is explored by scienti�c community, �nancial industry, pharmaceuticals industry, among others. This

grid requires integration of various organizations, customers and resources.

Figure 1: Intragrids, extragrids, and intergrids. Image obtained from [11]

Grids o�er inexpensive reliability, management software that can automatically submit jobs to

di�erent resources when a failure is detected.

Security is an important factor in planning and maintaining a grid. Heterogeneous resources can

potentially be infected with virus or other malicious software, for this reason, it is necessary understand

which grid resources need to be secure. Firewalls2 can add an additional layer of protection from

internal or external users, by using �rewalls it is possible to limit the network communications and use

only allowed protocols and ports.

Shortly after Java was released in 1995, a number of middleware project for the distribution of Java

programs sprung up. Javelin was released in 1997 and it was one of the �rst implementations of a

parallel computing platform for Java. In 2000, version 2.0 of Javelin [9] was released. SuperWeb [2] is

a parallel computing infrastructure developed in Java proposed in 1997. In 1999, Bayanihan [28] was

proposed and it was developed using Java. As the internet became increasingly popular towards the

end of the 1990s and as more computers got connected, Seti@HOME[5] was released. Seti@HOME

allows volunteers to contribute computational resources to the analysis of cosmic radio data in the

search for extraterrestrial intelligence. The Berkeley Open Infrastructure for Network Computing,

BOINC [3] grew out of the Seti@HOME project and allows for other computationally expensive tasks

to use Seti@HOME's distribution model. The Condor project was created at Wisconsin University.

Condor [37] is a high-throughput distributed batch computing system and can be considered one of

2Firewall - Service designed to prevent unauthorized access between two or more networks. It is considered a �rst
line of defense in protecting data or devices.

4

Conillon: Distributed Computing Platform for Desktop Grids

the �rst grid systems. Like Condor, InteGrade [14] is a middleware that allows for scheduling and

monitoring of parallel applications.

More recently, there has been research into distributed computation based on a peer-to-peer model:

XtremWeb [8] is a multi-user, multi-application for global computing and grid computing research.

XtremWeb aims at turning a set of volatile resources spread over a network into a runtime environment

executing highly parallel applications. P3 [24] (which stands for Parallel Peer-to-Peer) is an Internet

computing platform designed for high-performance fault-tolerant parallel computing and is developed

in Java.

2.2 Javelin

Javelin [21, 9] is a computing platform designed to link participants with internet or intranet connection

to the Javelin. This system, allows the volunteer to log into a web browser and participate in the

Javelin computation using the Java Applets. While developing the Javelin, the creators had in mind

the simplicity in participation, it just needs a web browser with Java Applet and the extension service

URL. Javelin is divided in three types of entities: brokers, clients and hosts. Client is a process that

needs computer resources, host is a process that o�ers CPU cycles and needs a web browser with

Java Applet enabled to participate, broker is a process that coordinates the supply and demand for

computing resources. For the host participate in the computation it requires opening the corresponding

URL. Clients, can create jobs by developing the corresponding applets and host the applets at the

broker. The broker is a HTTP server that makes the accommodation of applets developed by clients

and makes the distribution of tasks to hosts.

Figure 2: Javelin architecture. Image obtained from [9]

As illustrated in Figure 2, Javelin needs some procedures to be able to start exploring resources.

The client needs to upload applet that has developed to an HTTP server. Then, it needs to register the

corresponding URL in the Broker. The host makes the request for tasks and receives the corresponding

URL and it will start downloading the applet developed by the client. Upon completion applet will

run. The result is then send to the server. The server receives the result.

5

Conillon: Distributed Computing Platform for Desktop Grids

2.3 Bayanihan

Bayanihan [28] is a project that aims to explore the idea of voluntary distributed computing . This

project uses the bene�ts o�ered by the Java applet using a web browser to explore the capabilities of

volunteers resources. Since this is a distributed computing system, some problems and challenges of

parallel computing had to be solved, such as fault tolerance, performance, scalability and performance,

parallelism, and accessibility. In order to outcome these problems, Bayanihan uses Java technology

and HORB. HORB [29] is an extension to Java, that distributes objects across the network, o�ering

portability and interoperability between applications.

Bayanihan is composed of two main components, the server and the worker clients. Worker clients

can o�er their CPU to perform the computation, but can also be watcher clients who only have access

to results and statistics. Clients can be started by a command line application or Java applet, using

the Web browser. Each client contains a motor that connects to the server in order to get the necessary

data objects and start the execution of parallel problems. The server is an application that contains

one or more parallel problems.

2.4 Seti@home

The SETI @ home [5] arose from the need to search for extraterrestrial intelligence using the resources

provided by volunteers. Volunteers can participate in the distributed computing project, o�ering their

CPU cycles for the development of SETI @ home. The computational model of this project is very

simple, the data signals captured by the antenna is divided into work units of �xed size and are

distributed to various clients via the Internet. Customers will then calculate a result and after the

calculation will send the result to the server, the process is then repeated. This project is famous by

the amount of volunteers who joined the project. The SETI @ home project uses the BOINC platform

to explore the remote resources of volunteers.

2.5 BOINC

BOINC [3, 4] is a distributed computing platform with a component that exploits the resources of

volunteers around the world. This is an open source project and is being developed at UC Berkeley.

The main objective of the development of BOINC is to utilize the resources o�ered by volunteers. For

this very speci�c goals included:

� Reduce barriers to entry for new clients, servers BOINC require little maintenance and project

managers need to have moderate knowledge of the system.

� Sharing of resources among autonomous project, the projects are not centrally administered,

each project has its own server, however volunteers can, if they wish to participate in various

projects.

� Support for various applications, there are several mechanisms that allow to manage multiple

BOINC projects, such as systems for scheduling and data distribution.

� Reward the volunteers, participants to o�er their resources are o�ered credit. These credits

re�ect the total resources that the PC could contribute voluntarily to date.

6

Conillon: Distributed Computing Platform for Desktop Grids

Boinc creates a set of programs that aims to solve a problem. Each project has its own servers and the

project developer is responsible to develop the necessary software to be send to the volunteers. Each

project, has its work units. Work units are a set of data and parameters submitted by the developers

and intended to be run at the volunteers computer.

Boinc architecture is very simple, see Figure 3, the server runs a data base that stores the registered

users, the completed work units and available, and others. Each project has a service responsible to

distribute and collect the work units and the results. Other service is responsible to distribute the

necessary �les and data and to collect them when necessary. The schedulers have access to the technical

information of each resource and send work units by its technical characteristics. At the client side,

there is a core that is common to all BOINC clients and the client code that is speci�c to the project.

Figure 3: BOINC architecture. Image obtained from [39]

2.6 Condor

The Condor project [37] was created at Wisconsin University. Condor is a high-throughput distributed

batch computing system. Condor can be considered one of the �rst grid systems and it was created in

1988 and it is used in academic and enterprise organizations.

Condor can be organized in several groups of computers, this groups are called Condor Pools and

they can be present at the same administrative domain or in di�erent locations of LAN. Inside the

Condor system, exists several services responsible for the coordination of the grid. As illustrated in

Figure 4, when a user submits a job to the Condor grid, an Agent (schedd) is responsible by saving

the sobs in a persistent media while it tries to �nd resources that �t that job pro�le. Agents and

resources have to communicate with central manager (Matchmaker), which makes an analysis to �nd

compatible agents and resources. When the central manager gives this information the agent contacts

the the Resource (startd) and both start a new process, inside a Sandbox, and the resource starts the

7

Conillon: Distributed Computing Platform for Desktop Grids

job execution. To the job be successfully executed, a Shadow is responsible to provide all the necessary

details to complete the application.

Figure 4: Condor major process - Image obtained from [37]

2.7 P3

P3 [24],which stands for Parallel Peer-to-Peer, is an Internet computing platform designed for high-

performance fault-tolerant parallel computing developed in Java. P3 is organized in Nodes. Nodes

are divided into two types: manager nodes and compute nodes. The manager nodes are responsibility

for the coordination and maintaining quality of service of the P3 network state. This nodes must

have permanent Internet connection and good overall performance. Manager nodes have the unique

responsibility of controlling the peer routing, �le-system and caching and maintain the application

status.

The compute nodes contribute with disk storage and processor time to a single application. The

work assigned to each compute node is dictated by the manager. P3 has built-in support for �nding

and storing Java objects by reference and it is in this way is possible to create an object-space. Objects

are stored across the available nodes.

2.8 Summary

In this chapter, it was introduced all the necessary literature necessary to understand this thesis.

Next, it was discussed the related work, several similar projects exists with di�erent characteristics

and limitations. All of them explore the idea of using CPU cycles to take advantage in parallel

applications.

8

Conillon: Distributed Computing Platform for Desktop Grids

3 Conillon

Due to the heterogeneous nature of a grid, there can be some di�culty in develop di�erent parallel

applications and distribute them by a grid. Di�erent operating systems, libraries and programming

languages makes distributed computing a very complex work.

Conillon tries to be language neutral, and support a variety of programming languages that compile

to JVM bytecode. Java presents advantages appropriate for the distributed computing �eld [40],

code mobility, garbage collection, polymorphism, and can be used to allow interoperability between

heterogeneous systems [10]. Furthermore, JVM allows to users develop their distributed applications

in several di�erent languages such as Scala [23], Jython [16], and JRuby3.

3.1 The concept

Conillon is an intragrid distributed computing platform with extragrid capabilities, designed [31] to

exploit available resources in a small or medium organizations. In the design of Conillon, we therefore

prioritized the following aspects:

� Maximize CPU usage of idle desktop computers: Conillon should maximize the CPU utilization

of the desktop computers that take part in the distributed computation. In order to achieve this

goal, workers cache jobs so that they do not have to wait for a new job to be sent after they have

submitted the result of a computation.

� Fault tolerance: Conillon should tolerate that workers dynamically become unavailable without

warning. If a worker suddenly becomes unavailable, any jobs already sent to the worker should be

delegated to another worker. Furthermore, if a worker is available but it found to be unreliable,

(e.g., if the worker frequently disconnects from the system), Conillon should exclude the worker

from any future computation.

� Extendable: In future versions, Conillon should allow for extensions such as allowing conditional

scheduling of jobs that take advantage of the GPUs present on the workers and allow for the

execution of native applications.

� Multi-purpose: Conillon should allow for several jobs of di�erent type to be run at the same

time. Conillon should be able to compute di�erent tasks from di�erent clients.

� Dynamic addition of new types of jobs: It should be possible to add new jobs (including both

data and code) to a running system. Hence, Conillon must take care of distributing the both

code and data on-the-�y.

� Lightweight and ease of use: Conillon should be simple to install and use. Applications developers

should be able to easily take advantage of a dynamically changing pool of desktop computers.

3JRuby - http:// jruby.org/ for more information on JRuby

9

Conillon: Distributed Computing Platform for Desktop Grids

Figure 5: Conillon grid layer concept

Figure 5, depicts the logical hierarchical layers in which Conillon platform depends. At the base of

the hierarchy is the Hardware, Conillon depends on a good Hardware infrastructure, servers, network

equipment, and workstations that will serve as compute nodes. The Operating system layer, includes

all the software needed to run the platform, operating system and a Java Virtual Machine is needed.

Above this layer, the Conillon middleware, provides all the necessary services for resource aggregation,

scheduling, fault tolerance engine, code distribution and task/result mechanism, to function. This

layer hides complexity from developers. The Conillon programming model layer, includes the Conillon

library and the developer tools needed to develop grid computing applications. The top level layer,

the Grid applications, consists in the developed applications, in our case Clients, that need massive

computational resources.

3.2 Architecture

Conillon is a distributed computing platform [33]. The design is based on the master-slave model[27].

Two servers, the Coordinator and the Code Server, act as masters. Both of the masters do the

preprocessing service where they prepare the slave to run a speci�c task, and the postprocessing where

the masters receive the result and deliver it to the right Client. The two servers are responsible for

all the coordination and code distribution. There are two types of slaves in Conillon's architecture,

Workers and Clients. Workers are computer resource donors that connect to the platform and donate

resources by executing tasks. Clients are applications that require a large amount of computation. A

client divides a computationally intensive job into a set of independent tasks that can be executed in

parallel and submits those tasks to Conillon to be executed. An overview of Conillon's architecture is

depicted in Figure 6.

