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A B S T R A C T

The Acacia longifolia species is known for its rapid growth and dissemination, causing loss

of biodiversity in the affected areas. In order to avoid the uncontrolled spread of this spe-

cies, it is important to effectively monitor its distribution on the agroforestry regions. For

this purpose, this paper proposes the use of Convolutional Neural Networks (CNN) for

the detection of Acacia longifolia, from images acquired by an unmanned aerial vehicle.

Two models based on the same CNN architecture were elaborated. One classifies image

patches into one of nine possible classes, which are later converted into a binary model;

this model presented an accuracy of 98:6% and 98:5% in the validation and training sets,

respectively. The second model was trained directly for binary classification and showed

an accuracy of 98:8% and 98:7% for the validation and test sets, respectively. The results

show that the use of multiple classes, useful to provide the aerial vehicle with richer

semantic information regarding the environment, does not hamper the accuracy of Acacia

longifolia detection in the classifier’s primary task. The presented system also includes a

method for increasing classification’s accuracy by consulting an expert to review the mod-

el’s predictions on an automatically selected sub-set of the samples.

� 2021 China Agricultural University. Publishing services by Elsevier B.V. on behalf of KeAi

Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Invasive flora species are exotic species introduced into a

non-native environment, being known for their rapid growth

and proliferation, changing and reducing the biodiversity of

the affected area. The invasive species Acacia longifolia,

depicted in Fig. 1, is a small tree from southwest Australia,
that exhibits characteristic yellow spike flowers. This species

was introduced in Portugal for controlling dune erosion. How-

ever, due to its proliferation from excessive seed production

(roughly 12;000 of seeds per m2, per year [1]), it is currently

considered an invasive species in Portugal and other coun-

tries. The overgrowth of this species poses tremendous pres-

sure over resources, creating difficulties for native species to

thrive.

Acacia longifolia invades forests and cultivation areas, alter-

ing the natural habitat composition of native species, with

negative ecological and economic impacts. The mitigation

of these negative impacts requires the application of early
td.
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Fig. 1 – Dense presence of invasive species Acacia longifolia (a), with its well-known yellow spike flowers (b). Images from [1].
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detection mechanisms for controlling the spread of invasive

species. This can be done via physical mechanisms (e.g., cut-

ting) or via biological mechanisms (e.g., biological agents that

prevent seed growth). Due to these reasons, it is paramount to

be able to detect the presence of this invasive species, allow-

ing the early engagement of control and monitoring

strategies.

A classical approach for vegetation mapping consists of

using remote sensing imagery, e.g. hyperspectral satellite

images, combined with traditional machine learning tech-

niques, such as Support Vector Machines (SVM) and Artificial

Neural Networks (ANN), for the automatic classification of the

various flora species [2]. However, traditional machine learn-

ing methods usually require context-specific feature extrac-

tion processes in order to provide input for the classifiers.

Manually finding the most adequate set of features for a given

image classification problem is usually a hard task. This can

be avoided by using deep learning techniques for image clas-

sification, namely Convolutional Neural Networks (CNN).

CNNs are able to simultaneously learn how to extract and

how to use the most adequate image features for the learning

problem at hand.

CNNs are becoming mainstream in several long-standing

aerial image processing problems, such as segmentation

and detection of vehicles [3–5] and object counting [6,7]. CNNs

are also becoming widespread in the agriculture domain as

preferred tool for detection and classification tasks based on

UAV-acquired aerial imagery. Examples include coffee plant

detection [8], classification of tree species [9], tobacco plant

detection [10], classification of cultivation, grass, and other

terrain categories [11–13], assessment of tree health stages

[14], detection of individuals of the seaweed Ulva prolifera spe-

cies [15], and land occupation classification [16–19]. In parallel

to our work, recent articles related to the detection of invasive

plants have been published [20,21]. Please refer to [22] for a

survey on the application of deep learning techniques to the

agriculture domain. However, to the best of our knowledge,

the application of CNNs for detection and recognition of the

Acacia longifolia invasive flora species remains unexplored.

This paper fills this gap by successfully showing that CNNs

are a valuable tool for detecting the presence of Acacia longifo-

lia species in aerial images captured by an Unmanned Aerial

Vehicle (UAV). Imagery acquisition with a UAV allows an

easier production of up-to-date data sets for environmental
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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monitoring tasks [23–25], when compared to satellite-based

alternatives [26].

