

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-06-24

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Freire, D. L., Frantz, R. Z., Roos-Frantz, F. & Basto-Fernandes, V. (2022). Queue-priority optimized
algorithm: a novel task scheduling for runtime systems of application integration platforms. The
Journal of Supercomputing. 78 (1), 1501-1531

Further information on publisher's website:
10.1007/s11227-021-03926-x

Publisher's copyright statement:
This is the peer reviewed version of the following article: Freire, D. L., Frantz, R. Z., Roos-Frantz, F. &
Basto-Fernandes, V. (2022). Queue-priority optimized algorithm: a novel task scheduling for runtime
systems of application integration platforms. The Journal of Supercomputing. 78 (1), 1501-1531,
which has been published in final form at https://dx.doi.org/10.1007/s11227-021-03926-x. This
article may be used for non-commercial purposes in accordance with the Publisher's Terms and
Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/s11227-021-03926-x

Queue-priority	optimized	algorithm:	a	novel	task	scheduling	for	runtime	
systems	of	application	integration	platforms	

Daniela L. Freire, UNIJUI University, Rua do Comércio, 3000, Ijuí, 98700-000, Brazil

Rafael Z. Frantz, UNIJUI University, Rua do Comércio, 3000, Ijuí, 98700-000, Brazil

Fabricia Roos‐Frantz, UNIJUI University, Rua do Comércio, 3000, Ijuí, 98700-000, Brazil

Vitor Basto‐Fernandes, University Institute of Lisbon (ISTAR-IUL), Av. das Forças Armadas, 376, 1649-026, Lisbon,
Portugal

Abstract
The need for integration of applications and services in business processes from enterprises
has increased with the advancement of cloud and mobile applications. Enterprises started
dealing with high volumes of data from the cloud and from mobile applications, besides their
own. This is the reason why integration tools must adapt themselves to handle with high
volumes of data, and to exploit the scalability of cloud computational resources without
increasing enterprise operations costs. Integration platforms are tools that integrate
enterprises’ applications through integration processes, which are nothing but workflows
composed of a set of atomic tasks connected through communication channels. Many
integration platforms schedule tasks to be executed by computational resources through the
First- in-first-out heuristic. This article proposes a Queue-priority algorithm that uses a novel
heuristic and tackles high volumes of data in the task scheduling of integration processes.
This heuristic is optimized by the Particle Swarm Optimization computational method. The
results of our experiments were confirmed by statistical tests, and validated the proposal as a
feasible alternative to improve integration platforms in the execution of integration processes
under a high volume of data.

Keywords: Task scheduling algorithm; System integration; Application integration;
Optimization; Heuristic

1 Introduction
Applications that compose the enterprise software ecosystems [38] must work
together, in order to aggregate value for business processes. Enterprise Application
Integration (EAI) is the foundation for software ecosystems which are characterized
by heterogeneity and distribution [45]. The relevance of EAI increased due to the
fast-emerging of cloud and mobile applications, which are now part of companies’
daily business affairs [35], and especially by the advent of the pay-as-you-go charging
model adopted by cloud providers to offer software as services, and where the
payment is proportional to the consumption of computational resources [12]. Enterprise
Application Integration is the research field that provides methodologies, techniques,
and tools to develop integration processes. It enables applications to share
data and functionality, to meet the requirements of business processes [21]. Integration

tools need to be re-engineered to better explore the model introduced by cloud
computing, so that they can take advantage of the scalability and reduce costs by
optimising computational resources usage [36].
The conceptual model of an integration process is a workflow formed by distinct
atomic tasks connected by communication channels. A task performs a specific
operation such as transforming, filtering, splitting, joining, routing or any modification
can be applied a one or more messages. Integration platforms are EAI tools
that allow software engineers to design, implement, run, and monitor integration
processes. A set of conceptual integration patterns, which initially was documented
by [29] and lately extended by [44], have become a reference cookbook for the
integration community. Such patterns have also inspired the development of opensource
integration platforms such as ServiceMix [32], Petals [53], Jitterbit [48], and
Guaraná [21]. These open-source integration platforms follow the Pipes-and-Filters
architecture [2], which allows the uncoupling of tasks from integration processes.
Pipes represent communication channels, while filters represent atomic tasks in
an integration process; they both implement a concrete integration pattern to process
encapsulated data in messages. Tasks are executed by computational resources
known as threads. A thread is the smallest unit of a computational program that can
be managed by integration platforms.
Such platforms usually provide a domain-specific language, a development
toolkit, monitoring tools, and a runtime system. The domain-specific language enables
the description of conceptual models for integration processes. The development
toolkit is a set of software tools that allow the implementation of integration
processes, i.e., it transforms a conceptual model into executable code. Monitoring
tools are used to detect failures that may occur during the execution of an integration
process. The runtime system is responsible for running all integration processes,
and its primary function is the task scheduling [25, 27]. Task scheduling schedules
the execution of tasks and the allocation of computational resources and it concerns
with the time of task execution and with the computational resources that perform
the task.
Messages coming from the cloud and mobile application common in the contemporaneous
environments combined with messages coming from traditional
enterprise environments have to be integrated and processed while guaranteeing
high throughput [43]. The current integration platforms present design challenges
for providing near-real-time performance. These platforms manage petabyte-scale
data and distributing integration processes across contemporaneous environments
ranging from traditional on-premise servers to cloud systems and mobile
devices [33, 59]. Enterprises also face the challenge to suit and integrate their applications,
together with the optimization of resource usage to save costs [23, 25, 26].
Our survey [22] identified research directions regarding fair execution of tasks of
integration processes by optimization of the task scheduling and the resource allocation
of the runtime systems of the integration platforms.
A runtime system has threads, usually grouped into a thread pool, that represent
the computational resources available to execute the integration process. The need
for efficient scheduling has increased to minimise costs when executing an integration
process in an integration platform deployed on the cloud that due to the pay-asyou-
go charging model [22]. In the context of cloud, task scheduling concerns with

