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Abstract 
The need for integration of applications and services in business processes from enterprises 
has increased with the advancement of cloud and mobile applications. Enterprises started 
dealing with high volumes of data from the cloud and from mobile applications, besides their 
own. This is the reason why integration tools must adapt themselves to handle with high 
volumes of data, and to exploit the scalability of cloud computational resources without 
increasing enterprise operations costs. Integration platforms are tools that integrate 
enterprises’ applications through integration processes, which are nothing but workflows 
composed of a set of atomic tasks connected through communication channels. Many 
integration platforms schedule tasks to be executed by computational resources through the 
First- in-first-out heuristic. This article proposes a Queue-priority algorithm that uses a novel 
heuristic and tackles high volumes of data in the task scheduling of integration processes. 
This heuristic is optimized by the Particle Swarm Optimization computational method. The 
results of our experiments were confirmed by statistical tests, and validated the proposal as a 
feasible alternative to improve integration platforms in the execution of integration processes 
under a high volume of data. 

Keywords: Task scheduling algorithm; System integration; Application integration; 
Optimization; Heuristic 

 
1 Introduction 
Applications that compose the enterprise software ecosystems [38] must work 
together, in order to aggregate value for business processes. Enterprise Application 
Integration (EAI) is the foundation for software ecosystems which are characterized 
by heterogeneity and distribution [45]. The relevance of EAI increased due to the 
fast-emerging of cloud and mobile applications, which are now part of companies’ 
daily business affairs [35], and especially by the advent of the pay-as-you-go charging 
model adopted by cloud providers to offer software as services, and where the 
payment is proportional to the consumption of computational resources [12]. Enterprise 
Application Integration is the research field that provides methodologies, techniques, 
and tools to develop integration processes. It enables applications to share 
data and functionality, to meet the requirements of business processes [21]. Integration 



tools need to be re-engineered to better explore the model introduced by cloud 
computing, so that they can take advantage of the scalability and reduce costs by 
optimising computational resources usage [36]. 
The conceptual model of an integration process is a workflow formed by distinct 
atomic tasks connected by communication channels. A task performs a specific 
operation such as transforming, filtering, splitting, joining, routing or any modification 
can be applied a one or more messages. Integration platforms are EAI tools 
that allow software engineers to design, implement, run, and monitor integration 
processes. A set of conceptual integration patterns, which initially was documented 
by [29] and lately extended by [44], have become a reference cookbook for the 
integration community. Such patterns have also inspired the development of opensource 
integration platforms such as ServiceMix [32], Petals [53], Jitterbit [48], and 
Guaraná [21]. These open-source integration platforms follow the Pipes-and-Filters 
architecture [2], which allows the uncoupling of tasks from integration processes. 
Pipes represent communication channels, while filters represent atomic tasks in 
an integration process; they both implement a concrete integration pattern to process 
encapsulated data in messages. Tasks are executed by computational resources 
known as threads. A thread is the smallest unit of a computational program that can 
be managed by integration platforms. 
Such platforms usually provide a domain-specific language, a development 
toolkit, monitoring tools, and a runtime system. The domain-specific language enables 
the description of conceptual models for integration processes. The development 
toolkit is a set of software tools that allow the implementation of integration 
processes, i.e., it transforms a conceptual model into executable code. Monitoring 
tools are used to detect failures that may occur during the execution of an integration 
process. The runtime system is responsible for running all integration processes, 
and its primary function is the task scheduling [25, 27]. Task scheduling schedules 
the execution of tasks and the allocation of computational resources and it concerns 
with the time of task execution and with the computational resources that perform 
the task. 
Messages coming from the cloud and mobile application common in the contemporaneous 
environments combined with messages coming from traditional 
enterprise environments have to be integrated and processed while guaranteeing 
high throughput [43]. The current integration platforms present design challenges 
for providing near-real-time performance. These platforms manage petabyte-scale 
data and distributing integration processes across contemporaneous environments 
ranging from traditional on-premise servers to cloud systems and mobile 
devices [33, 59]. Enterprises also face the challenge to suit and integrate their applications, 
together with the optimization of resource usage to save costs [23, 25, 26]. 
Our survey [22] identified research directions regarding fair execution of tasks of 
integration processes by optimization of the task scheduling and the resource allocation 
of the runtime systems of the integration platforms. 
A runtime system has threads, usually grouped into a thread pool, that represent 
the computational resources available to execute the integration process. The need 
for efficient scheduling has increased to minimise costs when executing an integration 
process in an integration platform deployed on the cloud that due to the pay-asyou- 
go charging model [22]. In the context of cloud, task scheduling concerns with 



costs reduction [22], with the handling of high workloads [50], and with software 
quality in terms of flexibility and response time [17]. Besides, it is necessary to optimize 
the use of computational resources because the processing of a large amount 
of data requires more allocation of resources [17, 50]. In overload situations due to 
thigh and continuous input rate, the scheduling of tasks of the workflow tends to 
concentrate on tasks in the begging of the workflow. We consider that an integration 
process is in overload situation when the number of remained message is greater 
than the number of processed message. This concentrating of initial tasks causes the 
threads to execute them more frequently, to the detriment of the other tasks. This 
behavior impacts negatively on the performance of the integration process. 
Most open-source integration platforms adopt the First-in-first-out (FIFO) heuristic, 
especially when scaling requirements are not known. This is because FIFO 
is the simplest heuristic and achieves consistent results in most application integration 
scenarios [22]. However, the performance of this heuristic depends on many 
factors and is rarely optimal for all situations [42], like in the case of overload. In 
those situations, the scheduling by FIFO tends to concentrate on the workflow initial 
tasks, and it ends up degrading execution performance of integration processes. It 
becomes necessary a fair task scheduling, which provides optimal resources allocation 
to maximise performance [8, 40]. Such allocation of optimal resources requires 
an active and dynamic task scheduling heuristic [51], which is capable of increasing 
the number of processed messages per time unit. 
There are many studies and proposals of algorithms regarding task scheduling, 
but none of them deals singularly with integration processes scheduling. The integration 
processes scheduling has quite specific characteristics, such as unknown 
message arrival rate, variable task processing time, unpredictable path of the workflow 
traced by messages, elastic resource provisioning. The integration processes 
scheduling has quite specific characteristics, such as unknown message arrival rate, 
variable task processing time, unpredictable path of the workflow traced by messages, 
elastic resource provisioning. Building fair scheduling while increasing performance 
is a significant concern of enterprises, which submit an integration process 
for executing concurrently in different resources. Without the re-engineering of the 
integration platforms, it is not possible to ensure to suit that they can deal with 
contemporaneous environments. Besides, it is not possible to ensure that the enterprises 
take advantage of the scalability provided by cloud computing or optimize computational 
resource usage. 
In this article, we propose a queue-priority optimized (qPrior) algorithm, which 
addresses a new task scheduling heuristic for the execution of integration processes 
under high workloads. In this heuristic, there are multiple prioritized queues to store 
task instances; these tasks wait for available threads to execute them. Each queue 
stores task instances from an integration process. Threads check the queue according 
to this priority and execute a predefined number of tasks at each checking. This 
number of tasks is found by the Particle Swarm Optimization (PSO) meta-heuristic 
in order to maximise the number of processed messages per time unit. To validate 
our proposal, we performed two experiments. First, we compared the task scheduling 
performance with and without the PSO optimization. Then, we simulated the 
execution of a classic integration process and compared performances between 
qPrior-optimized and FIFO heuristic. We evaluated the executions of integration 



