
University Institute of Lisbon

Department of Information Science and Technology

A Framework for Branched
Storytelling and Matchmaking in

Multiplayer Games

Vitor Manuel Januário Lopes Pêgas

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Computer Engineering

Supervisor

Prof. Dr. Pedro Figueiredo Santana, Assistant Professor
ISCTE-IUL

Co-Supervisor

Prof. Dr. Pedro Faria Lopes, Assistant Professor
ISCTE-IUL

September 2018

Resumo

Os jogos de computador são geralmente conhecidos pelas suas experiências de
jogo individuais ou multijogador. Nos jogos de um jogador apenas, a história
tende a ser excepcionalmente bem escrita. Em contrapartida, o ponto forte dos
jogos online é a interacção entre humanos. A solução para a ligação destes dois
tipos de jogos é inexistente. Esta dissertação introduz uma estrutura que pode
ser usada em toda a fase de desenvolvimento do jogo, desde os desginers aos
engenheiros, e que ajuda a criação de campanhas multijogador ao apresentar vários
componentes indispensáveis à criação de um jogo com boa história. Com a nossa
estrutura, propomos também um sistema de matchmaking capaz de cruzar as
diferentes histórias individuais e uma ferramenta para os designers poderem criar,
gerir e partilhar o seu trabalho. A estrutura foi validada com um caso de estudo
e testada num ambiente controlado. O sistema de matchmaking foi sujeito a
diversas simulações e comparado com sistemas usados atualmente. A estrutura e
a ferramenta de gestão tiveram resultados positivos, e o sistema de matchmaking
equiparou-se com as soluções atuais mas distingue-se pela qualidade do match.

Palavras-chave: Jogos de video, Multijogador, Jogador Individual, Cam-
panha, Estrutura.

iii

Abstract

Computer video games are frequently known for either their single-player or multi-
player experiences. In single-player games the story is exceptionally well written.
The interaction against other humans in multiplayer games is the strong point
in online games. This dissertation introduces a generic framework aimed at the
full game development pipeline, from designers to engineers, to aid the creation of
multiplayer campaign stories by providing core components essential to any single-
player game. With the framework, we propose a custom matchmaking system to
intertwine individual stories and a tool for designers to create, manage and share
their work. The framework was validated in a case study and tested in a controlled
environment. The matchmaking system was subject to simulations and compared
with existing systems. The framework and managing tool results are positive, and
our proposed matchmaking system shows close efficiency results but distinguishes
itself in terms of matching quality.

Keywords: Video Games, Multiplayer, Single-player, Campaign, Framework.

v

Acknowledgements

I would like to acknowledge Professor Pedro Santana and Professor Pedro Faria
Lopes, that not only had superb availability and patience towards me and my work
on this thesis, but also are two of the best teachers I ever had the pleasure to have.
Also, important to mention, is the help of other exceptional Professors at ISCTE-
IUL, like Pedro Sebastião which since we met gave me a lot of opportunities to
develop myself as a person and as a professional, through events that I never would
have participated without his support, Professors Luís Miguel Botelho, Luís Nunes,
Tomás Brandão and Sancho Oliveira, for being without any doubt the best that
ISCTE-IUL has to offer, both in teaching and personality. To them I want to say
Thank you for being who you are and doing what you do. I want to also thank
my friends that supported me with constructive criticism that ultimately helped
me improve my work. Finally, I want to say Thank you to those who doubted I
would reach this far, for giving me that extra moral push.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xi

Abbreviations xiii

1 Introduction 1
1.1 Demographics . 1
1.2 Why people play . 2
1.3 What people play . 2
1.4 Context . 4
1.5 Research Questions . 5
1.6 Objectives . 6
1.7 Structure . 6

2 Related Work 9
2.1 Game Design . 9

2.1.1 Game Design Document . 10
2.2 Single Player and Multi-player Crossing 11
2.3 Branched Storytelling and Narrative 12
2.4 Matchmaking . 16
2.5 Applicability . 17

3 The Framework 19
3.1 Framework Specification and Requirements 19
3.2 Framework Overview . 21
3.3 Components . 23

3.3.1 Node . 23
3.3.1.1 Map . 24
3.3.1.2 Player Input . 24
3.3.1.3 Player Output . 26
3.3.1.4 Profile . 28

ix

Contents

3.3.1.5 Coherences . 28
3.4 SP and MP crossing . 30
3.5 Matchmaking . 31
3.6 Designers GUI . 35
3.7 Case Study . 37

3.7.1 Web Version . 39
3.7.2 Unity Version . 41

3.7.2.1 Networking . 43

4 Testing and Discussion 45
4.1 Implementation . 45
4.2 Procedural Story Generation . 45
4.3 Matchmaking . 48

4.3.1 Proposed Non-weighted Matchmaking Method 49
4.3.2 Proposed Weighted Matchmaking Method 51
4.3.3 Elo based . 52
4.3.4 Analysis . 54

4.4 Designers GUI . 56
4.5 Real-life tests . 58

5 Conclusion and Future Work 61
5.1 Conclusions . 61
5.2 Future Work . 63

5.2.1 Framework . 63
5.2.2 Framework Editor . 63
5.2.3 In Engine . 64
5.2.4 Scale . 64

5.3 Contributions . 64

Appendices 67

A Designers GUI Test Guide 67

B Framework Presentation Slides 69

Bibliography 71

x

List of Figures

1.1 Average gamer by age group . 1
1.2 Steam Users Online last 48h . 2
1.3 Top 10 Most Played Games . 3
1.4 Median Sale Price of an item . 5

2.1 MDA Framework . 10
2.2 Story Branching . 14
2.3 Facade Screenshot . 15
2.4 Façade Drama Manager . 16

3.1 Framework Development Pipeline 20
3.2 Framework Components Overview 22
3.3 Counter Strike Map Example . 24
3.4 Mario Map Example . 24
3.5 Stats Example . 28
3.6 Temporal Coherence Example . 29
3.7 Framework Game Flow . 31
3.8 Elo System Example . 32
3.9 Weighted Euclidean Example . 33
3.10 Matchmaking Flow . 34
3.11 Framework Editor (Designers GUI) 36
3.12 Case Study Game Map . 37
3.13 Unity Game Menu . 38
3.14 Web Architecture . 39
3.15 Game Database Model . 40
3.16 Web Game Pre-start Node Screenshot 40
3.17 Web Game Screenshot . 41
3.18 Unity Game Screenshot 2 . 42
3.19 Donjon’s Dungeon Generator . 42
3.20 Unity Game Screenshot 1 . 43
3.21 Dedicated Server Architecture . 44
3.22 Listen Server Architecture . 44

4.1 Euclidean 1 Stat Results . 50
4.2 Euclidean 2 Stat Results . 50
4.3 Euclidean 3 Stat Results . 51

xi

List of Figures

4.4 Weighted Euclidean 3 Stat Results 52
4.5 Weighted Euclidean 3 Stat Results 52
4.6 Elo System 1 Stat Results . 53
4.7 Elo System 2 Stat Results . 54
4.8 Elo System 3 Stat Results . 54
4.9 Framework Example Query . 56
4.10 Framework Editor Understanding Results 57
4.11 Framework Presentation Slide . 58
4.12 Real life tests . 59

B.1 Framework Presentation Slide 1 . 69
B.2 Framework Presentation Slide 1 . 69
B.3 Framework Presentation Slide 1 . 70
B.4 Framework Presentation Slide 1 . 70
B.5 Framework Presentation Slide 1 . 70

xii

Abbreviations

AI Artificial Intelligence

SP Single Player

MP Multi Player

CCU ConCurrent Users

MOBA Multiplayer Online Battle Arena

FPS First Person Shooter

MAU Monthly Active Users

NPC Non Player-Character

GUI Graphical User Interface

I/O Input Output

GDD Game Design Document

PCG Procedural Content Generation

MMS MatchMaking Server

MMR MatchMaking Rating

UI User Interface

BF1 BattleField 1

IP Internet Protocol

JSON JavaScript Object Notation

RPG Role Playing Game

AJAX Asynchronous Javascript And XML

UX User EXperience

xiii

Chapter 1

Introduction

1.1 Demographics

Nowadays, according to [Poulter, 2009], children as low as six years old frequently

play video games. Intuitively, the more technology gets into our daily lives, the

earlier children will begin playing video games. According to a recent study by the

Entertainment Software Association (see Figure 1.1), 57% of players are younger

than 35 years old and the most frequent ones play around 7 hours per week, and

the rise of smart-phone games raises even higher the hours spent playing.

Figure 1.1: Study conducted by the Entertainment Software Association. We
can see that male population is generally younger, while females are underrep-

resented on the early adulthood (36-49).

1

Chapter 1. Introduction

1.2 Why people play

People play video-games for various reasons. Young-lings play for entertainment,

some do it professionally such as streamers, e-sports players play for competition

and most people see games as a medium to relax and enjoy some leisure time.

According to Lazzaro, people “value the sensations from doing new things such as

dirt-bike racing or flying, that they otherwise lack the skills, resources, or social

permission to do.” [Lazzaro, 2004]. In games like Grand Theft Auto, players are

meant to take a life of crime and wrongdoing, and even though in the real world

this is considered bad behavior this is justifiable according to Lazzaro since players

use games to “calm down after a hard day, or build self-esteem” [Lazzaro, 2004].

1.3 What people play

As Internet quality of service and speeds increase, more players will join the online

world. Daily, on just one platform (Steam), in-game players peak at seventeen

million (by December 2017) [Steam, 2018] (see Figure 1.2).

Figure 1.2: Steam Users Online in the last 48h showing a peak of 15 million
users. [Steam, 2018]

2

Chapter 1. Introduction

In the TOP 10 most played games (see Figure 1.3) on Steam, the most played

game is PLAYERUNKNOWN’S BATTLEGROUNDS, a Multiplayer Battle Royale

themed game (a game where 100 players face each other and only one can sur-

vive), with more than two million concurrent users (CCU), followed by DOTA 2,

a Multiplayer Online Battle Arena (MOBA, a game where teams of five players

try to destroy each others base) with 600,000 CCU, followed by the all-time pop-

ular First Person Shooter (FPS), Counter-Strike Global Offensive with more than

500,000 playing simultaneously.

Figure 1.3: Top 10 most played games on Steam. In yellow the only SP game
in the TOP 10. [Steam, 2018]

On this TOP 10, only one game is mostly single player, Football Manager

2018, a popular sports team management simulation game. Outside of the Steam

platform, are two multiplayer giants, Overwatch and League of Legends. Although

Overwatch, a mix of MOBA and FPS, does not release its player count often, it

was reported that it passed 30 million players [Barrett, 2017]. League of Legends,

also a MOBA like DOTA 2, does not have a public player count either, but one

of its creators admitted that the game had reached 100 million Monthly Active

Users (MAU) [Volk, 2016]. These numbers show a portion of the reality of todays

video game industry, especially multiplayer games.

3

Chapter 1. Introduction

1.4 Context

Currently, there are two main types of commercial video games, Single-Player

(SP) and MultiPlayer (MP) games. In SP games, a player plays against Non-

Player Character (NPC) controlled by Artificial Intelligence (AI), whereas in MP

games players can play against each other (Human vs Human) or in cooperative

modes (Humans vs NPC).

In 2017 there were five SP games in the top ten sales, with millions of copies

sold worldwide [VGChartz, 2017]. This shows that although MP games dom-

inate the market in revenue, SP games continue to be bought and played by

millions. On the other hand, MP games are not only strong in sales, but the

revenue of such games surpasses SP revenue, mainly due to micro-transactions.

Micro-transactions consists of selling in-game items (virtual items) for real money.