Figure 6: Simple Conillon architecture

10

Conillon: Distributed Computing Platform for Desktop Grids

The master-slave model was adopted because it presents several potential advantages over a peer-

to-peer architecture like e�cient scheduling, fast fault tolerance management and an easy process

for adding/removing Workers and Clients to/from the platform [17, 26]. This model is also used to

overcome NAT[38] limitations, if not con�gured, a router does not accept new connections from the

WAN, this action has to be explicitly con�gured. With master-slave model, the slave, in our case the

worker, always makes the �rst connection to the server, this policy is well accepted by the routers,

cause the connection is made from inside to outside.

Figure 7: Network topology

Conillon platform uses multiple communications streams, these are done using TCP protocol[25],

this protocol operates at Transport layer from the OSI model and o�ers reliability in the transmission,

error detection, �ow control and congestion control. Conillon trades commands and data, transporting

them over the LAN/WAN, see Figure 7. TCP provides the required end-to-end reliability to the �ow

of communications.

The platform is designed to run on the Java Virtual Machine. Java. Conillon platform explores

Java class loading mechanism, using the ClassLoader4 object, this mechanism is responsible for locate

or generate a de�nition for the class.

The general �ow of data and code starts by the Client sending a set of tasks to the Coordinator.

These tasks are then scheduled to run on the available free Workers. The Workers execute tasks and

send the results back to the Coordinator. These results are immediately forward to the Client. The

Code server provides the code necessary for loading and executing the tasks.

3.2.1 Task

Task is CPU intensive computation that is part of an application. In Conillon, tasks are send from the

Clients to the Conillon platform and then dispatched to available resources. When the computation

is calculated a result is delivered.

4ClassLoader - http://download.oracle.com/javase/1.4.2/docs/api/java/lang/ClassLoader.html for more information
on Java ClassLoder

11

Conillon: Distributed Computing Platform for Desktop Grids

3.2.2 Result

Result is an outcome produced by a series of calculations de�ned in the task. A Task produces a

Result. And the output of task must be implemented by the developer. The result is send from the

available nodes to the Conillon platform, and then it is dispatched for the resource requester.

3.3 Coordinator

The Coordinator plays a central role in the Conillon architecture, as illustrated in Figure 8. The Coor-

dinator manages all the interactions between the Clients and the Workers. This service is responsible

for the task scheduling and distribution, fault management, maintaining worker status, and all task

related operations.

Figure 8: Coodinator Services - Task Delivery engine, Worker engine with fault tolerance, Client
engine. The numbers indicate the initial sequence when the system is started, the lines represents a
network connection.

The Coordinator scheduler sends new tasks to Workers as the Workers request them.

Clients can submit tasks with di�erent priority levels. The priority levels can vary between Low,

Normal, High and Very High and tasks are scheduled according to a fair round-robin scheduling

algorithm. This means that Low priority tasks are also scheduled even if a large amount of Client jobs

exists with higher priorities.

As can be seen in Figure 9, the scheduling algorithm begins by dispatching tasks from the �rst

Client, the number of scheduled tasks varies with the Client priority. E.g. for a client with high

priority tasks, 6 tasks are dispatched and, for a client with low priority tasks only one is dispatched.

If more than one client is present the scheduler is always circulating the Clients lists and dispatching

tasks based on their priority.

12

Conillon: Distributed Computing Platform for Desktop Grids

Figure 9: Round robin scheduling

Once the Coordinator receives a task, it's added to a list of pending tasks and is state is set to

Schedule. After the task is sent to the Worker, its state is set to Send. If communication is lost to the

Worker, the task status changes to Failed and the task is reinserted into the list of pending tasks in

order to be rescheduled. Finally, when the result of a task is received and forward to the client, the

task is marked as Completed and removed from the Coordinator. Tasks state transitions are shown in

Figure 10

Figure 10: Tracing task status

The Coordinator keeps statistical information about the client tasks and about the performance

of the Workers. This information is used to optimize future scheduling and allows the exclusion of

unstable and otherwise problematic Workers. The information collected is also used to minimize the

number of times that new code has to be sent to a Worker by scheduling the same type of tasks for

the same Worker as often as possible.

A fault management module is responsible for detecting and handling malfunctioning Workers. The

liveness of the Worker is tested using a �ping pong� protocol, this mechanism is illustrated in Figure 11.

The Coordinator periodically sends a �ping� request to each Worker, and the Worker has to respond

with a �pong� within a con�gurable amount of time. If a Worker does not reply, the Coordinator

assumes that worker is not operational and removes it from the system. If the Worker did not respond

due to a temporary communication problem, the Worker can re-join the set of compute nodes again.

Figure 11: Conillon ping pong protocol

13

Conillon: Distributed Computing Platform for Desktop Grids

All tasks that were being calculated by a malfunctioning Worker are rescheduled and, eventually,

sent to other Workers. With this simple approach, Conillon can handle all types of Worker issues

that result in the absence of a �pong�, such as abrupt termination of the Worker process, software

bugs, hardware malfunctions, and network failures. The fault tolerance engine works via multithreaded

system, if a problem is detected the Coordinator maintains the normal operation and the fault tolerance

operations are kept running in parallel, saving the tasks scheduled to the pending task list.

For an e�cient transfer of results to Clients, the Coordinator server has a multithreaded delivery

engine that sends results to clients concurrently. With this architecture, the Coordinator can deal

with several client applications at same time. The concurrent design of the task deliver system allows

clients to receive the results in a timely manner.

Coordinator maintains a very strict operation regarding the Clients. If a network problem or an

illegal behaviour is detected, with one of the Clients, all its tasks are immediately erased from the

system, an alert is sent to the Workers and all the information about the Client is deleted. When the

Workers received the alert, they will kill the running threads related to that Client. The Client can

still rejoin later and needs to submit the full job again.

3.4 Code Server

Code server allows Conillon to be a �exible and dynamic platform with respect to the tasks run on the

Workers. The Code server is responsible for distributing all the code needed for executing tasks. This

server is the coordinator of the code distribution sub-system and provides a transparent mechanism to

transfer objects (including bytecode) between the other parties of the platform. The �rst time a new

type of task is sent from the Client to the Coordinator, the Coordinator does not know the bytecode

associated to the task. The code distribution sub-system handles with this situation in a complete

transparent manner to both the Client, to most modules of the Coordinator, and to the Workers. Since

the required bytecode is new, the Coordinator and the Workers send request to the Code Server. The

Code server fetches code, as needed, directly from the clients and stores the code in a local cache.

Normally the code is associated to the needed classes.

The Code Server cache keeps control of the Client, if the Client leaves the system, all the Client

related structures are deleted. When Code Server fetches code to the Clients, they will produce an

array of bytes of the need class and send this array back to Code Server.

In this way, the Code Server becomes a resource server that hosts the necessary bytecode to run

the tasks submitted by the clients. All of this is handled automatically by Conillon and the users do

not need to specify what code needs to be uploaded to the Code Server. The necessary bytecode is

stored in a HashMap. The key of this Map is a ClassRequest which stores information about the class,

problem number, version and the Client. The value of the Map is the associated code necessary for

the task execution and is stored in a array of bytes.

As illustrated in Figure 12, the �ow of data and code is started by the Client that sends tasks to

the Coordinator, see �ow number 1. In this case, Pi tasks5, when the Coordinator loads the task there

is no de�nition for the received class, Coordinator sends a request for the Code Server asking for the

Pi task code, see �ow number 2, Code Server searches the cache for the requested de�nition, as the

5Pi task more information regarding Pi task can be found in Chapter 5.1.1

14

Conillon: Distributed Computing Platform for Desktop Grids

cache does not contain the requested code it is necessary to request the task code from the Pi Client,

see �ow number 3. The Client sends the requested code to the Code Server, see �ow number 4. Code

Server will save the code in the cache, and send the code to the Coordinator, see �ow number 5, future

request for the Pi task code will be directly answered by the Code Server, no need for the �ow 3 and

4. The Coordinator can now de�ne and creates a Pi Task object and start scheduling Pi Tasks. At

the Worker side, the process is the same, when the Task is received and no de�nition exists at JVM

the code is requested to the Code Server. In this case the code for P72 Task already exists at Code

Server's cache.

Figure 12: Code �ow from all actors. The numbers indicate the order by the �ow of code is traded.

3.4.1 Web Server

Web server is a module added to Conillon to serve HTTP[12] requests to the Java Applets. Due to

security reasons, Java Applets cannot request code directly to the code server so Conillon dynamic

class loading mechanism cannot be used, this way it was necessary to create a web server module

that serves the necessary classes to the Java Applets via HTTP protocol. This module listens for

connections using the 8080 port and parses the information send from the requester, in this case the

Java Applet. The requester will send an GET request for the necessary data to the Web server, the

web server will respond, sending the requested data via HTTP protocol.

As can be seen in Figure 13, when a Worker tries to load a task the Applet will send a GET message

to the Web server containing the name of the needed class, the Web server module will query the Code

15

Conillon: Distributed Computing Platform for Desktop Grids

server for the code and then dispatch the code back to the requester. This way, is possible to explore

workers resources using the web browser and maintain the Conillon dynamic code distribution.

Figure 13: Code Server module: Web server

3.5 Worker

A Worker is a process that runs on each compute node, designed to fully explore the available resource.

Workers are heterogeneous, each one has its own physical and virtual features. The application is

designed to explore the heterogeneous capabilities of each worker.

The Worker is divided into two parts, a core zone and a working zone. The working zone is

a sandbox6 that provides a safe execution area. The sandbox protects the core and the compute

node from eventual task problems and illegal behavior, while still providing task with the conditions

necessary for performing the required computation.

When the sandbox loads a task for execution, there is no class de�nition present, a Code Sever

request is done with the necessary class by the core. The class is send in array of bytes and loaded

with the de�neClass() method that converts an array of bytes into an instance. The class loaded can

then be de�ned and created.

The core handles all the communications with the Coordinator and the Code Server, and it is

responsible for requesting the tasks and the necessary data. The Worker process starts by detecting

the number of CPU cores. Knowledge about the number of CPU cores is necessary in order to fully

exploit the computation resources of the Worker. The number of concurrent tasks executed on a

Worker corresponds to the number of detected CPU cores.

A cache mechanism has been developed. To reduce the overhead of the communication and to

maximize CPU usage, tasks are cached. This caching mechanism allows for tasks to be run back-to-

back. In a 1 Gbit/s network, we have experienced up to a 10% increase in performance on a Worker

with four cores when a cache of up to four tasks was used.

For this experiment we used a workstation running Ubuntu 9.10 with an Intel i7 950 - 3.06 GHz

processor, this is a four core processor plus Hyper-Threading [19], so it is detected by having 8 cores. To

run this experiment it was used the Pi Client, see Section 5.1.1 for more information about Pi Client,

with 10 000 decimals and a work size of 50, where 5 runs of each cache size were done. The cache size

studied were 0, 4 and 8, where 0 represents no cache, 4 represents half of the available detected cores

6Sandbox - Provides an detached area for applications to run in, protecting the rest of the machine against malfunction
applications in the sandbox.

16

Conillon: Distributed Computing Platform for Desktop Grids

and 8 represents caching the same number of cores available. Figure 14 shows the average time each

cache size gained. The total time needed to complete the job with no cache is 154.6s, while for the

test with cache size 4, the time was 139,8s this represents a major gain of 10%, meanwhile, the cache

size 8 produced no gains, getting a time of 139.9s.

Figure 14: Cache size test

Cache size 0 (No cache) 4 (50% of CPU cores) 8 (100% CPU cores)

Average time (s) 154.6 139.8 139.9

Table 1: Average obtained times from the cache experiment

When there is free space on the cache, the Worker automatically requests one or more tasks from

the Coordinator this mechanism is illustrated in Figure 15. When the tasks are loaded to the sandbox,

the system veri�es if the necessary code already exists at the JVM system, if not the Worker will

request the necessary classes to the Code Server.

