
Page 1 / 13

quarta-feira, 17 fevereiro, 15:31

A Demonstration of Compilability for UML Template Instances

José Farinha
ISTAR, ISCTE-IUL, Av. Forças Armadas, Lisbon, Portugal

jose.farinha@iscte.pt

Keywords: UML, Templates, Verification, Compilability, Activities, Software Patterns.

Abstract: Because of the thin set of well-formedness rules associated to Templates in UML, ill-formed elements may

result from well-formed bindings to templates. Although such ill-formedness is generally detected by some

UML validation rule, the problem is poorly reported if the violated rule does not pertain to the Template

construct. Typically, erroneous substitutions of template parameters will be misleadingly reported as

compilation problems in the code of operations of the template’s instance. This paper demonstrates that a set

of well-formedness rules, additional to those of the standard UML, prevents this problem from occurring.

Such set of constraints was proposed in a previous paper and named Functional Conformance (FC), but a

demonstration of its effectiveness was not provided. Such a demonstration is carried out in the current paper

adopting UML Activities as the formalism to represent the dynamics of systems and their well-formedness

rules as compilability criteria. Carrying out the demonstration revealed further rules than those previously

proposed for FC.

1 INTRODUCTION

An UML template is a model element embodying a

patterned solution that can be instantiated to solve a

recurring problem. A template is instantiated in a

model by binding an element of that model to the

template, which is done through the Binding

relationship. In order to have a template instance

contextualized to the target model, templates are

defined as parameterised elements. A template

parameter marks an element participating in the

template’s specification to tell that it must be

substituted by an element of the target model. Only

when all of the template’s parameters are substituted,

it becomes an actual, fully integrated solution in the

target model.

In order to ensure that the elements bound to

templates are well-formed, UML enforces a set of

constraints to parameter substitutions. One such

constraint imposes that a substitute element must be

of the same kind (Class, Attribute, Operation, etc.) as

the parametered element. Another constraint enforces

that if a parameter marks a typed element, this

element and its substitute have conforming types.

Yet, the set of validations falls short in

guaranteeing the well-formedness of template

instances. For instance, UML allows an operation

Op1 be substituted by an operation Op2 whose

signature is not compatible with the former’s. If Op1

is substituted by Op2, every call to Op1 in the

template’s code will be reproduced as a call to Op2

with an unaligned set of arguments, which is a badly-

formed call. Even though the problem was caused by

a bad substitution, it will be reported on the operation

call, without any back tracking to the source of the

problem being recommended by UML (as of version

2.5 (OMG 2015)). There are far more other such

scenarios of inadequate substitutions going unnoticed

by UML templates and causing incidental errors

inside template instances, mainly in the body of the

operations. This causes parallax problems in error

reporting, a consequence of the scarce set of the

validation rules for UML templates.

In (Farinha & Ramos 2015) a set of additional

rules was proposed for UML template as a way to

overcome the aforementioned problem. Such rules

implemented a concept named Functional

Conformance (FC). With such additional rules,

improper substitutions of template parameters would

be immediately signaled and reported, and error

reporting parallax problems removed. Since (Farinha

& Ramos 2015) provides only an intuitive perspective

on the solution, a formal proof of the effectiveness of

it is required.

This paper provides such a proof. One that

demonstrates that the original definition of FC

(Farinha & Ramos 2015) augmented with two

additional constraints ensures the well-formedness of

Page 2 / 13 – quarta-feira, 17 fevereiro, 15:31

operations’ code resulting from a template binding. In

this paper, the well-formedness of operations’ code –

i.e., methods – is verified assuming that these are

represented as UML Activity Diagrams. It is also

assumed that methods are purely built with UML

Activity’s constructs that implement concepts of the

traditional Object Oriented Programming, as

supported by the most common object-oriented

programming languages: Java, C# and C++. More

advanced concepts of the UML Activity model – such

as Exception Handling, Fork-Join, Signals and Events

– are not covered by this paper.

The process of building the proof was useful to

uncover the need for two more well-formedness

constraints than those suggested by the empirical

experimentation that lead to (Farinha & Ramos

2015). This reinforced the importance of developing

formal demonstrations. The two additional

constraints are related to the preservation of

subtyping relationships and of the abstract/non-

abstract nature of classifiers when mapping from a

template to its instances.

The structure of the paper is as follows: section 2

presents some core concepts of UML templates and

introduces the terminology and symbology used in

this paper; section 3 briefly presents FC; section 4

includes the demonstration; section 5 presents related

work; and section 6 draws some conclusions and

foresees further steps towards FC as a sound concept.

2 CONCEPTS, TERMINOLOGY

AND SYMBOLOGY

In order to refer to the model fragment that

participates in the definition of a template the term

“space” is used in this paper. The same term will be

used also to refer to the fragment that is covered by

an instance of a template. Generally stated, this paper

uses “space of an element” to refer to the model

fragment that is composed of that element and all the

elements directly used by it. Hence, the set of model

elements composed of a template and all of the

elements directly used (referred) by it is called that

template’s space. The term “template space” is used

for general, non-specific template. Similarly, the term

“target space” will be used to denote the model

fragment composed of an instance of a template and

all the elements used by that instance. In formulas, the

template space will be represented by T.space (a

different font is used to differentiate from ‘T’

representing a type).

Some of the elements in a template’s space will

be marked as parameters of the template. Others will

be used ordinarily by the template, without been

specified as parameters.

When binding to the template – i.e., instantiating

the template – the elements marked as parameters will

be replaced by elements in the target space. This

means that the instance of the template – termed the

bound element – will use those elements of the target

space instead of the ones of the template space. The

concept in UML representing this replacements in the

context of a binding is termed Substitution. It is said

that an element in the target space substitutes an

element in the template space.

