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Abstract: Because of the thin set of well-formedness rules associated to Templates in UML, ill-formed elements may 

result from well-formed bindings to templates. Although such ill-formedness is generally detected by some 

UML validation rule, the problem is poorly reported if the violated rule does not pertain to the Template 

construct. Typically, erroneous substitutions of template parameters will be misleadingly reported as 

compilation problems in the code of operations of the template’s instance. This paper demonstrates that a set 

of well-formedness rules, additional to those of the standard UML, prevents this problem from occurring. 

Such set of constraints was proposed in a previous paper and named Functional Conformance (FC), but a 

demonstration of its effectiveness was not provided. Such a demonstration is carried out in the current paper 

adopting UML Activities as the formalism to represent the dynamics of systems and their well-formedness 

rules as compilability criteria. Carrying out the demonstration revealed further rules than those previously 

proposed for FC.

1 INTRODUCTION 

An UML template is a model element embodying a 

patterned solution that can be instantiated to solve a 

recurring problem. A template is instantiated in a 

model by binding an element of that model to the 

template, which is done through the Binding 

relationship. In order to have a template instance 

contextualized to the target model, templates are 

defined as parameterised elements. A template 

parameter marks an element participating in the 

template’s specification to tell that it must be 

substituted by an element of the target model. Only 

when all of the template’s parameters are substituted, 

it becomes an actual, fully integrated solution in the 

target model. 

In order to ensure that the elements bound to 

templates are well-formed, UML enforces a set of 

constraints to parameter substitutions. One such 

constraint imposes that a substitute element must be 

of the same kind (Class, Attribute, Operation, etc.) as 

the parametered element. Another constraint enforces 

that if a parameter marks a typed element, this 

element and its substitute have conforming types. 

Yet, the set of validations falls short in 

guaranteeing the well-formedness of template 

instances. For instance, UML allows an operation 

Op1 be substituted by an operation Op2 whose 

signature is not compatible with the former’s. If Op1 

is substituted by Op2, every call to Op1 in the 

template’s code will be reproduced as a call to Op2 

with an unaligned set of arguments, which is a badly-

formed call. Even though the problem was caused by 

a bad substitution, it will be reported on the operation 

call, without any back tracking to the source of the 

problem being recommended by UML (as of version 

2.5 (OMG 2015)). There are far more other such 

scenarios of inadequate substitutions going unnoticed 

by UML templates and causing incidental errors 

inside template instances, mainly in the body of the 

operations. This causes parallax problems in error 

reporting, a consequence of the scarce set of the 

validation rules for UML templates. 

In (Farinha & Ramos 2015) a set of additional 

rules was proposed for UML template as a way to 

overcome the aforementioned problem. Such rules 

implemented a concept named Functional 

Conformance (FC). With such additional rules, 

improper substitutions of template parameters would 

be immediately signaled and reported, and error 

reporting parallax problems removed. Since (Farinha 

& Ramos 2015) provides only an intuitive perspective 

on the solution, a formal proof of the effectiveness of 

it is required. 

This paper provides such a proof. One that 

demonstrates that the original definition of FC 

(Farinha & Ramos 2015) augmented with two 

additional constraints ensures the well-formedness of 
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operations’ code resulting from a template binding. In 

this paper, the well-formedness of operations’ code – 

i.e., methods – is verified assuming that these are 

represented as UML Activity Diagrams. It is also 

assumed that methods are purely built with UML 

Activity’s constructs that implement concepts of the 

traditional Object Oriented Programming, as 

supported by the most common object-oriented 

programming languages: Java, C# and C++. More 

advanced concepts of the UML Activity model – such 

as Exception Handling, Fork-Join, Signals and Events 

– are not covered by this paper. 

The process of building the proof was useful to 

uncover the need for two more well-formedness 

constraints than those suggested by the empirical 

experimentation that lead to (Farinha & Ramos 

2015). This reinforced the importance of developing 

formal demonstrations. The two additional 

constraints are related to the preservation of 

subtyping relationships and of the abstract/non-

abstract nature of classifiers when mapping from a 

template to its instances. 

The structure of the paper is as follows: section 2 

presents some core concepts of UML templates and 

introduces the terminology and symbology used in 

this paper; section 3 briefly presents FC; section 4 

includes the demonstration; section 5 presents related 

work; and section 6 draws some conclusions and 

foresees further steps towards FC as a sound concept. 

2 CONCEPTS, TERMINOLOGY 

AND SYMBOLOGY 

In order to refer to the model fragment that 

participates in the definition of a template the term 

“space” is used in this paper. The same term will be 

used also to refer to the fragment that is covered by 

an instance of a template. Generally stated, this paper 

uses “space of an element” to refer to the model 

fragment that is composed of that element and all the 

elements directly used by it. Hence, the set of model 

elements composed of a template and all of the 

elements directly used (referred) by it is called that 

template’s space. The term “template space” is used 

for general, non-specific template. Similarly, the term 

“target space” will be used to denote the model 

fragment composed of an instance of a template and 

all the elements used by that instance. In formulas, the 

template space will be represented by T.space (a 

different font is used to differentiate from ‘T’ 

representing a type). 

Some of the elements in a template’s space will 

be marked as parameters of the template. Others will 

be used ordinarily by the template, without been 

specified as parameters.  

When binding to the template – i.e., instantiating 

the template – the elements marked as parameters will 

be replaced by elements in the target space. This 

means that the instance of the template – termed the 

bound element – will use those elements of the target 

space instead of the ones of the template space. The 

concept in UML representing this replacements in the 

context of a binding is termed Substitution. It is said 

that an element in the target space substitutes an 

element in the template space. 

