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Abstract 

 
Jackson queuing networks have a lot of practical applications, mainly in services and technologic devices. For the 

first case, an example are the healthcare networks and, for the second, the computation and telecommunications 

networks. Evidently the time that a customer - a person, a job, a message … – spends in this kind of systems, its 

sojourn time1, is an important measure of its performance, among others. In this work, the practical statistical 

known results about the sojourn time of a customer, in a Jackson network, distribution are collected and presented. 

And an emphasis is set on the numerical methods applicable to compute the distribution function and the moments.   

 

Keywords: Jackson networks; sojourn time; network flow equations; randomization procedure. 

 

1 Introduction 

 
The aim of this work is to present some problems and results that arise in the study of the customers sojourn times 

in Jackson networks of queues. These networks have many applications, namely in the modelling of healthcare, 

computation, and telecommunications networks. And a customer sojourn time, in this kind of system, is evidently 

an important element to be considered in its performance evaluation. Maybe the most important. 

 

The network model to be considered in this paper is briefly described in section 2. Some essential results are there 

mentioned. The main objective of section 3 is the presentation of network flow equations, formula (3.2) that, in 

some situations allows the sojourn times moments exact computation. In section 4 it is given a numerical method 

for the sojourn times distribution function and any order moments computation, adequate to any Jackson network. 

 

2 Results and Examples 

 
Along this work, the sojourn times in a class of Markovian networks of queues, introduced initially by Jackson, 

see [1,2], will be studied. They are called Jackson networks and have only one class of customers. They are 

composed of 𝐽 nodes numbered1,2,…, 𝐽. It is usual to put 𝑈 = {1,2, … , 𝐽}. 
 

In each node there is only one server, a queue discipline first-come-first-served” (FCFS) and an infinite waiting 

capacity. 

 

They are open networks since any customer may enter or abandon it. 

The exogenous arrivals-that is: from the outside of the network-process at node 𝑗 is a Poisson process (that is: the 

customers arrive one each time, and the interarrival times are independent and identically exponentially 

distributed) at rate 𝑣𝑗 , 𝑗 ∈ 𝑈, independent of the exogenous arrivals processes to the other nodes. It is stated that 

𝜈 = ∑ 𝑣𝑗
𝐽
𝑗=1 . 

 

 
1 The sojourn time of a customer in a node is the sum of its waiting time, that is: the time the customer is in queue waiting to be served, plus 

its service time. Note, for curiosity, that in infinite servers’ queues, which practical implementation is done guaranteeing that upon its arrival 
at the system a customer finds immediately an available server, the service time is the sojourn time.   
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The service times at node 𝑗  are independent and identically distributed, having exponential distribution with 

parameter 𝜇𝑗, 𝑗 ∈ 𝑈, and independent fr om the other nodes service times. 

 

After the completion of a service at node 𝑗, a customer is immediately directed to node 𝑙 with probability 𝑝𝑗𝑙 , or 

abandons the network with probability 𝑞𝑗 = 1 − ∑ 𝑝𝑗𝑙
𝐽
𝑙=1 , 𝑗 ∈ 𝑈. These probabilities are not influenced by the 

movements of the other customers in the network. The 𝑝𝑗𝑙   matrix is called 𝑃 . The matrix 𝑃  is called the 

commutation matrix and the 𝑝𝑗𝑙  commutation probabilities. 

 

The total arrivals rate, exogenous and endogenous-that is: from the other nodes of the network- at node 𝑗, 𝜃𝑗 

satisfies the network traffic equations: 

 

𝜃𝑗 = 𝜈𝑗 + ∑ 𝜃𝑙
𝐽
𝑙=1 𝑝𝑙𝑗 , 𝑗 = 1,2, …, 𝐽                                                                                                       (2.1). 

 

The state of the network at instant 𝑡 is given by 𝑁(𝑡) = [𝑁1(𝑡), … , 𝑁𝐽(𝑡)], where 𝑁𝑗(𝑡) is the number of customers 

at node 𝑗 in instant 𝑡, 𝑗 = 1,2, …, J. 𝑁 is the population process. If the traffic intensity 𝜌𝑗 =
𝜃𝑗

𝜇𝑗
< 1, 𝑗 = 1,2, …, 𝐽 

the process 𝑁 = {𝑁(𝑡)} possesses stationary, or equilibrium, distribution (when in equilibrium, the population 

process distribution does not change. In Jackson networks, this equilibrium distribution coincides with the 

distribution obtained by making 𝑡 converge to infinite, called the limit distribution), see for instance [3]: 

 

                                                             (2.2). 