processes by the FIFO heuristic. We verified that with this heuristic, as the input 
rate increases, the number of messages processed decreases until no message can 
be processed. These results show that the qPrior algorithm handles better with the 
overload in the processing of messages than FIFO because qPrior responds more 
rapidly, producing outbound messages in a shorter time than FIFO, besides keeping 
the production of outbound messages. We validated our proposal by performing 
two experiments, and their results confirmed statistically with ANOVA and Scott & 
Knoot statistical tests. 
The rest of this article is organized as follows: Section 2 discusses works related 
to optimization of task scheduling using PSO; Sect. 3 provides background information 
over integration processes and their task scheduling and formulates the problem; 
Sect. 4 exposes the proposed qPrior-optimized algorithm; Sect. 5 reports experiments 
and statistics to validate the proposal; and, Sect. 6 presents our conclusions. 
 
 
2 Related work 
This section gathers works in the subject of task scheduling and allocation of computational 
resources from different research fields in order to increase the systems performance. The 
works related to performance optimization by PSO meta-heuristic or related to proposals of 
task scheduling algorithms are summarized in Table 1. 
This article differs from others, once it proposes an algorithm to maximise throughput 
from the execution of integration processes under high workloads, through a new heuristic 
for task scheduling, carried out by run-time systems of integration platforms. 
Rodriguez and Buyya [46] proposed a PSO-based algorithm to minimise the 
overall execution cost and to meet deadline constraints for scheduling a scientific 
workflow application in a cloud environment. Their goal was to deal with the 
dynamic provisioning and heterogeneity of unlimited computational resources and 
the performance variation of virtual machines. Jian et al. [31] proposed a PSO-based 
algorithm to schedule tasks to cloud resource suppliers, taking into account how 
reliable such resource providers were and the network data transmission among suppliers. 
A mathematical model defined a reliability measure, which was used to evaluate 
the task to be run, and also the reliability degree in data transmission. Verma and Kaushal 
[55] proposed a task scheduling over available cloud resources by minimising the execution 
cost, considering at the same time the constraints of deadline and budget. Aron et al. [6] 
proposed a PSO-based hyper-heuristic method that minimises time, cost, and the optimized 
utilization from resources in the grid environment, without violating any security norms. 
Ghosh and Das [24] proposed a hybrid algorithm which combined Extreme 
Optimization and PSO. Their algorithm aimed to simultaneously minimise 
makespan, processing cost and job failure rate, while maximising the resource 
utilization of computational Grid systems. Blythe et al. [9] propose a discrete version 
of the PSO algorithm, applied on a single-objective and on a multi-objective 
optimization scenario. Rodriguez and Buyya [47] proposed the scheduling 
for resource provisioning and a scheduling strategy by a dynamic heuristic-based 
algorithm. The goal was to minimize the overall cost of leasing infrastructure 
resources without compromising workflows deadlines. Anwar and Deng [5] 
proposed an algorithm based on the Bag of Tasks technique, which groups the 
workflow into bags of tasks by the criterion of data dependency and priority constraints. 



The algorithm also optimizes the allocation of elastic, heterogeneous 
and dynamically provisioned cloud resources. Sun et al. [52] proposed a flexible 
online scheduling framework for big data streaming applications (E-Stream). The 
authors were based on the priority-based “earliest finish time first” and scheduled 
multiple graphs by a max-min fairness strategy. 
Wang et al. [56] proposed a pattern classification algorithm, based on a hybrid 
PSO. The approach was to train the scheduler and switch scheduling strategies in 
real-time. Manasrah and Ali [37] proposed a hybrid algorithm based on PSO and 
GA meta-heuristics. The authors concerned efficiency of the allocation of tasks 
to the resources workflow applications in cloud computing environments. Ghafouri 
et al. [23] proposed an algorithm based on back-tracking heuristic combined 
with the scheduling of critical and non-critical tasks. The goal was to minimise 
makespan and the execution cost from workflow applications. Xie et al. [59] proposed 
an algorithm based on PSO that employs non-linear inertia weight with 
selection and mutation operations by a directional search process. The goal was 
the efficient allocation of tasks to the different resources for meeting the real-time 
requirement of the cloud and edge computing environments. Pietri et al. [40] proposed 
an algorithm that seeks to identify Pareto-optimal trade-offs between overall 
execution time, monetary cost and fairness, efficiently exploring the solution 
space. The authors approached the scheduling multiple dataflows on heterogeneous 
clouds. 
 
 
3 Problem formulation 
In this section, we address task scheduling for integration processes and the 
main components and the execution model approached in this article. After, we 
describe the environment of an integration processes, based on the research work 
by [19] and a mathematical modelling for our problem. We first explain the software 
system, then we represent the integration process by a Directed Acyclic 
Graph (DAG). After that, we formulate the mathematical problem and our fitness 
function. 
 