costs reduction [22], with the handling of high workloads [50], and with software
quality in terms of flexibility and response time [17]. Besides, it is necessary to optimize
the use of computational resources because the processing of a large amount
of data requires more allocation of resources [17, 50]. In overload situations due to
thigh and continuous input rate, the scheduling of tasks of the workflow tends to
concentrate on tasks in the begging of the workflow. We consider that an integration
process is in overload situation when the number of remained message is greater
than the number of processed message. This concentrating of initial tasks causes the
threads to execute them more frequently, to the detriment of the other tasks. This
behavior impacts negatively on the performance of the integration process.
Most open-source integration platforms adopt the First-in-first-out (FIFO) heuristic,
especially when scaling requirements are not known. This is because FIFO
is the simplest heuristic and achieves consistent results in most application integration
scenarios [22]. However, the performance of this heuristic depends on many
factors and is rarely optimal for all situations [42], like in the case of overload. In
those situations, the scheduling by FIFO tends to concentrate on the workflow initial
tasks, and it ends up degrading execution performance of integration processes. It
becomes necessary a fair task scheduling, which provides optimal resources allocation
to maximise performance [8, 40]. Such allocation of optimal resources requires
an active and dynamic task scheduling heuristic [51], which is capable of increasing
the number of processed messages per time unit.
There are many studies and proposals of algorithms regarding task scheduling,
but none of them deals singularly with integration processes scheduling. The integration
processes scheduling has quite specific characteristics, such as unknown
message arrival rate, variable task processing time, unpredictable path of the workflow
traced by messages, elastic resource provisioning. The integration processes
scheduling has quite specific characteristics, such as unknown message arrival rate,
variable task processing time, unpredictable path of the workflow traced by messages,
elastic resource provisioning. Building fair scheduling while increasing performance
is a significant concern of enterprises, which submit an integration process
for executing concurrently in different resources. Without the re-engineering of the
integration platforms, it is not possible to ensure to suit that they can deal with
contemporaneous environments. Besides, it is not possible to ensure that the enterprises
take advantage of the scalability provided by cloud computing or optimize computational
resource usage.
In this article, we propose a queue-priority optimized (qPrior) algorithm, which
addresses a new task scheduling heuristic for the execution of integration processes
under high workloads. In this heuristic, there are multiple prioritized queues to store
task instances; these tasks wait for available threads to execute them. Each queue
stores task instances from an integration process. Threads check the queue according
to this priority and execute a predefined number of tasks at each checking. This
number of tasks is found by the Particle Swarm Optimization (PSO) meta-heuristic
in order to maximise the number of processed messages per time unit. To validate
our proposal, we performed two experiments. First, we compared the task scheduling
performance with and without the PSO optimization. Then, we simulated the
execution of a classic integration process and compared performances between
qPrior-optimized and FIFO heuristic. We evaluated the executions of integration

processes by the FIFO heuristic. We verified that with this heuristic, as the input
rate increases, the number of messages processed decreases until no message can
be processed. These results show that the qPrior algorithm handles better with the
overload in the processing of messages than FIFO because qPrior responds more
rapidly, producing outbound messages in a shorter time than FIFO, besides keeping
the production of outbound messages. We validated our proposal by performing
two experiments, and their results confirmed statistically with ANOVA and Scott &
Knoot statistical tests.
The rest of this article is organized as follows: Section 2 discusses works related
to optimization of task scheduling using PSO; Sect. 3 provides background information
over integration processes and their task scheduling and formulates the problem;
Sect. 4 exposes the proposed qPrior-optimized algorithm; Sect. 5 reports experiments
and statistics to validate the proposal; and, Sect. 6 presents our conclusions.

2 Related work
This section gathers works in the subject of task scheduling and allocation of computational
resources from different research fields in order to increase the systems performance. The
works related to performance optimization by PSO meta-heuristic or related to proposals of
task scheduling algorithms are summarized in Table 1.
This article differs from others, once it proposes an algorithm to maximise throughput
from the execution of integration processes under high workloads, through a new heuristic
for task scheduling, carried out by run-time systems of integration platforms.
Rodriguez and Buyya [46] proposed a PSO-based algorithm to minimise the
overall execution cost and to meet deadline constraints for scheduling a scientific
workflow application in a cloud environment. Their goal was to deal with the
dynamic provisioning and heterogeneity of unlimited computational resources and
the performance variation of virtual machines. Jian et al. [31] proposed a PSO-based
algorithm to schedule tasks to cloud resource suppliers, taking into account how
reliable such resource providers were and the network data transmission among suppliers.
A mathematical model defined a reliability measure, which was used to evaluate
the task to be run, and also the reliability degree in data transmission. Verma and Kaushal
[55] proposed a task scheduling over available cloud resources by minimising the execution
cost, considering at the same time the constraints of deadline and budget. Aron et al. [6]
proposed a PSO-based hyper-heuristic method that minimises time, cost, and the optimized
utilization from resources in the grid environment, without violating any security norms.
Ghosh and Das [24] proposed a hybrid algorithm which combined Extreme
Optimization and PSO. Their algorithm aimed to simultaneously minimise
makespan, processing cost and job failure rate, while maximising the resource
utilization of computational Grid systems. Blythe et al. [9] propose a discrete version
of the PSO algorithm, applied on a single-objective and on a multi-objective
optimization scenario. Rodriguez and Buyya [47] proposed the scheduling
for resource provisioning and a scheduling strategy by a dynamic heuristic-based
algorithm. The goal was to minimize the overall cost of leasing infrastructure
resources without compromising workflows deadlines. Anwar and Deng [5]
proposed an algorithm based on the Bag of Tasks technique, which groups the
workflow into bags of tasks by the criterion of data dependency and priority constraints.

The algorithm also optimizes the allocation of elastic, heterogeneous
and dynamically provisioned cloud resources. Sun et al. [52] proposed a flexible
online scheduling framework for big data streaming applications (E-Stream). The
authors were based on the priority-based “earliest finish time first” and scheduled
multiple graphs by a max-min fairness strategy.
Wang et al. [56] proposed a pattern classification algorithm, based on a hybrid
PSO. The approach was to train the scheduler and switch scheduling strategies in
real-time. Manasrah and Ali [37] proposed a hybrid algorithm based on PSO and
GA meta-heuristics. The authors concerned efficiency of the allocation of tasks
to the resources workflow applications in cloud computing environments. Ghafouri
et al. [23] proposed an algorithm based on back-tracking heuristic combined
with the scheduling of critical and non-critical tasks. The goal was to minimise
makespan and the execution cost from workflow applications. Xie et al. [59] proposed
an algorithm based on PSO that employs non-linear inertia weight with
selection and mutation operations by a directional search process. The goal was
the efficient allocation of tasks to the different resources for meeting the real-time
requirement of the cloud and edge computing environments. Pietri et al. [40] proposed
an algorithm that seeks to identify Pareto-optimal trade-offs between overall
execution time, monetary cost and fairness, efficiently exploring the solution
space. The authors approached the scheduling multiple dataflows on heterogeneous
clouds.

3 Problem formulation
In this section, we address task scheduling for integration processes and the
main components and the execution model approached in this article. After, we
describe the environment of an integration processes, based on the research work
by [19] and a mathematical modelling for our problem. We first explain the software
system, then we represent the integration process by a Directed Acyclic
Graph (DAG). After that, we formulate the mathematical problem and our fitness
function.

3.1 Task scheduling for integration processes
A conceptual model of an integration process is a workflow composed of tasks,
which communicates through channels. Integration processes receive data from
source applications and deliver them to destination applications. Data are wrapped
in messages that have a header, containing custom properties, and a body providing
payload data. A message flows through an integration process and it is modified by
tasks processing. Transforming, filtering, splitting, joining, or routing any modification
can apply, depending on the specific operation that each task perform. Therefore,
a message can be split into one or more messages in the workflow, or even two
or more messages can be merged into a unique message. We identify a «path» as
a specific set of tasks and communication channels where a message is completely
processed in an integration process. A dependence order determines the sequence in
which tasks must be executed. So, a task processes a message, whenever this message
has already been processed by each of its predecessor tasks. An outbound message
of a task is written to the communication channel that connects this task with