It began by being small in value, hence the name, but on the Steam market

(the most popular and biggest in-game item market) items can go as high as

2000 USD (see Figure 1.4). For instance, games like Grand Theft Auto Online

(GTA V Online) and League of Legends (LoL) made more than 500 Million USD

[Tassi, 2016] and 2.1 Billion USD [Volk, 2016] respectively in in-game item sales

alone. A problem that SP games may suffer is that their quality is closely linked

to the quality of the AI controlling the Non-Playable Characters (NPC). An im-

proper AI may render a game either too easy or too hard to overcome. On the

other hand, players in MP games may find themselves immersed in what is known

as toxic communities, in which players engage on hostile behavior against each

other, a phenomenon known to naturally occur in competitive gaming scenarios,

such as MP online games [Märtens et al., 2015]. Popular online MP games such

as Call of Duty and League of Legends are well known for their community tox-

icity [Kwak and Blackburn, 2014]. Since both genres have their pros and cons,

establishing a link between single player stories and multiplayer interaction could

create a overall better game experience. To overcome these limitations we propose

a generic framework agnostic to the game genre in order to create campaigns with

multiplayer interaction that prevent the use of bad AI controlled characters and

4

Chapter 1. Introduction

Figure 1.4: Median Sale Price of a micro-transactions item for CS:GO with
that item being sold for over 400e.

a matchmaking system that attempts to provide a more suited matching between

players by allowing the usage of multiple criterions.

1.5 Research Questions

If we analyze both genres problems, we could come to a middle term where de-

velopers offer the best of both worlds to players. This dissertation aims at the

creation of that missing link to aid the development of multiplayer campaigns.

• Is it possible to connect immersive and rich in design single-player stories

with multiplayer interaction? - Our framework should be able to link sin-

gle player stories with multiplayer interaction seamlessly. This was made

possible with the use of core generic components key to every story driven

game.

• Can a matchmaking system be more accurate with more than one matching

criterion? - Current matchmaking systems use one criterion for matching,

the skill rating for each player. Our proposed matchmaking system can use

more than one criterion. Our results show that current solutions do not

guarantee balanced matches, whereas our proposed system matches players

in a more coherent and balanced way.

5

Chapter 1. Introduction

• Can a framework be created to generalize both game design and implemen-

tation of such features? - We will systematize the link between single player

and multiplayer stories with a standard framework that can be used for

multiple game types and genres. Our framework is game genre agnostic,

meaning that it can be used for a multitude story-driven multiplayer game.

1.6 Objectives

Our main objective is to conceptualize, design, create, and implement a frame-

work to aid the development of MP campaigns. Our framework is supposed to be

used in every stage of the game development pipeline, from conceptualization, to

artistic and engineering development then used by designers, artists, and program-

mers. We then propose several algorithms to be used alongside the framework for

the matchmaking system. For story management we propose a Graphical User

Interface (GUI) application that can be used by designers on initial development

stages and then by programmers in the implementation phase. Finally, we test

the framework on different aspects like implementation, usefulness, flexibility, and

if it works to deliver a multiplayer campaign experience.

1.7 Structure

This dissertation is structured as follows:

• Chapter 2 introduces and explains what has been made regarding Game

Design, SP and MP campaigns with story crossing, branched story telling

and existing matchmaking systems.

• Chapter 3 we define the framework and its components, our proposed

matchmaking system and our developed Designers GUI. We also introduce

our case study where we tested our framework implementation and match-

making system.

6

Chapter 1. Introduction

• Chapter 4 presents our testing methodology and results for implementation,

story generation, matchmaking and our GUI application.

• Chapter 5 exposes our conclusions with this work and possible future work

that could be developed on top of this dissertation.

7

Chapter 2

Related Work

2.1 Game Design

According to Schell [Schell, 2014], "Game design is the act of deciding what a

game should be" with the designer(s) having to make "hundreds, usually thou-

sands" of decisions about the way the game will play out and simply be. There

is no magic or unified framework or formula to design a game, but Hunicke et al.

[Hunicke et al., 2004] developed a framework to ease the process for "developers,

scholars and researchers" to develop their work related to game design and gaming

principles. Hunicke et al [Hunicke et al., 2004] break games in three components:

Rules, System and Fun, and from a design point of view this translates to Me-

chanics, Dynamics and Aesthetics (MDA) (see Figure 2.1). A Game Designer

must start by defining the rules or mechanics of its game which represent the core

components of the game. Then the designer should focus on the player interaction

with the game, how the game will react to player input and subsequently to its

outputs. Games should be interactive so this is a key part of the gaming experience

for both players and developers. Finally the designer worries about Aesthetics, the

look and feel of the game, i.e how players should feel while playing.

On other hand, Crawford [Crawford, 1984] defines three main structures in-

herent to game design: I/O, game, and program structures. Compared to the

9

Chapter 2. Related Work

Figure 2.1: Different perspectives from the MDA framework
[Hunicke et al., 2004]

MDA framework, the game structure can be compared with MDA’s Rules/Me-

chanics, the I/O structure can be compared to MDA’s System which translates to

the interaction between the game and the player and, finally, the program struc-

ture represents the later development phase of implementation which takes both

previous structures and turn them into a real product.

2.1.1 Game Design Document

The Game Design Document (GDD) is probably the only standard in the gaming

industry [Bertolo, 2014][Tomlison, 2013] being used widely by big or small compa-

nies in the design stage of game development [Rouse and Illustrator-Ogden, 2000].

The GDD is a document where the designer writes all the concepts of a game such

as the game’s specification (Story, Players, Action, Objectives)[Inc., 1994], game’s

Gameplay (World, Landscapes, NPCs)[Hamilton, 1995] and is always being ana-

lyzed and improved with feedback from other team individuals. When the GDD

is finished it is passed onto producers, programmers and artists so that the game

can be created exactly like specified on the document. This document is used for

both game and technical related information regarding the game being created,

however our framework aims to streamline the game’s story related design and

implementation process.

10

Chapter 2. Related Work

2.2 Single Player and Multi-player Crossing

A player engagement study [Lim and Reeves, 2010] found that players show higher

engagement levels when facing humans in a competitive scenario instead of A.I

controlled characters. This may also be influenced by the fact that NPCs quite

often produce either too easy or too hard gameplay scenarios. Nevertheless, players

do not refrain from playing and enjoying SP games as this type of games often

features a well written story (e.g, Until Dawn [Brew, 2015]). For this reason, our

framework aims at allowing players to enjoy the flow of a storyline while playing

in a MP setting, that is, making use of NPCs when no online players are available.

To improve the lack of engagement or challenge imposed by NPCs, game de-

velopers blurred the line between SP and MP by having the SP game with its

well written and designed story and levels and with occasional MP interactions.

Dark Souls is a good example of the crossing between a players’ individual story

and the MP interaction with another human player. In this game there are certain

missions where a player can be invaded by another player, either friendly or enemy.

That second player will replace a NPC and participate in that mission alongside

the first player. In Journey video-game [ThatGameCompany, 2012], each player

can be coupled with another human at random and both players cannot speak

to one another, but they can explore and progress in the world together, or part

ways. Ashen video-game [Grubb, 2017] replicates this sort of passive multiplayer

by inserting strangers in player sessions at random with the main goal of having

spontaneous cooperation between players. After a player leaves a session, one’s

avatar remains in the world as a NPC for future interactions. In Absolver video-

game [DIGITAL, 2017], each player game instance can also host other players

which will join the first one seamlessly through the game. It is up to each player

to either fight or cooperate with one another. The above examples are games in

which there is a sense of individual story with multiplayer interaction. However,

there are other games that expressly create linear multiplayer campaigns such as

Left 4 Dead or Borderlands, in which player control specific characters with pre-

defined back stories through a set of cooperative missions that try to create a sense

11

Chapter 2. Related Work

of narrative for each player.

These games are not open sourced, meaning that it is not possible to know

how these systems were implemented or designed. There is no standard for such

features and systems and a framework is needed to assimilate the essential concepts

for multiplayer campaign creation in video games. Our framework systematizes

the core components of multiplayer campaigns to solve the lack of uniformity in

the industry.

2.3 Branched Storytelling and Narrative

Replay value is a term used in video game industry that states whether a game is

good to play more than once. Usually, due to their linear design, SP games do not

hold much replay value. This means that if players complete the story and then

try it again, the story (and ending) will be the same. However, there are SP games

that try to branch their narrative influenced by player input, thus increasing their

replay value. Bearing replay value in mind, our framework handles both linear

and non-linear stories.

MP games are quite often repetitive. For instance, First Person Shooters (FPS)

usually only have as goals killing the opposite team, destroying a given objective,

and capturing a given item or position. In spite of this, players keep playing FPS

motivated by [Yee, 2006]: competition, as seen in games like DOTA 2 and CS: GO;

socialization, as seen in games like Second Life and Habbo Hotel; and role-playing

as seen in games like GTA V, and World of Warcraft.

In SP games, developers must find a way of showing the player that their ac-

tions matter and can change the outcome of the game, pushing the player to play

the same game several times while producing different outcomes [Roth et al., 2012].

Procedural Content Generation (PCG) is a popular choice to provide the so re-

quired in-game diversity (e.g, random levels, fauna, flora). PCG use has increased

lately due to the skyrocketing production cost of AAA (triple A, big budget games)

12

Chapter 2. Related Work

games [McLaughlin, 2013], for which it is difficult to scale up asset production (e.g:

3D models or textures) [Hendrikx et al., 2013].

As surveyed by [Hendrikx et al., 2013], PCG can be divided into six classes

shaped in a pyramid form where top classes are derived and based on bottom

ones. Every class can be procedurally generated. Firstly they define what they

call as Game Bits, which are elements which typically do not engage the user when

considered independently [Hendrikx et al., 2013]. Bits can be Textures, Sound,

Vegetation, Buildings, Behavior and Particle systems. On top of Game Bits,

there is the Game Space which includes Maps (the space where all gameplay

happens) and Bodies of Water. On top of the Game Space is Game Systems and

Scenarios. Systems derive from the Space, forming Ecosystems, road networks,

urban environments and entity behavior, while Scenarios derive from these Systems

forming Puzzles, storyboards, the Story and Levels. On top of Scenarios, the Game

Design appears with System and World Designs that can also be procedurally

generated. The final class is called Derived Content and it incorporates everything

that will make the player feel immersed in the game world such as News and

Broadcasts and Leaderboards.

These six classes represent the possibility for PCG in todays video games with

many AAA using some of those classes in their development. Examples such as

Spore (a PCG evolution game created by Electronic Arts) which used PCG for

Game Bits and Game Space creation or Elder Scrolls V: Skyrim (an action RPG

created by Bethesda Game Studios) which used PCG to generate side-quests for

the player (class Game Scenarios). The biggest example of PCG use in a game

is No Man’s Sky (a universe exploration game created by Hello Games) which

uses PCG to generate not only an entire Universe (featuring over 18 quintillion of

randomly generated living planets) but all fauna, flora and minerals of the game.

One of the genres that mostly use PCG for content generation is called Rogue-

like. Examples such as The Binding of Isaac and Spelunky use PCG to generate

their dungeons. An example of this dungeon generator is Donjon’s Random Dun-

geon generator which uses Celullar Automata. Celullar Automata consists of an

13

Chapter 2. Related Work

array of cells with discrete variables which evolve based on the values of neighbor

variables. [Wolfram, 1983]. This behavior allows for the creation of cave-like struc-

tures and with extra processing (such as Donjon which processes rooms, corridors

and doorways) is used to create dungeons in most rogue-like games.