Being E an element belonging to the space of a

template T and B a bind to T, B.E is the model

element in the target space that is the substitute of E

in the scope of B. When, in the course of discourse, B

is implicit, the substitute of E will simply be referred

as E.

In a binding, the Projection of an element E of the

template space is the element of the target space that

corresponds to E in the context of that binding. I.e.,

the projection of E is either one of the following:

 E – i.e. the actual substitute of E – if E is

substituted;

 a replica (or reproduction) of E, if E is a

member of the template that is not substituted;

 E itself, if E is not substituted nor a template’s

member (E is simply used by the template; e.g.,

it is a class used by the template and, therefore,

will be used by the bound element as well).

In this paper, the following typing conventions

and symbols will be used:

An identifier with a ‘
T
’, e.g. E

T
, represents an

element in a template space.

An identifier with a ‘’, e.g. E, represents an

element in a target space.

If element E is an element in the template space,

then E is the projection of E in the target space.

E  E’ means that element E is substituted by E’.

This is the UML notation for substitution.

T’  T means that T’ is a subtype of T.

T’  T means that T’ is a subtype of T or T itself.

E : T means that E's type is T or a subtype of it.

T  f means that T has f as member.

T  E means that T has visibility on E.

Several UML metamodel’s operations are used

within formulas. Those that have no parameters are

written without parentheses, for clarity reasons.

Finally, there is a term in UML that is worth

reminding: Classifier is any model element that

Page 3 / 13 – quarta-feira, 17 fevereiro, 15:31

represents a classification of instances according to

their features. Classifier subsumes concepts such as

Class, Association, Data Type and Use Case.

3 OVERVIEW OF FUNCTIONAL

CONFORMANCE FOR UML

TEMPLATES

Functional Conformance (FC) is a term that was

introduced in (Farinha & Ramos 2015) aiming to

denote the equivalence between two model elements,

from a third-party, client perspective. It is a directed

relationship between two elements e1 and e2, herein

represented in formulas as ‘e1  e2’, meaning that

the first element may be replaced by the second in a

model without compromising the consistency of that

model. In (Farinha & Ramos 2015) and in the current

paper, the concept is applied to the instantiation of

UML templates, being proposed as a set of well-

formedness constraints that should rule every

template parameter substitution. FC is defined as a set

of criteria, presented in the following subsections.

3.1 Type conformance

Type Conformance (TypCnf) states that if an element

e
T
 in the template space has type T

T
, then the

projection of e
T
 must have the projection of T

T
 as type.

TypCnf (e
T
 , e)   T

T  T.space,

(e
T
.type  T

T)  (e.type  T)

It should be noted that this criterion should hold

for all the types of e
T
, i.e., for e

T
’s direct type and for

all of its indirect types (ascendants of the direct type).

This rule can be announced two-fold, distinguishing

when T is substituted from when it isn’t:

(1) If a type T of an element e
T
 is not substituted,

then e must have T as type; i.e., e : T.

(2) If the type T of an element eT is substituted,

then e must have T as type; i.e., e : T.

3.2 Subtyping conformance

Subtyping Conformance is intended to preserve every

is-a relationship from the template to the target

spaces, in case any classifier substitution occurs on a

generalisation hierarchy. The definition is: if T
T
 is a

subtype of Tsuper
T
, then T must be a subtype of Tsuper



or Tsuper
 itself.

StypCnf (T
T
, T)   Tsuper

T  T.space,

(T
T
  Tsuper

T
)  (T  Tsuper

)

It should be noted that such conformance is

required either if both TT and Tsuper
T are substituted or

if only one of them is.

3.3 Multiplicity conformance

Two elements conform regarding multiplicity if they

are both single-valued (multiplicity’s upper bound =

1) or both multivalued (multiplicity’s upper bound >

1) and, in the latter case, if they are both ordered or

both not-ordered:

MltCnf (e
T
, e)  e

T
.isMultivalued = e.isMultivalued

 e
T
.isOrdered = e.isOrdered

3.4 Contents conformance

Contents Conformance (CtsCnf) applies only to model

elements that are namespaces. In the context of a

certain bind, the namespace ns conforms in contents

with ns
T
 if every member of the ns

T
 being used by the

template is substituted by a member of ns. If the

namespace is a type, its members are properties,

operations, or inner types. If it is package, members

are packages or classifiers. Figure 1 shows an

example with classifiers where CtsCnf doesn’t hold:

class Cp may not be substituted by Cs1, because Cs1

doesn’t provide a substitute for attribute y. On the

contrary, in Figure 2 Cs1 conforms in contents with

Cp.

Figure 1: Example of lack of contents conformance.

Figure 2: Example of contents conformance.

CtsCnf is formulated for the namespaces ns
T
 and

ns, for a binding to a template T, as:

CtsCnf (ns
T
, ns)  e

T
  ns

T
.members  T.space,

 e  ns.elements: e
T
  e

Page 4 / 13 – quarta-feira, 17 fevereiro, 15:31

CtsCnf has a corollary and a specialisation, which

are presented in the following subsections.

3.4.1 Membership conformance

An element e conforms in membership to an element

e
T
 if at least one of its namespaces substitutes one of

e
T
’s namespaces. Membership Conformance (MshCnf)

enforces that, if A is substituted by B, members of A

must be substituted by members of B.

MshCnf (e
T
, e) 

(e

T
.namespaces)  e.namespaces  Ø

It is possible to demonstrate that MshCnf may also

be formulated as:

NS
T
, (NS

T
  e

T
)  (NS  e)

3.4.2 Signature conformance

Signature Conformance (SigCnf) is a specialisation of

CtsCnf, as applied to operations. It is the criteria that

ensures that a substituting operation has a set of

parameters compatible with that of the substituted.