the next one in the workflow path. The «scheduler» is the main element of runtime
systems during the execution of integration processes. The scheduler manages
activities from the message processing, and also the use of computational resources
for the execution of tasks. Computational resources that execute tasks are called
«threads», which are usually grouped in «thread pools».
The runtime system execution model defines procedures for task execution and
for thread allocation, during the processing of messages in integration processes.
Two execution models are found in the literature, namely: process-based and taskbased
[3, 9, 10, 20]. In the process-based model, a thread executes every task of the
workflow over an inbound message, so that this message can flow throughout the
process. After every task in the workflow has been executed, the thread is released.
In the task-based model, a thread is used to execute the task over the inbound message
that reaches the task. When the task finishes, an outbound message is written
to the channel; this channel connects the current task to the next one in the
workflow and the thread is released. The execution of the message in the next task
now depends on a new assignment of an available thread to the referred task. We
approached the task-based model in this article.
In the task-based model, a ready task is the one that is on the verge of being executed,
once there are messages in all communication channels that are inputs to this
very task. The solicitation of the execution of a ready task is recorded in a waiting
queue. The waiting queue stores ready tasks that wait to be executed by the available
threads. An available thread selects a task from the waiting queue, following a Firstin-
first-out policy, in which the task that was recorded first is scheduled first to be
executed. One of the roles of a scheduler is to create, manage, and release threads.
Additionally, it is possible to configure the pool with some parameters, such as: the
initial thread number, the maximum number of threads, and the maximum lifetime
of an idle thread. The scheduler assigns threads to execute instances of tasks, and
after an instance of the task is executed, the thread is released back to the pool. The
processing of a message in the next task now depends on a new assignment of an
available thread from the pool to this task. A message is processed under the order
of dependence on the tasks of the path, which is composed of several segments.
Tasks in sequential segments are executed sequentially, whereas tasks in parallel
segments can be executed in parallel because there is no dependency among them.

3.2 Environment of an integration process
The Directed Acyclic Graph (DAG) represents task models for real-time scheduling,
allowing the description of constraints on tasks execution [49]. In the DAG model, an
integration process is described as a workflow «W» composed of «k» tasks, being an
extension of the DAGs with weighted vertices (Ei, Ti) , where
Ti =  ti,1, ti,2,…, ti,k  is the set of vertices and «E» is the set of edges. Every vertex
in the graph represents a task of the process, and each edge represents a communication
channel between tasks, as well as indicates precedence constraints between
tasks. An edge between (ti, tj) represents a dependence between ti and tj , in which ti is
the predecessor node of tj and tj is the successor node of ti . Every edge has a weight,
which represents the waiting time of the task in the queue.
A starting task is a task that has no predecessor tasks in the order of dependence.
An ending task is a task that has no successor tasks. An integration process can have

one or more starting tasks and one or more ending task. Besides, an integration process
can have tasks that exchange messages with applications during runtime and
intermediate tasks that fork, join or route messages to segments that compose the
path whereby the message must flow. There are several possible paths for the processing
of a message, which are defined at design time. However, the path through
which a message will flow depends on the integration process logic.
The Coffee shop integration process is our case study (CS). CS is a benchmark
of an integration process introduced by [28]. Its conceptual model is depicted in
Fig. 1. In the CS, the integrated applications are: «Orders», «Barista Cold Drinks»,
«Barista Hot Drinks», and «Waiter». «Orders» represents the source application
that delivers the data of the customer orders to the integration process. The data
of the customer orders are wrapped inside messages. An order may include either
hot, cold drinks or both. Different baristas prepare cold and hot drinks, which represent
two applications that exchange messages with the integration process: «Barista
Cold Drinks» and «Barista Hot Drinks». The orders are delivered to the «Waiter»
when all drinks corresponding to the same order have been prepared. The «Waiter»
application represents a final data sink. The processing of one customer order corresponds
to one job instance. It is possible to process one or more orders. One or more
instances of the job can be being processed simultaneously. The number of instances
of the job corresponds to the number of customer orders that are being processed. If
there are several instances of the job at a given time, then there are several instances
of the same task and each task instance is associated with a job instance.

Table 1 Related works using optimization by the PSO

Fig. 1 Conceptual model of Coffee case study

The CS is an integration process with three different paths for messages, in
which there are tasks of types: «start», «and», «or», «join», « message processor »,
« external call»and «end». There is one input task represented by tstart , and one output
task represented by tend . Tasks that exchange messages with applications during
runtime are represented by tx1 and tx2 . Intermediary tasks are represented by ti , where
i ranges from 1 to 12.
In the integration logic of this conceptual model, there may be customer orders
containing only cold drinks, hot drinks, or orders containing both cold and hot
drinks. For each one of these types of customer orders, there is a path through which
messages are processed. The possible paths were defined during design time by the
CS model. However, it is during runtime that the exact path for a given message is
known, according to the type of customer order. There is a path for customer order
containing only cold drinks; another path for only hot drinks; and another path for
both cold and hot drinks. Examples of tasks that can be executed in parallel in the
Coffee Shop integration process are [t3, t9] , [t4, t10] , [tx1, tx2] , [t5, t11] , [t6, t12].
In CS integration operation typed graph, there are 16 nodes, which represent the
tasks, and there are 19 edges, which represent the channels. Node tstart is a starting
node, that represents a task of the type «start». The nodes t3 and t9 represent tasks
of the type «and». The t2 represents a task of the type «or». The nodes t5 , t7 , and
t11 represent tasks of the type join; Nodes t1 , t4 , t6 , t8 , t10 , and t12 represent tasks of
the type « message processor »; The nodes tx1 and tx2 represent tasks that send and
receive information to/from applications that are tasks of the type external call ; and,
node tend is a ending node that represent a task of the type «end».

3.3 Mathematical formulation
In this section, we present the mathematical modelling of integration processes,
with focus on time-related performance metrics, commonly used for scheduling
performance benchmarking. Makespan is a well-known metric for performance within

the integration community. Several researchers use the makespan arithmetic average
as a performance metric for scheduling algorithms [1, 13, 34].
In integration processes, we defined the total processing time of a message
« TPmi » as the elapsed time interval between the time a message entered and the time
it leaves the integration process. « TPmi » is the sum of the execution time of all the
tasks of the path by which the message must flow for its complete processing. We
assume that the execution time of a task, « ETtk » includes all the times involved, such
as the total CPU time, the annotation time of tasks in queues, the waiting time of the
tasks in a queue; and the waiting time of the task in request and response operations
with external applications. The number of tasks in the path is represented by «tot».
We also assume that the range of the execution time of a task « tk » is defined as
« [ETtk ini , ETtkfin]».
Then, we define the makespan of an execution of an integration process as the
total execution time of an integration process. It is the elapse time between the start
time of the first message that entered « STm1 » and the end time of the last message
that leaves the workflow « ETmnp ». Throughput is a performance metric based on the
amount of work a system can perform in a given time in a particular environment.
The throughput of a computer system is a function of the environment and workload
characteristics. Improvements resulting from system changes can be evaluated by
throughput metrics [54, 58]. In case of execution of integration processes, throughput
corresponds to the number of messages processed per time unit and it is calculated
by computing the division of the total number of processed messages «np» by
the total execution time «Makespan», cf. Eq. 1. This formulation is represented by
the objective function: max{Throughput}.

Time optimization becomes fundamental in situations in which the process execution
duration must meet specific constraints or deadlines, because their violations
increase the business processes costs [39]. Thus, the problem can be formulated as:
to find out a heuristic for task scheduling that processes more messages per time
unit in the execution of integration processes in overload situations.