3.1 Task scheduling for integration processes 
A conceptual model of an integration process is a workflow composed of tasks, 
which communicates through channels. Integration processes receive data from 
source applications and deliver them to destination applications. Data are wrapped 
in messages that have a header, containing custom properties, and a body providing 
payload data. A message flows through an integration process and it is modified by 
tasks processing. Transforming, filtering, splitting, joining, or routing any modification 
can apply, depending on the specific operation that each task perform. Therefore, 
a message can be split into one or more messages in the workflow, or even two 
or more messages can be merged into a unique message. We identify a «path» as 
a specific set of tasks and communication channels where a message is completely 
processed in an integration process. A dependence order determines the sequence in 
which tasks must be executed. So, a task processes a message, whenever this message 
has already been processed by each of its predecessor tasks. An outbound message 
of a task is written to the communication channel that connects this task with 



the next one in the workflow path. The «scheduler» is the main element of runtime 
systems during the execution of integration processes. The scheduler manages 
activities from the message processing, and also the use of computational resources 
for the execution of tasks. Computational resources that execute tasks are called 
«threads», which are usually grouped in «thread pools». 
The runtime system execution model defines procedures for task execution and 
for thread allocation, during the processing of messages in integration processes. 
Two execution models are found in the literature, namely: process-based and taskbased 
[3, 9, 10, 20]. In the process-based model, a thread executes every task of the 
workflow over an inbound message, so that this message can flow throughout the 
process. After every task in the workflow has been executed, the thread is released. 
In the task-based model, a thread is used to execute the task over the inbound message 
that reaches the task. When the task finishes, an outbound message is written 
to the channel; this channel connects the current task to the next one in the 
workflow and the thread is released. The execution of the message in the next task 
now depends on a new assignment of an available thread to the referred task. We 
approached the task-based model in this article. 
In the task-based model, a ready task is the one that is on the verge of being executed, 
once there are messages in all communication channels that are inputs to this 
very task. The solicitation of the execution of a ready task is recorded in a waiting 
queue. The waiting queue stores ready tasks that wait to be executed by the available 
threads. An available thread selects a task from the waiting queue, following a Firstin- 
first-out policy, in which the task that was recorded first is scheduled first to be 
executed. One of the roles of a scheduler is to create, manage, and release threads. 
Additionally, it is possible to configure the pool with some parameters, such as: the 
initial thread number, the maximum number of threads, and the maximum lifetime 
of an idle thread. The scheduler assigns threads to execute instances of tasks, and 
after an instance of the task is executed, the thread is released back to the pool. The 
processing of a message in the next task now depends on a new assignment of an 
available thread from the pool to this task. A message is processed under the order 
of dependence on the tasks of the path, which is composed of several segments. 
Tasks in sequential segments are executed sequentially, whereas tasks in parallel 
segments can be executed in parallel because there is no dependency among them. 
 
3.2 Environment of an integration process 
The Directed Acyclic Graph (DAG) represents task models for real-time scheduling, 
allowing the description of constraints on tasks execution [49]. In the DAG model, an 
integration process is described as a workflow «W» composed of «k» tasks, being an 
extension of the DAGs with weighted vertices (Ei, Ti) , where 
Ti =  ti,1, ti,2,…, ti,k  is the set of vertices and «E» is the set of edges. Every vertex 
in the graph represents a task of the process, and each edge represents a communication 
channel between tasks, as well as indicates precedence constraints between 
tasks. An edge between (ti, tj) represents a dependence between ti and tj , in which ti is 
the predecessor node of tj and tj is the successor node of ti . Every edge has a weight, 
which represents the waiting time of the task in the queue. 
A starting task is a task that has no predecessor tasks in the order of dependence. 
An ending task is a task that has no successor tasks. An integration process can have 



one or more starting tasks and one or more ending task. Besides, an integration process 
can have tasks that exchange messages with applications during runtime and 
intermediate tasks that fork, join or route messages to segments that compose the 
path whereby the message must flow. There are several possible paths for the processing 
of a message, which are defined at design time. However, the path through 
which a message will flow depends on the integration process logic. 
The Coffee shop integration process is our case study (CS). CS is a benchmark 
of an integration process introduced by [28]. Its conceptual model is depicted in 
Fig. 1. In the CS, the integrated applications are: «Orders», «Barista Cold Drinks», 
«Barista Hot Drinks», and «Waiter». «Orders» represents the source application 
that delivers the data of the customer orders to the integration process. The data 
of the customer orders are wrapped inside messages. An order may include either 
hot, cold drinks or both. Different baristas prepare cold and hot drinks, which represent 
two applications that exchange messages with the integration process: «Barista 
Cold Drinks» and «Barista Hot Drinks». The orders are delivered to the «Waiter» 
when all drinks corresponding to the same order have been prepared. The «Waiter» 
application represents a final data sink. The processing of one customer order corresponds 
to one job instance. It is possible to process one or more orders. One or more 
instances of the job can be being processed simultaneously. The number of instances 
of the job corresponds to the number of customer orders that are being processed. If 
there are several instances of the job at a given time, then there are several instances 
of the same task and each task instance is associated with a job instance. 
 
Table 1 Related works using optimization by the PSO 

 
 



 
 
Fig. 1 Conceptual model of Coffee case study 
 
The CS is an integration process with three different paths for messages, in 
which there are tasks of types: «start», «and», «or», «join», « message processor », 
« external call»and «end». There is one input task represented by tstart , and one output 
task represented by tend . Tasks that exchange messages with applications during 
runtime are represented by tx1 and tx2 . Intermediary tasks are represented by ti , where 
i ranges from 1 to 12. 
In the integration logic of this conceptual model, there may be customer orders 
containing only cold drinks, hot drinks, or orders containing both cold and hot 
drinks. For each one of these types of customer orders, there is a path through which 
messages are processed. The possible paths were defined during design time by the 
CS model. However, it is during runtime that the exact path for a given message is 
known, according to the type of customer order. There is a path for customer order 
containing only cold drinks; another path for only hot drinks; and another path for 
both cold and hot drinks. Examples of tasks that can be executed in parallel in the 
Coffee Shop integration process are [t3, t9] , [t4, t10] , [tx1, tx2] , [t5, t11] , [t6, t12]. 
In CS integration operation typed graph, there are 16 nodes, which represent the 
tasks, and there are 19 edges, which represent the channels. Node tstart is a starting 
node, that represents a task of the type «start». The nodes t3 and t9 represent tasks 
of the type «and». The t2 represents a task of the type «or». The nodes t5 , t7 , and 
t11 represent tasks of the type join; Nodes t1 , t4 , t6 , t8 , t10 , and t12 represent tasks of 
the type « message processor »; The nodes tx1 and tx2 represent tasks that send and 
receive information to/from applications that are tasks of the type external call ; and, 
node tend is a ending node that represent a task of the type «end». 
 