 

The distribution (2.2) is of product form kind, see for instance [4,5], that is a very relevant concept in networks of 

queues population process equilibrium distributions. 

 

Calling 𝑆𝑗 ,𝑊𝑗 and 𝑋𝑗 the sojourn, waiting and service, respectively, times of a customer at node 𝑗 

 

𝑆𝑗 = 𝑊𝑗 + 𝑋𝑗                                                                                                                                         (2.3). 

 

The Jackson networks sojourn times considered in this paper are those of typical customers that, arriving at the 

network, find the population process in an equilibrium state. 

 

Call 𝑆 the sojourn time in the network, that is: the time that goes between the arrival at the network and the 

departure of one ofthose customers from it. If in its path it navigates the nodes 1,2,…, 𝑙, 𝑆 = 𝑆1 + 𝑆2 + +𝑆𝑙 . 
 

To study the sojourn time, the following notions are important: 

 

• A network has feedback” if a customer may come back to the same node after the completion of its service, 

immediately or in a future moment, 

• A network without feedback” is an acyclic” one, 

• A network has “overtaking” if a customer can overtake” another one taking an alternative path between 

two nodes. 

 

Now, three examples of typical Jackson networks usually considered in the study of sojourn times are presented. 

It may be said that more complex Jackson networks are integrated by networks fulfilling the properties of these 

examples, in a modular way. 

 

 

 

 

2.1 Simple queues series 
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Indeed, this Jackson network is a series of 𝑀|𝑀|1 queues. According to Kendal’s notation here followed, the first 

𝑀 means that customer arrivals at the node follow a Poisson process, the second 𝑀 that the length of the service 

time possesses an exponential distribution, and the 1 that there is only one server. 

 

For this Jackson network 

 

𝑝𝑗𝑙 = {
1, 𝑖𝑓 𝑙 = 𝑗 + 1, 𝑗 = 1,2, … , 𝐽 − 1
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑣1 = 𝑣, 𝑣𝑗 = 0, 𝑗 = 2,… , 𝐽 and 𝜃𝑗 = 𝑣, 𝑗 = 1,2, …, 𝐽. Fig. 1 is a graphical representation of a simple queue’s series. 

 

 
 

Fig. 1. Simple queues series 

 

Some significant results for the simple queues series are: 

 

- All customers’ flows, in this network, at stationary state, are Poisson processes. It is a consequence of it, 

in stationary state, that the departure process from an 𝑀|𝑀|1 queue is a Poisson process, see for instance 

[6], 

- The sojourn times in the various nodes are independent random variables. In [6] it is presented a 

demonstration of this statement based on the reversibility concept, 

- The sojourn time at node 𝑗 is an exponential random variable with parameter 𝜇𝑗 − 𝑣, 𝑗 = 1,2, … , 𝐽. So, 

if  𝜇𝑗 = 𝜇, 𝑗 = 1,2, … , 𝐽, the total sojourn time in this network is distributed as a 𝐽 order Erlang 

distribution with parameter 𝜇 − 𝑣. This distribution function will be designated 𝐸𝐽,𝜇−𝜐(𝑡) . 

- The waiting times are dependent random variables. See also [6]. 

 

So, the sojourn time study in these networks has no difficulty. The same is not true for the waiting time. 

 

2.2 𝑴|𝑴|𝟏 queue with instantaneous Bernoulli feedback 

 

It is a network with a single node. 𝐽 = 1, 𝑝11 = 𝑝 , 𝑞1 = 1 − 𝑝 and 𝜃 =
𝑉

1−𝑝
 , where 𝜃 = 𝜃1 and 𝑣 = 𝑣1, see  

Fig. 2. 

 

 
 

Fig. 2. 𝑴|𝑴|𝟏 queue with Instantaneous Bernoulli Feedback 

 

It is an 𝑀|𝑀|1  queue in which each customer, when leaving it after being served, returns to the queue with 

probability 𝑝. 
 