4 Our algorithm
In this section, we propose our heuristic to tackle task scheduling of integration processes.
We named this heuristic as Queue Priority (qPrior). It deals with overload
situations caused by workloads of large volumes of data (of the order of millions).
We implement qPrior by a lightweight algorithm to increase the performance of the
execution of the integration processes. The source code developed and used in this
experiment is publicly available for download (http:// github. com/ gca- resea rch- group/
simul ation- queue priory- pso).

4.1 qPrior heuristic
We have development the Queue Priority (qPrior) heuristic. The goal is to keep
a good performance of the execution of integration processes even if such overload

situations occur. In qPrior, there are multiple task queues. Every task queue
maintains instances of a specific task of integration process. Tasks that can be
executed in parallel are maintained in same queue. Threads, grouped in a thread
pool, check the queues following in an order of priority. In this order, a task
that has more predecessor tasks has more priority in its execution. Each time
threads check a queue, a specific number of tasks are captured to be executed
by those threads. We refer to the number of tasks that are executed as preemption.
Tasks are allocated to threads till the tasks are entirely executed. In other
words, the preemption will be the number of threads allocated by one time to
every execution. So the preemption optimal has to be determined previously.
We used the PSO meta-heuristic for this purpose. PSO is widely in scheduling
algorithms [55] and presents better computational performance for high dimensional
nonlinear optimization problems with continuous variables and has fewer
parameters to adjust than other algorithms, facilitating their implementation [4,11].
To present the qPrior heuristic, we present four possible iterations of the heuristic
illustrated in Fig. 2. This example is a snapshot of a particular moment (n-th iteration)
of the integration process in runtime, in which, instances tasks wait in three
task queues. The queue of high priority maintains the annotations for executions of
the instances of task t3 . This task is the task that has more predecessor tasks. The
queue of medium priority maintains the annotations for executions of the instances
of task t2 . The queue of low priority maintains the annotations for executions of the
instances of task t1 . This task has no predecessor task. Assuming the software engineer
set the preemption to the value six, which means that, at every time that threads
of pool check a queue, they will execute six tasks that have annotation in this queue.
The annotations of the tasks that are caught by threads are shaded in grey. The iterations
take happen as follow:
[n-th iteration:] threads poll the queue of high priority and, then, they execute six
tasks of queue of tasks t3.

Fig. 2 Iterations of the qPrior heuristic

[(n+1)-th iteration:] because the queue of high priority is empty, threads poll the
next queue of more top priority and, then, they execute six tasks t2 of this queue.
After, the executions of tasks t2 produce outbound messages that are inbound messages
for successor task, t3 . So, the scheduler annotates the executions in the queue
of tasks t − 3 . While this happens, new inbound messages continue arriving for the
integration process generating new annotations in the queue of task t1.

Table 2 PSO parameters

[(n+2)-th iteration:] threads poll the queue of high priority and, then, they execute
six tasks of queue of tasks t3 . While new tasks continue being annotated in the
queue that maintains the tasks t1.
[(n+3)-th iteration:] because the two queues more top priority are empty, threads
poll the queue of lowest priority and then they execute six tasks t1 of this queue.
After, the executions of tasks t1 produce outbound messages that are inbound messages
for successor task, t2 . So, the scheduler annotates the executions in the queue
of tasks t2.
This process iteratively continues till up all queues are empty or till up it is interrupted.

4.2 qPrior algorithm
We have implemented qPrior algorithm that the software engineer to perform the
Queue Priority heuristic. The pseudo-code of the algorithm that implements the
qPrior heuristic is shown in Algorithm 1.
This algorithm receives the total number of tasks and the number of tasks performed
at a time «preemption». The algorithm starts by initialising the auxiliary
variables: «totalSize», «preempt», and «qPrior». The first variable corresponds to
the total size of queues, the second variable is the preemption, and the third variable
maintains the queue indication that will be polled. The algorithm verifies the queues
from the highest priority queue until the lowest priority queue. After the algorithm
selects a queue, it sets the preemption according to the following rule: If the queue
size is smaller than «preempt», the threads execute all tasks that are in the queue;
otherwise, the algorithm executes an amount of task equals «preempt». The algorithm
keeps allocating threads to execute tasks until all the queues are empty. The
algorithm uses a thread pool that creates threads as needed. However, it is possible
to reuse previously constructed threads when they are available. When there is no
available thread, a new thread will be created and added to the pool. Threads that
have not been used for sixty seconds are shut up and removed from the pool. Our
proposal is computationally tractable since handling tasks runs in a low time. This
low complexity of the algorithm provides good performance, more straightforward
execution, debug and maintenance.

4.3 PSO modeling
PSO is a meta-heuristic proposed by Eberhart and Kennedy [16] based on the
behavior of animal flocks, such as insects, fish, and birds. Such animals find the
best regions for nourishing through the iterative adjustment of their positions in
the search space, taking into account their best individual positions and the group’s
best general position. The algorithm responsible for implementing PSO is widely
researched and utilized. It presents better computational performance in highdimensional
nonlinear optimization problems with continuous variables, and it has
fewer parameters to adjust than other algorithms; such facts turn its implementation
easier [4, 11].
When there is a high arrival rate of messages, the queues accumulate more
annotations of the initial tasks and threads keep busy in the execution of these
tasks to the detriment of the others. This accumulation occurs either in the task
queue of the FIFO heuristic and in queues of initial tasks of qPrior heuristic.
Therefore, the preemption used by qPrior algorithm impacts the total execution
time of an integration process, if the preemption is large, the algorithm spends
more time in execution of the initial tasks by threads, since the size of queues of
initial tasks tends to be bigger. On the other hand, if the preemption is too small,
the algorithm can spend more time with the exchange of queues. It is a challenge
for the software engineer to find the ideal preemption, i.e., the optimum number
of task instances that must be executed by threads at each polling to a queue.
Thus, the problem can be formulated as:

to determinate the number of tasks included in the preemption for the task
scheduling carried out by the qPrior algorithm, which maximises the number
of messages processed per time unit in the execution of integration processes
under high workloads.
We model this problem as a PSO problem and use this meta-heuristic to find the
optimum preemption for the task scheduling heuristic by qPrior. For our scheduling
problem, a particle represents an execution of an integration process in an
overload situation. The position of a particle is a range for the preemption. Thus,
the particle position is two-dimensional, specified by two coordinates, which are
the minimal and maximal value of the preemption range. In our case, the minimal
value of the preemption range can be at least 1 and the maximal can be at
most the total workload to be processed by the integration process. According to
the guidelines of the literature, it is recommended to use half of the total workload
as maximal value for this range.
The objective function must be linked to the goals of the scheduling problem
because it is used to determine if a potential solution is good enough. The
goal of scheduling is to maximise the number of processed messages per time
unit in the execution of integration processes. In PSO modelling, the value of
the objective function is defined as «maximise», which means maximising the
throughput average related to the execution derived from the position of the particle.
A strategy to define the initial preemption to the algorithm uses to explore
different solutions and achieve the goal of scheduling. This strategy must reflect
the unpredictability of the possible paths that a message flows in the execution
of an integration process. So, it is necessary to provide enough options for PSO
to produce a optimum particle position (solution). If the range is vast, then the
search space explored by PSO is also huge, hence the algorithm may take a long
time to converge and find the near-optimal solution. A strategy to limit the range
of preemption was adopted, based on software engineers expertise in application
integration, to reduce the size of the search space. The algorithm stopping
criterion parameter was set to the number of iterations supported by the memory
capacity of the computer used to execute the PSO. Table 2 summarises the PSO
parameters for a total workload of 2,000,000 messages.