Being E an element belonging to the space of a 

template T and B a bind to T, B.E is the model 

element in the target space that is the substitute of E 

in the scope of B. When, in the course of discourse, B 

is implicit, the substitute of E will simply be referred 

as E. 

In a binding, the Projection of an element E of the 

template space is the element of the target space that 

corresponds to E in the context of that binding. I.e., 

the projection of E is either one of the following: 

 E – i.e. the actual substitute of E – if E is 

substituted; 

 a replica (or reproduction) of E, if E is a 

member of the template that is not substituted; 

 E itself, if E is not substituted nor a template’s 

member (E is simply used by the template; e.g., 

it is a class used by the template and, therefore, 

will be used by the bound element as well). 

In this paper, the following typing conventions 

and symbols will be used: 

An identifier with a ‘
T
’, e.g. E

T
, represents an 

element in a template space. 

An identifier with a ‘’, e.g. E, represents an 

element in a target space.  

If element E is an element in the template space, 

then E is the projection of E in the target space. 

E  E’ means that element E is substituted by E’. 

This is the UML notation for substitution. 

T’  T means that T’ is a subtype of T. 

T’  T means that T’ is a subtype of T or T itself. 

E : T means that E's type is T or a subtype of it. 

T  f means that T has f as member. 

T  E means that T has visibility on E. 

Several UML metamodel’s operations are used 

within formulas. Those that have no parameters are 

written without parentheses, for clarity reasons.  

Finally, there is a term in UML that is worth 

reminding: Classifier is any model element that 
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represents a classification of instances according to 

their features. Classifier subsumes concepts such as 

Class, Association, Data Type and Use Case. 

3 OVERVIEW OF FUNCTIONAL 

CONFORMANCE FOR UML 

TEMPLATES   

Functional Conformance (FC) is a term that was 

introduced in (Farinha & Ramos 2015) aiming to 

denote the equivalence between two model elements, 

from a third-party, client perspective. It is a directed 

relationship between two elements e1 and e2, herein 

represented in formulas as ‘e1  e2’, meaning that 

the first element may be replaced by the second in a 

model without compromising the consistency of that 

model. In (Farinha & Ramos 2015) and in the current 

paper, the concept is applied to the instantiation of 

UML templates, being proposed as a set of well-

formedness constraints that should rule every 

template parameter substitution. FC is defined as a set 

of criteria, presented in the following subsections.  

3.1 Type conformance 

Type Conformance (TypCnf) states that if an element 

e
T
 in the template space has type T

T
, then the 

projection of e
T
 must have the projection of T

T
 as type.  

TypCnf (e
T
 , e)   T

T   T.space, 

(e
T
.type  T

T )  (e.type  T) 

It should be noted that this criterion should hold 

for all the types of e
T
, i.e., for e

T
’s direct type and for 

all of its indirect types (ascendants of the direct type). 

This rule can be announced two-fold, distinguishing 

when T is substituted from when it isn’t: 

(1) If a type T of an element e
T
 is not substituted, 

then e must have T as type; i.e., e : T. 

(2) If the type T of an element eT is substituted, 

then e must have T as type; i.e., e : T. 

3.2 Subtyping conformance 

Subtyping Conformance is intended to preserve every 

is-a relationship from the template to the target 

spaces, in case any classifier substitution occurs on a 

generalisation hierarchy. The definition is: if T
T
 is a 

subtype of Tsuper
T
, then T must be a subtype of Tsuper

 

or Tsuper
 itself. 

StypCnf (T
T
, T)   Tsuper

T  T.space, 

(T
T
  Tsuper

T
)  (T  Tsuper

) 

It should be noted that such conformance is 

required either if both TT and Tsuper
T are substituted or 

if only one of them is. 

3.3 Multiplicity conformance 

Two elements conform regarding multiplicity if they 

are both single-valued (multiplicity’s upper bound = 

1) or both multivalued (multiplicity’s upper bound > 

1) and, in the latter case, if they are both ordered or 

both not-ordered:  

MltCnf  (e
T
, e)  e

T
.isMultivalued = e.isMultivalued 

 e
T
.isOrdered = e.isOrdered 

3.4 Contents conformance 

Contents Conformance (CtsCnf) applies only to model 

elements that are namespaces. In the context of a 

certain bind, the namespace ns conforms in contents 

with ns
T
 if every member of the ns

T
 being used by the 

template is substituted by a member of ns. If the 

namespace is a type, its members are properties, 

operations, or inner types. If it is package, members 

are packages or classifiers. Figure 1 shows an 

example with classifiers where CtsCnf doesn’t hold: 

class Cp may not be substituted by Cs1, because Cs1 

doesn’t provide a substitute for attribute y. On the 

contrary, in Figure 2 Cs1 conforms in contents with 

Cp. 

 

Figure 1: Example of lack of contents conformance. 

 

Figure 2: Example of contents conformance. 

CtsCnf is formulated for the namespaces ns
T
 and 

ns, for a binding to a template T, as: 

CtsCnf (ns
T
, ns)  e

T
  ns

T
.members  T.space, 

 e  ns.elements: e
T
  e 
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CtsCnf has a corollary and a specialisation, which 

are presented in the following subsections. 

3.4.1 Membership conformance  

An element e conforms in membership to an element 

e
T
 if at least one of its namespaces substitutes one of 

e
T
’s namespaces. Membership Conformance (MshCnf) 

enforces that, if A is substituted by B, members of A 

must be substituted by members of B.  

MshCnf (e
T
, e)  

 
(e

T
.namespaces)  e.namespaces  Ø 

It is possible to demonstrate that MshCnf may also 

be formulated as: 

NS
T
, (NS

T
  e

T
)  (NS  e)    

3.4.2 Signature conformance 

Signature Conformance (SigCnf) is a specialisation of 

CtsCnf, as applied to operations. It is the criteria that 

ensures that a substituting operation has a set of 

parameters compatible with that of the substituted.  