Call 𝑆𝑚 the 𝑚𝑡ℎ customer sojourn time in the network. So, if it is served 𝑘 times, 
 

𝑆𝑚 = (𝑡𝑚1
0 − 𝑡𝑚1

𝑎 ) + (𝑡𝑚2
0 − 𝑡𝑚2

𝑖 ) + +(𝑡𝑚𝑘−1
0 − 𝑡𝑚𝑘−1

𝑖 ) + (𝑡𝑚𝑘
𝑑 − 𝑡𝑚𝑘

𝑖 )                                           (2.4), 

Where 
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- 𝑡𝑚𝑙
0 − 𝑡𝑚𝑙

𝑖  is the time that the customer spends passing by the service system in the lth time, given by the 

difference between the lth output (0) instant from the server and the one of the lth junction ( 𝑖‐input) to 

the queue, 

- 𝑡𝑚1
0 − 𝑡𝑚1

𝑎  is the time that the customer spends passing by the service system for the first time, given by 

the difference between the first output (0) instant from the server and the one of the arrival (a) to the 

queue, 

- 𝑡𝑚𝑘
𝑑 − 𝑡𝑚𝑘

𝑖  is the time that the customer spends passing by the service system for the last time, given by 

the difference between the departure (d) instant from the network and the one of the 𝑘𝑡ℎ junction (i) to 

the queue. 

 

Note that 𝐾, the number of times that the customer passes by the server, is a random variable and 𝑃(𝐾 = 𝑘) =
(1 − 𝑝)𝑝𝑘−1, 𝑘 = 1,2, …. 
 

The set {(𝑡𝑚𝑙
0 − 𝑡𝑚𝑙

𝑖 ): 𝑙 = 2,3, … } is not a sequence of independent random variables, see [3] 

 

So, it is not possible to make use of the usual statement to sum independent random variables. But it is possible 

to get an expression to 𝑃(𝑆𝑚 ≤ 𝑡) that requires the 𝑘 steps transition probabilities computation for the delayed 

Markovian renewal process: 

 

{(𝑁(𝑡𝑖 − 0)(𝑡𝑙
𝑜 − 𝑡𝑙

𝑖)}𝑙 = 01,2, … }                                                                                                     (2.5) 

 

conditioning to the number of times that the customer returns to the queue. Calling that transition probabilities 

matrix 𝑄𝑖
𝑘(𝑡) , see still [3], 

 

𝑃(𝑆𝑚 ≤ 𝑡) = ∑ 𝜋∞
𝑘=1 𝑄𝑖

𝑘(𝑡)𝑝(1 − 𝑝)𝑉                                                                                                (2.6) 

 

where 𝜋 is the 𝑁𝑖 (embedded version of 𝑁 in the input instants) stationary distribution, 𝑘 is the number of times 

the customer passes by the server and 𝑉 is a vector which entries are all 1. 

 

So, now, the situation is much more complicated than in the former case owing to the feedback. 

 

2.3 The Jackson three node acyclic network 

 
It is a network with three nodes each one behaving as an 𝑀|𝑀|1 queue, Fig. 3, where 𝑝12 = 𝑝, 𝑝13 = 1 − 𝑝, 𝑝23 =
1, 𝑝𝑗𝑙 = 0 in the other cases, 𝑣1 = 𝑣, 𝑣𝑗 = 0, 𝑗 = 2,3, 𝜃1 = 𝑣, 𝜃2 = 𝑝𝑣 and 𝜃3 = 𝑣. 

 

In equilibrium, all customers’ flows are Poisson process in this network. 

 

 
 

Fig. 3. Jackson three node acyclic network 

 

Consequently, 

 

- The sojourn time at node 𝑗 is a random variable exponentially distributed with parameter 𝜇𝑗 − 𝜃𝑗 , 𝑗 =

1,2,3. 𝑆1 and 𝑆2 are independent random variables as well as 𝑆2 and 𝑆3. 
This result is valid for any Jackson acyclic network: 
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-  Suppose that a customer follows a path r in a Jackson acyclic network with only one server at each node. 

If node j belongs to path r, 𝑆𝑗  is such that fulfils the condition: 

 

𝑃(𝑆𝑗 ≤ 𝑡|𝑡ℎ𝑒 followed path is 𝑟) = 1 − 𝑒−(𝜇𝑗−𝜃𝑗)𝑡 , 𝑡 ≥ 0                                                                 (2.7) 

 

and, if node 𝑗 is the next to the customer after node 𝑙, 𝑆𝑗 and 𝑆𝑙 are independent random variables. 

 

But, 

 

- 𝑆1 and 𝑆3 are dependent random variables: In [7] is stated that, indeed, 𝑆1 and 𝑆3 are positively correlated. 

In [8] it is stated that if 

 

2 (𝑣 + 𝜇1 + 𝜇2 + 𝜇3)(
1

𝑣 + 𝜇1 + 𝜇2 + 𝜇3
(

1

𝜇1 − 𝑣
+

1

𝜇3 − 𝑣
) +

1

(𝜇1 − 𝑣)
2
 

 

+
1

(𝜇3−𝑣)
2)
1

2 < 1                                                                                                                                     (2.8) 

 

and if 

 

 

 
(2.9) 

 

verify both simultaneously it is possible to guarantee that 𝑆1 and 𝑆3 are positively correlated in equilibrium. 