Fig. 3 Experimental protocol

5 Performance evaluation
In this section, we describe the evaluation environment, the supporting tools, and
the general information about execution and data collection related to two qPrioroptimized
performance experiments in Sects. 5.3 and 5.4. The former evaluates
PSO optimization and the importance of choice of the proper preemption. The
latter compares qPrior-optimized with FIFO heuristic.
The experiments followed a protocol based on [7, 30, 57], with procedures
for controlled experiments in the field of software engineering and its steps are
«Definition», «Planning», «Execution», and «Results». «Definition» is the step of
main decisions regarding the experiment. «Planning» is the step to the organisation
of elements needed to experiment. «Execution» is the step that detail procedures
of the experiment. «Results» is the step of present and analysis of the
results of the experiment. These steps and their respective activities are shown in
Fig. 3 and, in following, detail them.
Definition
• Research questions and hypotheses. Indication of the null hypotheses that are
going to be confirmed or refused by the experiments.
• Independent and dependent variables. Indication of the variables to be measured
and which will allow further comparison.
Planning
• Environment. Presentation of technical information about the hardware in which
the experiment is performed.
• Tools. Presentation of technical information about software that support the conducting
of the experiment.
Execution
• Procedure. Description of the scenarios of the experiment and statistical procedure

for analysis of results are described.
• Data collection. Indication of how data will be collected for the variables in the
experiments.
Results
• Presentation. Tables and charts show the results of the metrics collected in the
experiments.
• Discussion and comparison. Argumentation regarding the results to respond to
the research question and confirm or refute the hypotheses.
• Threats to validity. Description and evaluation of the factors that could influence
the results of the experiment and the strategies to mitigate these threats.

5.1 Threats to validity
In this section, we evaluated the factors that can influence the results of the experiments
and how we tried to mitigate them. These factors are threats to validity present
in any empirical research [15, 57]. Four types of threats to validity are discussed
here, they are: constructor validity, conclusion validity, internal validity, and external
validity.
Constructor validity discusses whether the planning and execution of this
research are well adequate to answer the research question. We planned the experiments
according to procedures from empirical software engineering [7, 30, 57].
First, we defined our research questions, formulated our hypotheses, and defined
the independent and dependent variables. We also provided information about the
execution environment, supporting tools, execution, and data collection. Then, we
performed the experiments in different scenarios and used statistical techniques to
evaluate the results.
As reported by [57], conclusion validity is concerned with issues that affect the
ability to draw the correct conclusion about relations between the treatment and the
outcome of an experiment. To assure that the actual outcome observed in our experiment
is related to the used heuristics and that there was a significant difference
amongst them, we used statistical techniques such as ANOVA, Scott & Knott, and
Regression analysis.
Internal validity aims to ensure that the treatment caused the outcome, mitigating
effects of other uncertain factors or not measured [18]. Instrumentation and source
of noise are possible threats. We experimented with the same machine, which was
on security mode, with minimal features and disconnected from the Internet during
the executions to minimise interference in the execution time of the experiments.
We built our algorithms in Java, so, the first executions of codes are slower, and it
is advisable to let the virtual machine eventually perform code optimisation [41].
Then, first execution was to warm up the Java virtual machine and so dropped. Additionally,
the researchers accurately inspected the procedures and used statistical tests
to validate the measures.
External validity focuses on the generalisation of the results outside the scope
of our article [18]. This research is generalized for integration platforms that adopt
the integration patterns by [29], the style Pipes-and-Filters, and task-based execution
model. We reported this article following a practical guideline [57], so that exact
repetition is possible, required by scientific methods. The experiments are valid to

test other parameters, such as integration processes, message arrival rate, simulation
duration.

5.3 Evaluation of the Preemption
In this experiment, we compared the performance of executions of an integration
process using the heuristic qPrior, varying the preemption. The goal is to verify if
the preemption impacts on the performance of executions and if the PSO meta-heuristic
found the near-optimal preemption for qPrior.

5.3.1 Research question and hypothesis
This experiment aims to answer the following research question:
RQ: Does the performance of the executions of integration processes improve
when the qPrior heuristic uses an optimal preemption?
Our hypothesis to this research question is that:
H: The qPrior heuristic improves the performance of the executions of integration
processes when it uses an optimal preemption since, the PSO algorithm can
find the optimal or near-optimal, preemption.

5.3.2 Variables
The independent variables controlled in the experiment are:

Integration process. The conceptual model of the integration process taken as
input. The model tested for this variable was Coffee case study.
Workload. The number of inbound messages. The value tested for this variable
was 2,000,000 msg.
Initial workload. The initial number of inbound messages. The value tested for
this variable was 1000 msg.
Rate of inbound messages. The number of inbound messages added periodically
to the integration process. The value tested for this variable was 1000 msg.
Preemption. Number of tasks executed at each time queue checking. The values
tested for this variable were 100, 500, 1000, 10,000, 25,000, 50,000, 75,000,
100,000, 500,000, 1,000,000, 1,500,000, and 2,000,000 tasks.

The dependent variable measured in the experiment is:
Throughput. The number of processed messages by time unit.

5.3.3 Execution and data collection
The experiment was conducted using an java simulator, which simulates the execution
of the case studies aforementioned. The simulation starts with a workload of
1000 msg and receives 1000 msg every 100 executions of tasks. We set the maximal
total workload to 2,000,000 msg and the maximal time of duration for the simulation
to 60s. Thus, the simulator stops the generation of messages when it reaches
this maximal number of messages and stops running after 60s. Then, the simulator
stores the preemption and throughput in a text file. After we handled and statistically
analysed this information. We tested the execution using 12 different sizes for
preemption. For each one of them, we repeated 25 times the execution of the qPrior
heuristic, resulting in 300 scenarios, summarized in Table 3.

We tested the PSO algorithm with the range for search space [50,000; 55,000].
For our case study, the best throughput was 30,528 msg/s, found the near-optimal
preemption equals to 50,000 tasks, and the execution time of PSO algorithm took
7203 s. The output of the PSO algorithm is shown in Table 4.

5.3.4 Results
The average throughput obtained in the 25 repetitions of the simulation for every
value of the preemption is shown in Fig. 4, where the x-axis represents preemption,
and the y-axis represents the average throughput in messages per seconds (msg/s).

Table 3 Scenarios for preemption evaluation

Table 4 Output of PSO algorithm

Fig. 4 Average throughput regarding preemption (with 95% confidence interval)

In this figure, we outline the values in which occurs the maximal throughput:
32,672 msg/s using a preemption of 50,000 tasks and 32,659 msg/s using a preemption
of 1,500,000 tasks.
The analysis of throughput variance of execution of the Coffee case study under a
workload of 2,000,000 msg is shown in Table 5, with 95% confidence interval. The
average square of the throughput was 3,374,239 for the preemption and 163,458 for
error. The overall average was equal to 32,148 msg, and the coefficient of variation
was 1.25%. The Scott & Knott test of the throughput, with an error level of 5%, is
present in Tables 6. First column represents the preemption and the average of the
throughput is represented in the second column. There were four groups: «a», «b»,

«c» and «d». Group «a» refers to the preemption with the highest average of the
throughput, group «b» refers to the preemption with the second-highest, group «c»
refers to the preemption with the third-highest, and group «d» refers to the preemption
with the lowest average of the throughput. The preemptions of 50,000 and
1,500,000 tasks were in group «a»with the highest average of of throughput. The
preemptions of 100, 10,000, 25,000, 100,000, 1,000,000, and 2,000,000 tasks were
in group «b». The preemptions of 1000, 75,000, and 500,000 tasks were in group
«c». The preemption of 500 tasks was in group «d» with the lowest average of of
Throughput.