3.3 Mathematical formulation 
In this section, we present the mathematical modelling of integration processes, 
with focus on time-related performance metrics, commonly used for scheduling 
performance benchmarking. Makespan is a well-known metric for performance within 



the integration community. Several researchers use the makespan arithmetic average 
as a performance metric for scheduling algorithms [1, 13, 34]. 
In integration processes, we defined the total processing time of a message 
« TPmi » as the elapsed time interval between the time a message entered and the time 
it leaves the integration process. « TPmi » is the sum of the execution time of all the 
tasks of the path by which the message must flow for its complete processing. We 
assume that the execution time of a task, « ETtk » includes all the times involved, such 
as the total CPU time, the annotation time of tasks in queues, the waiting time of the 
tasks in a queue; and the waiting time of the task in request and response operations 
with external applications. The number of tasks in the path is represented by «tot». 
We also assume that the range of the execution time of a task « tk » is defined as 
« [ETtk ini , ETtkfin]». 
Then, we define the makespan of an execution of an integration process as the 
total execution time of an integration process. It is the elapse time between the start 
time of the first message that entered « STm1 » and the end time of the last message 
that leaves the workflow « ETmnp ». Throughput is a performance metric based on the 
amount of work a system can perform in a given time in a particular environment. 
The throughput of a computer system is a function of the environment and workload 
characteristics. Improvements resulting from system changes can be evaluated by 
throughput metrics [54, 58]. In case of execution of integration processes, throughput 
corresponds to the number of messages processed per time unit and it is calculated 
by computing the division of the total number of processed messages «np» by 
the total execution time «Makespan», cf. Eq. 1. This formulation is represented by 
the objective function: max{Throughput}. 
 

 
 
Time optimization becomes fundamental in situations in which the process execution 
duration must meet specific constraints or deadlines, because their violations 
increase the business processes costs [39]. Thus, the problem can be formulated as: 
to find out a heuristic for task scheduling that processes more messages per time 
unit in the execution of integration processes in overload situations. 
 
 
4 Our algorithm 
In this section, we propose our heuristic to tackle task scheduling of integration processes. 
We named this heuristic as Queue Priority (qPrior). It deals with overload 
situations caused by workloads of large volumes of data (of the order of millions). 
We implement qPrior by a lightweight algorithm to increase the performance of the 
execution of the integration processes. The source code developed and used in this 
experiment is publicly available for download (http:// github. com/ gca- resea rch- group/ 
simul ation- queue priory- pso). 
 
4.1 qPrior heuristic 
We have development the Queue Priority (qPrior) heuristic. The goal is to keep 
a good performance of the execution of integration processes even if such overload 



situations occur. In qPrior, there are multiple task queues. Every task queue 
maintains instances of a specific task of integration process. Tasks that can be 
executed in parallel are maintained in same queue. Threads, grouped in a thread 
pool, check the queues following in an order of priority. In this order, a task 
that has more predecessor tasks has more priority in its execution. Each time 
threads check a queue, a specific number of tasks are captured to be executed 
by those threads. We refer to the number of tasks that are executed as preemption. 
Tasks are allocated to threads till the tasks are entirely executed. In other 
words, the preemption will be the number of threads allocated by one time to 
every execution. So the preemption optimal has to be determined previously. 
We used the PSO meta-heuristic for this purpose. PSO is widely in scheduling 
algorithms [55] and presents better computational performance for high dimensional 
nonlinear optimization problems with continuous variables and has fewer 
parameters to adjust than other algorithms, facilitating their implementation [4,11]. 
To present the qPrior heuristic, we present four possible iterations of the heuristic 
illustrated in Fig. 2. This example is a snapshot of a particular moment (n-th iteration) 
of the integration process in runtime, in which, instances tasks wait in three 
task queues. The queue of high priority maintains the annotations for executions of 
the instances of task t3 . This task is the task that has more predecessor tasks. The 
queue of medium priority maintains the annotations for executions of the instances 
of task t2 . The queue of low priority maintains the annotations for executions of the 
instances of task t1 . This task has no predecessor task. Assuming the software engineer 
set the preemption to the value six, which means that, at every time that threads 
of pool check a queue, they will execute six tasks that have annotation in this queue. 
The annotations of the tasks that are caught by threads are shaded in grey. The iterations 
take happen as follow: 
[n-th iteration:] threads poll the queue of high priority and, then, they execute six 
tasks of queue of tasks t3. 
 



 
Fig. 2 Iterations of the qPrior heuristic 
 
[(n+1)-th iteration:] because the queue of high priority is empty, threads poll the 
next queue of more top priority and, then, they execute six tasks t2 of this queue. 
After, the executions of tasks t2 produce outbound messages that are inbound messages 
for successor task, t3 . So, the scheduler annotates the executions in the queue 
of tasks t − 3 . While this happens, new inbound messages continue arriving for the 
integration process generating new annotations in the queue of task t1. 
 
 
 
 
 
 
 
 
 
 



Table 2 PSO parameters 

 
 
 
[(n+2)-th iteration:] threads poll the queue of high priority and, then, they execute 
six tasks of queue of tasks t3 . While new tasks continue being annotated in the 
queue that maintains the tasks t1. 
[(n+3)-th iteration:] because the two queues more top priority are empty, threads 
poll the queue of lowest priority and then they execute six tasks t1 of this queue. 
After, the executions of tasks t1 produce outbound messages that are inbound messages 
for successor task, t2 . So, the scheduler annotates the executions in the queue 
of tasks t2. 
This process iteratively continues till up all queues are empty or till up it is interrupted. 
 