 

Why this happen? One explanation may be the following: 

 

- There are two alternative paths for a customer to go from node 1 to node 3. And a customer that follows 

by node 2 may be overtaken by another one that goes directly from node 1 to node 3. So, a customer, 

when arriving at node 3, may meet there another one that was behind it at node 1 or even that had not 

arrived when it was there. 

- These overtaking customers can delay a certain customer, when it arrives at node 3, for a longer time 

than that if they were not present. The number of these customers depends, partly, on the number of the 

customers that arrive while the customer that is being followed is in node 1, partly owing to the 

supposition of a FCFS discipline. 

- Consequently, the time that a customer waits at node 3 depends on how much time it has waited at node 

1. 

 

Now the complication is due to the overtaking. 
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For a more comprehensive treatment of this type of network, see [9]. For practical applications, see some examples 

in [10]. 

 

3 Network Flow Equations 

 
The objective of this section is to present the so-called network flow equations” for the Jackson networks, that 

allow the deduction of formulae to the computation of sojourn times moments of any order, efficient in some 

situations. 

 

Following the work of [11] call 𝜏𝑗 an arrival instant, endogenous or exogenous, at node 𝑗 and 𝜏𝑗 + 𝑇𝑗  the departure 

instant from the network of the customer that arrived in 𝜏𝑗 , 𝑗 = 1,2, 𝑗, so 

 

𝑇𝑗 is the remaining sojourn time, in the network, for the arrival at node j in the instant 𝜏𝑗 , 𝑗 = 1,2,…, 𝐽. 

 

Call ℎ𝑗 the Laplace transform of the 𝑇𝑗 , 𝑗 = 1,2, 𝐽 distribution. As 𝑁 is a strong Markov process, and the network 

state process “seen by the arrivals” is in equilibrium, the 𝑇𝑗 , 𝑗 = 1,2, 𝐽 and its Laplace transforms are uniquely 

determined. 

 

Dealing with the sojourn time as the lifetime of a Markov process 𝜗  it is possible to show that the Laplace 

transforms ℎ𝑗 , 𝑗 = 1,2, , 𝐽 satisfy an equations system called the “network flow equations”. That is, see [11], 

 

Being 𝐻𝑗 the probability distribution with Laplace transform ℎ𝑗, there is a distribution probability with Laplace 

transform 𝑞𝑗 such as 

 

ℎ𝑗(𝑠) +
𝑠𝑔𝑗(𝑠)

𝜇𝑗−𝜃𝑗
= 𝑞𝑗(𝑠) + ∑ 𝑝𝑗𝑙

j
l=1 ℎ𝑙 (𝑠) ≥ 0 and 𝑗 = 1,2, 𝐽 (3.1). 

 

In Jackson networks without overtaking” the transforms ℎ𝑗 and 𝑔𝑗 are identical for each 𝑗. Given ℎ𝑗 , 𝑗 = 1,2, 𝐽 the 

transforms 𝑔𝑗 , 𝑗 = 1,2,  𝐽  are uniquely determined by (3.1). The converse is also true since 𝐼 − 𝑃 , being 𝐼  the 

identity matrix, is invertible. 

 

After (3.1), by successive derivations it is obtained: 

 

3.1 Network flow equations 

 
For 𝑗 = 1,2, 𝐽 and 𝑟 = 1,2, … 

 

𝐸[𝑇𝑗
𝑟] = 𝑟! (𝜇𝑗 − 𝜃𝑗)

−𝑟 +∑𝑝𝑗𝑙

𝐽

𝑙=1

𝐸[𝑇𝑙
𝑟] 

 

+∑ 𝑝𝑗𝑙
𝐽
𝑙=1 ∑

𝑟!

𝑛!(𝑟−𝑛)!

𝑟−1
𝑛=1 𝜇𝑗

−𝑛𝐸[𝑇𝑙
𝑟−𝑛∏ (𝑛

𝑚=1 𝑁𝑗(𝑇𝑙
−) + 𝑚)]                                                                  (3.2). 

 

For 𝑟 = 1, (3.2) assumes the matrix form 

 

[𝐸[𝑇𝑗]] = (𝐼 − 𝑃)−1[(𝜇𝑗 − 𝜃𝑗)
−1]                                                                                                       (3.3). 