Other way to increase replay value is by branching the narrative in non-

linear ways. As compared in Figure 2.2, Half-Life [Valve, 1998] has a standard

game narrative comprised of Beginning, Middle and End nodes, with no changes

based on player input, whereas Mass Effect’s story is comprised of multiple nodes

where player input steers the story flow one way or the other making alterna-

tive endings possible. For this to happen, there must be more than one choice

of action for the player to perform, and that action must somehow impact the

story unfolding. Many games have exploited this ability widely, such as Façade

[Mateas and Stern, 2003] (see Figure 2.3), Witcher 3, Undertale, Heavy Rain, and

Detroit Become Human. These games require some narrative mediation system to

ensure the player experiences a coherent story, by creating a path that the player

travels according to one choices and the system automatically re-writes the path

if the player decides to take a different direction.

Figure 2.2: Story Branching in Half-Life and Mass Effect [Jack, 2011]. The
difference between a linear and a non-linear game is the possibility of player
choice in non-linear games (Like Mass Effect) where different actions create

different paths.

14

Chapter 2. Related Work

Figure 2.3: Façade Screenshot showing the interaction between the user and
the NPC. The text present in the screenshot is written by the player to interact

with the NPC.

A possible architectural plan for an interactive narrative is Mimesis that pro-

vides basis for the creation of interactive stories such as "conventional narrative

media" [Young and Riedl, 2003]. Their work uses a controller called Mimesis Con-

troller that acts as a Story server taking key role in the generation of a coherent

story and experience for any user activity.

Drama managers like the Façade example (see Figure 2.4) are common in many

interactive storytelling applications [Paul et al., 2009] [Paul et al., 2010] due to

their ability to manage the unfolding story according to user input and are used

to maintain a coherent story flow. The way Façade’s Drama Manager works is by

having a pool of around two hundred beats, which are a collection of behaviors

that in sequence form a plot, and as the player interacts with the NPCs, beats

are selected from the pool in a coherent way towards the desired value arc(s) thus

forming a story flow.

Mist [Paul et al., 2010] is another system that uses a Drama Manager with

various story elements and then assigns those elements to characters to develop a

story. Those characters receive those elements and decompose them into smaller

15

Chapter 2. Related Work

actions called primitives and then execute them. This has direct impact in the

virtual world and can affect the player and vice-versa.

Figure 2.4: Façade Drama Manager. The story is composed of "Beats" and
these are selected from a bag of possible beats according to the interaction

between player and NPCs.

The common ground to all games with branched storytelling is the need for

a Manager or Controller that has the power to create or change paths in a story.

However there is not a standard on how this Controller should act, probably due

to the amount of variation branched stories can have in different games.

2.4 Matchmaking

A matchmaking system is used in games to connect players in a given match.

When a player wants to play online, its game instance (client) sends a request

to the Matchmaking server, receiving a response with necessary information to

establish a connection [Agarwal and Lorch, 2009]. A bad matchmaking service is

known to be harmful to both skillful and casual players [Myślak and Deja, 2014].

One of the most popular types of matchmaking uses a numeric value, called

a MatchMaking Rating (MMR), to match players according to their skill lev-

els. The most popular method is the Elo system, created for chess competi-

tions, in which the MMR is determined by the results of the player in past games

16

Chapter 2. Related Work

[Glickman and Jones, 1999]. Matchmaking usually picks players with close MMR

values so as to ensure fair and, so, interesting, matches [Véron et al., 2014]. Match

fairness and uniformity can be further enforced by ensuring that the players within

a given team have an uniform MMR [Alman and McKay, 2017]. By using custom

matchmakers, instead of general-purposed matchmaking systems as Elo, games

can match players more accurately as a function of the game’s mechanics.

Another known matchmaking algorithm is TrueSkillTM . This system, devel-

oped by Microsoft and used in some of their online games uses a factor graph that

uses player skill, performance, and the overall team performance to predict the

outcome of a match[Herbrich et al., 2007]. In real tests with the game Halo 2, it

showed good results when faced against the Elo system.

In some cases, the use of only one value for matchmaking can be lacking so

the need to take in more data into account when matching players is real for some

games, like Ghost Recon Online. In their work [Delalleau et al., 2012] they devel-

oped a Neural Network that uses player profiles (with embeddings and attributes)

to predict the outcome of a match comprised of two teams. They compared their

network to the TrueSkill algorithms with good results in outcome predictability.

2.5 Applicability

In this dissertation we will apply some of the knowledge of past literature and

commercial applications. From a Game Design perspective, our framework should

aid every game development pipeline agent by being able to be transferred seam-

lessly back and forth, similar to a Game Design Document, but exclusively for

story related information.

Our work will also use similar ways of crossing players as seen in games like

Absolver and Journey, where a player may initiate a story alone and be joined by

other players that happen to cross that point in the campaign at the same time.

17

Chapter 2. Related Work

As game designers push the depth of their stories, managing and crossing all

different types of players in a coherent and believable way may get complicated.

Our work needs to assure that using PCG, a coherent story can be generated.

Finally, a multiplayer game where different players with different abilities and

skill levels needs to be balanced. Elo will be paired with our framework, tested

and compared to a custom solution in order to assure match quality and balance.

18

Chapter 3

The Framework

As identified in previous chapters, there is a gap in the industry for the creation

of multiplayer campaign stories. Our goal is to eliminate this gap by creating a

framework to offer a backbone structure for games to implement this link between

SP and MP games by incorporating generic concepts that a multiplayer campaign

game should have. We will provide an example on how the framework could be

used in a released game on Section 3.2.

3.1 Framework Specification and Requirements

To be robust and generic, our framework has been arranged to be game genre

independent. Shooters, Role playing, Strategy or other type of game that has a

campaign story should be able to use our framework. Our framework is aimed

at the full game development pipeline (see Fig. 3.1) and should be used by ev-

ery participating member of this pipeline. By full game development pipeline, we

mean every step along the development of a game, from the Concept Development

phase where Game Designers pitch and formulate a basic idea of what the game

will be, to the Design stage where Game Designers will detail the concept further

by establishing how, where and when a game will be played out. After every idea is

settled, the actual production begins with Artists and Engineers taking the ideas

19

Chapter 3. The Framework

Figure 3.1: Full production pipeline for Game Development. Starting with
the conceptualization of the idea with Designers and Experts, then the Design
phase where the GDD is created, moving onto the Implementation part where

the ideas come to reality and finally the testing and deployment phases.

defined by designers and Implement them into the game, like asset creation (in-

cluding audio, 3D models, textures, sprites, etc.) and programming. After various

cycles of implementation and idea reformulation (as Game Designers’ ideas may

not be final), the game enters its Testing phase to polish and enhance everything

that was created. The final step of the pipeline is the Deployment of the game to

the general public.

The MDA framework (see Section 2) defines those three steps of game design as

Mechanics, Dynamics and Aesthetics. Our framework fits in the MDA framework

definition, as it should be used to assist designers in the definition of Rules and Sys-

tems of their game (representing the Mechanics and Dynamics) while aesthetics,

which are the emotional responses evoked in the player (not to be confused with

graphical aesthetics which are the visual aesthetics of the game such as textures

and models) should also be present in this definition, and should be described so

that Artists and Engineers can create something close to the initial designer vision

representing the Aesthetics of the MDA framework.

When the designer first pitches the idea and starts building a concept, he/she

creates a Game Design Document (GDD) where the game is described as detailed

as possible and where the idea starts to come to life. This document should

contain all details regarding Story, Characters, Environment/Level, Gameplay,

Art description, Sound, User Interface (UI) and Controls [Andrade, 2013]. When

the GDD is well developed and the game idea/concept is ready for the next stage,

20

Chapter 3. The Framework

the designer should translate the story related parts of the game design document

onto our framework concepts. This translation will aid the middle and late stages

of development as it will not be just abstract concepts written in a document, but

actual components that together form a game. The designer could entirely drop

GDD usage for story related definitions and use our Framework for this purpose,

maintaining GDD for details such as platforms, monetization, and other non-story

related details. The exclusive use of our Framework for story related work would

facilitate the exchange and communication between different areas of the pipeline,

such as Designers to Programmers or Designers to Artists.

The proposed framework should be easily implemented into the current engines

(e.g. Unity, Unreal Engine) and should be modifiable for any specific and non-

planned usage, by adding other components and connecting to current ones. As

the framework components are conceptual, they can be implemented in a variety

of programming languages and environments, while maintaining the backbone

structure to aid the game development stage.

3.2 Framework Overview

The proposed framework is composed by several components such as nodes, player

profiles, etc. (see more details in Section 3.3) that should be used, first by designers

and then by programmers and artists, to define and create the game (see Figure

3.2). To introduce our framework, we will now present a practical example of a

possible implementation of our framework on a published and acclaimed game,

Battlefield 1 (BF1), which is a first person shooter with both SP and MP modes.

Our framework is aimed at multiplayer campaigns with the possibility of story

crossing and branching, and BF1 has only five isolated single player campaign

stories. The SP mode has well written stories where players advance through

the world completing simple objectives like capturing points, eliminating hostile

enemies and so on. The MP is very repetitive in gameplay like the average multi-

player shooter games, meaning that objectives and possible situations or outcomes

21

Chapter 3. The Framework

do not change with player input or time. Our framework could be used to allow

the SP campaign modes to have MP interaction, thus becoming more interesting

due to the confrontation with real human players instead of artificially controlled

enemies, while each player would develop one’s own story.

Figure 3.2: Framework Components Overview. The central component is
called a Node, which has information about the Players that go into the Node
and how they leave the Node, as information of the location of gameplay (Map)

and that Node Coherence list.

As an example of the game, in one of the campaign stories, the player is a

tank driver with the main goal of advancing through enemy lines along other NPC

tanks and infantrymen while battling enemy NPCs. Our framework could be

used to allow different roles in this campaign, allowing players to be either a tank

operator (gunner, driver, commander etc.), an infantrymen or any other battle role,

each with its own back stories leading to that particular story moment. In our

framework each story moment (or level) is seen as a Node by our framework, and a

player’s story can be seen as a graph. In the aforementioned tank battle, one of the

tank drivers could be there for any reason: maybe his last tank crew got wounded

in a previous node and he was the only one capable of moving on to the next node or

maybe he was assigned to that node as his first battle in the war. Our framework

covers partial success as well, any mission can have multiple levels of success,

each one leading to a specific node, coherent with that success value. If in the

tank battle, the player was a tank operator and his tank was heavily damaged, the

player could still move onto the next node as an infantryman, implicating a partial

success. This way stories can be non-linear and more mesmerizing. Each node can

handle various player roles (defined by designers), and the way to determine if a

player fits any of those roles is to use players’ descriptors (Stats in our framework)

such as player health, level, experience, and any information defining that player.

22

Chapter 3. The Framework

Our framework was created to allow the possibility for players’ individual sto-

ries to cross each other at story intersections. In those intersections (hereafter story

nodes), players can be on the same or opposite sides. This is possible due to the

existence of a list of player roles for each story node, and the framework uses this

to allocate players to nodes in a coherent way. Additionally, a node-based stories

approach allows the possibility of the materialization of multiple paths in a pool

of nodes while giving designers complete power to design these nodes individually

in as much detail as possible.

3.3 Components

This section describes in detail the core components of the proposed framework

that should be used to define a multiplayer campaign story.