If a Client su�ers a abnormal behavior, e.g. Disconnected due to network problems, or a �ag is

send from the Client to cancel all tasks, the Coordinator sends a message to all running Workers to

kill the threads running the speci�c client tasks. Workers will kill the running threads related to that

worker. When the thread is killed, and available slots exist, the Worker requests more tasks to the

Coordinator and starts the task computation.

Worker maintains a very controlled behavior about the running and completed tasks. The metrics

are sent to the Coordinator and then to the Client. This way the Client can produce several statistical

outputs about the running computation.

17

Conillon: Distributed Computing Platform for Desktop Grids

Figure 15: Worker asking for classes and dispatching the results.

Resources can be explored in various ways, a user can install and run a simple application that gives

him a simple screen saver and thus, the user, can start o�ering CPU cycles to the grid. Meanwhile, if

the user o�ers are sporadic, he can start the web browser and point to Conillon URL, a Java Applet

with a worker application will be loaded and ready to exploit available resources.

3.5.1 Worker Screen saver

Worker application has its own screen saver. We designed a simple and low CPU consumption screen

saver that draws random squares with random size on the screen along with the displaying the number

of processed tasks by the Worker, see Figure 16.

Figure 16: Conillon Screen saver

3.5.2 Worker data

Several attributes are necessary to control a worker. This attributes are necessary to produce statistics

and various control information and are known by the Coordinator and the Worker. This object

is created when a worker connects to Conillon and stores all the �ow produced by the Worker, as

illustrated in Figure 17, all the timings related to task calculation is stored, as well as, the tasks

18

Conillon: Distributed Computing Platform for Desktop Grids

processed, starting and �nishing times, number of processors available by that worker, the operating

system and the IP address.

Figure 17: Class WorkerData - Worker attributes used to identify a compute node

3.6 Client

A Client is a program written by a Conillon user who needs access to a large amount of computational

resources. The user should program the client so that the computational job is divided into a set of

independent tasks, it is his responsibility to identify the parallel code portions that can take advantage

of distributed computing. As can be seen at Figure 18, tasks are submitted to the Coordinator who

distributes the tasks among the available Workers.

There are two other services in the Client, the Code Provider and the Results Retriever. The Code

Provider is responsible for answering requests from the Code server. The Code Provider service and the

Code server hide all the complexities of the code transfer. This approach allows users to connect new

client applications to the platform transparently. All issues related with new code transfers are done

automatically and this feature combined with the Code server give Conillon the capacity to execute

tasks submitted by several di�erent Clients at the same time. If the Client uses threads to send Tasks

to the Coordinator, it is possible to receive Results at same time, Conillon is designed to maximize

performance and minimize waiting times.

19

Conillon: Distributed Computing Platform for Desktop Grids

Figure 18: Client interacting with Conillon servers - Submitting and receiving tasks

The interaction between the application developer and the platform is done via extending the

class Client. This class has access to all necessary mechanisms to send and receive data between

the Client and the Conillon platform. As illustrated in Figure 19, the developer has access to six

important methods: commit(Task task), commitAndWait, cancelAllTasks(), startWork(), disconnect()

and GetNextResult(). The method commit() and commitTaskAndWait(), are responsible to send the

created task to the Coordinator, but while the commit() method tells to the Coordinator that the task

is ready to be processed, the commitAndWait() orders Coordinator to wait for the developers order to

start the process, to give the start order use the startWork() method. If a problem is detected, and

the developer wants to cancel all tasks, cancelAllTasks() method will send a �ag to the Coordinator

containing an id to cancel all tasks from that speci�c Client, read more about the Worker's behavior

regarding this process in Chapter 3.5. When the developers wants to start receiving the results,

getNextResult() method will query a list for results, if no results are available it will wait, if results are

available it will remove the �rst in the list, and returns the corresponding object.

20

Conillon: Distributed Computing Platform for Desktop Grids

Figure 19: Class diagram - Client class

3.6.1 Client data

ClientData is an object that identi�es a connected user that needs computational resources. This

object is created when a client connects to Conillon. This information is used to produce statistics

about the client. As can be seen in Figure 20, the Coordinator knows how many tasks have been

injected and how many have been delivered. The IP address and the id are simple control information.

The problemNumber and version are explained at Chapter 4.3.

Figure 20: Class ClientData: Client attributes used to identify a user that needs large amount of
resources

21

Conillon: Distributed Computing Platform for Desktop Grids

3.7 Security

Security is an important issue to take in account, if the grid computing system is compromised, can

potential be used has an massive attack tool. Java as some security mechanisms that addresses some

security problems, others is the developer's responsibility to identify and secure. Worker Applet has

a double protection mechanism, the �rst is the JVM security policy, applets that tries to access �les

from the host machine is checked before access to the requested resource, this policy is not allowed by

default. The second is the sandbox created at the Worker core, this sandbox creates a safe execution

area, where it loads code in a separated thread, if the thread su�ers an abnormal termination the core

maintains intact.

The second mechanism above mentioned is present at the Worker application, however if a malicious

client injects tasks with invasive code, the worker will execute the code with no restrictions. For this

problem to be solved a Java policy must be created, protecting the host resources from being access

from the Worker application. Still, Java o�ers a simple protection at bytecode level, the JVM ensures

that illegal operations are blocked.

3.8 Conillon administrator

Administering distributed computing platforms can be complex. Conillon design ensures that the

management is self-su�cient with little user administration.

Conillon administrator is a small applet created to administrate clients and workers connected to

the system. The applet shows several information about workers, IP address, number of cores, average

time per task, and others. For the clients it's possible to observe the running application (version and

problem number), total number of tasks and delivered tasks. This information is parsed from a list of

objects (WorkerData and ClientData above mentioned) send from the Coordinator. The administrator

o�ers the possibility to disconnect clients and workers.

Figure 21: Conillon administration panel

22

Conillon: Distributed Computing Platform for Desktop Grids

3.9 Summary

Conillon platform is divided in two central services in which the Clients and the Workers trade data.

The Coordinator and Code Server are designed to be dynamic and to allow opportunistic exploration of

resources. Coordinator does the task distribution and deliver part and Code Server sends the necessary

code to the requester.

Workers can participate in the computing voluntary using the web browser or the worker applica-

tion. Worker application has a built in screen saver that can be con�gured to exploit CPU resources

when the computer is idle. The experiment showed a bene�t of 10% using a task cache.

Client can easily interact with the platform, only a couple of methods are necessary and all the

dynamic distribution of code is already implemented.

In resume, the Conillon model, previously de�ned, as the following �ow:

1. Clients send tasks to the Coordinator

2. Coordinator schedules the tasks to the available Workers

3. Requester's ask for bytecode to the Code Server

4. Workers do the active calculation and send the Result to the Coordinator

5. Coordinator sends the Results to the right Client

6. Client processes the Result

23

Conillon: Distributed Computing Platform for Desktop Grids

4 Conillon programming model

The programming model of Conillon was design to provide a simple interface between the developer's

application and the middleware. All the complexities related to distributing tasks, collecting results,

ensuring fault-tolerance and so on, are hidden from the programmer.

4.1 Task

Figure 22: Class diagram - Task

Figure 23: Abstract class Task and two sub-
classes: ImageProcessing task and Mandelbrot
task

Task, as can be seen at Figure 22, is de�ned has an abstract class with one abstract method

getResult(), explained at Chapter 4.3, and implements the Runnable class, this implementation is due

to the fact that tasks are designed to be executed in threads. The Runnable interface imposes the

run() method, and is necessary to lunch a thread in the Worker sandbox. Task also implements the

Serializable class, this interface is used to save the object state and to transport the object through the

platform. This class is subclassed by the Clients and it must implement the necessary algorithms that

take part of parallel application. An example is shown at Figure 23, where 2 di�erent classes inherit

the Task class, although the subclasses are di�erent, for the platform, this di�erence is unnoticed, the

task will be executed using the run() method.

24

Conillon: Distributed Computing Platform for Desktop Grids

4.2 Result

Figure 24: Class diagram - Result

Figure 25: Abstract class Result and two sub-
classes: ImageProcessing result and Mandel-
brot result

Result, just like Task, is an abstract class, but with no method declaration. The class Result, as can

be seen at Figure 24, has access to all data related with the Worker, this can be used by the application

developer to produce statistical information, more about WorkerData can be consulted at Chapter

3.5.2. This class is subclassed by the developers and it must implement the necessary representative

object called the result, an example is illustrated in Figure 25, where two di�erent results inherit the

Result class, for the platform these objects are merely Results no matter the implementation.

4.3 Model

The two main parts of the interaction between the client application and Conillon are: committing

tasks to Conillon and retrieving the results once the tasks have been computed. Hence, the develop-

ment of a new client application is simple and straightforward. In order to develop an application to

run on Conillon, the user adds the Conillon library to his or her project. This library has three main

classes which are: the Client class, the Task class, and the Result class. The Client class, see Figure

19, provides methods that take care of the interaction between the client application and the rest of

the Conillon platform, and needs a set of mandatory information: (ClientPriority priority, int prob-

lemNumber, int version, String coordinatorAddress, int coordinatorPort, String codeServerAddress,

int codeServerPort). This information is necessary to de�ne the Client's priority, the Coordinator and

Code Server address and port. The application version and problem number, are for the developer

keep track of send versions.

The main methods of the Client class are:

� commit(Task task) - sends the speci�ed task to the platform (that is, to a Coordinator). When

the task has been sent, the method returns.

� getNextResult() - waits for the �rst available result produced by a task that was executed on a

worker. Tasks are sent to the worker in the order they were received by the Coordinator, but,

since workers are di�erent, the results can become available in any order.

The client task must extend the Task class. This abstract class has one method that needs to be

implemented:

� run() - this method is executed by the worker and returns a result. The Result object, which

needs to be created in order to save the task calculation.

25

Conillon: Distributed Computing Platform for Desktop Grids

� getResult() - this method returns the calculated Result object, and is used by the Client to

retrieve the task output.

The client application should also de�ne a result that must extend the Result class. The result class

is where developers can de�ne a speci�c task result. Both Task and Result subclasses should be

programmed according to the application's requirements. Read the next Chapter for an example of

an simple distributed application.

4.4 Implementation

Bellow is described a simple parallel job that multiplies two numbers in distributed way and then sums

all the multiplied numbers at the client. This program is to be intend has a simple implementation

of a parallel job in the Conillon system. The objective of this application is to multiply two numbers

in distributed way, so the Task has to multiply two numbers, see Algorithm 2. The result of the

multiplied number must be de�ned, the MulResult class will store the result of the multiplied numbers,

see Algorithm 1. As you can see in the Algorithm 3, the tasks are going to be submitted to the

Coordinator and the results are going to be summed.

Figure 26: Class diagram of the simple client and considering the inheritance

26

Conillon: Distributed Computing Platform for Desktop Grids

Algorithm 1 MulResult Class

1 import r e s u l t . Result ;
2 public class MulResult extends Result {
3 private int value ;
4 public MulResult (int value) {
5 this . va lue = value ;
6 }
7 public int getValue () {
8 return value ;
9 }
10 }

First, as you can observe in Algorithm 1, it is necessary to create a object representing the Result.

The result is the �nal representation of the task calculus. This means whatever the task calculates the

result will represent the task output. In this example we will multiply two Integer numbers, so the

result can be an Integer. The method getValue() is used by the Client to retrieve the calculated result.

Algorithm 2 MulTask Class

1 import r e s u l t . Result ;
2 import ta sk s . Task ;
3 pub l i c c l a s s MulTask extends Task {
4 pr i va t e i n t i ;
5 pr i va t e i n t j ;
6 pr i va t e i n t t o t a l ;
7 pub l i c MulTask (i n t i , i n t j) {
8 super (i) ;
9 t h i s . i = i ;
10 t h i s . j = j ;
11 }
12 @Override
13 pub l i c void run () {
14 t o t a l = i * j ;
15 }
16 @Override
17 pub l i c Result ge tResu l t () {
18 re turn new MulResult (t o t a l) ;
19 }
20 }

Second, as you can see at Algorithm 2, it is required to create the Task. The task will multiply two

Integer numbers (i , j). The calculus will be done at run() method. This method is executed by the

Worker and will produce a result and is saved with the MulResult class.