Assuming that the input (in and inout) and output

(out and inout) parameters of an operation are given

by inParams() and outParams(), respectively, SigCnf

is formulated for the operations op
T
 and op as:

SigCnf (op
T
, op) 

op

T
.parameters.size = op.parameters.size 

(i  [1, op
T
.inParams.size],

 op
T
.inParamsi  op.inParamsi) 

(i  [1, op
T
.outParams.size],

 op
T
.outParamsi  op.outParamsi)

Notice that conformance among input parameters

is enforced from template to target while among

output and return parameters is the opposite.

The verification of FC between operation

parameters is done through:

opPrm
T
  opPrm  TypCnf (opPrm

T
, opPrm) 

MltCnf (opPrm
T
, opPrm)

3.5 Staticity conformance

This criterion establishes that a static feature may

only be substituted by another that is also static, and

a non-static by a non-static:

StcCnf (f
T
, f)  f

T
.isStatic = f.isStatic

3.6 Abstraction conformance

This criterion applies only to parametered elements

that are classifiers and is already supported by UML

2.5. It states that a classifier that is not abstract may

only be substituted by another classifier that is not

abstract as well:

AbstCnf (C
T
, C) 

 C

T
.isAbstract   C.isAbstract

3.7 Visibility requirement

This is a requirement that enforces that an element

may substitute a template parameter only if that

element is visible from the bound element. It may be

formulated for a binding B and element e as:

B.boundElement  e

3.8 Functional conformance

enforcement

If FC is enforced as a validation rule of the UML

concept of template substitution, FC holds between

any element E in the template space and its

projection, since for every form of E one of the

following will hold:

E   E, by well-formedness constraint;

E   E, by replication;  E is a reproduction

of E, according to the semantics of the

Binding relationship.

E  E, trivially.

It shall be proved that E  E is enough to

ensure the well-formedness of the bound element’s

operations if those operations are operations are

originally well-formed in the template.

4 DEMONSTRATION

4.1 Strategy

4.1.1 Representing Code by UML Activities

The goal of this demonstration is to show that the

code of operations in a class template remains

compilable once reproduced in instances of that

template. For instance, a class template for keeping a

list of items ordered by name would have an operation

insert (Item) with the following Java definition:

Page 5 / 13 – quarta-feira, 17 fevereiro, 15:31

AlphabeticList::insert (Item itm) {

 int k = 1;

 for (itm.name < self.items[k].name)

 k++;

 self.items.insertAt (itm, k);

}

If a class CustomerList is bound to the template

AlphabeticList, substituting class Item by Customer

and itm by cust, the following method would be

generated:

CustomerList::insert (Customer cust) {

 int k = 1;

 while (cust.name < self.items[k].name)

 k++;

 self.items.insertAt (cust, k);

}

It should be proved that if method

AlphabeticList::insert (Item) compiles successfully

and FC is enforced on substitutions, then

CustomerList::insert (Customer) compiles as well.

However, instead of using the syntax rules of a

programing language to check compilability, it will

be assumed that all code is represented by UML

Activity Diagrams and compilability will be checked

using the well-formedness rules for Activities. E.g.,

the previous method is considered equivalent to the

activity in Figure 3.

Figure 3: A method represented as an activity with an

expression.

It could be noted however that the compilability

of the method in Figure 3 may not yet be fully

assessed by UML Activity well-formedness rules.

That’s because one of the guards of the decision node

is expressed as an expression. The assessment of that

expression would require UML’s well-formedness

rules for expressions as robust as those of programing

languages, which is not the case: the UML metamodel

stores expressions as simple tree structures, without

establishing validation rules for the compatibility

between those trees’ nodes. E.g., UML considers 3 *

“potato” a valid expression. Hence, to achieve our

goals, expressions must be represented as activities.

E.g., the guard expression in Figure 3 must be

replaced by the composite activity cust.name <

items[k].name shown in Figure 4, which internally

should be as in Figure 5. Since this expression-

activity feeds the «decisionInputFlow» of the

decision node, its result will steer execution as

desired. Once every expression is formally

represented by an activity, the compilability of a

method may be fully verified through UML Activity

well-formedness rules.

Figure 4: A method fully represented as an activity.

Figure 5: The internals of an expression-activity.

For the sake of a clear scope definition, the

following concepts of the UML Activity formalism

and their specializations are considered sufficient to

represented structured programing code with object

orientation, as support by Java, C# and C++: Object

Action, Structural Feature Action, Call Action,

Object Node, Control Flow, Object Flow, and

Decision Node. Every construct of such languages

that is not are subsumed by those concepts is,

therefore, out of the scope of this paper. A proper

paper would be required to demonstrate the

compilability of programs that use such constructs.

The problem of compilability assessment will be

further reduced to the assessment of the well-

formedness of a general action, as will be shown in

section 4.1.3.

Page 6 / 13 – quarta-feira, 17 fevereiro, 15:31

4.1.2 UML Activities

Paraphrasing (OMG 2015, sec.15.1): “An Activity is

a kind of behaviour that is specified as a graph of

nodes interconnected by flows. A subset of the nodes

are executable nodes that embody lower-level steps in

the overall activity.” Such executable nodes are called

Actions and correspond to statements in programing

languages. “Object Nodes hold data that is input to

and output from executable nodes”, and may

represent variables, operation parameters or their

arguments. The data in object nodes moves across

Object Flows. The sequencing of actions is specified

through Control Flows, and these may be controlled

by if-then-else, switch, fork-join or loop structures,

globally designated Control Nodes. In this paper, it is

considered that the operations’ code under

consideration is purely represented using the UML

concepts described below.