 

For 𝑟 = 2, (3.2) assumes the form 

 

 

𝐸[𝑇𝑗
2] = 2(𝜇𝑗 − 𝜃𝑗)

−2 

+∑ 𝑝𝑗𝑙
𝐽
𝑙=1 𝐸[𝑇𝑙

2] + 2𝜇𝑗
−1∑ 𝑝𝑗𝑙

𝐽
𝑙=1 𝐸[𝑇𝑙(𝑁𝑗(𝑇𝑙

−) + 1)], 𝑗 = 1,2, , 𝐽                                                      (3.4). 
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Note: 

 

1. Equality (3.4) defines a system of 𝐽 equations and 𝐽2 + 𝐽 unknowns. In general, when 𝑟 ≥ 2, the product terms 

involving the variables 𝑇𝑙  and 𝑁𝑗(𝜏𝑙
−) prevent the exact computation ofthe sojourn times 𝑟 order moments; there 

are too many unknowns and too few equations. In these instances, other independent equations are needed to 

complement (3.4) to be possible to obtain exact solutions. 

 

2. When any pair of nodes in the network is connected by, in the maximum, one oriented path and 𝑝𝑗𝑗 = 0, 𝑗 =

1,2 ,…, 𝐽,  𝑇𝑙   and 𝑁𝑗(𝜏𝑙
−)  are independent for 𝑗 ≠ 𝑙 . The computation of 𝐸[𝑇𝑗(𝑁𝑗(𝜏𝑗

−) + 1)]  is irrelevant since 

𝑝𝑗𝑗 = 0, 𝑗 = 1,2,…, 𝐽. In this case (3.2) becomes a compact recursive formula that allows the computation of any 

order moments ofthe sojourn times, 𝑇𝑗 , 𝑗 = 1,2, … . 𝐽. For instance, as, in these conditions, 

 

𝐸[𝑁𝑗(𝜏𝑙
−)] =

𝜃𝑗

𝜇𝑗−𝜃𝑗
′𝑗 = 1,2, … , 𝐽                                                                                                          (3.5), 

 

(3.4) assumes the form: 

 

𝐸[𝑇𝑗
2] = 2(𝜇𝑗 − 𝜃𝑗)

−2 

+∑ 𝑝𝑗𝑙
𝐽
𝑙=1 𝐸[𝑇𝑙

2] + 2(𝜇𝑗 − 𝜃𝑗)
−1∑ 𝑝𝑗𝑙

𝐽
𝑙=1 𝐸[𝑇𝑙] 𝑗 = 1,2, 𝐽                                                                  (3.6). 

 

Applying (3.6) to the simple queue’s series: 

 

𝐸[𝑇𝑗
2] = 2(𝜇𝑗 − 𝑣)

−2 + 𝐸[𝑇𝑙+1
2 ] + 2(𝜇𝑗 − 𝑣)

−1𝐸[𝑇𝑙+1], 𝑗 = 1,2, … , 𝐽1 − 1 

𝐸[𝑇𝐽
2] = 2(𝜇𝐽 − 𝑣)

−2                                                                                                                           (3.7) 

𝐸[𝑇𝐽
2] = 2(𝜇𝐽 − 𝑣)

−2 

 

that together with (3.3) results in 

 

𝑉𝐴𝑅[𝑇𝑗] = ∑ (𝐽
𝑙=𝑗 𝜇𝑙 − 𝑣)

−2                                                                                                                 (3.8). 

 

3. 𝐼𝑓 those conditions are not fulfilled, in [11] it is suggested to identify adequate Martingale families in 𝑁 as a 

process to determine independent equations to complement (3.2). Applying this proceeding to the 𝑀|𝑀|1 queue 

with Instantaneous Bernoulli Feedback it was obtained: 

 

𝑉𝐴𝑅[𝑇] =
1

((1−𝑝)𝜇−𝑣)2

(1−𝑝2)𝜇+𝑣𝑝

(1−𝑝2)𝜇−𝑣𝑝
                                                                                                         (3.9) 

 

and 

 

𝐶0𝑉[𝑁(𝜏−), 𝑇] =
𝑣(1−𝑝)𝜇

(1−𝑝2)𝜇−𝑣𝑝
                                                                                                        (3.10). ∎ 

 

To see more uses for Laplace transform, in queues context, see for instance [12]. 

 

4 Customers Sojourn Times in Jackson Networks Distribution Functions 

and Moments Numerical Computations 

 
Now it is given a general method, which key is the procedure called “randomization procedure”, to approximate 

“first passage times” distributions in direct time Markov processes, being the sojourn times in queue systems a 

particular case. 