3.3.1 Node

The base of our framework is the Node and it represents a point in a campaign

story. A Node contains all the information regarding that point in the story, which

can be where multiple types of players cross paths and face each other. Each Node

contains a Map, Player Input and Output lists (capable of storing multiple input

and outputs) and Coherence lists. Recalling the aforementioned example, the

battle where tanks and infantrymen faced each other is represented by a node. In

that node, the player inputs are the slots that should be filled with players for each

specific role using their Stats for matching. The player outputs contain information

for progression in the story such as the next node. Coherence examples in that

node could be the physical location of the battle or the appearance of the map.

23

Chapter 3. The Framework

Figure 3.3: An Example of a Map in the Counter Strike Game. It contains all
assets needed for that map to be played out such as walls, boxes, guns etc.

Figure 3.4: An Example of a Map in Super Mario Game. The player goes
from the left to the right jumping over platforms, collecting coins and defeating

the enemies until he/she reaches the end of the map.

3.3.1.1 Map

The map is the game engine’s representation of game-play physical location (in

the Unity Engine this is represented by a Scene object1). This is the 2D/3D space

where the node is played out, containing all assets and game-play mechanics ready

for players to use. In 3D we have the example of the popular game Counter Strike,

where a map is the physical location where players face each other in combat (see

Figure 3.3). In 2D we have the example of the classic Super Mario map where the

player must jump through platforms to reach the end of the level (see Figure 3.4).

3.3.1.2 Player Input

The information that defines the type of players that will play that node and

what they will do in that node is stored in the player input list. Each player

1Taken from Unity’s Official Documentation: Scenes contain the environments and menus
of your game. Think of each unique Scene file as a unique level. In each Scene, you place your
environments, obstacles, and decorations, essentially designing and building your game in pieces.
- https://docs.unity3d.com/Manual/CreatingScenes.html

24

Chapter 3. The Framework

input has information about the player profile that fits that Role (defined by

the designer) and its mission information like Mission Name, Description, Role,

Objective Boundness and Success. The role represents the role of the player in

that mission (ex: In the aforementioned BF1 example, Tank Driver, Infantrymen

etc). Objective Boundness represents the amount of times a player can die (i.e fail

the mission) in the current node without actually failing and having to start the

node over. For instance, a Objective Boundness of zero means that if the player

dies, she/he fails and has to restart the node from the beginning, whereas with

a value of three means that the player can die and re-spawn up to three times

before failing the node. This setting is there to allow re-spawn mechanics as seen

in many modern multiplayer games. Success is a value that should be used to

keep track of the success in the current mission by that player, a value of zero

means the player is failing in the mission and any value above that represents the

success node and profile that the player will achieve in the Player Output. With

the aforementioned BF1 example, the success for an infantryman would be the

amount of enemy outposts captured, the value of zero would fail the node whereas

a value of one or more would mean a success. Different success values above zero

allow the branching of the story.

In the previous BF1 example, a possible Player Input for any tank gunner

battle node could be:

25

Chapter 3. The Framework

Player Input #1

Profile:

Stat#1: Class

Value#1: Tank Gunner

Mission Information:

Mission Name: Destroy the Enemy Base Building

Mission Description: Use your tank and the help of your squad to destroy the

enemy base building located in the city X.

Role: Tank Gunner

Objective Boundness: 0

Current Success: 0.

This player input would be filled with tank gunners that were joining that

specific Node at that time. After the destruction of the enemy base building, this

player input’s current success value would increase to one.

3.3.1.3 Player Output

Associated with each player input in a given node, there is a player output. The

Output contains information about how a player leaves the node after its comple-

tion (success or fail). Player output has a list of next nodes, which the game will

compare with the current success of the respective player input and pick the node

where to send the player next. It also includes a list of profile enhancements, such

as experience or in-game currency, that will be picked in the same way as the next

node to increase or decrease any player Stat. The list of next nodes in the typical

game would have two nodes, a win node and a fail node. But with our framework,

this list can be used to branch the story in a coherent way, with partial successes.

An example for this is a mission of a fighter pilot in a war, in which the mission

is to attack some targets in the ground. The player attacks some of the targets,

but gets shot down by anti-aerial weapons. In the proposed framework, the player

can be sent to another node where one’s plane was shot down but he is still alive,

26

Chapter 3. The Framework

hence the partial success of the previous node, whereas if the player attacks every

target the success is maximum and the player is sent to a different node. These

partial successes can be defined by designers in any way they see fit to the node in

question, a node can have above two types of success. Profile enhancements can

be used to manage player Stats after the Node is played. If the player completed

the mission with 100% success, the player can be rewarded with some experience

points or any other stat boost. It can also be used to deteriorate any player stats,

in case the player failed a specific objective inside the mission.

Following the previous Player Input tank gunner example, this is an example

on how that Player Output would look like:

Player Output #1

Next node List:

1. Next node#0:Tank Battle Node (failed, replay)

2. Next node#1:Infantry Battle (partial success, tank got destroyed, proceed

on foot)

3. Next node#2:Rendez-vous point Node (success, move on)

Profile Enhancements list:

1. Enhancement#0:None

2. Enhancement#1:Stat: Experience Value:+100

3. Enhancement#2:Stat: Experience Value:+300

As the previous example shows, the next node list has three nodes: the first

one for currentsuccess = 0 (node failed), the second one for currentsuccess = 1

for partial node success, and the third one for currentsuccess = 2 for full node

success. The same principle applies to the profile enhancements list: if the player

fails the node, no profile changes are made, but if the player partially succeeds,

then it’s profile Stat Experience will gain a boost of 100 in value, whereas a full

node success will reward the player with three hundred Experience points.

27

Chapter 3. The Framework

3.3.1.4 Profile

Associated with every player, is a Profile which is a set of Stats. Each Stat is a

numeric value that is used to store player related values and match players in our

matchmaking algorithm. Example uses of Stats are, Player Health, Experience,

Ranking, or the last node they played on (see Fig.3.5). Any Stat can be inserted in

a profile, and the matchmaking system will look for every common Stat between

two profiles or previously chosen Stats by designers for the matchmaking (using

weights). By assigning weights to each Stat, designers can give higher importance

to a group of Stats and less importance to another group. Let us imagine a designer

who wants to give 90% importance to the Ranking Stat, and 10% importance to

the class of the player, thus matching players with different classes but in a close

ranking position.

Figure 3.5: An Example of player stats. This example has 15 possible stats
such as: STR (Strength), INT (Intelligence), and Gold. Image from Fantastic

Knight (iOS/Universal)[Minoraxis, 2011]

3.3.1.5 Coherences

Our framework defines Coherences as values in a one dimensional spectrum (see

Figure 3.6). These values define the Node in any desired dimension. We defined

some example Coherence types, such as:

28

Chapter 3. The Framework

1. Spacial Coherence:. Physical space of the node. For example: City or

Desert.

2. Temporal Coherence:. Time and date of the node. For example: 1914 or

1918. (see Figure 3.6)

3. Story Coherence:. Position of the node in a plot. For example: Beginning

or End.

Figure 3.6: An example of the possible values for a Temporal Coherence from
the aforementioned BF1 example. World War 1 was fought from 1914 to 1918
and each node will have a coherence value according to that node’s date. For
Nodes that took place in 1914, the Temporal Coherence values should be close to
0, whereas for Nodes that took place in 1918 should have a Temporal Coherence

values should be close to 100.

These can be added to any node and defined with a scalar value from 0 to 100.

For example, the Spacial Coherence value of 0 could determine a Metropolitan

City physical space, whereas a value of 100 would be a Desert village. Coherences

are used to generate procedural stories, based on players previous nodes. Each

Coherence i has a procedural story generation weight wi that is used when finding

for possible next nodes using a weighted Euclidean Distance. Concretely, if the

last node the player played is N1, the cost of going to node N2 is

Ψ(N1,N2) =

√∑
i

wi(N i
2 −N i

1)
2, (3.1)

where Nk = (N1
k , ..., N

z
k) corresponds to the z-dimensional coherence vector of

node k, and wi corresponds to the weight of the i-th component of the coherence

vector. Weights wi can be used by the game designer to generate a procedural

story by calculating the node with the least cost from the entire node pool. Given

29

Chapter 3. The Framework

that we played node Ni, we pick, among the set L of the node pool, the node with

lowest coherence distance:

l = arg min
l∗∈L

Ψ(Ni,Nl∗). (3.2)

This assures designers that a player will always be directed to a Node that is

coherent with their previous one. Let us assume that the player is currently on

Node A. This Node is a part of the story that is played in New York City, a

huge metropolitan city. In this example, this node has two coherences, Spacial

Coherence: 80 and Appearance Coherence: 100. These values are defined

by the designer and are totally subjective. For this example Spacial Coherence

defines how North (Geographically) a Node is, with 0 being South, and 100 being

North andAppearance Coherence defines the humanization of the Node, with 0

being for untouched landscapes and zones like Deserts and 100 being for completely

human filled places like huge metropolitan cities. Then we have Node B and

Node C. Both these Nodes have the same Spacial Coherence: 85, meaning

they are a little further North than our Node A, but Node B is a Glacier in

Canada, untouched by humankind for years while Node C is the city of Toronto.

With only these coherences and their values, the most coherent move for a player

after New York City, would be Toronto because that would be the least sudden

change in coherence possible.

3.4 SP and MP crossing

The way our framework crosses the two game genres, SP and MP, is due to its

architecture for MP campaigns. Designers can use our framework to create tailored

linear or non-linear stories for strict player types or create a pool (see Figure 3.7

(A)) of unconnected nodes and let the procedural story generator create the story

for each individual player as it plays.

30

Chapter 3. The Framework

Figure 3.7: Flow of a game using the framework. (A)-Node Pool containing
every game node created by designers. (B)-Node Matching, node A matches
with every Node in the Node Pool, but the minimum cost is Node D. (C)-Player
Matching, Player H is hosting a session on Node D where other players will join

after they match Player H profile and any open Player Input spots.

To create a procedural story, our framework uses previously defined Coherences

to get the closest possible node to a player’s current node. Once a close Node has

been picked from the node pool (see Figure 3.7 (B)), the player will move to that

Node and the matchmaking process begins. The system now has to either find

players that have a close and similar profile to our player and are set to play in

the picked Node or to find any open sessions (a match already on-going) for this

player to join (see Figure 3.7 (C)). For both options, player profiles are compared

and matched against each other to allow for balanced matches. In case of failure

to find any open sessions, the player starts a game session on the current Node

and waits for other players to join later.

SP and MP crossing can still be achieved without a procedural story generation.

Designers have full power to decide each player’s path based on his/her profile using

the next node list on the player outputs for this purpose.

3.5 Matchmaking

The most common method of matchmaking in MP games is any system that

uses the Matchmaking Ranking (MMR) value of each player. This numeric value

represents the skill of a player. A player with MMR=1000 is less skilled and

thus less likely to win against a player with MMR=2000. Each game has its own

31

Chapter 3. The Framework

matchmaking algorithm that is usually based on the Elo System [Elo, 1978]. The

Elo system is a rating system created to be used in Chess matches to determine

the expected result of two players with unknown strength in the form of a MMR.

In the Elo System (see Figure 3.8), the expected outcome of Player A in a match

against Player B, with Ra and Rb meaning their respective MMR, is given by

[Glickman and Jones, 1999]

Ea =
1

1 + 10(Rb−Ra)/400 . (3.3)

Figure 3.8: Plot of the Elo System for the Player B Rating (Rb) = 1000 shows
that the lower Player A rating the lower his/her chances of winning the match.

Although the Elo ranking system is commonly used in competitive scenarios,

such as E-Sports games like Overwatch, League of Legends or Counter Strike,

it may not be truly appropriate to match players by only one criterion in more

complex games where player profiles have more than on defining Stat. Instead, we

propose to match players based on their various profile’s stats using a weighted

euclidean distance.