 Object Actions operate on objects as a whole,

representing statements that create objects (new

MyClass), destroy them (delete myObj), check their

classification (myObj instanceof MyClass) or their

identities (obj1 == obj2). Examples in Figure 6.

 o = new Order

 delete o

Figure 6: Object actions.

 o.totalCost

 o.customer = c

 o.customer = null

Figure 7: Structural Feature actions.

Object actions also include Value Specification

Actions. These are actions that yield a value after

evaluating a textual expression, including those with

a single literal. In this paper, only actions evaluating

literals are considered (such as the ‘1’ action in Figure

4). Other value specification actions are represented

by composite activities, as mentioned in section 4.1.1.

Structural Feature Actions read or write on

properties of objects (Figure 7).

A Call Action invokes a behaviour (Figure 8) or

an operation on an object (Figure 9).


processOrders (orders,

currentUser)

Figure 8: ‘Call Behaviour’ action.

 o.add (p, qty)

Figure 9: ‘Call Operation’ action.

Object Nodes are used to store data that is used

and/or produced by actions. Those may represent

variables (e.g., ‘o: Order’ in the examples above) or,

through the concept of Pin – a specialization of

Object Node – may represent behaviour’s or

operation’s parameters (e.g., quantity, in Figure 9).

A Decision Node chooses one between multiple

outgoing flows: the first one whose guard is true.

Figure 10 shows two possible configurations for a

decision node. Decision nodes may also be used to

implement loops, as shown in Figure 11. Even though

UML provides a construct specific for looping

(LoopNode), it is enough to consider decision nodes

for compilability assessment.

 if (guard1)
 ...

elseif (guard2)

 ...

 switch (getSomething){
 case guard1: ...

 case guard2: ...

}

Figure 10: Decision nodes.

 while (guard1)
 doSomething

Figure 11: A loop in an activity.

Page 7 / 13 – quarta-feira, 17 fevereiro, 15:31

4.1.3 Demonstrating the Well-formedness of

Activities through an Archetypal Action

To keep the demonstration simple, it is adequate to

narrow down the set of elements whose compilability

must proved. To achieve this, first we filter out those

elements whose compilability is not affected by

template binding. Secondly, the remaining elements

are reduced to a simpler, common representation.

Taking into account the semantics of UML

template binding – recalling: the bound element is a

replica of the template with superimposed

substitutions – and that the compilability of the

template is a premise, it may be deduced that only

those elements being impacted by substitutions may

spoil the compilability of the bound element. This

narrows down the set of elements to consider those

whose validation rules reference parameterable

(therefore, substitutable) elements. Since neither the

source nor the target of activity flows are

parameterable, flows’ connecting points are never

changed by template substitutions. This means that

the topology of an activity is preserved from the

template to the bound element. Consequently, it is

possible to consider individually each element kind

presented in the previous section.

Control Flow metadata and constraints

exclusively deal with topology, except in two aspects:

the flow’s weight and guard. Since the concept of

weight doesn’t exist in programing languages, control

flows may only jeopardize compilability because of

their guards. As seen in the previous sections, all

expressions that are not single literals are represented

as composite activities. This means that the

compilability of a guard may be ultimately

determined by the joint compilability of an activity

without guards and a fragment such as the one in

Figure 12. The same is also valid for Decision Nodes,

if we substitute in Figure 12 “resultFromExpression”

by “resultFromDecisionInputFlow”, and “true:

Boolean” by “aLiteral: T2” or “aVariable: T2”. This

filters out guards, control flows and decision nodes

from consideration.

Figure 12: Fragment of the semantics of a guard.

Hence, the assessment of the compilability of a

bound activity becomes reduced to the verification of

the action kinds shown in the previous section and of

that in Figure 12, in both cases taking into account the

objects and object flows that connect to those actions.

This allows further simplifying our demonstration by

subsuming all those actions to a common

representation: the generic, archetypal action in

Figure 13. Compilability will then be verified by

formulating UML well-formedness rules exclusively

in terms of that action. The archetypal action shown

in Figure 13 aims at representing a feature call in a

broad sense: a call to a feature of an object, of a

collection of objects (e.g., a call to size()), of a class

(a call to a static feature), or of the run-time system

(e.g., a call to the new operator). The demonstration

strategy from this point on is somewhat

straightforward: assuming that well-formedness

rules hold for the archetypal action in a template, it

must be shown that they hold as well for the

corresponding bound action if FC is enforced in the

binding. I.e., representing the archetypal action by a,

it should be shown that:

WellFormed (a
T
)  (a

T
  a)  WellFormed (a)

Figure 13: An action in the template.

It is considered that the archetypal action is

defined within a template and, therefore, is

reproduced in every element bound to that template.

The archetypal action within the template will be

referred interchangeably as templated action and

represented as in Figure 13 (without ‘
T

’). Its

reproduction in a bound element will be referred as

bound action and represented as in Figure 16.

4.1.3.1 The Templated Action

The feature being called by the templated action in

Figure 13 is represented by the meta-variable f. For

Create Object actions f is a class, not a feature. For

Value Specification actions f is an expression;

specifically to this paper, it is a literal expression. For

Destroy Object actions f doesn’t exist.

Self is a pin that represents the usual variable

self/this: a reference to the object that executes the

feature, from the perspective of the code of that

feature. Self doesn’t exist in Create Object, Value

Specification, and Call Behaviour actions.

Page 8 / 13 – quarta-feira, 17 fevereiro, 15:31

As imposed by UML’s constraints (OMG 2015,

sec.16.14.54.6 and 16.14.10.6), self’s type is the type

that owns – i.e., declares and provides context to – the

feature being called. The type of self is identified by

the meta-variable Tcontext.