 

Call ℵ = {𝑋(𝑇): 𝑇 ≥ 0}  a regular Markov process, in continuous time with a countable states space 𝐸  and a 

bounded matrix infinitesimal generator 𝒬 . The elements of 𝒬  are designated 𝑄(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝐸  and 𝑄(𝑥) =

∑ 𝑄yϵE−{x} (𝑥, 𝑦) . 𝜓(𝑇) designates the 𝑋(𝑡) state probability vector: 
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𝜓𝑡(𝑥) = 𝑃{𝑋(𝑇) = 𝑥}, 𝑥 ∈ 𝐸                                                                                                              (4.1). 

 

𝑋 models the evolution of a queue system during the sojourn of a given, “marked”, customer in it. 

 

The states 𝑜𝑓𝐸 have two main components: 

 

i) The queue system state, 

ii) The “marked” customer position. 

 

Be 

 

- 𝐴, the states subset that describes the system till the departure ofthe marked” customer, and 

- 𝐵, the states subset that describes the system aft er the departure of that customer. 

 

Evidently 

 

- {𝐴, 𝐵} is a partition of 𝐸, 
 

- If 𝑇 is the time that the process ℵ spends in 𝐴 till attaining 𝐵, for the first time, 𝑇 is precisely the sojourn 

time ofthe marked” customer in the network. 

 

It is supposed that ℵ will remain in 𝐵, with probability 1 aft er having attained it for the first time. In fact, as the 

evolution of the system aft er the departure of the “marked” customer is irrelevant, it may be supposed that 𝐵 is a 

closed set. That is, the process ℵ  cannot come back to 𝐴  after reaching 𝐵 . The quantity of interest is the 𝑇 

distribution function, 𝜏(𝑇) . Note that 

 

𝜏(𝑇) = 𝑃{𝑇 ≤ 𝑡} = 𝑃{𝑋(𝑇) ∈ 𝐵} = 1 − 𝑃{𝑋(𝑡) ∈ 𝐴}, 𝑡 ≥ 0                                                            (4.2) 

 

since the presented hypotheses guarantee that {𝑇 ≤ 𝑡} = {𝑋(𝑇) ∈ 𝐵}. 
 

After [2] it is concluded that 

 

The problem of computing 𝜏(𝑡)  is equivalent to the one of computing the transient distribution of 𝑋(𝑡)  in 𝐴 

computation. 

 

So, it is necessary to compute the vector 𝜓𝑡 , 𝑡 ≥ 0. Being 𝑃𝑡 , 𝑡 ≥ 0, the ℵ 𝑛 transition matrix, 

 

𝜓𝑡 = 𝜓0𝑃𝑡 , 𝑇 ≥ 0                                                                                                                                 (4.3) 

 

and 

𝑃𝑡 = 𝑒𝑥𝑝(𝑄𝑡) = ∑
𝜏𝑖

𝑖!

∞
𝑖=0 𝑄𝑖 , 𝑡 ≥ 0                                                                                                        (4.4). 

 

The randomization procedure consists in using in (4.4) an equivalent representation; see [13]: 

 

𝑃𝜏 = 𝑒𝑥𝑝(−𝛼𝑡)𝑒𝑥𝑝(𝛼𝑡(𝐼 +
1

𝛼
𝑄)) = 𝑒𝑥𝑝(−𝛼𝑡) ∑

ai ti

i!

∞
i=0 Ri                                                               (4.5) 

 

where 

 

𝑅 = 𝐼 +
1

𝛼
𝑄                                                                                                                                          (4.6) 

 

is called randomized matrix. I is the identity matrix, and 𝛼 is a positive upper bound for the whole 𝑄 𝜒 ∈ 𝐸. 
Note that, see [14,15], 
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Although the equation (4.5) seems more complex than (4.4), it accomplishes indeed more favorable computational 

properties. The most important is that 𝑅 is a stochastic matrix while 𝒬 is not. Consequently, the computation using 

(4.5) is stable, and using (4.4) is not. 

 

The randomization procedure has an interesting probabilistic meaning, useful to determine bounds for 𝜏(𝑡)  . 
Indeed, being 𝑅 a stochastic matrix, it defines a discrete time Markov process: 

 

ℑ = {𝑌𝑛: 𝑛 = 0,1, … }                                                                                                                           (4.7) 

 

if it is assumed 𝑌0 = 𝑋(0) . With this procedure, the relation between the processes ℵ and ℑ is quite simple as it 

will be seen next. 