27

Conillon: Distributed Computing Platform for Desktop Grids

Algorithm 3 MulClient Class

1 import c l i e n t . C l i en t ;
2 import comm. C l i e n tP r i o r i t y ;
3 public class MulClient extends Cl i en t {
4 public MulClient (C l i e n tP r i o r i t y p r i o r i t y , int problemNumber , int

vers ion , S t r ing masterAddress , int masterPort , S t r ing
codeServerAddress , int codeServerPort) {

5 super (p r i o r i t y , problemNumber , ver s ion , masterAddress ,
masterPort , codeServerAddress , codeServerPort) ;

6 }
7 public void execute () {
8 int numTasks = 1000 ;
9 long t o t a l = 0 ;
10 for (int i = 0 ; i < numTasks ; i++) {
11 commit (new MulTask (i , i)) ;
12 }
13
14 for (int j = 0 ; j < numTasks ; j++) {
15 t o t a l += ((MulResult) (getNextResult ())) . getValue () ;
16 }
17 }
18 public stat ic void main (St r ing [] a rgs) {
19 new MulClient (C l i e n tP r i o r i t y .VERY_HIGH, 8 ,8 , " l o c a l h o s t " , 0 , "

l o c a l h o s t " , 0) . execute () ;
20 }
21 }

Third, as you can observe at Algorithm3, it´s a requisite to submit the created tasks to the Coor-

dinator. The tasks are submitted using the commit(Task) method. This method will send the created

tasks to the Coordinator. When the Client wants to receive the Results, it needs to use the getNex-

tResult() method, that will retrieve the result produced by the Worker and sent from the Coordinator,

this result is stored in a list at Client side. The task committing and receiving can be accelerated using

threads, depending how intensive tasks are and the number of available Workers, Conillon system can

dispatch results without having the full task list submitted. When the MulClient is created, there are

necessary inputs that must be de�ned, explained in Chapter 4.3.

4.5 Summary

To develop a distributed computing application using Conillon developer´s only have to create two

classes, a Task and a Result, then it´s necessary to interact with Conillon server using several given

methods. There way is easy for application developers implement embarrassingly parallel applications

without worrying about distribution and/or synchronization issues.

28

Conillon: Distributed Computing Platform for Desktop Grids

5 Developed applications and performance evaluation

Some Clients have been developed in the context of this work. In this section is presented the created

clients and the experiments done.

5.1 Developed applications

The developed applications have the programming model based in the Chapter 4.3. All the applications

use inheritance from the following abstract classes, Task, Result and Client. In this Chapter is presented

the four di�erent applications, with distinct task and purposes, sharing the same programming model.

5.1.1 Pi

The Pi Client calculates theπ number using the Bailey-Borwein-Plou�e Pi Algorithm [6]. This formula

provides an algorithm for the computation of the nth binary digit of π. The formula is:

Figure 27: Formula used to calculate the nth digit of π. Image obtained from [6]

Client Pi is divided in three classes, PiClient, PiTask and MyResult. In the PiTask class it was

implemented the Bailey-Borwein-Plou�e Pi Algorithm has a task using the run() method, this way,

it's possible to create tasks that calculates di�erent positions of the Pi number. The MyResult class

is the production of the task calculus, in this case, to store a big number, it was used the BigDecimal.

The PiClient class has access to the necessary methods to interact with the platform, this class crests

injects the tasks and receives the results calculated by the workers and produces the �nal Pi number.

Example of the �rst ten and last ten digits of a 10 000 digits π: 3.141592653 ... 3877582375.

The source code of this Client can be checked on Chapter 8.1.

Figure 28: Class diagram for the Pi client

29

Conillon: Distributed Computing Platform for Desktop Grids

5.1.2 MandelBrot

The Mandelbrot [18] Client calculates a representation of the Mandelbrot set as an 8000x8000 pixel

image. This image, see Figure 29, is set of points that produces distinctive fractal shape.

Figure 29: Mandelbrot representation

This application is divided in three classes, MandelbrotClient, MandelbrotTask, MandelbrotResult.

The computation of the image is divided into partial images of 200x200 pixels each, this produces

a total of 1600 tasks, the MandelbrotTask class calculates each partial image by calculating the set

of points of each portion, this calculation produces an image saved in array of bytes, this array of

bytes is the result of each portion of the image, each portion is saved in the MandelbrotResult. The

MandelbrotClient sets the maximum number of iterations normally, 4096 or 8192 in the computation

of each pixel in the Mandelbrot image. This class has access to the necessary methods to interact with

the platform, this way, it creates and injects the tasks, a total of 1600 tasks, and receives the image

portions. Once computed, the partial images are compressed in JPEG format and sent back to the

Client where the complete image is assembled.

30

Conillon: Distributed Computing Platform for Desktop Grids

Figure 30: Class diagram for the Mandelbrot client

The source code of this Client can be checked on Chapter 8.3.

5.1.3 Image Processing

The image processing Client applies a blur �lter to 1000 high de�nition (1920x1080) images of a

rendered video. Each frame is compressed in JPEG format to a size of around 75 KB.

Image Processing application is divided in three classes, ImageProcessingClient, ImageProcessing-

Task and ImageProcessingResult. The image processing job is divided into 1000 tasks (one task for

each image), where the ImageProcessingTask applies the blur �lter using a kernel of size 8x8 pixels

to the image. The applied �lter produces an array of bytes has a result, this result is stored in the

ImageProcessingResult class. The ImageProcessingClient, loads all the 1000 high de�nition image and

creates the tasks, each task is loaded with an image. The created tasks are injected to the platform.

The received results are the images with the applied �lter.

Figure 31: Class diagram for the Image processing client

The source code of this Client can be checked on Chapter 8.2.

5.1.4 P72

The P72 Client calculates the greatest common denominator between two numbers from a given

interval using the Euclidean [15] method. This application follows the model discussed in the Chapter

31

Conillon: Distributed Computing Platform for Desktop Grids

4, divided in three classes, ClientP72, TaskP72 and ResultP72. The TaskP72, calculates how many

greatest common denominators between two numbers exists from a given interval, each interval is a

task. The result is a regular Int, and represents the sum made in the task. The ClientP72 class interacts

with the platform injecting tasks and receiving the sums obtained by the tasks. This application can

be con�gured with a given size of numbers and the interval for each task.

Figure 32: Class diagram for the P72 client

The source code of this Client can be checked on Chapter 8.4.

5.2 Experiments and results

5.2.1 Hardware and Software

The set of Workers used for the performance experiments was composed of 64 desktop computers.

Each of these computers had an Intel Core 2 Duo 3.06 GHz (dual core processor) with 4 GB of RAM

and was running Windows XP SP3 32-bit version and Java version 1.6.0_24. The computer running

the Coordinator and the Code Server was an AMD Opteron 2216 HE 2.4GHz (dual core) with 2GB of

RAM and SUSE Linux with Kernel version 2.6.31.12. The Clients were run on a normal workstation

with a con�guration similar to the Workers. All computers were connected through a switched 1 Gbps

Ethernet. The network topology can be seen in Figure 33.

Figure 33: Network topology used for the experiments

5.2.2 Used metrics

Each experiment was repeated �ve times and the results below are averages of the results collected.

Each job was run with di�erent numbers of cores: 8, 16, 32, 64 and 128. All the experiments were

32

Conillon: Distributed Computing Platform for Desktop Grids

done under similar conditions and according to the same procedure. In the presentation of the results,

it is use the following terms:

� Number of cores: total number of CPU cores used to perform an experiment. For this study, we

used 8, 16, 32, 64 and 128 cores.

� Average runtime: average runtime observed in �ve experiments with a particular job and with a

certain number of cores.

� Speed up: speed up gained when doubling the number of cores. The speed up is calculated by

dividing the average runtime for n cores by the average runtime of 2n cores.

5.2.3 Pi

Pi Client experiment calculates 10,000 decimals of π, divided into 200 tasks. Each task is the compu-

tation 50 decimals of π. The average runtime of the Pi job with di�erent numbers of cores is plotted

in Figure 34. The timings and the speed ups are listed in Table 2. The results show that computation

of decimals of scales well with an average speed up of x1.9 each time the number of cores is doubled.

To calculate 10,000 decimal places of π with 8 cores took an average of 242.6 seconds, while it took

only 19.4 seconds with 128 cores. The total network data transferred from and to the server was

approximately 4 MB in both directions.

Figure 34: Average runtime in 5 runs for each set of cores of the Pi Client

Number of cores 8 16 32 64 128

Average time(s) 287.6 149.3 76.1 50.6 28.6
Speed-up x2.0 x1.9 x1.8 x1.9

Table 2: Average runtime in 5 runs of each set of cores for the Pi Client

33

Conillon: Distributed Computing Platform for Desktop Grids

5.2.4 Mandelbrot

For this experiment a 4096 interations has been used and a total of 1600 tasks have been created. The

average runtime for the Mandelbrot job are plotted in Figure 35. The timings and the speed up for

the Mandelbrot job are shown in Table 3. The Mandelbrot job does not scale as well as the Pi job

described in Section 5.2.3. It took 128.0 seconds to calculate the 1000 partial images on 8 cores and

19.0 seconds on 128 cores. Speed up decreases as the number of cores is increased. We observed an

average speed up of x1.9 going from 8 cores to 16 cores. However, going from 64 cores to 128 cores, we

only observed a speed up of x1.3. The reason why the Mandelbrot job does not scale well when the

number of cores becomes larger than 32 is the heterogeneous nature of the tasks: in the Mandelbrot

job, the amount of computation necessary to generate each the partial image depends heavily on the

local region of the Mandelbrot set that an image represents. The di�erence in terms of the amount

of computation necessary to compute two partial images from di�erent local regions is up to three

orders of magnitude. When Conillon has access to more than 32 cores, it can happen that a large

fraction of the Workers become idle towards the end of the job while one or a few of the Workers

are still calculating one of the more complex tasks. As can be seen in Figure 35, this e�ect starts to

have a signi�cant impact on the average runtime around 64 cores, where the plot starts to have an

easier slope. This also means that, for the Mandelbrot job, adding more cores would most likely yield

only a minimal gain in terms of performance, because the limiting factor is the few tasks that require

signi�cantly more computation than most the others. A possible solution for this problem would be

to divide the Mandelbrot job into a larger number of smaller tasks � tasks could, for example, be to

compute partial images of 100x100 pixels instead of 200x200 pixels. This would make the distributed

computation more �ne grained and in turn allow Conillon to distribute the job more evenly in between

the Workers.

Figure 35: Average runtime in 5 runs of each set of cores for the Mandelbrot Set Client

34

Conillon: Distributed Computing Platform for Desktop Grids

Number of cores 8 16 32 64 128

Average time(s) 128.0 68.1 38.3 24.4 19.0
Speed-up x1.9 x1.8 x1.6 x1.3

Table 3: Average runtime in 5 runs of each set of cores for the Mandelbrot Client

5.2.5 Image Processing

For the Image Processing job, the average runtime are plotted in Figure 36. The timings and the speed

up are listed in Table 4. As it can be seen from the results, the Image Processing job scales quite

well with an average speed up of x1.9 each time the number of cores is double. It took 1138.0 seconds

to process the 1000 images with 8 cores and only 93.2 seconds with 128 cores. We registered the

network data transferred from and to the server for this job (around 125 MB in both directions).The

comparatively large amount of network transfers is because image are sent two and from the Client

and to and from the Workers.

Figure 36: Average runtime in 5 runs of each set of cores for the Image Processing Client

Number of cores 8 16 32 64 128

Average time(s) 1138.0 626.4 310.0 166.9 93.2
Speed-up x1.8 x2.0 x2.0 x1.9

Table 4: Average runtime in 5 runs of each set of cores for the Image Processing Client

5.2.6 P72

For this experiment is was used an total of 900,000 numbers divided in 1000 intervals. Each interval is

a task. The results for the P72 average runtime are plotted in Figure 37. The values for the runtime

and the speed up are listed in Table 5. For this job, we observed an average speed up with of x1.8 each

35

Conillon: Distributed Computing Platform for Desktop Grids

time the number of cores was doubled. The 1000 tasks were calculated in 235.7 seconds by 8 cores and

in 22.7 seconds by 128 cores.