The multiplicity of the self pin is represented by

Mself. Mself’s upper bound may be either 1 or greater

than 1. It must be 1 if the feature being called (f) is

structural (f is attribute or association end). If f is an

operation, self may be multivalued (multiplicity’s

upper bound > 1). This is required to support calls to

collection operations (size(), includes(…), etc.).

The caller object node represents the instance that

embodies self in an execution of the action. In a

statement ‘anObject.feature’, anObject is represented

in Figure 13 by caller. Depending on the topology of

the activity containing the action, caller may

represent a variable, a parameter of the activity that

contains the action (Figure 14) – including that

activity’s self – or the result pin of a preceding action

(Figure 15). Caller’s type and multiplicity are

represented by the metavariables Tcaller and

Mcaller, respectively.

Figure 14: Caller is a parameter of the owning activity.

Figure 15: Caller is a previous result.

Prmi, for i from 1 to N, is a parameter of f with

direction other than ‘return’. Prmi’s type and

multiplicity are represented by the meta-variables

Tprmi and Mprmi, respectively. Prmi also represents

the pin that passes values to or from the prmi

operation parameter, depending on that parameter’s

direction being in or out, respectively. If prmi is a

bidirectional parameter (inout), values may be passed

to and from it. Since UML pins may not be

bidirectional, two pins are required to every inout

parameter: these will be called prmi_in and prmi_out.

That’s the case of prmK in Figure 13. According to

UML ((OMG 2015), pp. 493-4), in feature call

actions, pins may have characteristics different from

those of the corresponding feature parameters, as long

as they are consistent. However, since structured

programming languages don’t have a concept such as

Pin, this document assumes that every prmi pin is a

pure surrogate of the corresponding prmi parameter,

being the pin’s characteristics (type, multiplicity, etc.)

derived from those of the parameter.

Argi, for i from 1 to N, is the argument passed to

prmi. Argi’s type and multiplicity are represented by

Targi and Margi, respectively. Similarly to caller,

argi may represent a variable, a parameter of the

activity, or the result pin of an upstream action.

Result is the pin that yields the value returned by

the action. If f is a property, result yields the value of

that property in the instance provided by caller. If f is

an operation, result represents that operation’s

parameter whose direction is ‘return’, i.e., it yields the

value returned by the operation. Result´s type and

multiplicity are represented by Tf and Mf,

respectively. As above, although UML allows a pin

and the corresponding parameter be different, it will

be assumed that the result pin’s type and multiplicity

are always in sync with those of f – suggestively,

that’s why those are named “Tf” and “Mf”.

Destination represents the element that receives

the result of the action. Also depending on the

topology of the activity containing the action, it might

be a variable, an output (out, inout or return)

parameter of the activity, or a pin of a downstream

action (a subsequent self or prmi).

4.1.3.2 The Bound Action

The reproduction of the archetypal action within the

bound element will be termed bound action and it will

be as in Figure 16. In that figure, the elements that

may differ from their original counterparts are

marked with ‘’ (in some cases reduced to a ‘’, due

to typewriting constraints).

Figure 16: The bound action.

Page 9 / 13 – quarta-feira, 17 fevereiro, 15:31

4.2 Compilability criteria and its

demonstration for the bound

action

This section defines how compilability is assessed in

the demonstration. This will be done using UML

Activity well-formedness constraints: if these hold

for an activity, that activity is compilable. Only the

following constraints are relevant:

 Those whose formulation includes elements

that UML defines as parameterable in a

template (therefore, substitutable in a binding).

 Those verifying the kinds of elements existing

in the action archetype, which are: Object Node

and Pin (Figure 17); Object Flow (Figure 18);

Structural Feature Action, Call Action and

Object Action (Figure 19);

Figure 17: Object Nodes in the action archetype.

Figure 18: Object Flows in the action archetype.

Figure 19: Kinds allowed for the action archetype.

The following subsections summarise the

constraints in UML 2.5 (OMG 2015) that are relevant

to this demonstration and formulate them in terms of

the archetypal action. Each constraint is marked with

the bullet ‘ ’. The holding of those constraints in the

templated action will be premises. The holding in the

bound action are the hypothesis that must be proved

on the basis of those premises and that FC also holds

between every element and its projection in the target

space. Premises are identified by numbers prefixed

with a ‘P’.

4.2.1 On Object Flows

 Compatible_types: “(…) the downstream object

node type must be the same or a supertype of the

upstream object node type” (OMG 2015, p.427). I.e.,

designating the upstream and downstream object

nodes’ types as Tfrom and Tto, respectively:

Tfrom = Tto. This provides the premise: (Tfrom, Tto)

 {(Tcaller, TContext), (Targi_in, Tprmi_in),

(Tprmj_out, Targj_out), (Tf, Tdestination)}, Tfrom = Tto

(P1).

It must be proved that, for the same pairs

(Tfrom, Tto): Tfrom
 = Tto

. Which is ensured by

Subtyping Conformance: (P1), StypCnf (Tfrom, Tfrom
)

⊢ Tfrom
 = Tto

. QED.

 Same_upper_bounds: “Object nodes connected

by an object flow (…) must have the same upper

bounds” (OMG 2015, p.427). This is a rule that must

be redefined, because it originally aims at ensuring

semantic compatibility, not compilability. To ensure

compilability, it is enough that object nodes

connected by a flow are both single-valued or both

multivalued. Hence, designating the object nodes as

from and to: from.isMultivalued = to.isMultiValued.

This leads to the premise: (from, to) {(caller, self),

(argi, prmi), (result, destination)}, from.isMultivalued

= to.isMultivalued (P2).

It must be proved that: from.isMultivalued =

to.isMultivalued (2). Considering MltCnf : (P2),

(from {caller, argi, result}, Mltcnf (from, from)),

(to {self, prmi, destination}, Mltcnf (to, to)) ⊢ (2).