Assuming that the input (in and inout) and output 

(out and inout) parameters of an operation are given 

by inParams() and outParams(), respectively, SigCnf 

is formulated for the operations op
T
 and op as: 

SigCnf (op
T
, op)  

 
op

T
.parameters.size = op.parameters.size  

(i  [1, op
T
.inParams.size], 

     op
T
.inParamsi  op.inParamsi)  

(i  [1, op
T
.outParams.size], 

     op
T
.outParamsi  op.outParamsi) 

Notice that conformance among input parameters 

is enforced from template to target while among 

output and return parameters is the opposite. 

The verification of FC between operation 

parameters is done through: 

opPrm
T
  opPrm   TypCnf (opPrm

T
, opPrm)  

MltCnf (opPrm
T
, opPrm) 

3.5 Staticity conformance 

This criterion establishes that a static feature may 

only be substituted by another that is also static, and 

a non-static by a non-static: 

StcCnf (f
T
, f)  f

T
.isStatic = f.isStatic 

3.6 Abstraction conformance 

This criterion applies only to parametered elements 

that are classifiers and is already supported by UML 

2.5. It states that a classifier that is not abstract may 

only be substituted by another classifier that is not 

abstract as well:  

AbstCnf (C
T
, C)  

 
 C

T
.isAbstract   C.isAbstract 

3.7 Visibility requirement 

This is a requirement that enforces that an element 

may substitute a template parameter only if that 

element is visible from the bound element. It may be 

formulated for a binding B and element e as: 

B.boundElement  e 

3.8 Functional conformance 

enforcement 

If FC is enforced as a validation rule of the UML 

concept of template substitution, FC holds between 

any element E in the template space and its 

projection, since for every form of E one of the 

following will hold: 

E   E, by well-formedness constraint; 

E   E, by replication;  E is a reproduction 

of E, according to the semantics of the 

Binding relationship. 

E  E, trivially. 

It shall be proved that E  E is enough to 

ensure the well-formedness of the bound element’s 

operations if those operations are operations are 

originally well-formed in the template. 

4 DEMONSTRATION 

4.1 Strategy 

4.1.1 Representing Code by UML Activities  

The goal of this demonstration is to show that the 

code of operations in a class template remains 

compilable once reproduced in instances of that 

template. For instance, a class template for keeping a 

list of items ordered by name would have an operation 

insert (Item) with the following Java definition: 
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AlphabeticList::insert (Item itm) { 

 int k = 1; 

 for (itm.name < self.items[k].name) 

  k++; 

 self.items.insertAt (itm, k); 

} 

If a class CustomerList is bound to the template 

AlphabeticList, substituting class Item by Customer 

and itm by cust, the following method would be 

generated: 

CustomerList::insert (Customer cust) { 

 int k = 1; 

 while (cust.name < self.items[k].name) 

  k++; 

 self.items.insertAt (cust, k); 

} 

It should be proved that if method 

AlphabeticList::insert (Item) compiles successfully 

and FC is enforced on substitutions, then 

CustomerList::insert (Customer) compiles as well. 

However, instead of using the syntax rules of a 

programing language to check compilability, it will 

be assumed that all code is represented by UML 

Activity Diagrams and compilability will be checked 

using the well-formedness rules for Activities. E.g., 

the previous method is considered equivalent to the 

activity in Figure 3. 

 

Figure 3: A method represented as an activity with an 

expression. 

It could be noted however that the compilability 

of the method in Figure 3 may not yet be fully 

assessed by UML Activity well-formedness rules. 

That’s because one of the guards of the decision node 

is expressed as an expression. The assessment of that 

expression would require UML’s well-formedness 

rules for expressions as robust as those of programing 

languages, which is not the case: the UML metamodel 

stores expressions as simple tree structures, without 

establishing validation rules for the compatibility 

between those trees’ nodes. E.g., UML considers 3 * 

“potato” a valid expression. Hence, to achieve our 

goals, expressions must be represented as activities. 

E.g., the guard expression in Figure 3 must be 

replaced by the composite activity cust.name < 

items[k].name shown in Figure 4, which internally 

should be as in Figure 5. Since this expression-

activity feeds the «decisionInputFlow» of the 

decision node, its result will steer execution as 

desired. Once every expression is formally 

represented by an activity, the compilability of a 

method may be fully verified through UML Activity 

well-formedness rules. 

 

Figure 4: A method fully represented as an activity. 

 

Figure 5: The internals of an expression-activity. 

For the sake of a clear scope definition, the 

following concepts of the UML Activity formalism 

and their specializations are considered sufficient to 

represented structured programing code with object 

orientation, as support by Java, C# and C++: Object 

Action, Structural Feature Action, Call Action, 

Object Node, Control Flow, Object Flow, and 

Decision Node. Every construct of such languages 

that is not are subsumed by those concepts is, 

therefore, out of the scope of this paper. A proper 

paper would be required to demonstrate the 

compilability of programs that use such constructs.  

The problem of compilability assessment will be 

further reduced to the assessment of the well-

formedness of a general action, as will be shown in 

section 4.1.3. 
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4.1.2 UML Activities 

Paraphrasing (OMG 2015, sec.15.1): “An Activity is 

a kind of behaviour that is specified as a graph of 

nodes interconnected by flows. A subset of the nodes 

are executable nodes that embody lower-level steps in 

the overall activity.” Such executable nodes are called 

Actions and correspond to statements in programing 

languages. “Object Nodes hold data that is input to 

and output from executable nodes”, and may 

represent variables, operation parameters or their 

arguments. The data in object nodes moves across 

Object Flows. The sequencing of actions is specified 

through Control Flows, and these may be controlled 

by if-then-else, switch, fork-join or loop structures, 

globally designated Control Nodes. In this paper, it is 

considered that the operations’ code under 

consideration is purely represented using the UML 

concepts described below. 