This paper is organised as follows. First, the data set used

to train and validate the CNN, as well as its acquisition pro-

cess, are described in Section 2.1. Then, a set of preliminary

experiments over a set of meaningful CNN configurations

are presented in Section 2.2. The selected CNN architecture,

as well as its training setup, are detailed in Section 2.3. After-

wards, an expert-based accuracy improvement mechanism is

described in Section 2.4. This mechanism trades-off the

potential accuracy gain resulting from asking for expert feed-

back and its associated cost. Subsequently, Section 3 presents

and discusses the experimental results. Finally, a set of con-

clusions are drawn and suggestions for future research are

provided in Section 4.

2. Materials and methods

2.1. Data set

A data set was prepared using a DJI Phantom 3 Pro (see Fig. 2

(a)) flying in autonomous navigation mode. The flight plans

consisted of zig-zag patterns covering a set of rectangular

regions. They were prepared with the DroneDeploy software

and were executed autonomously on-board the UAV. Flight

height was set to 25 meters from the ground launch position,

maintaining this height regardless of the terrain irregularity.

The flights occurred in 2016 and took place at three different

Portuguese locations: Costa da Caparica, Palmela, and Sintra.

They were usually performed between 10 AM and 3 PM,

acquiring images with distinct illumination settings. Image

acquisition was performed using the camera auto-focus while

keeping a low exposure time, with the ISO setting at the min-

imum (100) for noise reduction. Overall, the UAV traversed

12km, covering an area of 4 hectares. During the flights,

4000� 3000 images were acquired with an on-board 2:7k

camera, mounted on a gimbal to ensure that it was always

pointing downwards (see Fig. 2(b)). Table 1 summarises the

specifications of the visual sensor equipped on the UAV.

The data set consists of 31 454 samples, which are

200� 200 image patches extracted from a randomly selected

sub-set of the images acquired by the UAV. The samples were

hand-labelled by an engineering team and validated by a

biology team. Each sample was tagged into one out of nine
omatic detection of Acacia longifolia invasive species based on UAV-
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Fig. 2 – UAV used in the context of this work (a) and example of an image captured by the UAV during the data set acquisition

phase (b).

Table 1 – Main parameters of the UAV’s visual sensor.

Sensor Sony EXMOR 1=2:300

Effective pixels 12 M
Lens FOV 94� 20 mm f/2:8, focus at 8
ISO Range 100~3200 (video) 100~1600 (photo)
Shutter Speed 8s �1/8000s
Image Max Size 4000� 3000

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( x x x x ) x x x 3
possible classes: Acacia (7506 samples); non-Acacia yellow

shrubs (1200 samples); cork oak (2912 samples); short herbs

(3998 samples); wood (1200 samples); pine tree (2922 sam-

ples); other vegetation (6238 samples); dirt (2917 samples);

and roadway (2561 samples). An ad hoc random sampling of

the data set, for an additional human-based hand-labelling

verification, showed an estimated hand-labelling error of

1:6%. This estimate resulted from the inspection of 7500

images in which 120 were found to be incorrectly labelled.

This error rate is not expected to significantly interfere with

the performance of the trained CNN since its frequency in

the Acacia longifolia class samples is very low. All samples

were randomly allocated to one of three sub-sets: training

set (60% of the samples), validation set (20% of the samples),

and test set (20% of the samples).

2.2. Preliminary experiments

For the automatic recognition of the invasive species Acacia

longifolia, two models based on a convolutional neural net-

work were developed and trained from scratch. This method-

ology allowed the development of a simple CNN model,

suitable for training without the need for a larger data set,

without the need for up-sampling the input images and with-

out the need for powerful computational resources, as it

would be required by general CNN models (e.g., VGG, Incep-

tion or Resnet families). By studying the simplest possible

model for the problem at hand, rather than applying a stan-

dard oversized model, the computational effort is reduced

and, as a consequence, future porting to the UAV’s onboard

computer is facilitated.
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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It is well-known that the performance of neural networks

in classification problems is influenced by the network’s

architecture and training settings. For this reason, several

experiments were performed in order to evaluate the results

achieved by varying the following structural and training set-

tings: number of convolutional layers (4 to 8 layers, organized

in pairs, where each pair is followed by a max pooling layer);

convolution filter sizes (3� 3; 5� 5;7� 7 and 11� 11, where

the size of the filter applied in the first layer is equal or greater

than the ones applied in the remaining layers); learning rate

(10�5 and 10�3); and the optimization algorithm used during

training (RMSProp or ADAM). Different configurations were

therefore compared in terms of computational effort (number

of trainable parameters) and class prediction error (prediction

accuracy and cross-entropy loss function).