QED.

4.2.2 On Structural Feature Actions

Such actions access a property in order to read, write

or clear it (set it to null).

 Multiplicity: “The multiplicity of the self input pin

must be 1..1” (OMG 2015, sec.16.14.54). The

equivalent of this constraint in a programming

Object Node

Pin Object Node

Object Flow

Object Node

Object
Flow

Object
Flow

Object Node

Page 10 / 13 – quarta-feira, 17 fevereiro, 15:31

language would be an enforcement that any

expression ‘obj.feature’ should be preceded by the

assertion ‘obj != null’. This is clearly a rule for

semantic equivalence, not for compilability.

Therefore, this constraint must be redefined: self must

be 0..1. In terms of the templated action:

 self.isMultivalued (P3).

It must be proved that:  self.isMultivalued (3).

Considering Multiplicity Conformance: (P3),

MltCnf (self, self) ⊢ (3). QED.

 Not_static: “The structural feature must not be

static” (OMG 2015, sec.16.14.54). In terms of the

templated action:  f.isStatic (P4).

Staticity Conformance ensures that the constraint

also holds in the target space: (P4), StcCnf (f, f) ⊢

 f.isStatic. QED.

 Object_type: “The structural feature must either

be an owned or inherited feature of the type of the

object input pin, (…)”. I.e.: Tcontext  f (P5).

MshCnf (page 4) ensures that the constraint holds

in the target space: (P5), (1) ⊢ Tcontext  f. QED.

 Visibility: “The visibility of the structural feature

must allow access from the object performing the

action”. It should be noted that the object in this

citation is the one executing the whole activity that

contains the action. Its type may be get from an action

by means of ‘.containingActivity.context’. Thus, in

terms of the templated action a, this constraint is

formulated as: a.containingActivity.context  f.

It must be proved: a.containingActivity.context

 f (4). It worth reminding that the templated

action is part of an activity belonging to the template

under consideration. From the semantics of Binding,

a belongs to an activity belonging to the bound

element. I.e., representing the bound element as BE:

a.containingActivity.context = BE (5). Hence: (4),

(5) ⊢ (BE  f). Since this is the formulation of the

Visibility Requirement, (4) holds. QED.

The remaining well-formedness constraint,

one_featuring_classifier, is ensured by that fact that

the template action is well-formed (a premise).

4.2.3 On ‘Read Structural Feature’ Actions

 Multiplicity: “The multiplicity of the structural

feature must be compatible with the multiplicity of

the result output pin” (OMG 2015, sec.16.14.42.5).

I.e.: f.compatibleWith (result). According to (OMG

2015, sec.7.8.8.7), ‘compatibleWith ()’ means that

the multiplicity of f must be comprehended by that of

the result pin. However, due to the goal and scope of

this paper, it will be considered that to ensure

compilability it is enough that f and result are both

single-valued (multiplicity = 1) or both multivalued

(multiplicity > 1). Therefore, this constraint will be

redefined as: f.isMultivalued = result.isMultivalued

(P6).

It must be proved that: f.isMultivalued =

result.isMultivalued (6).

Considering Multiplicity Conformance: (P6),

MltCnf (f, f), MltCnf (result, result) ⊢ (6). QED.

 Type_and_ordering: “The type and ordering of

the result output pin are the same as the type and

ordering of the structural feature” (OMG 2015,

sec.16.14.42.5). It is likely there is a lapse in this

definition, because there is no reason for requiring

that f and result have exactly the same type, instead

of allowing f’s return type be a subtype of result’s

type. Since it provides greater flexibility and doesn’t

compromise compilability, we will assume that the

intended formulation is: f.type = result.type 

f.isOrdered = result.isOrdered (P7).

Two hypothesis must be proved: f.type =

Mf (7); f.isOrdered = result.isOrdered (8).

The first one tells that if f is substituted, f’s type

is the projection of Mf or a subtype of it. Since f.type

= Mf, (7) may be rewritten as: f.type = (f.type).

Since this is the formulation of TypCnf for the

projection of f, if TypCnf holds, (7) holds as well.

Regarding the second hypothesis: since the

ordering of a model element is not parameterable by

itself in a template, result is as ordered as result.

Therefore, (8) may be written as: f.isOrdered =

result.isOrdered (9).

(P7), (9) ⊢ f.isOrdered = f.isOrdered. Since this

expression is included in the formulation of

MltCnf (f, f), if MltCnf holds, (8) holds as well. QED.

4.2.4 On ‘Write Structural Feature’ Actions

Such actions set the value of an object property

(second example in Figure 7). It corresponds to an

archetypal action with a single prm pin: prm1.

 Type_of_value: “The type of the value input pin

must conform to the type of the structural feature”

(OMG 2015, sec.16.14.62.6). UML defines

conformance of a classifier C1 to classifier C2 as: C1

 C2 (OMG 2015, sec.9.9.4.7). The value pin

referred in the citation corresponds to prm1 in the

archetypal action. Therefore, this constraint’s

formulation is: prm1.type  f.type. Which may be

written as: prm1.type  Tf (P8).

It must be proved that: (prm1.type) 

(f.type). Which may be written as: Tprm1
  Tf.

Page 11 / 13 – quarta-feira, 17 fevereiro, 15:31

Considering Subtyping Conformance: (P8),

STypCnf (Tprm1, Tprm1
) ⊢ (Tprm1

  Tf). QED.

 Multiplicity_of_value: “The multiplicity of the

value input pin is 1..1” (OMG 2015, sec.16.14.62.6).

The formulation and demonstration of this constraint

are the same as those of the Multiplicity constraint in

section 4.2.2, replacing the self pin by prm1 pin.

4.2.5 On Call Actions

Call Actions encompass those that invoke a behaviour

or an operation.