 Object Actions operate on objects as a whole, 

representing statements that create objects (new 

MyClass), destroy them (delete myObj), check their 

classification (myObj instanceof MyClass) or their 

identities (obj1 == obj2). Examples in Figure 6.  

 
 o = new Order 

 
 delete o 

Figure 6: Object actions. 

 
 o.totalCost 

 

 o.customer = c 

 
 o.customer = null 

Figure 7: Structural Feature actions. 

Object actions also include Value Specification 

Actions. These are actions that yield a value after 

evaluating a textual expression, including those with 

a single literal. In this paper, only actions evaluating 

literals are considered (such as the ‘1’ action in Figure 

4). Other value specification actions are represented 

by composite activities, as mentioned in section 4.1.1. 

Structural Feature Actions read or write on 

properties of objects (Figure 7). 

A Call Action invokes a behaviour (Figure 8) or 

an operation on an object (Figure 9). 

 

 
processOrders (orders, 

currentUser) 

Figure 8: ‘Call Behaviour’ action. 

 
 o.add (p, qty) 

Figure 9: ‘Call Operation’ action. 

Object Nodes are used to store data that is used 

and/or produced by actions. Those may represent 

variables (e.g., ‘o: Order’ in the examples above) or, 

through the concept of Pin – a specialization of 

Object Node – may represent behaviour’s or 

operation’s parameters (e.g., quantity, in Figure 9). 

A Decision Node chooses one between multiple 

outgoing flows: the first one whose guard is true. 

Figure 10 shows two possible configurations for a 

decision node. Decision nodes may also be used to 

implement loops, as shown in Figure 11. Even though 

UML provides a construct specific for looping 

(LoopNode), it is enough to consider decision nodes 

for compilability assessment. 

 

 if (guard1) 
 ... 

elseif (guard2) 

 ... 

 

 switch (getSomething){ 
 case guard1: ... 

 case guard2: ... 

} 

Figure 10: Decision nodes. 

 

 while (guard1) 
 doSomething 

Figure 11: A loop in an activity. 
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4.1.3 Demonstrating the Well-formedness of 

Activities through an Archetypal Action 

To keep the demonstration simple, it is adequate to 

narrow down the set of elements whose compilability 

must proved. To achieve this, first we filter out those 

elements whose compilability is not affected by 

template binding. Secondly, the remaining elements 

are reduced to a simpler, common representation.  

Taking into account the semantics of UML 

template binding – recalling: the bound element is a 

replica of the template with superimposed 

substitutions – and that the compilability of the 

template is a premise, it may be deduced that only 

those elements being impacted by substitutions may 

spoil the compilability of the bound element. This 

narrows down the set of elements to consider those 

whose validation rules reference parameterable 

(therefore, substitutable) elements. Since neither the 

source nor the target of activity flows are 

parameterable, flows’ connecting points are never 

changed by template substitutions. This means that 

the topology of an activity is preserved from the 

template to the bound element. Consequently, it is 

possible to consider individually each element kind 

presented in the previous section.  

Control Flow metadata and constraints 

exclusively deal with topology, except in two aspects: 

the flow’s weight and guard. Since the concept of 

weight doesn’t exist in programing languages, control 

flows may only jeopardize compilability because of 

their guards. As seen in the previous sections, all 

expressions that are not single literals are represented 

as composite activities. This means that the 

compilability of a guard may be ultimately 

determined by the joint compilability of an activity 

without guards and a fragment such as the one in 

Figure 12. The same is also valid for Decision Nodes, 

if we substitute in Figure 12 “resultFromExpression” 

by “resultFromDecisionInputFlow”, and “true: 

Boolean” by “aLiteral: T2” or “aVariable: T2”. This 

filters out guards, control flows and decision nodes 

from consideration. 

 

Figure 12: Fragment of the semantics of a guard. 

Hence, the assessment of the compilability of a 

bound activity becomes reduced to the verification of 

the action kinds shown in the previous section and of 

that in Figure 12, in both cases taking into account the 

objects and object flows that connect to those actions. 

This allows further simplifying our demonstration by 

subsuming all those actions to a common 

representation: the generic, archetypal action in 

Figure 13. Compilability will then be verified by 

formulating UML well-formedness rules exclusively 

in terms of that action. The archetypal action shown 

in Figure 13 aims at representing a feature call in a 

broad sense: a call to a feature of an object, of a 

collection of objects (e.g., a call to size()), of a class 

(a call to a static feature), or of the run-time system 

(e.g., a call to the new operator). The demonstration 

strategy from this point on is somewhat 

straightforward:  assuming that well-formedness 

rules hold for the archetypal action in a template, it 

must be shown that they hold as well for the 

corresponding bound action if FC is enforced in the 

binding. I.e., representing the archetypal action by a, 

it should be shown that: 

WellFormed (a
T
)  (a

T
  a)  WellFormed (a) 

 

Figure 13: An action in the template. 

It is considered that the archetypal action is 

defined within a template and, therefore, is 

reproduced in every element bound to that template. 

The archetypal action within the template will be 

referred interchangeably as templated action and 

represented as in Figure 13 (without ‘
T 

’). Its 

reproduction in a bound element will be referred as 

bound action and represented as in Figure 16. 

4.1.3.1 The Templated Action  

The feature being called by the templated action in 

Figure 13 is represented by the meta-variable f. For 

Create Object actions f is a class, not a feature. For 

Value Specification actions f is an expression; 

specifically to this paper, it is a literal expression. For 

Destroy Object actions f doesn’t exist. 