Game designers can associate a weight to each Stat, that will be used in the

matchmaking algorithm to generate better matches. For instance, a designer can

use a 70% weight on the player MMR, 10% on their experience points, and the

remaining 20% on their strength stat. This will match players with close MMR,

experience and strength stat. Our proposed player matching formula calculates

32

Chapter 3. The Framework

the distance between two player profiles’ P1 and P2 using a weighted euclidean

based system and is defined by:

d(P1,P2) =

√∑
i

wi(P i
2 − P i

1)
2, (3.4)

where Pk = (P 1
k , ..., P

z
k) corresponds to the z-dimensional Profile vector containing

z Stats and wi coincide to the weight of the i-th Stat. Then, this distance is used

to obtain the cost of matching the player and the node requested profile by using

a formula that by taking into account the time in which a player is waiting for a

match, favors those matches. This formula is defined by:

Φ(Pp,Pn) = α · d(Pp,Pn) + (1− α) · γe−βt, (3.5)

where α, β and γ are empirically defined scalars the game designer can tune to

favor, or not, players that are waiting longer for a match, and t represents time

(see Figure 3.9).

Figure 3.9: Plot of our weighted euclidean example for α = 0.5, γ = 5,
β = 0.5 and a euclidean match d(Pp,Pn) = 5. When the match time increases,
the match value will decrease until a minimum of α · d(Pp,Pn). This will favor

ongoing matches and attempt to prevent skipping older matches.

33

Chapter 3. The Framework

Then, the system computes the cost of matching player p with the set of all

available players in open sessions N for that player node n to find the session in

which the player best fits, that is, the one with least cost:

n = arg min
n∗∈N
{Φ(Pp,Pn∗),Φ(Pp,Pn∗) < σ}, (3.6)

where σ represents a minimum threshold that the matching needs to fit in order

to be considered for matching.

The flow of the matchmaking system begins with a player defined by its profile

P and its next node N. The player sends that information to the matchmaking

server which upon receiving the request searches for any open matches for node N

where the player with profile P can fit in any open slot. While the player waits for

this matching, she/he plays a time fill mission previously defined by designers for

node N. If a good match is found by the server, the player will join that match and

proceeds the game. If no match is found, the server creates a listing for that node

and profile and waits for other requests and informs the player to start playing

with NPCs. After waiting a previously defined amount of seconds (matchmaking

timeout, defined by designers) the server informs the player that there are no

available matches and that he/she will have to play against NPCs.

Figure 3.10: Flow of the matchmaking initiated by a player sending her/his
profile and current node. If no match is found then the player plays against

NPCs.

34

Chapter 3. The Framework

3.6 Designers GUI

Alongside our framework proposal, we have created a prototype of a Graphical

User Interface (GUI) Application to aid designers to conceptualize, define and

create the game based on our framework components. This application has a

core implementation of every component and can be used to create multiplayer

campaign stories. As the proposed framework is extendable, and may not cover

every designers’ need, the framework and GUI Application can be expanded with

new components that they see fit. The Application uses JSON [Crockford, 2006]

data format to store the campaign story so that data can be exchanged further in

the development pipeline for the game’s implementation.

In this application (see Figure 3.11) the designer creates every Node for her/his

campaign story. In every Node the designer must define: the map where the players

will play with a description so that Artists can create the needed assets such as

3D Models; player inputs, outputs and coherences.

For every player input there is a corresponding player output. In the inputs,

designers must define the profile for each slot with the corresponding stats that will

then be used to match players to each specific input. Then, they define the Mission

Information, which is the objective of that specific player in that Node. It can be

for example a Protect mission where the player A needs to protect player B or a

specific item in the map. Then, the objective bound variable specifies how many

times the player can re-spawn after dying and the success value represents how

many partial success there are. The designer can also define a Time fill mission

which will be played in the time it takes the matchmaking system to match with

other players.

Regarding player outputs, the designer defines the output for each specific

player input, starting by determining the next nodes in a list sized exactly as the

value of the success in the input. Input success value of two means there will be two

possible next nodes. The output also can have a time fill mission, which defines

what happens after the player finishes his/her mission in that Node, and has to

35

Chapter 3. The Framework

do something to move on to the next Node. Let us imagine a mission to protect a

fortress during five minutes; when the time passes and the player is relieved of duty

the output’s time fill mission could be to reach the commander for the payment

or to reach the next city where the next node will start. Finally in the output the

designer can define profile enhancements for the player. In the end of a mission,

for a complete success the player could be rewarded with 100 experience points, or

in a fail situation the player could be weaken and have its strength stat decreased.

Each profile in the enhanced profiles list is directly linked to the player’s current

success. This value is present in the Input variable of "Current Success" which

should be keep track of player progress in that node.

Figure 3.11: Framework Editor for Designers to Manage a story. In this
screen-shot the aforementioned example of Player input is used to show how

designers can fill the information in the application.

After defining every Node and its individual information using this application

and the proposed framework, the designer exports the campaign. The application

generates a JSON file containing all information about the story. The designer

then passes it onto Artists and Engineers. Artists are the ones focused on the

aesthetics part of the game development phase, such as the creation of Textures,

3D Models, 2D Sprites and any other needed asset. Engineers on the other hand,

36

Chapter 3. The Framework

more concretely Software Engineers are the ones that implement the gameplay

mechanics so the game becomes playable. Other types of engineers such as Audio

Engineers can also use the exported campaign to develop the Audio assets needed

for the visioned game. Artists and Engineers then implement their work into the

game.

3.7 Case Study

To test the implementation of the proposed framework in a real game development

scenario, we designed and developed a game so we could use it as a practical testing

area. It was decided that a Role Playing Game (RPG) would be the genre that

would use the framework to its full capacity as this game genre usually focus on

individual player stories and centers the game on the player and her/his actions.

A plot for the game was created about the tale of two bordering nations that

needed a rare mineral present in their border. From there, 19 Nodes were cre-

ated describing a journey across the border, from north to south, with different

missions opposing both countries (see Figure 3.12). With the help of PCG, the

design process was streamlined. We used Donjon’s Random Dungeon Generator

[Donjon, 2009b] to generate the maps of the game, Donjon’s Random Adventure

Generator [Donjon, 2009a] to generate the plot and objective for each node, and fi-

nally, we used Fantasy Name Generators [Emily, 2012] website to generate random

names for the game’s cities.

Figure 3.12: Case Study game map procedurally generated using Axgaar Gen-
erator [Azgaar, 2018]. Each black dot represents a Node’s location.

37

Chapter 3. The Framework

Nodes can be played in a linear fashion like most games, but we can also create

procedural stories by using Node Coherence components to stochastically assign

the player’s next node. These Nodes were defined by three types of Coherences:

Location, Story and Appearance; for instance, a Node that is physically located in

the North of the world would have a Location value of 0, while a Node physically

located in the South would have the value of 1. The game flow starts as players

enter their desired nick name and choose a character class from three possibilities

(see Figure 3.13). This character class will be the criterion used in the match-

making system. The matchmaking algorithm will favor to match two players in a

given node, with the same class, before matching players with different classes (see

equation 3.6). In this game, even if two players with different classes are matched

against each other, the match will not be unbalanced for one of them as character

damage and health are the same for any class.

Figure 3.13: Unity Game Menu with a randomized character name generator,
class and country selection.

After choosing a character class and her/his nickname, the game begins and

every player starts by playing a tutorial node against NPCs to get familiar with

the game. With this game we wanted to test the implementation of the framework

alongside the game development pipeline. Then, we wanted to test whether the

38

Chapter 3. The Framework

game (built on top of the framework) plays well with our matchmaking system

and if players are indeed matched together in MP combat.

We implemented two versions of our game: a web and an Unity version. We

describe both below.

3.7.1 Web Version

We decided to create a web version of the game because it is essentially a Dedicated

server architecture (see Figure 3.14) but with no upfront costs given that there

are free web hosts that can be used to act as the game’s server. This game would

be used to validate the framework implementation and the matchmaking system.

Figure 3.14: Web Architecture for our game web version. From the User,
an HTTP request (AJAX - Asynchronous JavaScript And XML) is sent to the
server side. In the server side, a PHP script receives the AJAX request, processes
it, accesses the Database and returns either HTML or JSON which the User

receives and uses.

Our web version was implemented using HTML, CSS, Javascript, JQuery, PHP

and MySQL. Javascript was used on the client side to control the game logic and

player input whereas PHP was used on the server side for matchmaking requests

and game logic application. For example, whenever a player requested a match, a

request was made to the PHP side of the game as shown in the matchmaking flow

(see Figure 3.10). MySQL was used to store player information, matchmaking

requests, inputs and node information according to the data model present in

Figure 3.15. The Nodes table held information regarding the playable Nodes,

39

Chapter 3. The Framework

wehreas the Player table held information such as players’ profiles and current

node. For matchmaking purposes the Matchmaking table was used to create and

consult available listings and when player were matched the battle table held all

the damage given and received by each player.

Figure 3.15: The Database model for our game featuring four tables. The
Nodes table uses JSON to store the information regarding each node.

The game can be played with just a mouse where players would decide when

to start a node. The name and description of the node is presented to the player

like shown in Figure 3.16. In this example the node represents a City that is under

attack by the rival nation and the player must defeat her/his opponent.

Figure 3.16: Screenshot of a player just before starting a Node, where details
about that node are presented to her/him.

In case of battle, the player had the opportunity to decide from three types

of strategies: Attack (which dealt 10 damage), Counter-Attack (which dealt a

random value between 5 and 15) or Defense (which blocked 50% damage dealt by

the opponent). In case of failure, i.e death, the player would have to replay the

same Node until successfully winning the battle and moving on with the story.

40

Chapter 3. The Framework

Figure 3.17: Web Game Screenshot showing a battle between a player and
NPC due to failed matching.

3.7.2 Unity Version

After implementing and validating the web version, we decided to create a 3D

Unity version to validate the extendability of the proposed framework. The Unity

Engine was chosen due to its rising popularity over the years, cost (free for both

personal and commercial use), and community support.

We used the same design from the web version, i.e node information and game

plot. We downloaded every visual asset from the internet. Character models 3.18

were downloaded from OpenGameArt [Art, 2009] and animated using Mixamo’s

auto-rigger and animator [Mixamo, 2008]. Other 3D models such as weapons were

downloaded from TheFree3D [Free3D, 2014].

41

Chapter 3. The Framework

Figure 3.18: Unity Game Screenshot with a player in a generated map fighting
three opponents.

The maps for each node were randomly generated using Donjon’s Random

Dungeon Generator (see Figure 3.19) which generates a 2D matrix that can then

be used inside Unity to draw the 3D map. Unity allows exportation to a wide

variety of platforms such as PC, Consoles and phones. Our test builds were all

PC versions since those were the platforms we used for development.

Figure 3.19: Donjon’s Dungeon Generator where it is possible to create pro-
cedural dungeons with rules and constraints such as Layout, style and size.

42

Chapter 3. The Framework

Similar to the web version, this version of the game can also be played with a

mouse or with a gamepad. Here, the flow of gameplay is a bit different: the player

initiates the game and is presented a menu to start playing. Immediately the

player’s current node is loaded and the matchmaking flow is initiated (see Figure

3.10). Then the player spawns in the world and can interact with an NPC where

that node details are presented to the player such as node name and description.

If the matchmaking found a match, the world will be populated with other human

players, if not, it will be populated with enemy NPCs (see Figure 3.20). If the

player reaches the end of the dungeon she/he wins the node and moves on in the

story, but in case the player dies she/he has to return to restart the node.

Figure 3.20: Unity Game Screenshot with a player in a generated map with
NPCs.