 Argument_pins: “The number of argument input

pins must be the same as the number of input (in and

inout) parameters of the called behaviour or

operation. The type, ordering and multiplicity of each

argument Input pin must be consistent with the

corresponding input parameter” (OMG 2015,

sec.16.14.8.7). I.e., denoting the list of an action’s

input pins by inPins:

inPins.size = f.inputParameters.size 

(i  [1, inPins.size]:

inPini.type  f.inputParameteri.type 

inPini.isOrdered  f.inputParameteri.isOrdered 

inPini.isMultivalued =f.inputParameteri.isMultivalued) (P9)

The verification of this constraint on the bound

action checks that, in case f is substituted, f has a set

of parameters that remains aligned with the sequence

of input pins. The demonstration of this constraint

(and the next) consists in showing that the sequence

of input (output) parameters of f (or f) is aligned

with the sequence of input pins of the templated

action, which happens to be the same as the bound

action’s, since binding to a template doesn’t change

the topology of an activity diagram (see section

4.1.3). Therefore, it must be proved that:

inPins.size = f.inputParameters.size 

(i  [1, inPins.size]:

 inPini.type  f.inputParameteri.type 

 inPini.isOrdered  f.inputParami.isOrdered 

 inPini.isMultivalued = f.inputParami.isMultivalued)

(10)

(P9)  (10) 

f.inputParameters.size = f.inputParameters.size 

(i  [1, f.inputParameters.size]:

 f.inputParami.type f.inputParameteri.type 

 f.inputParami.isOrdered f.inputParami.isOrdered 

 f.inputParami.isMultivalued=f.inputParami.isMultivalued)

It may be noted that this is the same as:

f.inputParameters.size = f.inputParameters.size 

(i  [1, f.inputParameters.size]:

 TypCnf (f.inputParami, f.inputParami) 

 MltCnf (f.inputParami, f.inputParami))

Which is the formulation of SigCnf. Therefore, if

SigCnf holds, (10) holds as well. QED.

 Result_pins: “The number of result output pins

must be the same as the number of output (inout, out

and return) parameters of the called behaviour or

operation. The type, ordering and multiplicity of each

result Output pin must be consistent with the

corresponding input Parameter”. I.e., denoting the list

of the templated action’s output pins as outPins:

outPins.size = f.outputParameters.size 

(i  [1, outPins.size]:

 f.outputParami.type  outPini.type 

 f.outputParami.isOrdered  outPini.isOrdered 

 f.outputParami.isMultivalued = outPini.isMultivalued)

It must be proved that:

outPins.size = f.outputParameters.size 

(i  [1, outPins.size]:

 f.outputParami.type  outPini.type 

 f.outputParami.isOrdered  outPini.isOrdered 

 f.outputParami.isMultivalued = outPini.isMultivalued)

The demonstration of this formula is similar to the

previous one, with output pins and parameters instead

of input ones and swapping the left-hand side with the

right-hand side of all comparisons. QED.

4.2.6 On Operation Call Actions

These are actions that specifically invoke operations.

 Type_target_pin: “(…) the operation must be an

owned or inherited feature of the type of the target

input pin (…)” (OMG 2015, sec.16.14.10.6). In

operation call actions, the pin that receives the

executing instance is named “target” in the UML

metamodel. In the archetypal action, it is represented

by the self pin. Therefore, this constraint has the same

formulation and demonstration as Object_type, in

section 4.2.2.

4.2.7 On Calls to Operations on Collections

This section focus on a topic about which (OMG

2015) is either ambiguous or silent: the call of

operations on collections. Expressions such as

‘customers.count()’ should be representable as in

Figure 20.

Page 12 / 13 – quarta-feira, 17 fevereiro, 15:31

Figure 20: Collection operation call.

However, it could be noted that the action in

Figure 20 seems to violate constraint Type_target_pin

in the section 4.2.6, since Count() is not a feature of

Customer. This is not a definite violation because, in

fact, (OMG 2015) is not clear in what is meant by “the

type of the ‘target’ [self] pin” in the aforementioned

constraint when that pin is multivalued. If such type

is interpreted as a collection type – i.e., in Figure 20

“the type of self” would be Set{Customer} – action in

Figure 20 complies with the constraint. Contrarily, if

(OMG 2015) refers to the type of the individual

objects passed through the multivalued pin, then the

action in Figure 20 violates the constraint.

Furthermore, the latter case would mean that UML’s

call operation action is not intended to represent calls

to operations on collections. But then, there are no

other kind of action in UML that could represent such

calls. Consequently, in this paper we make it clear

what would be the counterpart of constraint

Type_target_pin when the self pin is multivalued,

declaring a constraint additional to those in (OMG

2015):

 Call_of_collection_operation: If the self pin is

multivalued, then the type that owns f must be a

collection; and vice versa. I.e.: self.isMultivalued 

(f.owner  Collection) (P10).

It must be proved that: caller.isMultivalued 

(f.owner  Collection) (11). This is ensured by

MltCnf and STypcnf : (P10), MltCnf (caller, caller),

STypCnf (f.owner, f.owner) ⊢ (11). QED.

4.2.8 On ‘Create Object’ Actions

In this kind of actions (see first two examples in

Figure 6) f is a classifier. Thus, f is renamed to C, for

clarity reasons.

 Classifier_not_abstract: “The classifier cannot be

abstract” (OMG 2015, sec.16.14.18.5). I.e.: 

C.isAbstract (P11).

Abstraction Conformance proves that the same

holds in the target space: (P11), AbstCnf (C, C) ⊢
( C.isAbstract). QED.

 Multiplicity: “The multiplicity of the result output

pin is 1..1” (OMG 2015, sec.16.14.18.5). In terms of

the action template:  result.isMultivalued (P12).