Table 2 depicts four architecture and training configura-

tions, selected from the full suite of performed experiments.

The number of convolution filters on the first pair of convolu-

tion layers is 64 on all configurations, and this number is dou-

bled for each convolutional layer pair as one moves deeper

into the network. Each pair of convolutional layers is followed

by a max pooling layer with a 2� 2 filter size and stride of 2

pixels, which are typically used in CNNs [27]. All network con-

figurations end up with a 512-unit fully connected layer fol-

lowed by a 9-unit output layer with softmax activation. The

training process was performed up to a maximum of 200

epochs. An early training stop was triggered when no system-

atic decrease in the loss function values or evidence of over-

fitting was observed.

Configuration 1 is a CNN architecture consisting of eight

convolutional layers (four pairs), with 7� 7 and 5� 5 sized
omatic detection of Acacia longifolia invasive species based on UAV-
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Table 2 – Studied architecture configurations and respective training results.

Configuration Number of convolutional layers Filter size Number of trainable parameters Optimization
algorithmFirst layer Remaining

layers
Convolutional
layers

Fully connected
layers

1 8 7� 7 5� 5 3;256;864 529;417 RMSProp
2 6 3� 3 3� 3 1;106;688 13; 112;329 Adam
3 6 11� 11 5� 5 3;198;528 10; 621;961 Adam
4 6 7� 7 5� 5 3;184;704 10; 621;961 Adam

Configuration Training time per epoch Accuracy Loss

Training Validation Training Validation

1 � 36s 82:3% 76:5% 0:49 0:69
2 � 36s 93:8% 87:2% 0:17 0:39
3 � 1m 12s 91:3% 89:7% 0:24 0:27
4 � 54s 91:3% 91:9% 0:24 0:22

4 I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( x x x x ) x x x
filters in the first and remaining layers, respectively. The

training of this network was performed using the RMSProp

optimizer and a learning rate of 10�5. This configuration

resulted in a low accuracy rate (68:7%) and a high loss value

(0:81). A significant difference between the training and vali-

dation performance metrics was also noticed, suggesting

the presence of over-fitting. Consequently, the number of con-

volutional layers was decreased to six (configurations 2–4).

This structural variation reduced the amount of operations

associated to the convolutions at the cost of increasing the

number of trainable parameters at the fully connected layers.

Nevertheless, the six layers configurations leads to substan-

tially higher accuracy scores (87:2 to 91:9%) when compared

with configuration 1. From these, configurations 3 and 4,

which use larger sized filters, were the ones resulting in a

lower discrepancy between training and validation outcomes.

The difference between these two configurations relies on the

filter size used in the first convolutional layer. However, using

11� 11 filters (configuration 3) did not result in better accu-

racy and loss scores than using 7� 7 filters (configuration 4).

Configuration 4 also leads to a decreased number of convolu-

tion operations, which benefits both training and classifica-

tion times.

Experiments with other mentioned structural and training

setup combinations (not depicted in the table for the sake of

simplicity), confirmed that the use smaller filters would lead

to poorer learning generalization. They also showed that

increasing the learning rate to 10�3 during the training pro-

cess would lead to worse results. It was also verified that

architectures with 4 convolutional layers, despite leading to

much less convolution operations, contained a larger number

of trainable parameters on the fully connected layers and

attained rather unsatisfactory accuracy scores. Finally, net-

works trained using the Adam optimizer generally exhibited

higher accuracy scores and lower generalization error than

those trained with RMSProp.