Figure 37: Average runtime in 5 runs with each set of cores for the P72 Client

Number of cores 8 16 32 64 128

Average time(s) 235.7 119.8 59.9 37.5 22.7
Speed-up x2.0 x2.0 x1.6 x1.7

Table 5: Average runtime in 5 runs with each set of cores for the P72 Client

5.2.7 Four Clients running concurrently

In this set of experiments, we let all the four Clients, with the same con�gurations, submit their job at

the same time. This stresses the Coordinator that has to receive, schedule and distribute several tasks

at the same time. The coordinator receives four jobs with a total of 4100 tasks from the Clients in a

short period of time and immediately starts distributing them. The average runtime of this experiment

with di�erent numbers of cores is plotted in Figure 38. As can be seen at Table 6, the speed up is

relatively high (x1.8) each time the number of cores is doubled. When multiple Clients are running at

the same time, Conillon can bene�t from having more tasks to distribute: even if some tasks take much

longer than others, the Workers do not become idle when the Mandelbrot job is nearing completion �

instead, the Workers are given tasks from the other jobs. The average runtime was 1638.5 seconds in

the experiments where we used 8 cores and 150.0 seconds in the experiments where we used 128 cores.

36

Conillon: Distributed Computing Platform for Desktop Grids

Figure 38: Average runtime in 5 runs of the four Clients running concurrently

Number of cores 8 16 32 64 128

Average time(s) 1638.5 933.9 480.0 263.7 150.0
Speed-up x1.8 x1.9 x1.8 x1.8

Table 6: Average runtime in 5 runs of each set of cores for the four Clients running concurrently

5.2.8 Results summary

The results presented in this section show that Conillon scales well when computing a set of di�erent

jobs with distinct characteristics. When the number of tasks is large, Conillon can distribute the

computation among the Workers evenly and thereby minimize the time that Workers are idle. In

Figure 39, we have plotted the average runtime when all the jobs are running concurrently with the

sum of the average runtime of all the jobs running independently. As it can be seen in Figure 39, when

the Clients all run at the same time, the average runtime is lower than the sum of the average runtime

when the Clients run independently.

37

Conillon: Distributed Computing Platform for Desktop Grids

Figure 39: Performance summary � sums of average times when run individually vs. running all Clients
concurrently

5.3 Summary

In this chapter is described the developed applications used to test Conillon. The goal of this chapter is

to obtain an actual performance evaluation obtained through the various experiments. Our experiments

involved four di�erent types of jobs with distinct characteristics. The main di�erences between the jobs

were the size of the individual tasks, the results, and the computational time to execute each task. In

the Mandelbrot experiments, the speed up decreased when the number of cores was increased beyond

32. This is due to the fact that the tasks in this job vary greatly in terms of computational complexity.

As a result, a few demanding tasks become the bottleneck for the job. This issue can be overcome by

dividing each job into a larger number of smaller tasks at the expense of more communication overhead.

This situation can cause bottlenecks at the servers or in the network equipment. This Chapter proved

that our programming model is �exible, easy to use, and with enormous capabilities.

38

Conillon: Distributed Computing Platform for Desktop Grids

6 Conclusion

The main objective of this work is to develop an distributed computing platform named Conillon. The

expected goals are: Research and develop a distributed computing platform. Scalable - dynamic addition

of nodes, Maximize the use of the CPU, Fault-tolerant engine, Ability to cope with multiple problems

simultaneously, Easy to use and manage, Support for di�erent programming languages, Maximize

performance and e�ciency, User accessibility: Multi-platform Applet - ability to use the web browser

to explore the CPU cycles, Screen-saver application - to use in the di�erent Operative Systems;

We were able to meet all our objectives. The simple and e�cient architecture proved to be perfor-

mant, scalable and easy to use. The servers start with little user e�ort and the Conillon programming

model is easy to learn, straightforward, and gives the ability to develop parallel applications without

worrying about distribution and/or synchronization issues. Conillon requires little maintenance, the

system is self-su�cient in the failures and in management. The Worker application is designed to

fully explore CPU resources with no need for user administration. Both servers, Coordinator and

Code server, and the Worker can be used in any JVM enabled Operating System like Linux, Solaris,

Windows and MacOS X. The Worker can even be run in a Web Browser for sporadic exploration of

resources, or can be installed the stand-alone application with integrated screen saver.

The presented results show that all the experiments scale relatively well and we observed an average

speed up of up to x1.9 each time the number of cores was doubled. Task programming requires focus,

tasks must be similar and with more �ne grained complexity to adapt well to the heterogeneous

conditions of a grid. See the case of our Mandelbrot experiment at Section 5.2.4. Meanwhile, having

a larger number of tasks can cause a bottleneck at the network equipment or at the servers.

To summarize, the objectives were ful�lled and Conillon is able to provide an easy to use program-

ming model, simple to use, install and the management is self-su�cient with little user administration.

Is the author's opinion that the project is suitable to be installed and exploited in production envi-

ronments.

The source code is available under BSD7 license and can be downloaded at:

http://code.google.com/p/distributedcomputing/.

6.1 Future Work

In our ongoing work, we are including some of the new technologies that are becoming available for

Java to take advantage of modern GPUs such as OpenCL[34] while still keeping Conillon lightweight

and straightforward for small and medium organizations to use.

Other area of major improvement is an intelligent scheduler [22]. A sophisticate scheduler will

allow the platform to distribute tasks more e�ciently to the available resources. E.g., The platform

could schedule the most complicated tasks for the more powerful resources in a group of heterogeneous

workstations. This way is possible to do a better timing optimization, getting faster the results.

7BSD see http://www.opensource.org/licenses/bsd-license.php for more information about BSD license

39

http://code.google.com/p/distributedcomputing/

Conillon: Distributed Computing Platform for Desktop Grids

7 Publications

� Silva, H., Christensen, A., and Oliveira, S. Building and designing a distributed computing

platform. In Proceedings of the Workshop on Open Source and Design of Communication (New

York, NY, USA, 2010), OSDOC '10, ACM, pp. 5558.

� Silva, H., Oliveira, S., and Christensen, A. Conillon: A lightweight distributed computing plat-

form for desktop grids. 6th Conferência Ibérica de Sistemas e Tecnologias de Informação. Chaves,

Portugal

� Silva, H., Christensen, A., and Oliveira, S. Performance study of conillon - a platform for dis-

tributed computing. In Proceedings of the Workshop on Open Source and Design of Commu-

nication (New York, NY, USA, 2011), OSDOC '11, ACM.

40

Conillon: Distributed Computing Platform for Desktop Grids

References

[1] High performance parametric modeling with nimrod: Killer application for the global grid? In

Proceedings of the 14th International Symposium on Parallel and Distributed Processing (Wash-

ington, DC, USA, 2000), IEEE Computer Society, pp. 520�.

[2] Alexandrov, A. D., Ibel, M., Schauser, K. E., and Scheiman, C. J. Superweb: Research

issues in java-based global computing, 1996.

[3] Anderson, D. P. Boinc: A system for public-resource computing and storage. In Proceedings of

the 5th IEEE/ACM International Workshop on Grid Computing (Washington, DC, USA, 2004),

GRID '04, IEEE Computer Society, pp. 4�10.

[4] Anderson, D. P., Christensen, C., and Allen, B. Designing a runtime system for volunteer

computing. In Proceedings of the 2006 ACM/IEEE conference on Supercomputing (New York,

NY, USA, 2006), SC '06, ACM.

[5] Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and Werthimer, D. Seti@home:

an experiment in public-resource computing. Commun. ACM 45 (November 2002), 56�61.

[6] Bailey, D., Borwein, P., and Plouffe, S. On the rapid computation of various polyloga-

rithmic constants. Mathematics of Computation 66 (1996), 903�913.

[7] Buyya, R., and Abramson, D. The virtual laboratory: a toolset to enable distributed molecular

modelling for drug design on the world-wide grid, 2003.

[8] Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., and

Lodygensky, O. Computing on large-scale distributed systems: Xtrem web architecture, pro-

gramming models, security, tests and convergence with grid. Future Gener. Comput. Syst. 21

(March 2005), 417�437.

[9] Cappello, P., Christiansen, B., Ionescu, M. F., Neary, M. O., Schauser, K. E., and

Wu, D. Javelin: Internet-based parallel computing using java, 1997.

[10] Diomidis, K. R., Raptis, K., Spinellis, D., Katsikas, S., and Gr-Karlovassi. Java as

distributed object glue, 2000.

[11] Ferreira, L., Berstis, V., Armstrong, J., Kendzierski, M., Neukoetter, A.,

MasanobuTakagi, Bing, R., Amir, A., Murakawa, R., Hernandez, O., Magowan, J.,

and Bieberstein, N. Introduction to grid computing with globus, �rst ed. IBM Corp., Riverton,

NJ, USA, 2003.

[12] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and

Berners-Lee, T. Rfc 2616, hypertext transfer protocol � http/1.1, 1999.

[13] Foster, I., and Kesselman, C., Eds. The grid: blueprint for a new computing infrastructure.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

41

Conillon: Distributed Computing Platform for Desktop Grids

[14] Goldchleger, A., Kon, F., Goldman, A., Finger, M., and Bezerra, G. C. Integrade

object-oriented grid middleware leveraging the idle computing power of desktop machines: Re-

search articles. Concurr. Comput. : Pract. Exper. 16 (April 2004), 449�459.

[15] Heath, T. L., and Euclid. The Thirteen Books of Euclid's Elements, Books 10�13. Dover

Publications, June 1956.

[16] Juneau, J., Baker, J., Wierzbicki, F., Soto, L., and Ng, V. The De�nitive Guide to

Jython: Python for the Java Platform, 1st ed. Apress, Berkely, CA, USA, 2010.

[17] Lewandowski, S. M. Frameworks for component-based client/server computing. ACM Comput.

Surv. 30 (March 1998), 3�27.

[18] Mandelbrot, B. B. The fractal geometry of nature. W. H. Freeman, New York, 1983.

[19] Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A., and

Upton, M. Hyper-threading technology architecture and microarchitecture. Intel Technology

Journal 6, 1 (2002), 1�12.

[20] Minoli, D. A Networking Approach to Grid Computing. Wiley-Interscience, 2004.

[21] Neary, M. O., Phipps, A., Richman, S., and Cappello, P. Javelin 2.0: Java-based parallel

computing on the internet. In Internet, Proceedings of European Parallel Computing Conference

(Euro-Par 2000 (2000), Springer, pp. 1231�1238.

[22] Ni, L., Zhang, J., Yan, C., and Jiang, C. A heuristic algorithm for task scheduling based on

mean load. In Proceedings of the First International Conference on Semantics, Knowledge and

Grid (Washington, DC, USA, 2005), SKG '05, IEEE Computer Society, pp. 5�.

[23] Odersky, M., and al. An overview of the scala programming language. Tech. Rep. IC/2004/64,

EPFL Lausanne, Switzerland, 2004.

[24] Oliveira, L., Lopes, L., Silva, F., Peer, P. P. T., Silva, O., and Alegre, R. D. C.

P³: Parallel peer to peer - an internet parallel programming environment.

[25] Postel, J. Transmission Control Protocol. RFC 793 (Standard), Sept. 1981. Updated by RFCs

1122, 3168.

[26] Ripeanu, M., Foster, I., and Iamnitchi, A. Mapping the gnutella network: Properties of

large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing

Journal 6 (2002), 2002.

[27] Sahni, S. Scheduling master-slave multiprocessor systems. IEEE Trans. Comput. 45 (October

1996), 1195�1199.

[28] Sarmenta, L. F. G., and Hirano, S. Bayanihan: Building and studying web-based volunteer

computing systems using java. 675�686.

42

Conillon: Distributed Computing Platform for Desktop Grids

[29] Satoshi, H. Horb: Distributed execution of java programs. In Proceedings of the International

Conference on Worldwide Computing and Its Applications (London, UK, 1997), WWCA '97,

Springer-Verlag, pp. 29�42.