3.7.2.1 Networking

Networking is an important part since the proposed framework is for multiplayer

interaction. We decided to use Listen Servers (see Figure 3.22) rather than Dedi-

cated Servers (see Figure 3.21) for economic purposes.

43

Chapter 3. The Framework

Figure 3.21: Dedicated Server Architecture where players connect to a server
that is running online 24/7. This architecture costs upfront money for develop-

ers.

Dedicated servers act as a centralized authority in a multiplayer session and

players’ clients connect to that server in order to play with other players, whereas

Listen servers act as dedicated servers while being able to act as a client as well,

thus playing and serving at the same time. For small games and indie companies

that have little or no budget for dedicated servers (that have to run 24h/7days and

there needs to be a high quantity of server instances proportional to the player

base), listen servers are the best choice as any player can, essentially be the server.

In Unity we can easily implement both of these solutions, so we decided to go

with Listen Server, so that a player that could not find a match right away in a

matchmaking request could host one’s own session and be joined by others.

Figure 3.22: Listen Server Architecture where a player is both Client and
Server. This architecture saves developers money because each player uses its

client and bandwidth to host other players.

For a Listen Server to succeed hosting other players, it must be Port Forwarded.

Port Forwarding is a method to open ports in a router to redirect connections to a

specific IP address of that router’s network. This method only works with specific

router permissions which may not be available in certain settings.

44

Chapter 4

Testing and Discussion

4.1 Implementation

Our case study game was built on top of the framework. We implemented two

versions of the game to validate the framework on two different contexts. One the

two, a 2D web version, was used to test implementation, matchmaking and real

life situation tests, whereas the 3D version was used to extend the implementation

validation.

The web version implementation was all done in PHP, MySQL, Javascript and

HTML. The proposed framework’s components were all implemented as designed

previously.

The 3D version was implemented in C# using the Unity Engine. It was im-

portant to validate the proposed framework with a widely used commercial engine

as Unity is to certify that the framework is easily integrated in such engines.

4.2 Procedural Story Generation

To test our Coherence system, the values that define each Node in various di-

mensions such as Physical Space or Time, we ran simulations for various sets of

45

Chapter 4. Testing and Discussion

weights. We implemented the Coherences at the Node scope, meaning that each

Node from the node pool had a set of Coherence values that defined it on Appear-

ance, Location and Story. The Appearance type describes the visual appearance

of a level, the Location type describes the physical location of a level and the Story

type describes the place in a overall story that node fits in.

Global to every node and coherence are the specific weights for each coherence

type. The greater the weight, the more important that coherence will be in the

matchmaking algorithm. If a designer wants to give a heavy focus on the story, the

weight for the Story coherence should be higher than any other weight, of course, if

this value is too high, the story will be more linear. To give some unpredictability

to the results, the Random coherence weight was set to 10%.

We used our proposed procedural story generator for four different weight

values,

Story heavy:

(wstory = 0.8, wlocation = 0.05, wappearance = 0.05, wrandom = 0.1),

Appearance heavy:

(wstory = 0.05, wlocation = 0.05, wappearance = 0.8, wrandom = 0.1),

Location heavy:

(wstory = 0.05, wlocation = 0.8, wappearance = 0.05, wrandom = 0.1) and

Balanced weights:

(wstory = 0.3, wlocation = 0.3, wappearance = 0.3, wrandom = 0.1).

These simulations used our case study game’s Node pool, where each node has

its own set of coherence values. We also stored the nodes that the player already

played so that there are no loops in a story. With each story generation we also

calculated the total sum of each coherence value contribution of each node to the

final result.

Shown below are the different stories generated by the system. The num-

bers represent the node ID and ⇒ represents the flow of the story as the player

progresses in the nodes.

Example 4.1. Story Heavy

46

Chapter 4. Testing and Discussion

1⇒ 14 ⇒ 2 ⇒ 12 ⇒ 13 ⇒ 15 ⇒ 4 ⇒ 16 ⇒ 6 ⇒ 5

Total: Story = 0.44, Appearance = 0.074, Location = 0.225

Example 4.2. Appearance Heavy

1⇒ 17⇒ 15⇒ 10⇒7⇒ 8⇒ 4⇒ 3⇒ 19⇒ 5

Total: Story = 0.03, Appearance = 0.7, Location = 0.235

Example 4.3. Location Heavy

1⇒11⇒9⇒2⇒14⇒3⇒7⇒15⇒5⇒13

Total: Story = 0.0275, Appearance = 0.05, Location = 0.36

Example 4.4. Balanced Weights

1⇒2⇒14⇒3⇒15⇒13⇒4⇒7⇒8⇒10

Total: Story = 0.3957, Appearance = 0.624, Location = 0.528

Node 7

Story: 0.1

Location: 0.4

Appearance: 0.7

Node 15

Story: 0.2

Location: 0.3

Appearance: 0.6

Node 8

Story: 0.4

Location: 0.8

Appearance: 0.2

47

Chapter 4. Testing and Discussion

As we can see the Node matching generates a procedural story composed on

Nodes that are expected to be coherent to one another. For example, in the

Location heavy generation, the player would go from Node 7 to Node 15. Node 7’s

coherence value for Location is 0.4 while Node 15’s coherence value for Location

is 0.3 meaning that these nodes are located closely in physical space (in a realistic

example, the same way Brooklyn and Manhattan are close physically), thus being

coherent in a Location perspective.

4.3 Matchmaking

We ran game simulations with NPCs playing against each other to test our match-

making system and compare it to an Elo system approach. The case study game

and all its nodes, presented in Chapter 3, were used for these simulations. We ran

simulations for four different numbers of concurrent players N = {10, 50, 200}.

The methodology was to have N concurrent players simulating game-play and

matchmaking requests. We tested each player having one, two and three defining

stats, which were randomly generated with values between 0 and 10. We also

tested restricting or relaxing the matching threshold (see Equation 3.6) to observe

how it affects matching. The simulation flow is as follows:

1. Player is created with 1,2, or 3 Random Stats with values ranging from 0 to

10 (exclusive).

2. Player requests a match in the first Node

3. Player waits for timeout or match details

4. Player simulates game play by generating a 50% chance of winning.

5. If Player wins it requests the story generator a new node to progress to, if

not, it stays in the same node.

Each player plays exactly 10 matches.

48

Chapter 4. Testing and Discussion

Progression means that players request a new node to our Story Generator

which will be set with three Coherences, Story (wstory = 0.8), Location (wlocation =

0.05), Appearance(wappearance = 0.05) and Random(wrandom = 0.1), which gener-

ates some branching but not too much. For our matchmaking equation we used an

α = 1 to give 100% weight to the euclidean distance (see Equation 3.5) part of the

equation, and 0% to the time part of the equation. This is due to the simulation

taking a short time to complete, so a time factor is insignificant. We also used

a timeout of 5 seconds, meaning a player will wait five seconds for a match if no

match is found right away, after those five seconds, the player will play against

NPCs.

4.3.1 Proposed Non-weighted Matchmaking Method

We ran tests with the proposed euclidean distance based algorithm (see Section

3.5). Our framework is capable of handling various stats and some of those might

be direct inputs to the matchmaking system. For that reason we needed a system

that would take in account more than one value, in comparison with Elo based

systems that use only the team’s rating (MMR).

For one Stat (see Figure 4.1) and σ = 3 (see Equation 3.6), meaning that the

system would only match players with a stat difference of 3 points, our matchmak-

ing algorithm failed to find a match for 26% of the requests with N = 10. That

percentage dropped to 10% for N = 50 and with N = 200 it hits the 2.4% of failed

match. With a more strict σ = 1, the results are unfavorable with 56% of failed

match for N = 10 and the lowest percentage of 3.8% for N = 200. Overall, the

results show a decrease of failed matchmaking with the increase of player base.

49

Chapter 4. Testing and Discussion

Figure 4.1: Results of Euclidean 1 Stat Simulations.

For two Stats (see Figure 4.2) and σ = 3, the failed matching percentage for

N = 10 almost doubles to 52.6% and 5.8% for N = 200. With σ = 1 the system

hits 70% failed matching for N = 10 and with N = 200 it manages to keep the

unsuccessful matching at 22%.

Figure 4.2: Results of Euclidean 2 Stat Simulations.

For three Stats (see Figure 4.3) and σ = 3 the results are very high for small

player bases. Around 70% failed matching for N = 10 and as low as 14% for

N = 200 and σ = 3. The combination of three stats, procedural story generation

and 10 possible values for each stat makes it very unlikely that players find a

match in lower player bases. We tested with σ = 1 and we hit a high of 74% for

N = 10 and a low of 58% for N = 200.

50

Chapter 4. Testing and Discussion

Figure 4.3: Results of Euclidean 3 Stat Simulations.

Overall these are good results as a player base of 200 concurrent players is very

small for high profile commercial games. Designers must have a clear idea about

the branching scale that they will introduce in their game, and the more defining

stats and their possible values will affect more the possible matches.

4.3.2 Proposed Weighted Matchmaking Method

Our euclidean based system provides a good matching because it can consider

more than one criterion when matching two players. However, the more criterions

used, the harder it is to get a good match, specially when the value range is wide.

To improve the results for more than one criterion, a weighted euclidean distance

system can be used instead. We tested this by using two different sets of weights

for the three criterions (stats).

The first set of weights was 80% for Stat 1, 10% for Stat 2 and 10% for Stat

3. This means that when matching two players, there will be significant more

importance given to the first Stat difference and the other two stats will have

small effect on the final matching value. With this set of weights (see Figure 4.4)

the system is more capable of matching with only 3.1% failed matching at N = 200

for σ = 3 and 25% for σ = 1.

51

Chapter 4. Testing and Discussion

Figure 4.4: Results of Weighted Euclidean 3 Stat Simulations with 80%, 10%
and 10% weights.

The other set of weights used, was 50%, 30% and 20% (see Figure 4.5), which

meant to show extra equilibrium in stat importance. The results show that it also

beats the non-weighted euclidean distance based system hitting a low of 4.4% with

N = 200 and σ = 3 and 37% for N = 200 and σ = 1.

Figure 4.5: Results of Weighted Euclidean 3 Stat Simulations with 50%, 30%
and 20% weights.

4.3.3 Elo based

We implemented a version of the Elo version with the same attributes as our

matchmaking tests to compare both directly. In the case where our Elo system

used more than one Stat, the average of every stat was used as the MMR value

52

Chapter 4. Testing and Discussion

for the elo equation. We used the generic Elo equation with Ra and Rb being the

average of the stats for Player A and B respectively. The perfect match of this

equation is 0.5, meaning that either player has 50% chance of winning, so we used

m = arg min
Ra,Rb
{|0.5− 1

1 + 10(Rb−Ra)/10 |}, (4.1)

to find the two players with the fairest match. For example a value m = 0 means

the match is perfectly balanced. We tested the elo system with σ = 0.033 and

σ = 0.0984 as we determined that these were the exact values that matched the

ones used in the euclidean tests (σ = 1andσ = 3).

For one Stat (see Figure 4.6) and with both σ = 0.0984 and σ = 0.033 hitting

a high of 55% and 69% for N = 10, respectively, and a low of 3.6% and 13% for

N = 200, respectively. As previous tests, the failed matching percentage decreases

as the player base increases.

Figure 4.6: Results of Elo System 1 Stat Simulations.

For two Stats (see Figure 4.7) and σ = 0.033 the elo system hit a high of 63%

for N = 10 and a low of 6.8% for N = 200 whereas σ = 0.0984 hit a high of 42.7%

for N = 10 and a low of 2.8% for N = 200.