4.2 qPrior algorithm 
We have implemented qPrior algorithm that the software engineer to perform the 
Queue Priority heuristic. The pseudo-code of the algorithm that implements the 
qPrior heuristic is shown in Algorithm 1. 
This algorithm receives the total number of tasks and the number of tasks performed 
at a time «preemption». The algorithm starts by initialising the auxiliary 
variables: «totalSize», «preempt», and «qPrior». The first variable corresponds to 
the total size of queues, the second variable is the preemption, and the third variable 
maintains the queue indication that will be polled. The algorithm verifies the queues 
from the highest priority queue until the lowest priority queue. After the algorithm 
selects a queue, it sets the preemption according to the following rule: If the queue 
size is smaller than «preempt», the threads execute all tasks that are in the queue; 
otherwise, the algorithm executes an amount of task equals «preempt». The algorithm 
keeps allocating threads to execute tasks until all the queues are empty. The 
algorithm uses a thread pool that creates threads as needed. However, it is possible 
to reuse previously constructed threads when they are available. When there is no 
available thread, a new thread will be created and added to the pool. Threads that 
have not been used for sixty seconds are shut up and removed from the pool. Our 
proposal is computationally tractable since handling tasks runs in a low time. This 
low complexity of the algorithm provides good performance, more straightforward 
execution, debug and maintenance. 
 



 
 
4.3 PSO modeling 
PSO is a meta-heuristic proposed by Eberhart and Kennedy [16] based on the 
behavior of animal flocks, such as insects, fish, and birds. Such animals find the 
best regions for nourishing through the iterative adjustment of their positions in 
the search space, taking into account their best individual positions and the group’s 
best general position. The algorithm responsible for implementing PSO is widely 
researched and utilized. It presents better computational performance in highdimensional 
nonlinear optimization problems with continuous variables, and it has 
fewer parameters to adjust than other algorithms; such facts turn its implementation 
easier [4, 11]. 
When there is a high arrival rate of messages, the queues accumulate more 
annotations of the initial tasks and threads keep busy in the execution of these 
tasks to the detriment of the others. This accumulation occurs either in the task 
queue of the FIFO heuristic and in queues of initial tasks of qPrior heuristic. 
Therefore, the preemption used by qPrior algorithm impacts the total execution 
time of an integration process, if the preemption is large, the algorithm spends 
more time in execution of the initial tasks by threads, since the size of queues of 
initial tasks tends to be bigger. On the other hand, if the preemption is too small, 
the algorithm can spend more time with the exchange of queues. It is a challenge 
for the software engineer to find the ideal preemption, i.e., the optimum number 
of task instances that must be executed by threads at each polling to a queue. 
Thus, the problem can be formulated as: 



to determinate the number of tasks included in the preemption for the task 
scheduling carried out by the qPrior algorithm, which maximises the number 
of messages processed per time unit in the execution of integration processes 
under high workloads. 
We model this problem as a PSO problem and use this meta-heuristic to find the 
optimum preemption for the task scheduling heuristic by qPrior. For our scheduling 
problem, a particle represents an execution of an integration process in an 
overload situation. The position of a particle is a range for the preemption. Thus, 
the particle position is two-dimensional, specified by two coordinates, which are 
the minimal and maximal value of the preemption range. In our case, the minimal 
value of the preemption range can be at least 1 and the maximal can be at 
most the total workload to be processed by the integration process. According to 
the guidelines of the literature, it is recommended to use half of the total workload 
as maximal value for this range. 
The objective function must be linked to the goals of the scheduling problem 
because it is used to determine if a potential solution is good enough. The 
goal of scheduling is to maximise the number of processed messages per time 
unit in the execution of integration processes. In PSO modelling, the value of 
the objective function is defined as «maximise», which means maximising the 
throughput average related to the execution derived from the position of the particle. 
A strategy to define the initial preemption to the algorithm uses to explore 
different solutions and achieve the goal of scheduling. This strategy must reflect 
the unpredictability of the possible paths that a message flows in the execution 
of an integration process. So, it is necessary to provide enough options for PSO 
to produce a optimum particle position (solution). If the range is vast, then the 
search space explored by PSO is also huge, hence the algorithm may take a long 
time to converge and find the near-optimal solution. A strategy to limit the range 
of preemption was adopted, based on software engineers expertise in application 
integration, to reduce the size of the search space. The algorithm stopping 
criterion parameter was set to the number of iterations supported by the memory 
capacity of the computer used to execute the PSO. Table 2 summarises the PSO 
parameters for a total workload of 2,000,000 messages. 
 
 



 
Fig. 3 Experimental protocol 
 
 
5 Performance evaluation 
In this section, we describe the evaluation environment, the supporting tools, and 
the general information about execution and data collection related to two qPrioroptimized 
performance experiments in Sects. 5.3 and 5.4. The former evaluates 
PSO optimization and the importance of choice of the proper preemption. The 
latter compares qPrior-optimized with FIFO heuristic. 
The experiments followed a protocol based on [7, 30, 57], with procedures 
for controlled experiments in the field of software engineering and its steps are 
«Definition», «Planning», «Execution», and «Results». «Definition» is the step of 
main decisions regarding the experiment. «Planning» is the step to the organisation 
of elements needed to experiment. «Execution» is the step that detail procedures 
of the experiment. «Results» is the step of present and analysis of the 
results of the experiment. These steps and their respective activities are shown in 
Fig. 3 and, in following, detail them. 
Definition 
• Research questions and hypotheses. Indication of the null hypotheses that are 
going to be confirmed or refused by the experiments. 
• Independent and dependent variables. Indication of the variables to be measured 
and which will allow further comparison. 
Planning 
• Environment. Presentation of technical information about the hardware in which 
the experiment is performed. 
• Tools. Presentation of technical information about software that support the conducting 
of the experiment. 
Execution 
• Procedure. Description of the scenarios of the experiment and statistical procedure 



for analysis of results are described. 
• Data collection. Indication of how data will be collected for the variables in the 
experiments. 
Results 
• Presentation. Tables and charts show the results of the metrics collected in the 
experiments. 
• Discussion and comparison. Argumentation regarding the results to respond to 
the research question and confirm or refute the hypotheses. 
• Threats to validity. Description and evaluation of the factors that could influence 
the results of the experiment and the strategies to mitigate these threats. 
 