[30] Segal, B., Robertson, L., Gagliardi, F., and Carminati, F. Grid computing: the european

data grid project.

[31] Silva, H., Christensen, A., and Oliveira, S. Building and designing a distributed computing

platform. In Proceedings of the Workshop on Open Source and Design of Communication (New

York, NY, USA, 2010), OSDOC '10, ACM, pp. 55�58.

[32] Silva, H., Christensen, A., and Oliveira, S. Performance study of conillon - a platform for

distributed computing. In Proceedings of the Workshop on Open Source and Design of Commu-

nication (New York, NY, USA, 2011), OSDOC '11, ACM.

[33] Silva, H., Oliveira, S., and Christensen, A. Conillon: A lightweight distributed computing

platform for desktop grids. 6th Conferência Ibérica de Sistemas e Tecnologias de Informação.

[34] Stone, J. E., Gohara, D., and Shi, G. Opencl: A parallel programming standard for hetero-

geneous computing systems. Computing in Science and Engineering 12 (2010), 66�73.

[35] Tanenbaum, A. S., and Steen, M. v. Distributed Systems: Principles and Paradigms (2nd

Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[36] Taurus, D. G. H. A taxonomy of actual utilization of real unix and windows servers. Tech. rep.,

IBM, 2003.

[37] Thain, D., Tannenbaum, T., and Livny, M. Distributed computing in practice: the condor

experience: Research articles. Concurr. Comput. : Pract. Exper. 17 (February 2005), 323�356.

[38] Tsirtsis, G., and Srisuresh, P. Network address translation - protocol translation (nat-pt),

2000.

[39] Ulrik, C., Jakob, S., and Pedersen, G. Developing distributed computing solutions com-

bining grid computing and public computing m.sc. thesis, 2005.

[40] Wollrath, A., Waldo, J., and Riggs, R. Java-centric distributed computing. IEEE Micro

17 (May 1997), 44�53.

43

Conillon: Distributed Computing Platform for Desktop Grids

8 Source code

8.1 Pi

8.1.1 PiClient class

1 package mypi ;

2 import java . i o . Buf feredWriter ;

3 import java . i o . F i l eWr i t e r ;

4 import java . math . BigDecimal ;

5 import comm. C l i e n tP r i o r i t y ;

6

7 import c l i e n t . C l i en t ;

8 public c lass PiCl i ent extends Cl i en t {

9 //max sca l e for the Pi number used for t h i s experiment

10 private stat ic f ina l int SCALE = 10000;

11 //work s i z e for each task

12 private stat ic f ina l int WORK_SIZE = 50 ;

13

14 public PiCl i ent (C l i e n tP r i o r i t y p r i o r i t y , int problemNumber , int vers ion , S t r ing

masterAddress , int masterPort , S t r ing codeServerAddress , int codeServerPort) {

15 super (p r i o r i t y , problemNumber , vers ion , masterAddress , masterPort ,

codeServerAddress , codeServerPort) ;

16 }

17

18 public void execute () {

19 long time = System . cur rentTimeMi l l i s () ;

20 BigDecimal r e s u l t = new BigDecimal ("0") ;

21 // Se t t ing the sca l e for the Pi number , in t h i s case 10 000 decimals

22 r e s u l t = r e s u l t . s e t S c a l e (SCALE) ;

23 int numIterat ions = SCALE / WORK_SIZE;

24 for (int i = 0 ; i < numIterat ions ; i++) {

25 //Creating the tasks , each one with f i x ed work s i z e = 50 , with 10

000 decimals sca l e

26 PiTask piCalc = new PiTask (i , i * WORK_SIZE, (i + 1) * WORK_SIZE,

SCALE) ;

27 // i n j e c t task to the Coordinator

28 commit (p iCalc) ;

29 }

30

31 for (int i = 0 ; i < numIterat ions ; i++) {

32 //Getting ready r e s u l t s and sum to obtain the f i n a l Pi number

33 r e s u l t = r e s u l t . add (((MyResult) (getNextResult ())) . getValue ()) ;

34 }

35 try{

36 // Create f i l e

37 F i l eWr i t e r f s t ream = new Fi l eWr i t e r ("out . txt ") ;

38 Buf feredWriter out = new Buf feredWriter (f s t ream) ;

39 out . wr i t e (r e s u l t . t oS t r i ng ()) ;

40 //Close the output stream

41 out . c l o s e () ;

42 }catch (Exception e) {//Catch except ion i f any

43 System . e r r . p r i n t l n ("Error : " + e . getMessage ()) ;

44 }

45 }

46 public stat ic void main (St r ing [] a rgs) {

47 // creat ing the c l i e n t with very high pr io r i t y , problem number and vers ion 6 ,

and the con i l l on ' s address

48 new PiCl i ent (C l i e n tP r i o r i t y .VERY_HIGH , 6 , 6 , " 1 2 7 . 0 . 0 . 1 " , 0 , " 1 2 7 . 0 . 0 . 1 " ,

0) . execute () ;

49 }

44

Conillon: Distributed Computing Platform for Desktop Grids

50

51 }

Listing 1: PiClient class

8.1.2 PiTask class

1 package mypi ;

2 import java . math . BigDecimal ;

3 import java . math . B ig Intege r ;

4 import r e s u l t . Result ;

5 import ta sk s . Task ;

6

7 public c lass PiTask extends Task {

8 // s e t t i n g the necessary a t t r i b u t e s for the the ca l cu lu s of Pi − the va lues are

constants and can be found on Bailey−Borwein−Plou f f e a r t i c l e

9 private stat ic f ina l int ROUND_MODE = BigDecimal .ROUND_HALF_EVEN;

10 private BigDecimal ZERO = new BigDecimal ("0") ;

11 private BigDecimal ONE = new BigDecimal ("1") ;

12 private BigDecimal NEGATIVE_ONE = new BigDecimal ("−1") ;

13 private BigDecimal TWO = new BigDecimal ("2") ;

14 private BigDecimal NEGATIVE_TWO = new BigDecimal ("−2") ;

15 private BigDecimal FOUR = new BigDecimal ("4") ;

16 private BigDecimal FIVE = new BigDecimal ("5") ;

17 private BigDecimal SIX = new BigDecimal ("6") ;

18 private BigDecimal EIGHT = new BigDecimal ("8") ;

19 private BigDecimal NEGATIVE_EIGHT = new BigDecimal ("−8") ;

20 private Big Intege r SIXTEEN = new Big Intege r ("16") ;

21 private MyResult r e s u l t ;

22 private int s t a r t ;

23 private int end ;

24 int s c a l e ;

25

26 public PiTask (int id , int s ta r t , int end , int s c a l e) {

27 super (id) ;

28 this . s t a r t = s t a r t ;

29 this . end = end ;

30 this . s c a l e = s c a l e ;

31

32 }

33 public PiTask () {

34 super (0) ;

35 }

36 // Bailey−Borwein−Plou f f e Pi Algorithm

37 private BigDecimal f (int k) {

38 BigDecimal K = new BigDecimal (k) ;

39 BigDecimal EIGHT_K = EIGHT. mult ip ly (K) ;

40 BigDecimal FIRST = ONE. d iv ide (new BigDecimal (SIXTEEN. pow(k)) , ROUND_MODE) ;

41 BigDecimal SECOND = FOUR. d iv ide (EIGHT_K. add (ONE) , ROUND_MODE) ;

42 BigDecimal THIRD = NEGATIVE_TWO. d iv ide (EIGHT_K. add (FOUR) , ROUND_MODE) ;

43 BigDecimal FOURTH = NEGATIVE_ONE. d iv ide (EIGHT_K. add (FIVE) , ROUND_MODE) ;

44 BigDecimal FIFTH = NEGATIVE_ONE. d iv ide (EIGHT_K. add (SIX) , ROUND_MODE) ;

45

46 return FIRST . mult ip ly (SECOND. add (THIRD. add (FOURTH. add (FIFTH)))) ;

47 }

48 // s e t t i n g sca l e for the ca l cu l a t ed number , in t h i s case 10 000

49 public void s e t S c a l e (In t eg e r s c a l e) {

50 ZERO = ZERO. s e t S c a l e (s c a l e) ;

51 ONE = ONE. s e t S c a l e (s c a l e) ;

52 NEGATIVE_ONE = NEGATIVE_ONE. s e t S c a l e (s c a l e) ;

45

Conillon: Distributed Computing Platform for Desktop Grids

53 TWO = TWO. s e t S c a l e (s c a l e) ;

54 NEGATIVE_TWO = NEGATIVE_TWO. s e t S c a l e (s c a l e) ;

55 FOUR = FOUR. s e t S c a l e (s c a l e) ;

56 FIVE = FIVE . s e t S c a l e (s c a l e) ;

57 SIX = SIX . s e t S c a l e (s c a l e) ;

58 EIGHT = EIGHT. s e t S c a l e (s c a l e) ;

59 NEGATIVE_EIGHT = NEGATIVE_EIGHT. s e t S c a l e (s c a l e) ;

60 }

61 // s t a r t i n g the ca l cu lu s

62 private BigDecimal s ta r t_ca l () {

63 BigDecimal bd = ZERO;

64 BigDecimal t o t a l = ZERO;

65 for (int i = s t a r t ; i<end ; i++){

66 bd = bd . add (f (i)) ;

67 }

68 return bd ;

69 }

70

71 //Run method , method tha t runs on workers

72 @Override

73 public void run () {

74 // s e t t i n g sca l e

75 s e t S c a l e (new I n t eg e r (s c a l e)) ;

76 // ca l cu l a t i n g the r e s u l t for the work s i z e (50) with 10000 sca l e

77 r e s u l t = new MyResult (s ta r t_ca l ()) ;

78

79 }

80

81 //Method that returns the r e s u l t to c l i e n t s

82 @Override

83 public Result getResu l t () {

84 return r e s u l t ;

85 }

86 @Override

87 public St r ing toS t r i ng () {

88 return "Simple PI Task :) " ;

89 }

90

91

92 }

Listing 2: PiTask class

8.1.3 PiResult class

1 package mypi ;

2 import java . math . BigDecimal ;

3 import r e s u l t . Result ;

4 public c lass MyResult extends Result {

5 // a t t r i b u t e tha t w i l l s tore the ca l cu l a t ed re su l t , in t h i s case the Pi number

6 private BigDecimal value ;

7

8 public MyResult (BigDecimal bigDecimal) {

9 super () ;

10 this . va lue = bigDecimal ;

11 }

12 // returning the value to c l i e n t

13 public BigDecimal getValue () {

14 return value ;

15 }

46

Conillon: Distributed Computing Platform for Desktop Grids

16

17 public void setValue (BigDecimal value) {

18 this . va lue = value ;

19 }

20

21 @Override

22 public St r ing toS t r i ng () {

23 return "MyResult [va lue=" + value + "] " ;

24 }

25

26

27 }

Listing 3: PiResult class

8.2 Image Processing

8.2.1 ImageProcessingClient class

1 package myImage ;

2 import java . i o . F i l e ;

3 import java . i o . Fi le InputStream ;

4 import java . i o . FileNotFoundException ;

5 import java . i o . FileOutputStream ;

6 import java . i o . IOException ;

7 import java . i o . InputStream ;

8

9 import c l i e n t . C l i en t ;

10

11 import comm. C l i e n tP r i o r i t y ;

12

13 public c lass ImageProcess ingCl i ent {

14

15 Cl i en t c l i e n t ;

16 private int numberOfTasks ;

17 private St r ing [] f i l e s ;

18

19 public ImageProcess ingCl i ent () {

20 //Creating the c l i e n t

21 c l i e n t = new Cl i ent (C l i e n tP r i o r i t y .VERY_HIGH, 2 , 2 , " 1 2 7 . 0 . 0 . 1 " , 0 , "

1 2 7 . 0 . 0 . 1 " , 0) ;

22 }

23

24 private void i n i t () {

25 //Getting the images

26 F i l e sourceimage = new F i l e ("1000 images ") ;

27 f i l e s = sourceimage . l i s t () ;

28 numberOfTasks = f i l e s . l ength ;

29 long time = System . cur rentTimeMi l l i s () ;