Self is a pin that represents the usual variable 

self/this: a reference to the object that executes the 

feature, from the perspective of the code of that 

feature. Self doesn’t exist in Create Object, Value 

Specification, and Call Behaviour actions. 



 

Page 8 / 13 – quarta-feira, 17 fevereiro, 15:31  

 

As imposed by UML’s constraints (OMG 2015, 

sec.16.14.54.6 and 16.14.10.6), self’s type is the type 

that owns – i.e., declares and provides context to – the 

feature being called. The type of self is identified by 

the meta-variable Tcontext.  

The multiplicity of the self pin is represented by 

Mself. Mself’s upper bound may be either 1 or greater 

than 1. It must be 1 if the feature being called (f) is 

structural (f is attribute or association end). If f is an 

operation, self may be multivalued (multiplicity’s 

upper bound > 1). This is required to support calls to 

collection operations (size(), includes(…), etc.). 

The caller object node represents the instance that 

embodies self in an execution of the action. In a 

statement ‘anObject.feature’, anObject is represented 

in Figure 13 by caller. Depending on the topology of 

the activity containing the action, caller may 

represent a variable, a parameter of the activity that 

contains the action (Figure 14) – including that 

activity’s self – or the result pin of a preceding action 

(Figure 15). Caller’s type and multiplicity are 

represented by the metavariables Tcaller and 

Mcaller, respectively.  

  

Figure 14: Caller is a parameter of the owning activity. 

  

Figure 15: Caller is a previous result. 

Prmi, for i from 1 to N, is a parameter of f with 

direction other than ‘return’. Prmi’s type and 

multiplicity are represented by the meta-variables 

Tprmi and Mprmi, respectively. Prmi also represents 

the pin that passes values to or from the prmi 

operation parameter, depending on that parameter’s 

direction being in or out, respectively. If prmi is a 

bidirectional parameter (inout), values may be passed 

to and from it. Since UML pins may not be 

bidirectional, two pins are required to every inout 

parameter: these will be called prmi_in and prmi_out. 

That’s the case of prmK in Figure 13. According to 

UML ((OMG 2015), pp. 493-4), in feature call 

actions, pins may have characteristics different from 

those of the corresponding feature parameters, as long 

as they are consistent. However, since structured 

programming languages don’t have a concept such as 

Pin, this document assumes that every prmi pin is a 

pure surrogate of the corresponding prmi parameter, 

being the pin’s characteristics (type, multiplicity, etc.) 

derived from those of the parameter. 

Argi, for i from 1 to N, is the argument passed to 

prmi. Argi’s type and multiplicity are represented by 

Targi and Margi, respectively. Similarly to caller, 

argi may represent a variable, a parameter of the 

activity, or the result pin of an upstream action. 

Result is the pin that yields the value returned by 

the action. If f is a property, result yields the value of 

that property in the instance provided by caller. If f is 

an operation, result represents that operation’s 

parameter whose direction is ‘return’, i.e., it yields the 

value returned by the operation. Result´s type and 

multiplicity are represented by Tf and Mf, 

respectively. As above, although UML allows a pin 

and the corresponding parameter be different, it will 

be assumed that the result pin’s type and multiplicity 

are always in sync with those of f – suggestively, 

that’s why those are named “Tf” and “Mf”. 

Destination represents the element that receives 

the result of the action. Also depending on the 

topology of the activity containing the action, it might 

be a variable, an output (out, inout or return) 

parameter of the activity, or a pin of a downstream 

action (a subsequent self or prmi). 

4.1.3.2 The Bound Action 

The reproduction of the archetypal action within the 

bound element will be termed bound action and it will 

be as in Figure 16. In that figure, the elements that 

may differ from their original counterparts are 

marked with ‘’ (in some cases reduced to a ‘’, due 

to typewriting constraints).  

 

Figure 16: The bound action. 
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4.2 Compilability criteria and its 

demonstration for the bound 

action 

This section defines how compilability is assessed in 

the demonstration. This will be done using UML 

Activity well-formedness constraints: if these hold 

for an activity, that activity is compilable. Only the 

following constraints are relevant:  

 Those whose formulation includes elements 

that UML defines as parameterable in a 

template (therefore, substitutable in a binding). 

 Those verifying the kinds of elements existing 

in the action archetype, which are: Object Node 

and Pin (Figure 17); Object Flow (Figure 18); 

Structural Feature Action, Call Action and 

Object Action (Figure 19); 

 

Figure 17: Object Nodes in the action archetype. 

 

Figure 18: Object Flows in the action archetype. 

 

Figure 19: Kinds allowed for the action archetype. 

The following subsections summarise the 

constraints in UML 2.5 (OMG 2015) that are relevant 

to this demonstration and formulate them in terms of 

the archetypal action. Each constraint is marked with 

the bullet ‘ ’. The holding of those constraints in the 

templated action will be premises. The holding in the 

bound action are the hypothesis that must be proved 

on the basis of those premises and that FC also holds 

between every element and its projection in the target 

space. Premises are identified by numbers prefixed 

with a ‘P’. 

4.2.1 On Object Flows 

 Compatible_types: “(…) the downstream object 

node type must be the same or a supertype of the 

upstream object node type” (OMG 2015, p.427). I.e., 

designating the upstream and downstream object 

nodes’ types as Tfrom and Tto, respectively: 

Tfrom = Tto. This provides the premise: (Tfrom, Tto) 

 {(Tcaller, TContext), (Targi_in, Tprmi_in), 

(Tprmj_out, Targj_out), (Tf, Tdestination)}, Tfrom = Tto 

(P1). 

It must be proved that, for the same pairs 

(Tfrom, Tto): Tfrom
 = Tto

. Which is ensured by 

Subtyping Conformance: (P1), StypCnf (Tfrom, Tfrom
) 

⊢ Tfrom
 = Tto

. QED. 