 
5.1 Threats to validity 
In this section, we evaluated the factors that can influence the results of the experiments 
and how we tried to mitigate them. These factors are threats to validity present 
in any empirical research [15, 57]. Four types of threats to validity are discussed 
here, they are: constructor validity, conclusion validity, internal validity, and external 
validity. 
Constructor validity discusses whether the planning and execution of this 
research are well adequate to answer the research question. We planned the experiments 
according to procedures from empirical software engineering [7, 30, 57]. 
First, we defined our research questions, formulated our hypotheses, and defined 
the independent and dependent variables. We also provided information about the 
execution environment, supporting tools, execution, and data collection. Then, we 
performed the experiments in different scenarios and used statistical techniques to 
evaluate the results. 
As reported by [57], conclusion validity is concerned with issues that affect the 
ability to draw the correct conclusion about relations between the treatment and the 
outcome of an experiment. To assure that the actual outcome observed in our experiment 
is related to the used heuristics and that there was a significant difference 
amongst them, we used statistical techniques such as ANOVA, Scott & Knott, and 
Regression analysis. 
Internal validity aims to ensure that the treatment caused the outcome, mitigating 
effects of other uncertain factors or not measured [18]. Instrumentation and source 
of noise are possible threats. We experimented with the same machine, which was 
on security mode, with minimal features and disconnected from the Internet during 
the executions to minimise interference in the execution time of the experiments. 
We built our algorithms in Java, so, the first executions of codes are slower, and it 
is advisable to let the virtual machine eventually perform code optimisation [41]. 
Then, first execution was to warm up the Java virtual machine and so dropped. Additionally, 
the researchers accurately inspected the procedures and used statistical tests 
to validate the measures. 
External validity focuses on the generalisation of the results outside the scope 
of our article [18]. This research is generalized for integration platforms that adopt 
the integration patterns by [29], the style Pipes-and-Filters, and task-based execution 
model. We reported this article following a practical guideline [57], so that exact 
repetition is possible, required by scientific methods. The experiments are valid to 



test other parameters, such as integration processes, message arrival rate, simulation 
duration. 
 
5.3 Evaluation of the Preemption 
In this experiment, we compared the performance of executions of an integration 
process using the heuristic qPrior, varying the preemption. The goal is to verify if 
the preemption impacts on the performance of executions and if the PSO meta-heuristic 
found the near-optimal preemption for qPrior. 
 
5.3.1 Research question and hypothesis 
This experiment aims to answer the following research question: 
RQ: Does the performance of the executions of integration processes improve 
when the qPrior heuristic uses an optimal preemption? 
Our hypothesis to this research question is that: 
H: The qPrior heuristic improves the performance of the executions of integration 
processes when it uses an optimal preemption since, the PSO algorithm can 
find the optimal or near-optimal, preemption. 
 
5.3.2 Variables 
The independent variables controlled in the experiment are: 
 
Integration process. The conceptual model of the integration process taken as 
input. The model tested for this variable was Coffee case study. 
Workload. The number of inbound messages. The value tested for this variable 
was 2,000,000 msg. 
Initial workload. The initial number of inbound messages. The value tested for 
this variable was 1000 msg. 
Rate of inbound messages. The number of inbound messages added periodically 
to the integration process. The value tested for this variable was 1000 msg. 
Preemption. Number of tasks executed at each time queue checking. The values 
tested for this variable were 100, 500, 1000, 10,000, 25,000, 50,000, 75,000, 
100,000, 500,000, 1,000,000, 1,500,000, and 2,000,000 tasks. 
 
The dependent variable measured in the experiment is: 
Throughput. The number of processed messages by time unit. 
 
5.3.3 Execution and data collection 
The experiment was conducted using an java simulator, which simulates the execution 
of the case studies aforementioned. The simulation starts with a workload of 
1000 msg and receives 1000 msg every 100 executions of tasks. We set the maximal 
total workload to 2,000,000 msg and the maximal time of duration for the simulation 
to 60s. Thus, the simulator stops the generation of messages when it reaches 
this maximal number of messages and stops running after 60s. Then, the simulator 
stores the preemption and throughput in a text file. After we handled and statistically 
analysed this information. We tested the execution using 12 different sizes for 
preemption. For each one of them, we repeated 25 times the execution of the qPrior 
heuristic, resulting in 300 scenarios, summarized in Table 3. 



We tested the PSO algorithm with the range for search space [50,000; 55,000]. 
For our case study, the best throughput was 30,528 msg/s, found the near-optimal 
preemption equals to 50,000 tasks, and the execution time of PSO algorithm took 
7203 s. The output of the PSO algorithm is shown in Table 4. 
 
5.3.4 Results 
The average throughput obtained in the 25 repetitions of the simulation for every 
value of the preemption is shown in Fig. 4, where the x-axis represents preemption, 
and the y-axis represents the average throughput in messages per seconds (msg/s). 
 
Table 3 Scenarios for preemption evaluation 

 
 
Table 4 Output of PSO algorithm 

 
 

 
Fig. 4 Average throughput regarding preemption (with 95% confidence interval) 
 
In this figure, we outline the values in which occurs the maximal throughput: 
32,672 msg/s using a preemption of 50,000 tasks and 32,659 msg/s using a preemption 
of 1,500,000 tasks. 
The analysis of throughput variance of execution of the Coffee case study under a 
workload of 2,000,000 msg is shown in Table 5, with 95% confidence interval. The 
average square of the throughput was 3,374,239 for the preemption and 163,458 for 
error. The overall average was equal to 32,148 msg, and the coefficient of variation 
was 1.25%. The Scott & Knott test of the throughput, with an error level of 5%, is 
present in Tables 6. First column represents the preemption and the average of the 
throughput is represented in the second column. There were four groups: «a», «b», 



«c» and «d». Group «a» refers to the preemption with the highest average of the 
throughput, group «b» refers to the preemption with the second-highest, group «c» 
refers to the preemption with the third-highest, and group «d» refers to the preemption 
with the lowest average of the throughput. The preemptions of 50,000 and 
1,500,000 tasks were in group «a»with the highest average of of throughput. The 
preemptions of 100, 10,000, 25,000, 100,000, 1,000,000, and 2,000,000 tasks were 
in group «b». The preemptions of 1000, 75,000, and 500,000 tasks were in group 
«c». The preemption of 500 tasks was in group «d» with the lowest average of of 
Throughput. 
 