Table 5 Variance analysis of the throughput for preemption evaluation

Table 6 Scott and Knott test for preemption

5.3.5 Discussion
In the experiment with the simulations of execution of the integration processes confirmed
the value for near-optimal preemption found by the PSO algorithm. The best
average throughput was 32,671 msg/s using a preemption of 50,000 tasks. The worst
case was the throughput of 31,298 msg/s, using a preemption of 500 tasks. A parable
of concave down, in the interval between 25,000 and 75,000 msg, represents the
behaviour of the throughput as a function of the preemption. This parable confirms
that there is a preemption in which the throughput is maximal. The PSO algorithm
found the near-optimal preemption, but its response time was 2,001 minutes, far
superior to the average execution time of the simulation of the integration process
(60 s). So, this meta-heuristic must be used as a preliminary method, in cases of
high workloads, in which the interval of values for preemption is larger since choosing
the proper preemption is a challenge.

The use of different preemption generates a significant difference in the average
of the throughput, cf. Table 5, so the search for a proper preemption is justified. The
low values for the coefficients of variation indicate the adequacy and reliability of
the experiment. In the Scott & Knott averages comparison test, there were three different
groups of throughputs, cf. Table 6. A statistical difference between the three
groups of preemption was found, but there was no difference between the preemptions
of the same group. In group «a», which contain the best averages of throughput,
it is possible to opt by any preemption to obtain the same statistic result for the
throughput.
The performance of the qPrior was also evaluated using different preemption,
including those found by PSO algorithm. First, we verified if there was a significant
difference in the performance of the qPrior heuristic, using different preemptions.
The performance metric used was the throughput, and the statistic test was
the ANOVA. Then, we use Scott & Knoot test to group the similar ranges, in which
there was no statistic difference between the use of the ranges belonged to the same
group.

5.4 Evaluation of qPrior
In this experiment, we compared the performance of executions of the integration
processses by the heuristics FIFO and qPrior, varying the workload. The goal is to
verify the impact for workload in performance of executions.

5.4.1 Research question and hypothesis
This experiment aims to answer the following research question:
RQ: What is the performance behaviour of the executions of integration processes
using qPrior when the workload increases?
Our hypothesis to this research question is that:
H: The performance of the executions of integration processes is better when
using qPrior than when using FIFO when the workload increases.

5.4.2 Variables
The independent variables controlled in the execution of the algorithm are:
Heuristic. The heuristic used to task scheduling. The heuristics tested were: FIFO
and qPrior.
Integration process. The conceptual model of the integration process. The model
tested was the Coffee case study.
Workload. The number of inbound messages. The value tested for this variable
were 1000, 10,000, 100,000, 500,000, 1,000,000, 1,500,000, 2,000,000, and
2,500,000 msg.
Initial workload. The initial number of inbound messages. The value tested for
this variable was 1000 msg.
Rate of inbound messages. The number of inbound messages added periodically
to the integration process. The value tested for this variable was 1000 msg.
Preemption. The number of task executed at each time queue checking. The values
tested for this variable was 50,000 tasks.
The dependent variable measured in the execution of the algorithm is:
Throughput. The number of processed messages by time unit.

Table 7 Scenarios for comparison of heuristics regarding workloads

5.4.3 Execution and data collection
The experiment was conducted using a java simulator, which simulates the execution
of the case studies aforementioned. The simulation starts with a workload of
1000 msg and receives 1000 inbound messages every 100 executions of tasks. The
execution time of each task varies within an interval, in seconds, according to the
profile of the integration process. For the qPrior heuristic, the preemption used,
number of tasks performed at a time, was set to 50,000 tasks. We set the maximal
number of inbound messages and the maximal time of duration for the simulation
to 60 s. Thus, the simulator stops the generation of messages when it reaches this
maximal number of messages and stops the running after 60 s. Then, the simulator
stores the workload and the throughput in a text file. After, we handled and statistically
analysed these metrics. We tested the execution using 8 different workloads
and 1 case study. For each one of them, we repeated 25 times the execution using
qPrior and 25 times using FIFO, resulting in 400 scenarios, summarized in Table 7.

Fig. 5 Average throughput—low workload (with 95% confidence interval)

Fig. 6 Average throughput—high workload (with 95% confidence interval)

5.4.4 Results
The average values of dependent variables obtained in the 25 repetitions of the simulation
for every value of the workload are shown in scatter charts. The x-axis represents
the workload for every heuristic. The y-axis represents the average throughput

measured. We consider 1000, 10,000, 100,000, and 500,000 inbound messages as
low workloads and 1,000,000, 1,500,000, 2,000,000, and 2,500,000 inbound messages
as high workloads. Figure 5 represents the average throughput with low and
Fig. 5 high workloads.
In the simulation with a workload of 1000 msg, the average throughput achieved,
in messages per seconds, was 24,554 msg/s when using FIFO and 29,116 msg/s
when using qPrior. In the simulation with 10,000 msg, the average throughput
achieved was 27,494 msg/s when using FIFO and 33,393 msg/s when using
qPrior. In the simulation with 100,000 msg, the average throughput achieved was
27,078 msg/s when using FIFO and 34,090 msg/s when using qPrior. Then, in the
simulation with 500,000 msg, the average throughput achieved was 25,365 msg/s
when using FIFO and 32,937 msg/s when using qPrior.
In the simulation with a workload of 1,000,000 msg, the average throughput
achieved, in messages per seconds, was 24,034 msg/s when using FIFO and
31,700 msg/s when using qPrior. In the simulation with 1,500,000 msg, the average
throughput achieved was 2,334 msg/s when using FIFO and 31,744 msg/s when
using qPrior. In the simulation with 2,000,000 msg, the average throughput achieved
was 11 msg/s when using FIFO and 31,855 msg/s when using qPrior. Then, in the
simulation with 2,500,000 msg, the average throughput achieved was 0 msg/s when
using FIFO and 31,280 msg/s when using qPrior (Fig. 6).

Table 8 ANOVA test

Table 9 Scott & Knott test

We used the ANOVA test to verify the influence of random factors in the measurements
of the dependent variables. The ANOVA test was applied for the scenarios
in which the averages of the dependent variable, for both heuristics, were different
of zero. The workload of 2,000,000 msg for CS and the analysis of variance
is shown in Table 8, with 95% confidence interval. Since there were statistical differences
between the results with different scenarios, we follow the comparison of
averages of the dependent variable by Scott & Knott test. The results of the Scott &
Knoot test is shown in Table 9. In this table, the heuristics are in the first column.