MltCnf proves that the same holds in the target

space: (P12), MltCnf (result, result) ⊢
( result.isMultivalued). QED.

 Same_type: “The type of the result output pin

must be the same as the classifier” (OMG 2015,

sec.16.14.18.5). This constraint is always true,

because in programing languages, ‘new MyClass’

always yields an object of MyClass.

The constraint Classifier_not_association_class

is not applicable because the concept of Association

Class does not exist in the common OOP languages.

5 RELATED WORK

Research aiming at improving the UML Template

model is scarce. (Caron & Carré 2004) and

(Vanwormhoudt et al. 2015) are the pieces of work

most affine to the this paper.

Like the current paper, (Caron & Carré 2004) also

proposes a set of rules, additional to that of UML, as

a mean to enforce the well-formedness of elements

bound to templates. (Caron & Carré 2004) is not clear

on the purpose of the well-formedness it is trying to

achieve. If it were compilability assurance, it

overlooks several important aspects that are referred

in the current paper, such as multiplicity, staticity, and

visibility. FC take such aspects under consideration.

(Vanwormhoudt et al. 2015) proposes an

extension to the UML Template concept called

Aspectual Template (AT). Instead of having multiple

parameters exposing potentially disconnected

elements, ATs have a single parameter, which

exposes a model as a whole. Associated to ATs, a set

of constraints ensures that the target model fragment

is conformant with the AT parameter. However, the

conformance being checked doesn’t target the

guarantee of compilability for the bound element.

E.g., AT’s constraints overlook multiplicities and the

static nature of features, which are essential for

compilability. Additionally, by not taking subtyping

into consideration in some circumstances, AT’s

constraints are exaggeratedly strict. Our approach

overcomes such limitations.

Although not strictly aimed at UML Templates,

(France et al. 2004) proposes a technique for

specifying Design Patterns and checking if such

templates are applicable to their application model

fragment. Its approach includes a concept termed

Role that closely resembles the UML’s Stereotype

concept and a notation that allows superimposing

Roles’ metamodel constraints on model diagrams.

Although the approach outpaces UML templates in

Page 13 / 13 – quarta-feira, 17 fevereiro, 15:31

expressiveness, the conformance verification method

overlooks several aspects essential to compilability,

such as multiplicity and signature conformance.

Differently from the current paper, none of the

aforementioned provides a formal proof of the

effectiveness of their contributions.

In the Programing Languages field, both C++

Templates (Stroustrup 2013; Vandevoorde et al.

2002) and Java Generics (Gosling et al. 2014;

Naftalin & Wadler 2006) check the adequacy of an

actual argument to a template parameter taking into

account the use that the template does of that

parameter. This roughly results in the same level of

validation as the one provided by FC. Whether non-

conformities are accurately imputed to a bad

argument-to-parameter assignment or badly reported

elsewhere in the template instance, tends to be tool-

specific. This may raise the argument that template

instantiation verifications could be delegated to the

target language, and FC be dismissed. However, there

are plenty of reasons to perform such verifications on

the UML model. The most evident lies is the fact that

UML models may not be targeted to a language with

generics. E.g., UML may be used to model databases

and SQL doesn’t possess generics. A not so obvious

reason is that the FC’s criteria may leverage computer

assisted binding, with substitutes being automatic and

semi-automatically elicited out of the target model.

6 CONCLUSIONS AND FUTURE

WORK

Building a proof was undoubtedly useful, not only

because it confirmed the theory put forth, but also

because it unrevealed issues that otherwise might

become unnoticed. These were mostly related with

the substitution of classifiers and lead to the

introduction of the Subtyping and Abstraction

Conformance criteria. The former was not initially

apparent because TypCnf seemed to suffice for the

purpose under consideration, being Subtyping

Conformance just a corollary TypCnf. The

impossibility of using TypCnf to prove the well-

formedness of object flows forced to consider the

hypothesis of Subtyping Conformance not really

being a corollary of TypCnf. That was evidenced only

through a proof by contradiction (not shown in this

paper). AbstCnf was not detected previously because

none of the empirically tested templates included a

new statement that could be substituted by an abstract

class. It looks like a formal proof is worth a thousand

tests.

The demonstration strategy use only proves that

FC is sufficient to ensure compilability. As a next

step, a demonstration that shows that FC’s rules are

the necessary ones must be done.

REFERENCES

Caron, O. & Carré, B., 2004. An OCL formulation of

UML2 template binding. In T. Baar et al., eds. UML’

2004 — The Unified Modeling Language. Modeling

Languages and Applications. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, pp.

27–40.

Farinha, J. & Ramos, P., 2015. Extending UML Templates

towards Computability. In MODELSWARD 2015,

3rd Int. Conf. on Model-Driven Engineering and

Software Development. ScitePress.

France, R.B. et al., 2004. A UML-based pattern

specification technique. IEEE Transactions on

Software Engineering, 30(3), pp.193–206.

Gosling, J. et al., 2014. The Java Language Specification,

Java SE 8 Edition 1st ed., Addison-Wesley.

Naftalin, M. & Wadler, P., 2006. Java Generics and

Collections, O’Reilly Media, Inc.

OMG, 2015. OMG Unified Modeling Language, version

2.5, Available at:

http://www.omg.org/spec/UML/2.5.

Stroustrup, B., 2013. The C++ Programming Language 4th

ed., Addison-Wesley.

Vandevoorde, B.D., Josuttis, N.M. & Date, P., 2002. C ++

Templates : The Complete Guide 1st ed., Addison-

Wesley.

Vanwormhoudt, G., Caron, O. & Carré, B., 2015. Aspectual

templates in UML. Software & Systems Modeling.