53

Chapter 4. Testing and Discussion

Figure 4.7: Results of Elo System 2 Stat Simulations.

For three Stats (see Figure 4.8), for σ = 0.033 and σ = 0.0984 the elo system

achieved a high of 56% and 38% for N = 10, respectively, and a low of 10% and

2.5% for N = 200, respectively.

Figure 4.8: Results of Elo System 3 Stat Simulations.

4.3.4 Analysis

Let us now compare the proposed methods (weighted and non-weighted) and the

elo based matchmaking systems according to their performance for each threshold

σ according to the previous shown results. For elo based σ = 0.0984 is related to

σ = 3 for euclidean distance based and σ = 0.033 is related to σ = 1.

54

Chapter 4. Testing and Discussion

For one Stat profile matching, both systems do a good similar job. The non-

weighted euclidean based system manages to win with lower percentages for lower

σ but overall both systems show good percentages for N = 200.

For two Stats, the euclidean system fails 22% at a strict σ value, whereas the

elo based system fails at 6.8%. For both relaxed σ and higher N = 200 the two

systems are separated by 3% making the elo system the winner with 2.8%.

For three Stats, the euclidean system hits 14% failed matching with σ = 3,

whereas the elo based system handles the stricter σ = 0.033 with the lowest 2.5%.

However with weights, the euclidean system hits 3.1% with 80/10/10 and 4.4%

with 50/30/20.

In terms of failed percentage the elo appears to be able to match players more

easily in diverse situations, however this does not prove its total efficacy. Let us

imagine an example of a three criterion matching with Stat A,B, and C. Each

player can have one of the stats (A,B,C) with value ten and the rest of the values

are 0. Player X would have A = 10, B = 0, C = 0 and player Y would have

A = 0, B = 10, C = 0. Now let us try and match Player X and Y. Following

the euclidean distance (non-weighted), the system would give a matching value of

m = 14.1, showing that the players are indeed different. But when we switch over

to the elo system, as it only handles one criterion, we have to average the stats

giving us a total match value of m = 0.5 because the average of the three stats is

the same 10/3.

The elo works as proven by games such as Rocket League, Overwatch, CS:GO,

League of Legends and others, but is limited when given the possibility to match

with more than one criterion than just skill, and as demonstrated in the previous

example, it can match players but it does not guarantee a balanced match in every

situation. However, our framework is not bound to the euclidean based systems,

thus being possible to use and implement elo based systems or any more suited

system that designers see fit for their game.

55

Chapter 4. Testing and Discussion

4.4 Designers GUI

To test our Designers GUI, we ran usage tests (N = 14) to assess the usability of

our GUI application to design and create multiplayer campaigns. We started by

creating a small introduction presentation about our framework (see Figure 4.11

and Appendix B). This presentation explains the framework overview and how it

can favor the development process. Our tests were conducted with 14 people, 12

of which were male and 2 females, with ages comprised between 20-27 years of

age. All the males were familiar with video-games while the two female subjects

were not that familiar, only playing on their phones but very little time per week.

From all the 14 users, only 3 have any experience with the game creation or design

process.

After a brief introduction, we initialized these tests by asking users to give an

example of a Node in their favorite games. The results of this query are present

in Figure 4.9. Overall the understanding of the concept of Node in our framework

was understood, with only three subjects failing to present an example of such

concept in their favourite video games. For example, one of the answers from one

of the successful subjects was "A semi-final match between two teams in a FIFA

video game tournament", indeed the journey of a team in a FIFA tournament

could be represented as a set of Nodes, from the Eighth-finals all the way to the

final.

Figure 4.9: A query during our tests where users were asked to give a practical
example of a Node in their favorite games showing a good understanding of what

a Node is.

56

Chapter 4. Testing and Discussion

Figure 4.10: Our framework editor understanding results were positive. With
an average of 3.57.

We then presented the GUI Application to the users and requested the creation

of two missions with different player profiles and connection between one another.

We presented these tests in the form of a guide (see Appendix A), but before

starting we made it clear that our framework was the subject of evaluation and

testing and not the person doing the testing, so that the users would not feel judged

or pressured to get things right. The goal of these tests was to assess whether

our framework concepts were easily recognizable in the editor and correctly used

by new users. The results (see Figure 4.10) were positive with an average of

3.57/5 of editor understanding. This understanding was rated based on both

self and our evaluation of each subject’s ability to follow the directions given by

our guide and time consumed doing so. Only three subjects showed problems in

following these directions, due to the lack of understanding of how the framework

components connected to one another. This is partially explained by their lack of

video game play experience, since other subjects that are daily players understood

these concepts. Other factor that could possibly explain a bad understanding of

the editor application is the lack of polish for the User Interface (UI) and User

Experience (UX) while developing the application. We also did not see a factor in

tech-background in our results since formation background for our subjects ranged

from sports and health, to no higher education (for example: Fireman).

57

Chapter 4. Testing and Discussion

Figure 4.11: Framework Presentation Slide for framework introduction. See
the full presentation in Appendix B

4.5 Real-life tests

We tested our case study game, fully implemented with the framework in a real

controlled environment. Before beginning these tests, we setup ten computers in a

room with the game running. Testing heavily with lots of users was not possible so

instead we tackled some possibilities and compared them to our simulations (see

Figure 4.12). We initiated the register of ten players with random classes from a

possible of 3 values (Warrior, Mage and Rogue), each player has its own computer.

These tests were made using a non strict euclidean threshold of σ = 3, which would

made possible the matching of different classes. The first methodology used was a

random picking of two players and having them requesting a match. Then, after

five rounds we picked two players that would stop playing and continued with the

others. Then we picked four players that would advance as much as they could

in the game while the others took a break. When these four ended the game, we

resumed the same random picking methodology used before, this time including

the two players that left the game early, but now picking one other that would

stop playing. Soon enough there were players which completed the game, and we

picked two players at random that would drop the game completely. The results

for N = 10 and σ = 3 were of 55% failed matching out of 65 total requests.

Our simulations for N = 10 and σ = 3 with one stat showed that the match-

making system failed on 26% of the requests. We believe the reason for the differ-

ence is due to the fact that simulations did not take in account any player drop out

58

Chapter 4. Testing and Discussion

Figure 4.12: Real Life tests showing two players being matched.

rate as they were sequential and fully randomized. Overall, results were positive

since N = 10 is a very small player base for any game and there were players who

found a match in the majority of cases, i.e there was no player that only played

against NPCs.

59

Chapter 5

Conclusion and Future Work

5.1 Conclusions

The video game industry is full of high quality games. Both single-player and

multiplayer are heavily played all around the world during many hours per week

by millions of players. However, they have flaws that are inherited by their set-

ting. Single player games quality is tied to their story and NPC quality, whereas

multiplayer games quality is tied to their interaction and game-play. By nature,

the video game industry is very commercial, meaning that proprietary solutions

are paramount and not discussed academically, so there is not a single solution

to aid the design of multiplayer campaigns such as Dark Souls invasions mode,

Absolver or Journey video games.

As a contribution to this gap in the industry, we developed a framework capable

of integrating popular game design methods such as the MDA framework and

GDD usage. Our framework was built to take from SP games the well written and

tailored stories to a MP interaction setting where the gameplay does not feel dull or

repetitive. We tested this framework in different stages of the game development

pipeline.

For the design phase, designers can use our Framework Editor Application to

create and manage a multiplayer campaign story where they define all the levels

61

Chapter 5. Conclusion and Future Work

in the game and the types of players that will play those same levels. Once the

design phase is complete, the game needs to be implemented by programmers and

artists. Programmers use the design to create the gameplay mechanics and the

inner workings of the game, while Artists (Sound, Visual, etc.) focus on creating

the needed assets.

We tested the programmers usage of the framework by implementing the frame-

work data defined previously by a designer in our case study game. Our case study

game, and several implementations of it, are evidence that the framework and its

components are capable of handling the core of any story related game genre’s

development.

Inside our case study game we tested a proposal for a matchmaking system

that we expected to be more effective than the popular Elo system, since it uses

more than one stat for the matching of players. We started by comparing our

non-weighted euclidean based system with the elo based system. For one stat

both systems are more successful in matching players as the player base increases.

With two and three stats the euclidean based system efficiency decreases, as there

are less successful matches, but with weights, the euclidean based system manages

to keep low failed percentages. On the other hand the Elo system maintains

close results either for one, two or three stats, however this does not mean the

matches are balanced like shown. The Elo is capable of matchmaking but not in

a balanced way since it needs to average the number of criterions used and an

average of multiple stats is not representative of balance in some cases, whereas

an euclidean based system can differentiate each individual stat value and give an

accurate difference of two different players. Our framework is not bound to any

specific matchmaking system, so each developer can use whatever system suits

their specific needs.

Our framework showed to be capable of not only handling a multiplayer cam-

paign with as much branching as the designers desire, making games feel unique to

62

Chapter 5. Conclusion and Future Work

any type of player, but also of aiding in the development of such games by stream-

lining the process of conceptualization, design, and implementation providing tools

for developers to create, manage and share their work back and forth.

5.2 Future Work

This section details some of the possible extensions of our contribution to the

video game industry. It analyzes each individual contribution separately in each

sub-section.

5.2.1 Framework

The framework provides enough components for most known commercial game

genres, such as Shooters, Strategy and Action/Drama games. However it is pos-

sible that a particular type of game either by being innovative or having features

that are not very common may need additional components. In cases like this, it

is possible to override and add new components that interact or not with the core

components proposed by this dissertation.

5.2.2 Framework Editor

Our framework editor albeit just a prototype, could be improved in various ways.

With the aforementioned framework modifications, the editor too could be mod-

ified in its core to provide the addition of new components that any particular

game types may need. Other feature that would significantly help the designers in

the design process would be a real time simulation of the nodes and the possible

paths. This simulation would be built in the editor so that after the creation of

several nodes, designers could see a simulation of what emergent paths would be

created and tune in variables in real time. This would help since the branching

increases the complexity of the possible paths undoubtedly.

63

Chapter 5. Conclusion and Future Work

5.2.3 In Engine

The editor and the framework are built as standalone products, but instead they

could be added as plugins or addons to existing Engines such as Unity or Unreal

Engine. There, the creation, management, and implementation process could be

simplified by having all components already built onto the engine, thus not needing

an extra implementation process. This would also help designers that do not have

enough programming background to mess around with the implementation to

create their stories in a drag-and-drop/visual programming environment and then

the plugin/addon would translate that automatically into objects and instances

in-game.

5.2.4 Scale

The conducted tests were based on a small scale compared to the thousands of

daily players on current commercial video games. Our proposed framework and

matchmaking systems could use additional validation on a bigger scale.

5.3 Contributions

The work done in this dissertation was featured in an article accepted for publi-

cation at the ArtsIT 2018 Conference in Braga, Portugal.

64

Appendices

65

Appendix A

Designers GUI Test Guide

The guide that was given to user subjects to follow and use the Designers GUI

application.

1. You are a Game Designer and you just got introduced to a new Framework

for Multiplayer Campaign Games.

2. You want to create a game in medieval times. There will be two missions,

one tutorial and one huge battle.

3. First create a tutorial mission

(a) This mission doesn’t discriminate individual players

4. Now create the battle mission

(a) This mission will have 2 types of players, team A and team B

(b) Each side either wins or loses.

5. Now export your campaign and send it to programmers.

67

Appendix B

Framework Presentation Slides

The framework slides of the presentation given to Designer GUI application test

subjects.

Figure B.1: Slide 1 of the Framework Presentation.

Figure B.2: Slide 1 of the Framework Presentation.