 

Extend the discrete time process ℑ to a continuous time Markov process, such that: 

 

i) The time intervals between jumps are exponential random variables 𝑖. 𝑖. 𝑑. with mean 1/𝛼, 
ii) The jumps are commanded by 𝑅. 

 

In [13] it is shown that the resulting process is precisely the original process ℵ; but when there is a sequence 

ofjumps in ℑ fr om the state 𝜒 ∈ 𝐸 to itself’ this will be noticed in ℵ as a long sojourn in state 𝑥. 
 

So, the randomization procedure may be interpreted as a sowing in the process ℵ  with “fake” random jumps 

between the true jumps. The resulting process, designated by ℵ, at which the “fake” jumps are visible, has the 

same probabilistic structure than ℵ but with an advantage: 

 

The sequence of the jump instants 𝑖𝑛 ℵ, “fake” and “true”, is now a Poisson Process. This is not, in general, the 

case of ℵ. 
 

Note that 𝑌𝑛 is the state of ℵ in the instant ofthe 𝑛𝑡ℎ jump, “fake” or “true”. 

 

Suppose that ℵ reaches the set 𝐵 in its 𝑛𝑡ℎ jump. Consequently the ℵ sojourn time, and so also the ℵ, in 𝐴 is the 

sum ofn exponential independent random variables with mean 1/𝛼. That is, the sojourn time has a 𝑛 order Erlang 

distribution with parameter 𝛼. Its distribution function will be designated 𝐸𝑛,𝛼(𝑡) . 
 

Be ℎ(𝑛) the probability that ℵ reaches 𝐵 in its 𝑛𝑡ℎ jump. Call (𝜙𝑛 the state probability vector of 𝑌𝑛: 
 

𝜙𝑛 = 𝜓0𝑅
𝑛 (4.8). 

 

The quantities ℎ(𝑛) are given by the equivalent formulae: 
 

ℎ(𝑛) =

{
 
 

 
 
∑𝜙0
𝑥∈𝐵

(𝑥), 𝑛 = 0

∑∑(

𝑦∈𝐵𝑥∈𝐴

𝜙𝑛−1(𝑥)𝑅(𝑥, 𝑦), 𝑛 > 0 (4.9)

 

 

or 
 

ℎ(𝑛) =

{
 
 

 
 
1 −∑𝜙0

𝑥∈𝐴

(𝑥), 𝑛 = 0

∑(

𝑥∈𝐴

𝜙𝑛−1(𝑥) −∑(

𝑥∈𝐴

𝜙𝑛(𝑥), 𝑛 > 0 (4.10).

 

Given the probabilities ℎ(𝑛) and, noting that ∑ ℎ∞
n=0 (𝑛) = 1, it is obtained the following expression: 
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𝜏(𝑇) = ∑ ℎ∞
𝑛=0 (𝑛)𝐸𝑛,𝛼(𝑡),  𝑡 ≥ 0                                                                                                                      (4.11), 

 

                                            (4.12). 

 

The formula (4.12) for 𝑚 = 1 is 

 

𝐸[𝑇] =
1

𝛼
𝐸[𝐻]                                                                                                                                    (4.13) 

 

being 𝐻 the number of ℵ jumps till reaching 𝐵. Expression (4.13) is Little’s Formula in this queue’s context. 

 

Equation (4.12) allows obtaining simple bounds for 𝜏(𝑡)  that may, in principle, to become arbitrarily close. 

Equation (4.12) allows obtaining a lower bound for 𝐸[𝑇𝑘], in principle, so close of 𝐸[𝑇𝑘] as wished. So, given 

any integer 𝑘 ≥ 0 

 

𝐿𝑘(𝑡) ≤ 𝜏(𝑡) ≤ 𝑈𝑘(𝑡)                                                                                                                        (4.14) 

 

where 

 

𝐿𝑘(𝑡) = ∑ ℎ𝑘
𝑛=0 (𝑛)𝐸𝑛,𝛼(𝑡),  𝑡 ≥ 0                                                                                                                    (4.15), 

 

𝑈𝑘(𝑡) = 1 − ∑ ℎ𝑘
𝑛=0 (𝑛)𝐸̅𝑛=0(𝑡), 𝑡 ≥ 0                                                                                             (4.16) 

 

and 

 

𝐸[𝑇𝑚]𝐿,𝑘 ≤ 𝐸 [𝑇𝑚], 𝑚 = 1,2, .                                                                                                          (4.17) 

 

where 

 

𝐸[𝑇𝑚]𝐿,𝑘 =
1

𝛼𝑚
∑ 𝑛𝑘
𝑛=0 (𝑛 + 1)… (𝑛 + 𝑚 − 1)ℎ(𝑛), 𝑚 = 1,2,                                                        (4.18). 