Table 5 Variance analysis of the throughput for preemption evaluation 

 
 
Table 6 Scott and Knott test for preemption 

 
 
5.3.5 Discussion 
In the experiment with the simulations of execution of the integration processes confirmed 
the value for near-optimal preemption found by the PSO algorithm. The best 
average throughput was 32,671 msg/s using a preemption of 50,000 tasks. The worst 
case was the throughput of 31,298 msg/s, using a preemption of 500 tasks. A parable 
of concave down, in the interval between 25,000 and 75,000 msg, represents the 
behaviour of the throughput as a function of the preemption. This parable confirms 
that there is a preemption in which the throughput is maximal. The PSO algorithm 
found the near-optimal preemption, but its response time was 2,001 minutes, far 
superior to the average execution time of the simulation of the integration process 
(60 s). So, this meta-heuristic must be used as a preliminary method, in cases of 
high workloads, in which the interval of values for preemption is larger since choosing 
the proper preemption is a challenge. 



The use of different preemption generates a significant difference in the average 
of the throughput, cf. Table 5, so the search for a proper preemption is justified. The 
low values for the coefficients of variation indicate the adequacy and reliability of 
the experiment. In the Scott & Knott averages comparison test, there were three different 
groups of throughputs, cf. Table 6. A statistical difference between the three 
groups of preemption was found, but there was no difference between the preemptions 
of the same group. In group «a», which contain the best averages of throughput, 
it is possible to opt by any preemption to obtain the same statistic result for the 
throughput. 
The performance of the qPrior was also evaluated using different preemption, 
including those found by PSO algorithm. First, we verified if there was a significant 
difference in the performance of the qPrior heuristic, using different preemptions. 
The performance metric used was the throughput, and the statistic test was 
the ANOVA. Then, we use Scott & Knoot test to group the similar ranges, in which 
there was no statistic difference between the use of the ranges belonged to the same 
group. 
 
5.4 Evaluation of qPrior 
In this experiment, we compared the performance of executions of the integration 
processses by the heuristics FIFO and qPrior, varying the workload. The goal is to 
verify the impact for workload in performance of executions. 
 
5.4.1 Research question and hypothesis 
This experiment aims to answer the following research question: 
RQ: What is the performance behaviour of the executions of integration processes 
using qPrior when the workload increases? 
Our hypothesis to this research question is that: 
H: The performance of the executions of integration processes is better when 
using qPrior than when using FIFO when the workload increases. 
 
5.4.2 Variables 
The independent variables controlled in the execution of the algorithm are: 
Heuristic. The heuristic used to task scheduling. The heuristics tested were: FIFO 
and qPrior. 
Integration process. The conceptual model of the integration process. The model 
tested was the Coffee case study. 
Workload. The number of inbound messages. The value tested for this variable 
were 1000, 10,000, 100,000, 500,000, 1,000,000, 1,500,000, 2,000,000, and 
2,500,000 msg. 
Initial workload. The initial number of inbound messages. The value tested for 
this variable was 1000 msg. 
Rate of inbound messages. The number of inbound messages added periodically 
to the integration process. The value tested for this variable was 1000 msg. 
Preemption. The number of task executed at each time queue checking. The values 
tested for this variable was 50,000 tasks. 
The dependent variable measured in the execution of the algorithm is: 
Throughput. The number of processed messages by time unit. 



 
Table 7 Scenarios for comparison of heuristics regarding workloads 

 
 
5.4.3 Execution and data collection 
The experiment was conducted using a java simulator, which simulates the execution 
of the case studies aforementioned. The simulation starts with a workload of 
1000 msg and receives 1000 inbound messages every 100 executions of tasks. The 
execution time of each task varies within an interval, in seconds, according to the 
profile of the integration process. For the qPrior heuristic, the preemption used, 
number of tasks performed at a time, was set to 50,000 tasks. We set the maximal 
number of inbound messages and the maximal time of duration for the simulation 
to 60 s. Thus, the simulator stops the generation of messages when it reaches this 
maximal number of messages and stops the running after 60 s. Then, the simulator 
stores the workload and the throughput in a text file. After, we handled and statistically 
analysed these metrics. We tested the execution using 8 different workloads 
and 1 case study. For each one of them, we repeated 25 times the execution using 
qPrior and 25 times using FIFO, resulting in 400 scenarios, summarized in Table 7. 
 

 
Fig. 5 Average throughput—low workload (with 95% confidence interval) 
 

 
 
Fig. 6 Average throughput—high workload (with 95% confidence interval) 
 
5.4.4 Results 
The average values of dependent variables obtained in the 25 repetitions of the simulation 
for every value of the workload are shown in scatter charts. The x-axis represents 
the workload for every heuristic. The y-axis represents the average throughput 



measured. We consider 1000, 10,000, 100,000, and 500,000 inbound messages as 
low workloads and 1,000,000, 1,500,000, 2,000,000, and 2,500,000 inbound messages 
as high workloads. Figure 5 represents the average throughput with low and 
Fig. 5 high workloads. 
In the simulation with a workload of 1000 msg, the average throughput achieved, 
in messages per seconds, was 24,554 msg/s when using FIFO and 29,116 msg/s 
when using qPrior. In the simulation with 10,000 msg, the average throughput 
achieved was 27,494 msg/s when using FIFO and 33,393 msg/s when using 
qPrior. In the simulation with 100,000 msg, the average throughput achieved was 
27,078 msg/s when using FIFO and 34,090 msg/s when using qPrior. Then, in the 
simulation with 500,000 msg, the average throughput achieved was 25,365 msg/s 
when using FIFO and 32,937 msg/s when using qPrior. 
In the simulation with a workload of 1,000,000 msg, the average throughput 
achieved, in messages per seconds, was 24,034 msg/s when using FIFO and 
31,700 msg/s when using qPrior. In the simulation with 1,500,000 msg, the average 
throughput achieved was 2,334 msg/s when using FIFO and 31,744 msg/s when 
using qPrior. In the simulation with 2,000,000 msg, the average throughput achieved 
was 11 msg/s when using FIFO and 31,855 msg/s when using qPrior. Then, in the 
simulation with 2,500,000 msg, the average throughput achieved was 0 msg/s when 
using FIFO and 31,280 msg/s when using qPrior (Fig. 6). 
 