69

Appendix B. Framework Presentation Slides

Figure B.3: Slide 1 of the Framework Presentation.

Figure B.4: Slide 1 of the Framework Presentation.

Figure B.5: Slide 1 of the Framework Presentation.

70

Bibliography

[Agarwal and Lorch, 2009] Agarwal, S. and Lorch, J. R. (2009). Matchmaking

for online games and other latency-sensitive p2p systems. In Proceedings of the

ACM SIGCOMM Computer Communication Review, volume 39, pages 315–326.

ACM.

[Alman and McKay, 2017] Alman, J. and McKay, D. (2017). Theoretical foun-

dations of team matchmaking. In Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems, pages 1073–1081. International

Foundation for Autonomous Agents and Multiagent Systems.

[Andrade, 2013] Andrade, A. (2013). Gdd examples.

http://seriousgamesnet.eu/assets/view/238. Accessed: 2018-04-26.

[Art, 2009] Art, O. G. (2009). Open game art. http://www.opengameart.org.

Accessed: 2018-04-26.

[Azgaar, 2018] Azgaar (2018). Fantasy map generator.

https://azgaar.github.io/Fantasy-Map-Generator/.

[Barrett, 2017] Barrett, B. (2017). Overwatch just reached 35 million play-

ers. https://www.pcgamesn.com/overwatch/overwatch-sales-numbers. Ac-

cessed: 2018-04-26.

[Bertolo, 2014] Bertolo, M. (2014). Game design document.

[Brew, 2015] Brew, S. (2015). Until dawn, the interactive movie, and story-

telling. http://www.denofgeek.com/games/until-dawn/37259/until-dawn-the-

interactive-movie-and-storytelling.

71

References

[Crawford, 1984] Crawford, C. (1984). The art of computer game design.

[Crockford, 2006] Crockford, D. (2006). The application/json media type for

javascript object notation (json). Technical report.

[Delalleau et al., 2012] Delalleau, O., Contal, E., Thibodeau-Laufer, E., Ferrari,

R. C., Bengio, Y., and Zhang, F. (2012). Beyond skill rating: Advanced match-

making in ghost recon online. IEEE Transactions on Computational Intelligence

and AI in Games, 4(3):167–177.

[DIGITAL, 2017] DIGITAL, S. . D. (2017). Absolver video game.

https://www.absolvergame.com/. Accessed: 2018-04-26.

[Donjon, 2009a] Donjon (2009a). Donjon random adventure generator.

https://donjon.bin.sh/fantasy/adventure/. Accessed: 2018-04-26.

[Donjon, 2009b] Donjon (2009b). Donjon random dungeon generator.

https://donjon.bin.sh/fantasy/dungeon/. Accessed: 2018-04-26.

[Elo, 1978] Elo, A. E. (1978). The rating of chessplayers, past and present. Arco

Pub.

[Emily, 2012] Emily (2012). Fantasy names generator.

http://www.fantasynamegenerators.com/. Accessed: 2018-04-26.

[Free3D, 2014] Free3D (2014). Free3d. https://free3d.com/. Accessed: 2018-04-

26.

[Glickman and Jones, 1999] Glickman, M. E. and Jones, A. C. (1999). Rating the

chess rating system. CHANCE-BERLIN THEN NEW YORK-, 12:21–28.

[Grubb, 2017] Grubb, J. (2017). Ashen expands on journey’s pas-

sive multiplayer by turning real strangers into companions.

https://venturebeat.com/2017/06/13/ashen-expands-on-journeys-passive-

multiplayer-by-turning-real-strangers-into-npcs/. Accessed: 2018-04-26.

72

References

[Hamilton, 1995] Hamilton, K. (1995). Gta gdd.

http://www.mikaelsegedi.se/gdd/Grand-Theft-Auto-Design-Document.pdf.

Accessed: 2018-04-26.

[Hendrikx et al., 2013] Hendrikx, M., Meijer, S., Van Der Velden, J., and Iosup,

A. (2013). Procedural content generation for games: A survey. ACM Transac-

tions on Multimedia Computing, Communications, and Applications (TOMM),

9(1):1.

[Herbrich et al., 2007] Herbrich, R., Minka, T., and Graepel, T. (2007).

TrueskillTM: a bayesian skill rating system. In Proceedings of the Advances

in neural information processing systems, pages 569–576.

[Hunicke et al., 2004] Hunicke, R., LeBlanc, M., and Zubek, R. (2004). Mda: A

formal approach to game design and game research. In Proceedings of the AAAI

Workshop on Challenges in Game AI, volume 4, page 1722.

[Inc., 1994] Inc., C. (1994). Diablo gdd. http://mikaelsegedi.se/gdd/diablopitch.pdf.Accessed :

2018− 04− 26.

[Jack, 2011] Jack, A. (2011). Emergent systems as a narrative device.

https://www.slideshare.net/alanjack/emergent-systems-as-a-narrative-device.

Accessed: 2018-04-26.

[Kwak and Blackburn, 2014] Kwak, H. and Blackburn, J. (2014). Linguistic analysis

of toxic behavior in an online video game. In Proceedings of the International

Conference on Social Informatics, pages 209–217. Springer.

[Lazzaro, 2004] Lazzaro, N. (2004). Why we play games: Four keys to more emotion

without story.

[Lim and Reeves, 2010] Lim, S. and Reeves, B. (2010). Computer agents versus

avatars: Responses to interactive game characters controlled by a computer or

other player. International Journal of Human-Computer Studies, 68(1):57 – 68.

73

References

[Mateas and Stern, 2003] Mateas, M. and Stern, A. (2003). Façade: An experiment

in building a fully-realized interactive drama. In Proceedings of the Game devel-

opers conference, volume 2, pages 4–8.

[McLaughlin, 2013] McLaughlin, M. (2013). New gta v release tipped to rake in £1bn

in sales. https://www.scotsman.com/lifestyle/gadgets-gaming/new-gta-v-release-

tipped-to-rake-in-1bn-in-sales-1-3081943.

[Minoraxis, 2011] Minoraxis (2011). Fantastic knight video game.

https://itunes.apple.com/gb/app/fantastic-knight/id429852137?mt=8. Accessed:

2018-04-26.

[Mixamo, 2008] Mixamo (2008). Mixamo. http://www.mixamo.com. Accessed:

2018-04-26.

[Myślak and Deja, 2014] Myślak, M. and Deja, D. (2014). Developing game-

structure sensitive matchmaking system for massive-multiplayer online games. In

Proceedings of the International Conference on Social Informatics, pages 200–208.

Springer.

[Märtens et al., 2015] Märtens, M., Shen, S., Iosup, A., and Kuipers, F. (2015).

Toxicity detection in multiplayer online games. In Proceedings of the 2015 In-

ternational Workshop on Network and Systems Support for Games (NetGames),

pages 1–6.

[Paul et al., 2010] Paul, R., Charles, D., McNeill, M., and McSherry, D. (2010). Mist:

An interactive storytelling system with variable character behavior. In Proceedings

of the Joint International Conference on Interactive Digital Storytelling, pages 4–

15. Springer.

[Paul et al., 2009] Paul, R., McNeill, M., Charles, D., McSherry, D., and Morrow, P.

(2009). Real-time planning for interactive storytelling. In Proceedings of the 9th

Irish Workshop on Computer Graphics, pages 89–94.

74

References

[Poulter, 2009] Poulter, S. (2009). Smarter games, dumber children.

http://www.news.com.au/technology/smarter-games-dumber-children/news-

story/a4e43cabc1 e5805e56eb59c666bf2e39.

[Roth et al., 2012] Roth, C., Vermeulen, I., Vorderer, P., and Klimmt, C. (2012).

Exploring replay value: shifts and continuities in user experiences between first

and second exposure to an interactive story. Cyberpsychology, Behavior, and Social

Networking, 15(7):378–381.

[Rouse and Illustrator-Ogden, 2000] Rouse, R. and Illustrator-Ogden, S. (2000).

Game design theory and practice. Wordware Publishing Inc.

[Schell, 2014] Schell, J. (2014). The Art of Game Design: A book of lenses. AK

Peters/CRC Press.

[Steam, 2018] Steam (2018). Steam stats. http://store.steampowered.com/stats/.

Accessed: 2018-04-26.

[Tassi, 2016] Tassi, P. (2016). Gta online’s $500m in microtransactions could mean a

very different ’gta 6’. https://www.forbes.com/sites/insertcoin/2016/04/14/gta-

onlines-500m-in-microtransactions-could-mean-a-very-different-gta-6.

[ThatGameCompany, 2012] ThatGameCompany (2012). Journey video game.

http://thatgamecompany.com/journey/. Accessed: 2018-04-26.

[Tomlison, 2013] Tomlison, P. (2013). Game design document.

[Valve, 1998] Valve (1998). Half-life video game.

https://store.steampowered.com/app/70/HalfLife/. Accessed: 2018-04-26.

[Véron et al., 2014] Véron, M., Marin, O., and Monnet, S. (2014). Matchmaking in

multi-player on-line games: studying user traces to improve the user experience.

In Proceedings of Network and Operating System Support on Digital Audio and

Video Workshop, page 7. ACM.

[VGChartz, 2017] VGChartz (2017). Global yearly chart.

http://www.vgchartz.com/yearly/2017/Global/. Accessed: 2018-04-26.

75

References

[Volk, 2016] Volk, P. (2016). League of legends now

boasts over 100 million monthly active players worldwide.

https://www.riftherald.com/2016/9/13/12865314/monthly-lol-players-2016-

active-worldwide. Accessed: 2018-04-26.

[Wolfram, 1983] Wolfram, S. (1983). Statistical mechanics of cellular automata. Re-

views of modern physics, 55(3):601.

[Yee, 2006] Yee, N. (2006). Motivations for play in online games. CyberPsychology

& behavior, 9(6):772–775.

[Young and Riedl, 2003] Young, R. M. and Riedl, M. (2003). Towards an architec-

ture for intelligent control of narrative in interactive virtual worlds. In Proceedings

of the 8th international conference on Intelligent user interfaces, pages 310–312.

ACM.

76

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Demographics
	1.2 Why people play
	1.3 What people play
	1.4 Context
	1.5 Research Questions
	1.6 Objectives
	1.7 Structure

	2 Related Work
	2.1 Game Design
	2.1.1 Game Design Document

	2.2 Single Player and Multi-player Crossing
	2.3 Branched Storytelling and Narrative
	2.4 Matchmaking
	2.5 Applicability

	3 The Framework
	3.1 Framework Specification and Requirements
	3.2 Framework Overview
	3.3 Components
	3.3.1 Node
	3.3.1.1 Map
	3.3.1.2 Player Input
	3.3.1.3 Player Output
	3.3.1.4 Profile
	3.3.1.5 Coherences

	3.4 SP and MP crossing
	3.5 Matchmaking
	3.6 Designers GUI
	3.7 Case Study
	3.7.1 Web Version
	3.7.2 Unity Version
	3.7.2.1 Networking

	4 Testing and Discussion
	4.1 Implementation
	4.2 Procedural Story Generation
	4.3 Matchmaking
	4.3.1 Proposed Non-weighted Matchmaking Method
	4.3.2 Proposed Weighted Matchmaking Method
	4.3.3 Elo based
	4.3.4 Analysis

	4.4 Designers GUI
	4.5 Real-life tests

	5 Conclusion and Future Work
	5.1 Conclusions
	5.2 Future Work
	5.2.1 Framework
	5.2.2 Framework Editor
	5.2.3 In Engine
	5.2.4 Scale

	5.3 Contributions

	Appendices
	A Designers GUI Test Guide
	B Framework Presentation Slides
	Bibliography