 Same_upper_bounds: “Object nodes connected 

by an object flow (…) must have the same upper 

bounds” (OMG 2015, p.427). This is a rule that must 

be redefined, because it originally aims at ensuring 

semantic compatibility, not compilability. To ensure 

compilability, it is enough that object nodes 

connected by a flow are both single-valued or both 

multivalued. Hence, designating the object nodes as 

from and to: from.isMultivalued = to.isMultiValued. 

This leads to the premise: (from, to) {(caller, self), 

(argi, prmi), (result, destination)}, from.isMultivalued 

= to.isMultivalued (P2). 

It must be proved that: from.isMultivalued = 

to.isMultivalued (2). Considering MltCnf : (P2), 

(from {caller, argi, result}, Mltcnf (from, from)), 

(to {self, prmi, destination}, Mltcnf (to, to)) ⊢ (2). 

QED. 

4.2.2 On Structural Feature Actions 

Such actions access a property in order to read, write 

or clear it (set it to null). 

 Multiplicity: “The multiplicity of the self input pin 

must be 1..1” (OMG 2015, sec.16.14.54). The 

equivalent of this constraint in a programming 

Object Node 

Pin Object Node 

Object Flow 

Object Node 

 

Object 
Flow 

 

Object 
Flow 

 

Object Node 
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language would be an enforcement that any 

expression ‘obj.feature’ should be preceded by the 

assertion ‘obj != null’. This is clearly a rule for 

semantic equivalence, not for compilability. 

Therefore, this constraint must be redefined: self must 

be 0..1. In terms of the templated action: 

 self.isMultivalued (P3). 

It must be proved that:  self.isMultivalued (3). 

Considering Multiplicity Conformance: (P3), 

MltCnf (self, self) ⊢ (3). QED. 

 Not_static: “The structural feature must not be 

static” (OMG 2015, sec.16.14.54). In terms of the 

templated action:  f.isStatic (P4). 

Staticity Conformance ensures that the constraint 

also holds in the target space: (P4), StcCnf (f, f) ⊢  

 f.isStatic. QED. 

 Object_type: “The structural feature must either 

be an owned or inherited feature of the type of the 

object input pin, (…)”. I.e.: Tcontext  f (P5). 

MshCnf (page 4) ensures that the constraint holds 

in the target space: (P5), (1)  ⊢ Tcontext  f. QED. 

 Visibility: “The visibility of the structural feature 

must allow access from the object performing the 

action”. It should be noted that the object in this 

citation is the one executing the whole activity that 

contains the action. Its type may be get from an action 

by means of ‘.containingActivity.context’. Thus, in 

terms of the templated action a, this constraint is 

formulated as: a.containingActivity.context  f. 

It must be proved: a.containingActivity.context 

 f (4). It worth reminding that the templated 

action is part of an activity belonging to the template 

under consideration. From the semantics of Binding, 

a belongs to an activity belonging to the bound 

element. I.e., representing the bound element as BE: 

a.containingActivity.context = BE (5). Hence: (4), 

(5) ⊢ (BE  f). Since this is the formulation of the 

Visibility Requirement, (4) holds. QED. 

The remaining well-formedness constraint, 

one_featuring_classifier, is ensured by that fact that 

the template action is well-formed (a premise). 

4.2.3 On ‘Read Structural Feature’ Actions 

 Multiplicity: “The multiplicity of the structural 

feature must be compatible with the multiplicity of 

the result output pin” (OMG 2015, sec.16.14.42.5). 

I.e.: f.compatibleWith (result). According to (OMG 

2015, sec.7.8.8.7), ‘compatibleWith ()’ means that 

the multiplicity of f must be comprehended by that of 

the result pin. However, due to the goal and scope of 

this paper, it will be considered that to ensure 

compilability it is enough that f and result are both 

single-valued (multiplicity = 1) or both multivalued 

(multiplicity > 1). Therefore, this constraint will be 

redefined as: f.isMultivalued = result.isMultivalued 

(P6). 

It must be proved that: f.isMultivalued = 

result.isMultivalued (6). 

Considering Multiplicity Conformance: (P6), 

MltCnf (f, f), MltCnf (result, result) ⊢ (6). QED. 

 Type_and_ordering: “The type and ordering of 

the result output pin are the same as the type and 

ordering of the structural feature” (OMG 2015, 

sec.16.14.42.5). It is likely there is a lapse in this 

definition, because there is no reason for requiring 

that f and result have exactly the same type, instead 

of allowing f’s return type be a subtype of result’s 

type. Since it provides greater flexibility and doesn’t 

compromise compilability, we will assume that the 

intended formulation is: f.type = result.type  

f.isOrdered = result.isOrdered (P7). 

Two hypothesis must be proved: f.type = 

Mf (7); f.isOrdered = result.isOrdered (8). 

The first one tells that if f is substituted, f’s type 

is the projection of Mf or a subtype of it. Since f.type 

= Mf, (7) may be rewritten as: f.type = (f.type). 

Since this is the formulation of TypCnf for the 

projection of f, if TypCnf holds, (7) holds as well. 

Regarding the second hypothesis: since the 

ordering of a model element is not parameterable by 

itself in a template, result is as ordered as result. 

Therefore, (8) may be written as: f.isOrdered = 

result.isOrdered (9). 

(P7), (9) ⊢ f.isOrdered = f.isOrdered. Since this 

expression is included in the formulation of 

MltCnf (f, f), if MltCnf holds, (8) holds as well. QED. 

4.2.4 On ‘Write Structural Feature’ Actions 

Such actions set the value of an object property 

(second example in Figure 7). It corresponds to an 

archetypal action with a single prm pin: prm1. 