 

It is easy to prove the proposition: 

 

4.1 Proposition 

 
If, for any 𝜀 > 0, 𝑘 is chosen in accordance with the rule: 

 

𝑘 =  min {𝑛 ≥ 0: ∑ ℎ𝑛
𝑖=0 (𝑖) ≥ 1 − 𝜀} = 𝑘(𝜀),                                                                                  (4.19) 

 

or equivalently 

 

𝐽 =  min {𝑛 ≥ 0: ∑ (𝑥∈𝐴 𝜙𝑛(𝑥) ≤ 𝜀} = 𝐽(𝜀)                                                                                      (4.20) 

 

|𝜏(𝑇) − 𝐿𝐽(𝜀)| ≤ 𝜀 and |𝜏(𝑇) − 𝑈𝐽(𝜀)| ≤ 𝜀, uniformely in 𝜏 ≥ 0. 

 

Note: 

 

-The main problem in the application of the method presented, stays in the difficulty of the ℎ(𝑛) computation. 

Indeed, for it, it is necessary to compute the vectors (𝜙𝑛 but only in the subset 𝐴 ofthe state’s space. When states 

space 𝐸 is finite, as it happens in the case of closed networks, both ℎ(𝑛) and (𝜙𝑛 can, at first glance, be computed 

exactly, apart the mistakes brought by the approximations. 
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In practice the states space is often infinite or, although finite, prohibitively great. In these situations, it is 

mandatory to truncate 𝐸. So, it must be considered a new level of approximation since the ℎ(𝑛), (𝜙𝑛, etc. must 

also be approximated now. 

 

Indeed, what are viable to obtain is ℎ(𝑛) lower bounds because the 𝐸 truncation is translated in probability loss 

[15]. So, with these ℎ(𝑛) approximate values, (4.12) and (4.15) go on being valid but 

 

-  The uniform convergence property seen above is lost, 

- The rules analogous to (4.17) and (4.18) are not equivalent. The one generated by (4.17) may be even 

unviable and in practice it is used only the one generated by (4.18), see [15]. ∎ 

 

Using this method, in [16] is shown that, in a Jackson three node acyclic network, the total sojourn time 

distribution function for a customer that follows the path integrated by the nodes 1, 2, and 3 is not the same 

obtained considering that 𝑆1, 𝑆2  and 𝑆3  are independent although this one, designated by 𝐹(𝑡)  is a good” 

approximation of that one. They show that in some cases it was not true the following: 

 

𝐹𝐿(𝑡) ≤ 𝐹(𝑡) ≤ 𝐹𝑈 (𝑡) ≥ 0                                                                                                               (4.21) 

 

being 𝐹𝐿(𝑡)  and 𝐹𝑈(𝑡)  the lower bound and the upper bound, respectively, of that customer sojourn time 

distribution function, obtained through the described method. 

 

This conclusion is important because, despite the dependence between 𝑆1 and 𝑆3, 𝐹(𝑡) could be the 𝑆 distribution 

function. In [17], it is presented an example of dependent random variables which sum has the same distribution 

as if the random variables were independent. 

 

Finally note that the formula (4.12), see [18], seems to be more efficient than (3.2), although only allows to obtain 

moments lower bounds, because its field of application is much greater. 

 

5 Conclusions 

 
The sojourn time has an evident practice interest. And is and has been intensively studied. Evidently the problem 

of the computation of the sojourn times in networks of queues is one of the most difficult in these networks study. 

Indeed, analytic solutions are the exception and not the rule. And, when existing, are quite rough. 

 

Most of the known works only present results on sojourn time distributions for only one customer in paths without 

overtaking with FCFS disciplines in the nodes. It seems that still there are not results for simultaneous distributions 

of various customers sojourn times. 

 

It follows, from the examples seen in section 2, that the sojourn times, at Jackson networks computations, 

difficulties occur when there are feedback and overtaking. In the first case the input server process is not a Poisson 

process, becoming everything more complex. In the second case dependencies exist among a customer sojourn 

times in the various nodes, simultaneously complicated and subtle, that make the total sojourn time computation 

difficult even if the sojourn times in each node are easy to compute. 

 

From all this it results the interest of the methods presented in sections 3 and 4 to compute exactly and 

approximately the quantities related with the Jackson networks sojourn times. But, in these cases, the technical 

difficulties resulting from both the analytical and computational implementation of the calculations, which are 

very demanding from this point of view, must be considered. 
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