Table 8 ANOVA test 

 
 
Table 9 Scott & Knott test 

 
 
We used the ANOVA test to verify the influence of random factors in the measurements 
of the dependent variables. The ANOVA test was applied for the scenarios 
in which the averages of the dependent variable, for both heuristics, were different 
of zero. The workload of 2,000,000 msg for CS and the analysis of variance 
is shown in Table 8, with 95% confidence interval. Since there were statistical differences 
between the results with different scenarios, we follow the comparison of 
averages of the dependent variable by Scott & Knott test. The results of the Scott & 
Knoot test is shown in Table 9. In this table, the heuristics are in the first column. 



For the dependent variable, there is a column for the average and a column for the 
group of Scott & Knott. Two groups were found: «a» and «b». Group «a» refers to 
the heuristic with the highest average of throughput and group «b» refers to the heuristic 
with the lowest. 
The analysis of variance was applied for the workload of 2,000,000 msg, cf. 
Table 8. In the analysis of variance of the throughput, the average square was 
12,675,555,787 for the heuristics and 45,605 for error. The overall average was 
equal to 15,933 msg/s, and the coefficient of variation was 1.34%. 
The results of the Scott & Knoot test for workload of 2,000,000 msg are shown in 
Table 9. Regarding throughout, FIFO was in group «b» with the lowest average of 
11 msg/s and qPrior in group «a» with the highest average of 31,855 msg/s. 
 
5.4.5 Discussion 
In the simulation of the execution of the Coffee case study with workload till up 
1,000,000 msg, all messages were successfully processed when using FIFO and 
when using qPrior heuristic. No overload was observed. However, in execution 
with a workload higher than 1,500,000 msg, the number of remained messages was 
much higher than the number of processed messages when using FIFO. It allow 
us to conclude that the integration process was overload when using this heuristic, 
but qPrior had better result than FIFO. In executions with a workload higher than 
2,000,000 msg, less than 1% of inbound messages were processed when using FIFO, 
whereas when using qPrior, about 96% of inbound messages were processed. In 
executions with a workload higher than 2,500,000 msg, no message was processed 
when using FIFO in the elapsed time of the simulation, indicating that there was a 
threshold from which this heuristic does not process messages in a given elapsed 
time; whereas when using qPrior, about 75% of inbound messages were processed. 
As the comparison of the two heuristics running the experiment over a period of 
time and measure the work done on the said, considering a continuous flow of messages 
arriving in the integration process. The performance of the FIFO heuristic 
degrades as the message arrival rate becomes higher than the system’s capacity to 
process them. 
The averages of the throughput in execution of integration processes were higher 
when using qPrior than FIFO. ANOVA test confirmed that the use of different heuristics 
generates a significant difference in the throughput, cf. Table 8. The coefficient 
of variation was reduced, indicating that the experiment is adequate and reliable. 
The Scott & Knott test showed that the best performance was achieved with the 
qPrior heuristic, in the execution of integration processes under an overload situation. 
This test confirmed that there was a statistically significant difference between 
the heuristics, cf. Table 9. 
 
6 Conclusion 
The challenge of enterprises to integrate their applications increases with large volumes 
of data from the cloud and with mobile applications. In face of that, tools for 
integration processes like integration platforms need to be improved. Integration 
platforms are tools that model and implement integration processes. An integration 
process is a computational program that allows applications to exchange data and 
functionalities. It can be represented by a workflow composed of tasks and communication 



channels. Each task of an integration process carries out a specific computational 
operation that is executed by threads present in the runtime system of 
integration platforms. 
This article contributes to the adaptation of integration platforms in the context 
of high volumes of data, by proposing a new task scheduling heuristic of integration 
processes. The qPrior heuristic separates tasks that await for available threads 
in multiple prioritized queues; the threads select the task to execute according to 
the priority of the queue. Every time a thread verifies a queue, it selects a predefined 
number of tasks to execute. We used the Particle Swarm Optimisation (PSO) 
meta-heuristic to find the near-optimal number of tasks that must be selected to 
reach better performance in the execution of integration processes. We implemented 
qPrior heuristic and simulated the execution of a classic integration process under 
high workloads. After that, we compared it with FIFO heuristic, which is traditionally 
used in large part of the open-source integration platforms. The results from 
executions showed that qPrior provides higher throughput than FIFO in integration 
processes overload cases. Those results were statistically analysed, and they showed 
there was significant improvement in the integration process execution performance 
when the task scheduling was performed by qPrior heuristic. 
Regarding the research questions from the experiments: 
• RQ1: The proper choice for the number of tasks, which must be executed at each 
thread checking, impacts positively the performance of the task scheduling by 
qPrior heuristic. This number can be found by PSO meta-heuristic. 
• RQ2: The qPrior algorithm provided much higher performance over throughput 
than FIFO for the execution of integration processes under overload. 
 
Appendix 1: Additional metrics 
The averages of processed messages in the execution of the Coffee shop integration 
process is our case study (CS) are shown in Figs. 7 and 8. The averages of remained 
messages in the execution of the CS are shown in Figs. 9 and 10. The makespan in 
the execution of the CS is shown in Figs. 11 and 12. 
As for the number of messages processed, the FIFO heuristic performance 
degrades from 1,500,000 messages when it only processes approximately 35% of 
the total messages (Fig. 8). Figure 10 shows that 1,359,833 messages remained 
accumulated in the integration process, without processing, in the case of the FIFO 
heuristic. Figure 12 shows that from a workload of 1,500,000 messages arriving in 
a continuous flow in the integration process, the heuristic consumes all the simulation 
time and cannot fully process the messages that entered the integration process. 
The most important metric is the throughput, which shows the processing rate 
of the heuristics, cf. Fig. 6. For this metric, in all workloads, the qPrior heuristic 
performed better than FIFO, and with the workload of 1,500,000 messages, FIFO’s 
performance was only 7% of the performance obtained by qPrior. Thus, the qPrior 
heuristic is an option for scenarios of low workloads (<1,500,000 messages) and 
which continues to perform well for high volumes of messages ( ≥ 1, 500, 000 
messages). At the same time, FIFO is only an option for low workloads and still 
under-performing. 
 



 
Fig. 7 Average processed messages—low workload 
 

 
Fig. 8 Average processed messages—high workload 
 

 
Fig. 9 Average remained messages—low workload 
 

 
Fig. 10 Average remained messages—high workload 
 

 
Fig. 11 Average makespan—low workload 
 

 
Fig. 12 Average makespan—high workload 
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