 Type_of_value: “The type of the value input pin 

must conform to the type of the structural feature” 

(OMG 2015, sec.16.14.62.6). UML defines 

conformance of a classifier C1 to classifier C2 as: C1 

 C2 (OMG 2015, sec.9.9.4.7). The value pin 

referred in the citation corresponds to prm1 in the 

archetypal action. Therefore, this constraint’s 

formulation is: prm1.type  f.type. Which may be 

written as: prm1.type  Tf (P8). 

It must be proved that: (prm1.type)  

(f.type). Which may be written as: Tprm1
  Tf. 
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Considering Subtyping Conformance: (P8), 

STypCnf (Tprm1, Tprm1
) ⊢ (Tprm1

  Tf). QED. 

 Multiplicity_of_value: “The multiplicity of the 

value input pin is 1..1” (OMG 2015, sec.16.14.62.6). 

The formulation and demonstration of this constraint 

are the same as those of the Multiplicity constraint in 

section 4.2.2, replacing the self pin by prm1 pin. 

4.2.5 On Call Actions 

Call Actions encompass those that invoke a behaviour 

or an operation. 

 Argument_pins: “The number of argument input 

pins must be the same as the number of input (in and 

inout) parameters of the called behaviour or 

operation. The type, ordering and multiplicity of each 

argument Input pin must be consistent with the 

corresponding input parameter” (OMG 2015, 

sec.16.14.8.7). I.e., denoting the list of an action’s 

input pins by inPins: 

inPins.size = f.inputParameters.size  

(i  [1, inPins.size]:  

inPini.type  f.inputParameteri.type  

inPini.isOrdered  f.inputParameteri.isOrdered  

inPini.isMultivalued =f.inputParameteri.isMultivalued) (P9) 

The verification of this constraint on the bound 

action checks that, in case f is substituted, f has a set 

of parameters that remains aligned with the sequence 

of input pins. The demonstration of this constraint 

(and the next) consists in showing that the sequence 

of input (output) parameters of f (or f) is aligned 

with the sequence of input pins of the templated 

action, which happens to be the same as the bound 

action’s, since binding to a template doesn’t change 

the topology of an activity diagram (see section 

4.1.3). Therefore, it must be proved that: 

inPins.size = f.inputParameters.size  

(i  [1, inPins.size]: 

   inPini.type  f.inputParameteri.type  

   inPini.isOrdered  f.inputParami.isOrdered  

   inPini.isMultivalued = f.inputParami.isMultivalued) 

(10) 

(P9)  (10)  

f.inputParameters.size = f.inputParameters.size  

(i  [1, f.inputParameters.size]:  

  f.inputParami.type f.inputParameteri.type  

  f.inputParami.isOrdered f.inputParami.isOrdered  

  f.inputParami.isMultivalued=f.inputParami.isMultivalued) 

It may be noted that this is the same as: 

f.inputParameters.size = f.inputParameters.size  

( i  [1, f.inputParameters.size]: 

   TypCnf (f.inputParami, f.inputParami)  

   MltCnf (f.inputParami, f.inputParami)) 

Which is the formulation of SigCnf. Therefore, if 

SigCnf holds, (10) holds as well. QED. 

 Result_pins: “The number of result output pins 

must be the same as the number of output (inout, out 

and return) parameters of the called behaviour or 

operation. The type, ordering and multiplicity of each 

result Output pin must be consistent with the 

corresponding input Parameter”. I.e., denoting the list 

of the templated action’s output pins as outPins: 

outPins.size = f.outputParameters.size  

(i  [1, outPins.size]:  

  f.outputParami.type  outPini.type  

  f.outputParami.isOrdered  outPini.isOrdered  

  f.outputParami.isMultivalued = outPini.isMultivalued) 

It must be proved that: 

outPins.size = f.outputParameters.size  

(i  [1, outPins.size]: 

  f.outputParami.type  outPini.type  

  f.outputParami.isOrdered  outPini.isOrdered  

  f.outputParami.isMultivalued = outPini.isMultivalued) 

The demonstration of this formula is similar to the 

previous one, with output pins and parameters instead 

of input ones and swapping the left-hand side with the 

right-hand side of all comparisons. QED. 

4.2.6 On Operation Call Actions 

These are actions that specifically invoke operations. 

 Type_target_pin: “(…) the operation must be an 

owned or inherited feature of the type of the target 

input pin (…)” (OMG 2015, sec.16.14.10.6). In 

operation call actions, the pin that receives the 

executing instance is named “target” in the UML 

metamodel. In the archetypal action, it is represented 

by the self pin. Therefore, this constraint has the same 

formulation and demonstration as Object_type, in 

section 4.2.2. 

4.2.7 On Calls to Operations on Collections 

This section focus on a topic about which (OMG 

2015) is either ambiguous or silent: the call of 

operations on collections. Expressions such as 

‘customers.count()’ should be representable as in 

Figure 20. 
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Figure 20: Collection operation call. 

However, it could be noted that the action in 

Figure 20 seems to violate constraint Type_target_pin 

in the section 4.2.6, since Count() is not a feature of 

Customer. This is not a definite violation because, in 

fact, (OMG 2015) is not clear in what is meant by “the 

type of the ‘target’ [self] pin” in the aforementioned 

constraint when that pin is multivalued. If such type 

is interpreted as a collection type – i.e., in Figure 20 

“the type of self” would be Set{Customer} – action in 

Figure 20 complies with the constraint. Contrarily, if 

(OMG 2015) refers to the type of the individual 

objects passed through the multivalued pin, then the 

action in Figure 20 violates the constraint. 