For the dependent variable, there is a column for the average and a column for the
group of Scott & Knott. Two groups were found: «a» and «b». Group «a» refers to
the heuristic with the highest average of throughput and group «b» refers to the heuristic
with the lowest.
The analysis of variance was applied for the workload of 2,000,000 msg, cf.
Table 8. In the analysis of variance of the throughput, the average square was
12,675,555,787 for the heuristics and 45,605 for error. The overall average was
equal to 15,933 msg/s, and the coefficient of variation was 1.34%.
The results of the Scott & Knoot test for workload of 2,000,000 msg are shown in
Table 9. Regarding throughout, FIFO was in group «b» with the lowest average of
11 msg/s and qPrior in group «a» with the highest average of 31,855 msg/s.

5.4.5 Discussion
In the simulation of the execution of the Coffee case study with workload till up
1,000,000 msg, all messages were successfully processed when using FIFO and
when using qPrior heuristic. No overload was observed. However, in execution
with a workload higher than 1,500,000 msg, the number of remained messages was
much higher than the number of processed messages when using FIFO. It allow
us to conclude that the integration process was overload when using this heuristic,
but qPrior had better result than FIFO. In executions with a workload higher than
2,000,000 msg, less than 1% of inbound messages were processed when using FIFO,
whereas when using qPrior, about 96% of inbound messages were processed. In
executions with a workload higher than 2,500,000 msg, no message was processed
when using FIFO in the elapsed time of the simulation, indicating that there was a
threshold from which this heuristic does not process messages in a given elapsed
time; whereas when using qPrior, about 75% of inbound messages were processed.
As the comparison of the two heuristics running the experiment over a period of
time and measure the work done on the said, considering a continuous flow of messages
arriving in the integration process. The performance of the FIFO heuristic
degrades as the message arrival rate becomes higher than the system’s capacity to
process them.
The averages of the throughput in execution of integration processes were higher
when using qPrior than FIFO. ANOVA test confirmed that the use of different heuristics
generates a significant difference in the throughput, cf. Table 8. The coefficient
of variation was reduced, indicating that the experiment is adequate and reliable.
The Scott & Knott test showed that the best performance was achieved with the
qPrior heuristic, in the execution of integration processes under an overload situation.
This test confirmed that there was a statistically significant difference between
the heuristics, cf. Table 9.

6 Conclusion
The challenge of enterprises to integrate their applications increases with large volumes
of data from the cloud and with mobile applications. In face of that, tools for
integration processes like integration platforms need to be improved. Integration
platforms are tools that model and implement integration processes. An integration
process is a computational program that allows applications to exchange data and
functionalities. It can be represented by a workflow composed of tasks and communication

channels. Each task of an integration process carries out a specific computational
operation that is executed by threads present in the runtime system of
integration platforms.
This article contributes to the adaptation of integration platforms in the context
of high volumes of data, by proposing a new task scheduling heuristic of integration
processes. The qPrior heuristic separates tasks that await for available threads
in multiple prioritized queues; the threads select the task to execute according to
the priority of the queue. Every time a thread verifies a queue, it selects a predefined
number of tasks to execute. We used the Particle Swarm Optimisation (PSO)
meta-heuristic to find the near-optimal number of tasks that must be selected to
reach better performance in the execution of integration processes. We implemented
qPrior heuristic and simulated the execution of a classic integration process under
high workloads. After that, we compared it with FIFO heuristic, which is traditionally
used in large part of the open-source integration platforms. The results from
executions showed that qPrior provides higher throughput than FIFO in integration
processes overload cases. Those results were statistically analysed, and they showed
there was significant improvement in the integration process execution performance
when the task scheduling was performed by qPrior heuristic.
Regarding the research questions from the experiments:
• RQ1: The proper choice for the number of tasks, which must be executed at each
thread checking, impacts positively the performance of the task scheduling by
qPrior heuristic. This number can be found by PSO meta-heuristic.
• RQ2: The qPrior algorithm provided much higher performance over throughput
than FIFO for the execution of integration processes under overload.

Appendix 1: Additional metrics
The averages of processed messages in the execution of the Coffee shop integration
process is our case study (CS) are shown in Figs. 7 and 8. The averages of remained
messages in the execution of the CS are shown in Figs. 9 and 10. The makespan in
the execution of the CS is shown in Figs. 11 and 12.
As for the number of messages processed, the FIFO heuristic performance
degrades from 1,500,000 messages when it only processes approximately 35% of
the total messages (Fig. 8). Figure 10 shows that 1,359,833 messages remained
accumulated in the integration process, without processing, in the case of the FIFO
heuristic. Figure 12 shows that from a workload of 1,500,000 messages arriving in
a continuous flow in the integration process, the heuristic consumes all the simulation
time and cannot fully process the messages that entered the integration process.
The most important metric is the throughput, which shows the processing rate
of the heuristics, cf. Fig. 6. For this metric, in all workloads, the qPrior heuristic
performed better than FIFO, and with the workload of 1,500,000 messages, FIFO’s
performance was only 7% of the performance obtained by qPrior. Thus, the qPrior
heuristic is an option for scenarios of low workloads (<1,500,000 messages) and
which continues to perform well for high volumes of messages (≥ 1, 500, 000
messages). At the same time, FIFO is only an option for low workloads and still
under-performing.

Fig. 7 Average processed messages—low workload

Fig. 8 Average processed messages—high workload

Fig. 9 Average remained messages—low workload

Fig. 10 Average remained messages—high workload

Fig. 11 Average makespan—low workload

Fig. 12 Average makespan—high workload

References
1. Abdulhamid S, Shafie AL, Idris I (2014) Tasks scheduling technique using league
championship algorithm for Makespan minimization in IaaS cloud. J Eng Appl Sci 9(1):2528–
2533
2. Alexander C, Ishikawa S, Silvertein M (1977) A pattern language: towns, buildings,
construction. Oxford University Press, Oxford
3. Alkhanak EN, Lee SP, Rezaei R, Parizi RM (2016) Cost optimization approaches for
scientific workflow scheduling in cloud and grid computing: a review, classifications, and
open issues. J Syst Softw 113:1–26
4. AlRashidi MR, El-Hawary ME (2009) A survey of particle swarm optimization applications
in electric power systems. IEEE Trans Evolut Comput 13(4):913–918
5. Anwar N, Deng H (2018) Elastic scheduling of scientific workflows under deadline
constraints in cloud computing environments. Future Int 10(5):1–23
6. Aron R, Chana I, Abraham A (2015) A hyper-heuristic approach for resource provisioning-
based scheduling in grid environment. J Supercomput 71(4):1427–1450
7. Basili VR, Rombach D, Kitchenham KSB, Selby D, Pfahl RW (2007) Empirical software
engineering issues. Springer, Berlin
8. Basu S, Karuppiah M, Selvakumar K, Li KC, Islam SKH, Hassan MM, Bhuiyan MZA (2018) An
intelligentcognitive model of task scheduling for IoT applications in cloud computing
environment. Future Gener Comput Syst 88:254–261
9. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K (2005) Task scheduling
strategies for workflow-based applications in grids. Int Symp Cluster Comput Grid 2:759–767
10. Boehm M, Habich D, Preissler S, Lehner W, Wloka U (2011) Cost-based vectorization of
instancebased integration processes. Inf Syst 36(1):3–29
11. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In:
Swarm intelligence Symposium, pp 120–127
12. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Gener Comput Syst 25(6):599–616
13. Chhabra A, Oshin (2018) Hybrid psacga algorithm for job scheduling to minimize
makespan in heterogeneous grids. In: Industry Interactive Innovations in Science,
Engineering and Technology, pp 107–120
14. Cruz CD (2006) Programa genes: estatística experimental e matrizes. Editora
Universidade Federal de Viçosa
15. Cruzes DS, Ben Othman L (2017) Threats to validity in empirical software security
research. In: Empirical Research for Sof. Security, pp 295–320
16. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE
International Joint Conference on Neural Networks, pp 1942–1948
17. Fan K, Zhai Y, Li X, Wang M (2018) Review and classification of hybrid shop scheduling.
Prod Eng 12(5):597–609
18. Feldt R, Magazinius A (2010) Validity threats in empirical software engineering research-
an initial survey. In: International Conference on Software Engineering and Knowledge
Engineering, pp 374–379
19. Frantz RZ (2012) Enterprise application integration: an easy-to-maintain model-driven
engineering approach. PhD thesis, University of Seville