30 //Thread to submmit tasks to the Coordinator

31 new Thread (new Runnable () {

32 @Override

33 public void run () {

34 for (int i = 0 ; i < numberOfTasks ; i++) {

35 try {

36 byte [] image = getBytesFromFile (new F i l e ("

1000 images "+ F i l e . s epa ra to r + f i l e s [i]))

;

37 // creat ing task with the image and

spec i f y ing the matrix s i z e = 8

47

Conillon: Distributed Computing Platform for Desktop Grids

38 ImageProcessingTask task = new

ImageProcessingTask (i , 8 , image) ;

39 // in j e c t i n g the created task in the

Coordinator

40 c l i e n t . commit (task) ;

41 } catch (FileNotFoundException e) {

42 e . pr intStackTrace () ;

43 } catch (IOException e) {

44 e . pr intStackTrace () ;

45 }

46 }

47 }

48

49 }) . s t a r t () ;

50 //Getting the r e s u l t s

51 for (int i = 0 ; i < numberOfTasks ; i++) {

52 ImageProcess ingResult r e s u l t = (ImageProcess ingResult) c l i e n t .

getNextResult () ;

53 try {

54 //Saving the image rece ived

55 FileOutputStream out = new FileOutputStream (" ImageResults " +

F i l e . s epa ra to r + "output"+ r e s u l t . ge t Id ()+" . jpg ") ;

56 out . wr i t e (r e s u l t . getImage ()) ;

57 out . c l o s e () ;

58 } catch (FileNotFoundException e) {

59 e . pr intStackTrace () ;

60 } catch (IOException e) {

61 e . pr intStackTrace () ;

62 }

63 System . out . p r i n t l n (r e s u l t . ge t Id () + " : " +(System . cur rentTimeMi l l i s ()

−time)) ;

64 }

65 System . out . p r i n t l n ("Total time : " + (System . cur rentTimeMi l l i s ()−time)) ;

66 System . e x i t (0) ;

67 }

68 //Method that return and array of by tes from a given Fi l e

69 public byte [] getBytesFromFile (F i l e f i l e) throws IOException {

70 InputStream i s = new Fi leInputStream (f i l e) ;

71 long l ength = f i l e . l ength () ;

72 i f (l ength > In t eg e r .MAX_VALUE) {

73

74 }

75 byte [] bytes = new byte [(int) l ength] ;

76

77 int o f f s e t = 0 ;

78 int numRead = 0 ;

79 while (o f f s e t < bytes . l ength

80 && (numRead = i s . read (bytes , o f f s e t , bytes . l ength − o f f s e t))

>= 0) {

81 o f f s e t += numRead ;

82 }

83 i f (o f f s e t < bytes . l ength) {

84 throw new IOException ("Could not complete ly read f i l e " + f i l e .

getName ()) ;

85 }

86 i s . c l o s e () ;

87 return bytes ;

88 }

89

90 public stat ic void main (St r ing [] a rgs) {

91 new ImageProcess ingCl i ent () . i n i t () ;

92 }

48

Conillon: Distributed Computing Platform for Desktop Grids

93 }

Listing 4: ImageProcessingClient class

8.2.2 ImageProcessingTask class

1 package myImage ;

2

3

4 import java . awt . Graphics2D ;

5 import java . awt . Image ;

6 import java . awt . image . BufferedImage ;

7 import java . awt . image . BufferedImageOp ;

8 import java . awt . image . ConvolveOp ;

9 import java . awt . image . Kernel ;

10 import java . i o . ByteArrayOutputStream ;

11 import java . i o . IOException ;

12

13 import javax . imageio . ImageIO ;

14 import javax . swing . ImageIcon ;

15

16 import r e s u l t . Result ;

17 import ta sk s . Task ;

18

19 public c lass ImageProcessingTask extends Task {

20

21 private int DIM;

22 private byte [] image ;

23

24 public ImageProcessingTask (int id , int dim , byte [] image) {

25 super (id) ;

26 this . image = image ;

27 this .DIM = dim ;

28 }

29 //Run method , t h i s method i s going to be executed at the workers

30 @Override

31 public void run () {

32 try {

33 ImageIcon im = new ImageIcon (image) ;

34 Image source = im . getImage () ;

35 int w = source . getWidth (null) ;

36 int h = source . getHeight (null) ;

37 // creat ing the bu f f e r to the image

38 BufferedImage sourceImage = new BufferedImage (w, h ,

BufferedImage .TYPE_INT_RGB) ;

39 //Necessary c l a s s to render the image

40 Graphics2D g2d = (Graphics2D) sourceImage . getGraphics () ;

41 g2d . drawImage (source , 0 , 0 , null) ;

42 g2d . d i spo s e () ;

43 //Creating the matrix to apply Convolution

44 double [] [] matrix = new double [DIM] [DIM] ;

45 for (int i = 0 ; i < DIM; i++)

46 for (int j = 0 ; j < DIM; j++)

47 matrix [i] [j] = 1 .0 f / (DIM * DIM) ;

48 //Applying convolut ion with the given matrix s i z e to the image

bu f f e r

49 BufferedImage blurredImage = Convolution . convolution2D (sourceImage ,

sourceImage . getWidth () , sourceImage . getHeight () , matrix ,DIM, DIM

) ;

50 ByteArrayOutputStream stream = new ByteArrayOutputStream (200000) ;

49

Conillon: Distributed Computing Platform for Desktop Grids

51 ImageIO . wr i t e (blurredImage , " jpg " , stream) ;

52 stream . f l u s h () ;

53 stream . c l o s e () ;

54 // saving the image to be returned by the ge tResu l t () method

55 image = stream . toByteArray () ;

56 } catch (IOException e) {

57 e . pr intStackTrace () ;

58 }

59 }

60

61 @Override

62 public Result getResu l t () {

63 return new ImageProcess ingResult (id , image) ;

64 }

65 }

Listing 5: ImageProcessingTask class

8.2.3 ImageProcessingResult class

1 package myImage ;

2 import r e s u l t . Result ;

3

4

5 public c lass ImageProcess ingResult extends Result {

6 private int id ;

7 //Result of the ca l cu l a t ed task , in t h i s case an array of by tes

8 private byte [] image ;

9 public ImageProcess ingResult (int id , byte [] image) {

10 super () ;

11 this . id = id ;

12 this . image = image ;

13 }

14 public int get Id () {

15 return id ;

16 }

17 public byte [] getImage () {

18 return image ;

19 }

20 }

Listing 6: ImageProcessingResult class

8.3 Mandelbrot

8.3.1 MandelbrotClient class

1 package mandelbrot ;

2

3 import java . awt . Color ;

4 import java . awt . Graphics2D ;

5 import java . awt . Image ;

6 import java . awt . image . BufferedImage ;

7 import java . i o . FileNotFoundException ;

8 import java . i o . FileOutputStream ;

9 import java . i o . IOException ;

10

50

Conillon: Distributed Computing Platform for Desktop Grids

11 import javax . imageio . ImageIO ;

12 import javax . swing . ImageIcon ;

13 import javax . swing . JFrame ;

14 import javax . swing . JLabel ;

15

16 import c l i e n t . C l i en t ;

17

18 import comm. C l i e n tP r i o r i t y ;

19

20 public c lass MandelbrotCl ient {

21 private Cl i en t c l i e n t ;

22 private int maxCount = 8192 ;

23 private boolean smooth = fa l se ;

24 private boolean a n t i a l i a s = fa l se ;

25 private boolean drag = fa l se ;

26 private boolean toDrag = fa l se ;

27 private boolean r e c t = true , o ldRect = true ;

28 private Color [] [] c o l o r s ;

29 private int pal = 0 ;

30 private double viewX = 0 . 0 ;

31 private double viewY = 0 . 0 ;

32 private double zoom = 1 . 0 ;

33 private int width = 8000 ;

34 private int he ight = 8000;

35 private int boxHeight = 200 ;

36 private int boxWidth = 200 ;

37 private JFrame frame ;

38 private BufferedImage image ;

39 private stat ic f ina l int [] [] [] c o l p a l = {

40 { {0 , 10 , 20} , {50 , 100 , 240} , {20 , 3 , 26} , {230 , 60 , 20} ,

41 {25 , 10 , 9} , {230 , 170 , 0} , {20 , 40 , 10} , {0 , 100 , 0} ,

42 {5 , 10 , 10} , {210 , 70 , 30} , {90 , 0 , 50} , {180 , 90 , 120} ,

43 {0 , 20 , 40} , {30 , 70 , 200} } ,

44 { {70 , 0 , 20} , {100 , 0 , 100} , {255 , 0 , 0} , {255 , 200 , 0} } ,

45 { {40 , 70 , 10} , {40 , 170 , 10} , {100 , 255 , 70} , {255 , 255 , 255} } ,

46 { {0 , 0 , 0} , {0 , 0 , 255} , {0 , 255 , 255} , {255 , 255 , 255} , {0 , 128 ,

255} } ,

47 { {0 , 0 , 0} , {255 , 255 , 255} , {128 , 128 , 128} } ,

48 } ;

49

50 private void i n i t () {

51 c l i e n t = new Cl i ent (C l i e n tP r i o r i t y .LOW, 20 , 2 , " 1 2 7 . 0 . 0 . 1 " , 0 , " 1 2 7 . 0 . 0 . 1 " ,

0) ;

52 long time = System . cur rentTimeMi l l i s () ;

53 System . out . p r i n t l n (" Started at : " + time) ;

54 // i n i t i a l i z e co lor p a l e t t e s

55 c o l o r s = new Color [c o l p a l . l ength] [] ;

56 for (int p = 0 ; p < co l p a l . l ength ; p++) {

57 c o l o r s [p] = new Color [c o l p a l [p] . l ength * 1 2] ;

58 for (int i = 0 ; i < co l p a l [p] . l ength ; i++) {

59 int [] c1 = co l p a l [p] [i] ;

60 int [] c2 = co l p a l [p] [(i + 1) % co l p a l [p] . l ength] ;

61 for (int j = 0 ; j < 12 ; j++)

62 c o l o r s [p] [i * 12 + j] = new Color (

63 (c1 [0] * (11 − j) + c2 [0] * j) / 11 ,

64 (c1 [1] * (11 − j) + c2 [1] * j) / 11 ,

65 (c1 [2] * (11 − j) + c2 [2] * j) / 11)

;

66 }

67 }

68 //Creating a bu f f e r to the f i n a l image

51

Conillon: Distributed Computing Platform for Desktop Grids

69 image = new BufferedImage ((int) width , (int) height , BufferedImage .