Furthermore, the latter case would mean that UML’s 

call operation action is not intended to represent calls 

to operations on collections. But then, there are no 

other kind of action in UML that could represent such 

calls. Consequently, in this paper we make it clear 

what would be the counterpart of constraint 

Type_target_pin when the self pin is multivalued, 

declaring a constraint additional to those in (OMG 

2015): 

 Call_of_collection_operation: If the self pin is 

multivalued, then the type that owns f must be a 

collection; and vice versa. I.e.: self.isMultivalued  

(f.owner  Collection) (P10). 

It must be proved that: caller.isMultivalued  

(f.owner  Collection) (11). This is ensured by 

MltCnf  and STypcnf : (P10), MltCnf (caller, caller),  

STypCnf (f.owner, f.owner) ⊢ (11). QED. 

4.2.8 On ‘Create Object’ Actions 

In this kind of actions (see first two examples in 

Figure 6) f is a classifier. Thus, f is renamed to C, for 

clarity reasons. 

 Classifier_not_abstract: “The classifier cannot be 

abstract” (OMG 2015, sec.16.14.18.5). I.e.:  

C.isAbstract (P11). 

Abstraction Conformance proves that the same 

holds in the target space: (P11), AbstCnf (C, C) ⊢ 
( C.isAbstract). QED. 

 Multiplicity: “The multiplicity of the result output 

pin is 1..1” (OMG 2015, sec.16.14.18.5). In terms of 

the action template:  result.isMultivalued (P12). 

MltCnf  proves that the same holds in the target 

space: (P12), MltCnf (result, result) ⊢ 
( result.isMultivalued). QED. 

 Same_type: “The type of the result output pin 

must be the same as the classifier” (OMG 2015, 

sec.16.14.18.5). This constraint is always true, 

because in programing languages, ‘new MyClass’ 

always yields an object of MyClass. 

The constraint Classifier_not_association_class 

is not applicable because the concept of Association 

Class does not exist in the common OOP languages. 

5 RELATED WORK 

Research aiming at improving the UML Template 

model is scarce. (Caron & Carré 2004) and 

(Vanwormhoudt et al. 2015) are the pieces of work 

most affine to the this paper.  

Like the current paper, (Caron & Carré 2004) also 

proposes a set of rules, additional to that of UML, as 

a mean to enforce the well-formedness of elements 

bound to templates. (Caron & Carré 2004) is not clear 

on the purpose of the well-formedness it is trying to 

achieve. If it were compilability assurance, it 

overlooks several important aspects that are referred 

in the current paper, such as multiplicity, staticity, and 

visibility. FC take such aspects under consideration. 

(Vanwormhoudt et al. 2015) proposes an 

extension to the UML Template concept called 

Aspectual Template (AT). Instead of having multiple 

parameters exposing potentially disconnected 

elements, ATs have a single parameter, which 

exposes a model as a whole. Associated to ATs, a set 

of constraints ensures that the target model fragment 

is conformant with the AT parameter. However, the 

conformance being checked doesn’t target the 

guarantee of compilability for the bound element. 

E.g., AT’s constraints overlook multiplicities and the 

static nature of features, which are essential for 

compilability. Additionally, by not taking subtyping 

into consideration in some circumstances, AT’s 

constraints are exaggeratedly strict. Our approach 

overcomes such limitations. 

Although not strictly aimed at UML Templates, 

(France et al. 2004) proposes a technique for 

specifying Design Patterns and checking if such 

templates are applicable to their application model 

fragment. Its approach includes a concept termed 

Role that closely resembles the UML’s Stereotype 

concept and a notation that allows superimposing 

Roles’ metamodel constraints on model diagrams. 

Although the approach outpaces UML templates in 
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expressiveness, the conformance verification method 

overlooks several aspects essential to compilability, 

such as multiplicity and signature conformance. 

Differently from the current paper, none of the 

aforementioned provides a formal proof of the 

effectiveness of their contributions. 

In the Programing Languages field, both C++ 

Templates (Stroustrup 2013; Vandevoorde et al. 

2002) and Java Generics (Gosling et al. 2014; 

Naftalin & Wadler 2006) check the adequacy of an 

actual argument to a template parameter taking into 

account the use that the template does of that 

parameter. This roughly results in the same level of 

validation as the one provided by FC. Whether non-

conformities are accurately imputed to a bad 

argument-to-parameter assignment or badly reported 

elsewhere in the template instance, tends to be tool-

specific. This may raise the argument that template 

instantiation verifications could be delegated to the 

target language, and FC be dismissed. However, there 

are plenty of reasons to perform such verifications on 

the UML model. The most evident lies is the fact that 

UML models may not be targeted to a language with 

generics. E.g., UML may be used to model databases 

and SQL doesn’t possess generics. A not so obvious 

reason is that the FC’s criteria may leverage computer 

assisted binding, with substitutes being automatic and 

semi-automatically elicited out of the target model. 

6 CONCLUSIONS AND FUTURE 

WORK 

Building a proof was undoubtedly useful, not only 

because it confirmed the theory put forth, but also 

because it unrevealed issues that otherwise might 

become unnoticed. These were mostly related with 

the substitution of classifiers and lead to the 

introduction of the Subtyping and Abstraction 

Conformance criteria. The former was not initially 

apparent because TypCnf seemed to suffice for the 

purpose under consideration, being Subtyping 

Conformance just a corollary TypCnf. The 

impossibility of using TypCnf to prove the well-

formedness of object flows forced to consider the 

hypothesis of Subtyping Conformance not really 

being a corollary of TypCnf. That was evidenced only 

through a proof by contradiction (not shown in this 

paper). AbstCnf was not detected previously because 

none of the empirically tested templates included a 

new statement that could be substituted by an abstract 

class. It looks like a formal proof is worth a thousand 

tests. 

The demonstration strategy use only proves that 

FC is sufficient to ensure compilability. As a next 

step, a demonstration that shows that FC’s rules are 

the necessary ones must be done.  
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