20. Frantz RZ, Corchuelo R, Molina-Jiménez C (2012) A proposal to detect errors in
enterprise application integration solutions. J Syst Softw 85(3):480–497
21. Frantz RZ, Corchuelo R, Roos-Frantz F (2016) On the design of a maintainable software
development kit to implement integration solutions. J Syst Softw 111:89–104
22. Freire DL, Frantz RZ, Roos-Frantz F, Sawicki S (2019) Survey on the run-time systems of
enterprise application integration platforms focusing on performance. Softw Pract Exp
49(3):341–360
23. Ghafouri R, Movaghar A, Mohsenzadeh M (2019) A budget constrained scheduling
algorithm for executing workflow application in infrastructure as a service clouds. Peer-to-
Peer Netw Appl 12(1):241–268
24. Ghosh TK, Das S (2018) Job scheduling in computational grid using a hybrid algorithm
based on particle swarm optimization and extremal optimization. J Inf Technol Res
11(4):72–86
25. Guo F, Yu L, Tian S, Yu J (2015) A workflow task scheduling algorithm based on the
resources’ fuzzy clustering in cloud computing environment. Int J Commun Syst 28(6):1053–
1067
26. Harman M, Lakhotia K, Singer J, White DR, Yoo S (2013) Cloud engineering is search
based software engineering too. J Syst Softw 86(9):2225–2241
27. Hilman MH, Rodriguez MA, Buyya R (2018) Multiple workflows scheduling in multi-
tenant distributed systems: a taxonomy and future directions. ACM Comput Surv 1(1):1–33
28. Hohpe G (2005) Your coffee shop doesn’t use two-phase commit [asynchronous
messaging architecture]. IEEE Softw 22(2):64–66
29. Hohpe G, Woolf B (2004) Enterprise integration patterns: designing, building, and
deploying messaging solutions. Addison-Wesley Professional, Boston
30. Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experiments in software
engineering. In: International Symposium on Empirical Software Engineering, pp 95–104
31. Jian C, Tao M, Wang Y (2014) A particle swarm optimisation algorithm for cloud-oriented
workflow scheduling based on reliability. Int J Comput Appl Technol 50(3–4):220–225
32. Konsek H (2013) Instant Apache ServiceMix How-to. Packt Publishing
33. Kuhn R, Hanafee B, Allen J (2017) Reactive design patterns. Manning Publications
Company
34. Lin SW, Ying KC (2019) Makespan optimization in a no-wait flowline manufacturing cell
with sequence-dependent family setup times. Comput Ind Eng 128(1):1–7
35. Linthicum DS (2000) Enterprise application integration. Addison-Wesley Professional,
Boston
36. Linthicum DS (2017) Cloud computing changes data integration forever: what’s needed
right now. IEEE Cloud Comput 4(3):50–53
37. Manasrah AM, Ali HB (2018) Workflow scheduling using hybrid GA-PSO algorithm in
cloud computing. Wirel Commun Mobile Comput 2018:1–16
38. Manikas K (2016) Revisiting software ecosystems research: a longitudinal literature
study. J Syst Softw 117:84–103
39. Pereira JL, o Varajão J, (2019) The temporal dimension of business processes:
requirements and challenges. Int J Comput Appl Technol 59(1):74–81
40. Pietri I, Chronis Y, Ioannidis Y (2019) Fairness in dataflow scheduling in the cloud. Inf Syst
83:118–125
41. Pinto G, Castor F, Liu YD (2014) Understanding energy behaviors of thread management
constructs. ACM SIGPLAN Not 49:345–360

42. Qureshi K, Shah SMH, Manuel P (2011) Empirical performance evaluation of schedulers
for cluster of workstations. Cluster Comput 14(2):101–113
43. Ritter D, May N, Rinderle-Ma S (2017) Patterns for emerging application integration
scenarios: a survey. Inf Syst 67:36–57
44. Ritter D, Rinderle-Ma S, Montali M, Rivkin A, Sinha A (2018) Formalizing application
integration patterns. In: International Enterprise Distributed Object Computing Conference,
pp 11–20
45. Ritter D, Rinderle-Ma S, Montali M, Rivkin A (2019) Formal foundations for responsible
application integration. Inf Syst, p 101439
46. Rodriguez MA, Buyya R (2014) Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds. Trans Cloud Comput 2(2):222–235
47. Rodriguez MA, Buyya R (2018) Scheduling dynamic workloads in multi-tenant scientific
workflow as a service platforms. Future Gener Comput Syst 79:739–750
48. Russell J, Cohn R (2012) Jitterbit integration server. Book on Demand
49. Saifullah A, Li J, Agrawal K, Lu C, Gill C (2013) Multi-core real-time scheduling for
generalized parallel task models. Real-Time Syst 49(4):404–435
50. Shoukry A, Khader J, Gani S (2019) Improving business process and functionality using
IoT based E3-value business model. Electron Mark 1:1–10
51. Stavrinides GL, Karatza HD (2018) A hybrid approach to scheduling real-time IoT
workflows in fog and cloud environments. Multimed Tools Appl 78:24639–24655
52. Sun D, Yan H, Gao S, Liu X, Buyya R (2018) Rethinking elastic online scheduling of big
data streaming applications over high-velocity continuous data streams. J Supercomput
74(2):615–636
53. Surhone LM, Timpledon MT, Marseken SF (2010) Petals ESB. Betascript Publishing
54. Thakur V, Kumar S (2018) A pragmatic study and analysis of load balancing techniques in
parallel computing. In: Information and Decision Sciences, pp 447–45400
55. Verma A, Kaushal S (2015) Cost minimized pso based workflow scheduling plan for cloud
computing. Int J Inf Technol Comput Sci 7(8):37–43
56. Wang C, Zhang L, Liu C (2018) Adaptive scheduling method for dynamic robotic cell
based on pattern classification algorithm. Int J Model Simul Sci Comput 9(5):1850040–1–
1850040–18
57. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation
in soft. engineering. Springer, Berlin
58. Wood DC, Forman EH (1971) Throughput measurement using a synthetic job stream. In:
Fall Joint Computer Conference, pp 51–56
59. Xie Y, Zhu Y, Wang Y, Cheng Y, Xu R, Sani AS, Yuan D, Yang Y (2019) A novel directional
and non-local-convergent particle swarm optimization based workflow scheduling in cloud-
edge environment. Future Gener Comput Syst 97:36–378