TYPE_INT_RGB) ;

70 new Thread (new Runnable () {

71 @Override

72 public void run () {

73 int currentBox = 0 ;

74 for (int by = 0 ; by < he ight / boxHeight ; by++) {

75 for (int bx = 0 ; bx < width / boxWidth ; bx++) {

76 //committing the created task with the 200

per 200 s i z e

77 c l i e n t . commit (new MandelbrotTask (currentBox

++,by , bx , boxWidth , boxHeight , zoom , width ,

height , viewX , viewY , co l o r s , maxCount ,

System . cur rentTimeMi l l i s ())) ;

78 }

79 }

80 }

81 }) . s t a r t () ;

82

83 Graphics2D g2d = (Graphics2D) image . getGraphics () ;

84 int numberOfBoxes = he ight / boxHeight * width / boxWidth ;

85 //Assembling the f i n a l image with the port ions rece ived by each worker tasks

86 for (int i = 0 ; i < numberOfBoxes ; i++) {

87 MandelbrotResult r e s u l t = (MandelbrotResult) c l i e n t . getNextResult () ;

88 ImageIcon im = new ImageIcon (r e s u l t . getImage ()) ;

89 Image source = im . getImage () ;

90 g2d . drawImage (source , r e s u l t . getX () *boxWidth , r e s u l t . getY () *

boxHeight , null) ;

91 }

92 try {

93 // saving the Mandelbrot image

94 FileOutputStream out = new FileOutputStream (" r e s u l t . jpg ") ;

95 ImageIO . wr i t e (image , " jpg " , out) ;

96 out . c l o s e () ;

97 } catch (FileNotFoundException e) {

98 e . pr intStackTrace () ;

99 } catch (IOException e) {

100 e . pr intStackTrace () ;

101 }

102 System . e x i t (0) ;

103 }

104

105 public stat ic void main (St r ing [] a rgs) {

106 new MandelbrotCl ient () . i n i t () ;

107 }

108 }

Listing 7: MandelbrotClient class

8.3.2 MandelbrotTask class

1 package mandelbrot ;

2

3 import java . awt . Color ;

4 import java . awt . image . BufferedImage ;

5 import java . i o . ByteArrayOutputStream ;

6 import java . i o . IOException ;

7

8 import javax . imageio . ImageIO ;

9

52

Conillon: Distributed Computing Platform for Desktop Grids

10 import r e s u l t . Result ;

11 import ta sk s . Task ;

12

13 public c lass MandelbrotTask extends Task {

14

15 private int by ;

16 private int bx ;

17 private int boxWidth ;

18 private int boxHeight ;

19 private double zoom ;

20 private int width ;

21 private int he ight ;

22 private double viewX ;

23 private double viewY ;

24 private BufferedImage image ;

25 private int pal ;

26 private Color [] [] c o l o r s ;

27 private boolean smooth = fa l se ;

28 private int maxCount ;

29 private byte [] r e s u l t ;

30 private long in i tTime ;

31 private long startTime ;

32

33 public MandelbrotTask (int id , int by , int bx , int boxWidth , int boxHeight , double

zoom , int width , int height , double viewX , double viewY , Color [] [] c o l o r s , int

maxCount , long time) {

34 super (id) ;

35 this . by = by ;

36 this . bx = bx ;

37 this . boxWidth = boxWidth ;

38 this . boxHeight = boxHeight ;

39 this . zoom = zoom ;

40 this . width = width ;

41 this . he ight = he ight ;

42 this . viewX = viewX ;

43 this . viewY = viewY ;

44 this . c o l o r s = c o l o r s ;

45 this . maxCount = maxCount ;

46 this . in i tTime = time ;

47 }

48 //Method that i s executed at the workers

49 @Override

50 public void run () {

51 try {

52 startTime=System . cur rentTimeMi l l i s () ;

53 // creat ing the image − t h i s image i s a smal l port ion of the f i n a l

image

54 image = new BufferedImage (boxWidth , boxHeight , BufferedImage .

TYPE_INT_RGB) ;

55 int of fY = by * boxHeight ;

56 int of fX = bx * boxWidth ;

57 // ca l cu l a t e s the point and applys the co lor

58 for (int y = offY ; y < (by + 1) * boxHeight ; y++) {

59 for (int x = offX ; x < (bx + 1) * boxWidth ; x++) {

60 double r = zoom / (double) Math . min (width , he ight) ;

61 double dx = 2.5 * (x * r + viewX) − 2 ;

62 double dy = 1.25 − 2 .5 * (y * r + viewY) ;

63 Color c o l o r = co l o r (dx , dy) ;

64 image . setRGB(x − offX , y − offY , c o l o r . getRGB()) ;

65 }

66 }

67 ByteArrayOutputStream stream = new ByteArrayOutputStream (200000) ;

53

Conillon: Distributed Computing Platform for Desktop Grids

68 ImageIO . wr i t e (image , " jpg " , stream) ;

69 stream . f l u s h () ;

70 stream . c l o s e () ;

71 // saves the image

72 r e s u l t = stream . toByteArray () ;

73 } catch (Exception e) {

74 e . pr intStackTrace () ;

75 }

76 }

77 // return the computed image and the coodinates of the port ion

78 @Override

79 public Result getResu l t () {

80 return new MandelbrotResult (super . id , bx , by , r e su l t , startTime , in itTime) ;

81 }

82

83 // Computes a co lor for a given point

84 private Color c o l o r (double x , double y) {

85 int count = mandel (0 . 0 , 0 . 0 , x , y) ;

86 int pa lS i z e = c o l o r s [pa l] . l ength ;

87 Color c o l o r = c o l o r s [pa l] [count / 256 % pa lS i z e] ;

88 i f (smooth) {

89 Color co l o r 2 = co l o r s [pa l] [(count / 256 + pa lS i z e − 1) % pa lS i z e] ;

90 int k1 = count % 256 ;

91 int k2 = 255 − k1 ;

92 int red = (k1 * c o l o r . getRed () + k2 * co l o r 2 . getRed ()) / 255 ;

93 int green = (k1 * c o l o r . getGreen () + k2 * co l o r 2 . getGreen ()) / 255 ;

94 int blue = (k1 * c o l o r . getBlue () + k2 * co l o r 2 . getBlue ()) / 255 ;

95 c o l o r = new Color (red , green , blue) ;

96 }

97 return c o l o r ;

98 }

99

100 // Computes a value for a given complex number

101 private int mandel (double zRe , double zIm , double pRe , double pIm) {

102 double zRe2 = zRe * zRe ;

103 double zIm2 = zIm * zIm ;

104 double zM2 = 0 . 0 ;

105 int count = 0 ;

106 while (zRe2 + zIm2 < 4.0 && count < maxCount) {

107 zM2 = zRe2 + zIm2 ;

108 zIm = 2.0 * zRe * zIm + pIm ;

109 zRe = zRe2 − zIm2 + pRe ;

110 zRe2 = zRe * zRe ;

111 zIm2 = zIm * zIm ;

112 count++;

113 }

114 i f (count == 0 | | count == maxCount)

115 return 0 ;

116 // t rans i t i on smoothing

117 zM2 += 0.000000001 ;

118 return 256* count+ (int) (255 .0 * Math . l og (4 / zM2) / Math . l og ((zRe2 + zIm2)

/ zM2)) ;

119 }

120

121 }

Listing 8: MandelbrotTask class

8.3.3 MandelbrotResult class

54

Conillon: Distributed Computing Platform for Desktop Grids

1 package mandelbrot ;

2

3 import r e s u l t . Result ;

4

5 public c lass MandelbrotResult extends Result {

6 private int id ;

7 private int x ;

8 private int y ;

9 private byte [] image ;

10 private long time ;

11 private long in i tTime ;

12 //The r e s u l t i s the port ion of the Mandelbrot image , and i t saves the coordinates

from the ca l cu l a t ed port ion of the image , and the image ca l cu l a t ed

13 public MandelbrotResult (int id , int x , int y , byte [] image , long time , long in i tTime

) {

14 super () ;

15 this . id = id ;

16 this . x = x ;

17 this . y = y ;

18 this . image = image ;

19 this . time = time ;

20 this . in i tTime = initTime ;

21 }

22

23 public int getX () {

24 return x ;

25 }

26

27 public int getY () {

28 return y ;

29 }

30

31 public byte [] getImage () {

32 return image ;

33 }

34

35 public int get Id () {

36 return id ;

37 }

38

39 public long getTime () {

40 return time ;

41 }

42

43 public long getIn i tTime () {

44 return in i tTime ;

45 }

46

47 }

Listing 9: MandelbrotResult class

8.4 P72

8.4.1 ClientP72 class

1 package myp72 ;

2 import c l i e n t . C l i en t ;

3 import comm. C l i e n tP r i o r i t y ;

4

55

Conillon: Distributed Computing Platform for Desktop Grids

5 public c lass ClientP72 extends Cl i en t {

6 private int d ;

7 private int numTasks ;

8 //Creating the Cl ient

9 public ClientP72 (C l i e n tP r i o r i t y p r i o r i t y , int problemNumber , int vers ion , S t r ing

masterAddress , int masterPort , S t r ing codeServerAddress , int codeServerPort) {

10 super (p r i o r i t y , problemNumber , vers ion , masterAddress , masterPort ,

codeServerAddress , codeServerPort) ;

11 }

12

13 public void execute () {

14 long time = System . cur rentTimeMi l l i s () ;

15 d = 900000;

16 numTasks = 1000 ;

17 long ct2 = 0 ;

18 //Creating a thread to submit tasks

19 new Thread (new Runnable () {

20 @Override

21 public void run () {

22 for (int i i = 0 ; i i < numTasks ; i i ++) {

23 // In j e c t ing the tasks to the Coordinator − The tasks

are created with f i x ed s i z e 1000

24 commit (new TaskP72 (d , i i + 1 , numTasks)) ;

25 }

26 }

27 }) . s t a r t () ;

28 // rece i v ing the r e s u l t s and ca l cu l a t i n g the number o G.C.D.

29 for (int i i = 0 ; i i < numTasks ; i i ++) {

30 ct2 += ((ResultP72) (getNextResult ())) . getValue () ;

31 }

32 System . out . p r i n t l n (" ct : "+ct2) ;

33 System . out . p r i n t l n ("Time : " + (System . cur rentTimeMi l l i s () − time)) ;

34 }

35

36 public stat ic void main (St r ing [] a rgs) {

37 new ClientP72 (C l i e n tP r i o r i t y .VERY_HIGH, 35 , 35 , " 1 92 . 1 68 . 1 . 4 " , 0 , "

1 92 . 1 6 8 . 1 . 4 " , 0) . execute () ;

38 }

39 }

Listing 10: ClientP72 class

8.4.2 TaskP72 class

1 package myp72 ;

2

3 import r e s u l t . Result ;

4 import ta sk s . Task ;

5

6 public c lass TaskP72 extends Task {

7

8 private int threadID ;

9 private int i ;

10 private int num_threads ;

11 private int ct ;

12

13 public TaskP72 (int i , int ID , int threads) {

14 super (ID) ;

15 this . i = i ;

16 this . threadID = ID ;

56

Conillon: Distributed Computing Platform for Desktop Grids

17 this . num_threads = threads ;

18 }

19 //Method that i s going to be executed by the worker and ca l cu l a t e s the numbers of G.

C.D. in the given in t e r v a l

20 @Override

21 public void run () {

22 for (int d = threadID ; d <= i ; d = d + num_threads) {

23 int a = (d + 1) % 2 ;

24 for (int n = 1 ; n < d ; n = n + 1 + a) {

25 i f (gcd (d , n) == 1) {

26 // incrementing the r e s u l t

27 ct++;

28 }

29 }

30 }

31 }

32

33 @Override

34 public Result getResu l t () {

35 return new ResultP72 (ct) ;

36 }

37

38 private f ina l int gcd (f ina l int a , f ina l int b) {

39 /* Eucledean Method to determine the gcd (grea teas t common denominator or

h i ghes t common fac tor) */

40 i f (b == 0)

41 return a ;

42 else

43 return gcd (b , a % b) ;

44 }

45 }

Listing 11: TaskP72 class

8.4.3 ResultP72 class

1 package myp72 ;

2 import r e s u l t . Result ;

3

4 public c lass ResultP72 extends Result {

5 // value to s tore the G.C.D. numbers found in the i n t e r v a l

6 private int value ;

7

8 public ResultP72 (int value) {

9 this . va lue = value ;

10 }

11

12 public int getValue () {

13 return value ;

14 }

15 }

Listing 12: ResultP72 class

57

	Introduction
	Motivation
	Objective
	Outline of this Thesis

	Background and Related Work
	Background
	Javelin
	Bayanihan
	Seti@home
	BOINC
	Condor
	P3
	Summary

	Conillon
	The concept
	Architecture
	Task
	Result

	Coordinator
	Code Server
	Web Server

	Worker
	Worker Screen saver
	Worker data

	Client
	Client data

	Security
	Conillon administrator
	Summary

	Conillon programming model
	Task
	Result
	Model
	Implementation
	Summary

	Developed applications and performance evaluation
	Developed applications
	Pi
	MandelBrot
	Image Processing
	P72

	Experiments and results
	Hardware and Software
	Used metrics
	Pi
	Mandelbrot
	Image Processing
	P72
	Four Clients running concurrently
	Results summary

	Summary

	Conclusion
	Future Work

	Publications
	References
	Source code
	Pi
	PiClient class
	PiTask class
	PiResult class

	Image Processing
	ImageProcessingClient class
	ImageProcessingTask class
	ImageProcessingResult class

	Mandelbrot
	MandelbrotClient class
	MandelbrotTask class
	MandelbrotResult class

	P72
	ClientP72 class
	TaskP72 class
	ResultP72 class