Based on these preliminary experiments, it can be

observed that configuration 4 was the one leading to the best

results, showing higher accuracy and lower loss in the valida-

tion set. Furthermore, the results for training and validation

are very close to each other, which casts away the possibility

of over-fitting issues. Therefore, this configuration was
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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selected as a baseline for implementation and further exper-

imenting, both detailed in the following section.
2.3. Model implementation and training

Based on the preliminary results reported in the previous sec-

tion, the implemented classification models were built upon

configuration 4, from Table 2. For the sake of completeness,

a full description of the devised CNN topology is provided in

this section. The classification models are based on a CNN

with six convolutional layers, with ReLu activation functions,

where each two layers are interleaved with one max pooling

layer. Two fully connected layers are appended at the end of

the network to predict the sample’s class. The first and sec-

ond fully connected layers use ReLu and softmax activation

functions, respectively. To reduce the chances of over-fitting

to the training data, dropout was included after the max pool-

ing layers as well as after the first fully connected layer, with

rates of 0:2 and 0:5, respectively.

The input layer, i.e., the first convolutional layer, receives

100� 100 RGB colour images. To meet this input format, the

200� 200 samples are first down-sampled with bilinear inter-

polation to 100� 100 before being provided to the network.

The number of filters for the first pair of convolutional layers

is 64; a number that is doubled for each convolutional layer

pair as one moves deeper into the network. The filter size

for the first convolutional layer is 7� 7, whereas the remain-

ing convolutional layers are implemented using 5� 5 filters.

The layered structure of the network allows it to learn

higher-level visual representations from the lower-level visual

representations learned in the previous layers, in an end-to-

end fashion. The pooling layers help bounding the number

of network parameters to train and foster translation

invariance.

Although the data set has been split into nine classes, the

focus of this study is on the detection of the Acacia longifolia

species, i.e., to distinguish whether or not this species is pre-

sent on a given image patch. To be able to produce a binary

classification, the final softmax layer is composed of two out-

put elements. This configuration is hereafter mentioned as

CNNbin. Although the binary classification is the most rele-

vant task for the purpose of this article, the use of multiple
omatic detection of Acacia longifolia invasive species based on UAV-
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classes may be useful for the UAV whenever it needs to obtain

a rich semantic segmentation of the environment. For

instance, a more detailed in situ analysis of the invasive spe-

cies evolution (not covered in this article) would require the

UAV to be able to select the best terrain patch to land on,

for which the UAV would benefit from a detailed semantic

segmentation of its surroundings. To assess whether training

the model for classification of multiple (>2) classes hampers

or not its performance in the primary task of Acacia/non-

Acacia binary classification, a second network configuration

was considered, hereafter mentioned as CNNmulti.

Additional implementation details can be found in Table 3,

which summarises the structure of the network, and in Fig. 3,

which provides a visual insight for the network topology.

The Adam optimizer [28] with a categorical cross-entropy

loss function was used to train, from scratch, both network

configurations during 200 epochs, with a batch size of 256

samples and a learning rate of 10�5. Training was carried

out using the Google’s tool for deep learning experiments,

Collaboratory, which allows running the algorithms using

Tesla K80 GPUs. Both network configurations were imple-

mented recurring to Keras and Tensorflow software packages.

Training took roughly three hours. To train the binary classi-

fier, CNNbin, the labels in the data set were changed to binary,

that is, all samples from classes different from Acacia were

altogether labelled as non-Acacia.

2.4. Expert-based classification improvement

Manual classification of aerial imagery is a time consuming

task, and thus automating it as much as possible is a valuable

endeavour. However, training an accurate machine learning-

based classification system depends considerably on the

amount of samples available on the training set, and its gath-

ering is another time consuming task. In order to address

these issues, the proposed system is endowed with a mecha-

nismwhose goal is to improve the post-training accuracy dur-

ing run-time operation without the concern of having a more

robust training set. This is attained by asking an expert to

review low confidence predictions performed during run-

time. By focusing expert invocations on likely relevant sam-
Table 3 – CNN configurations. Convolutional layers: number of c
activation function. Max pooling layers: pooling size/ dropout r
function/ dropout rate.

Layer CNNb

Convolutional L1 64/7x
Convolutional L2 64/5x
Max Pooling L1 2x2/0
Convolutional L3 128/5
Convolutional L4 128/5
Max Pooling L2 2x2/0
Convolutional L5 256/5
Convolutional L6 256/5
Max Pooling L3 2x2/0
Fully Connected L1 512/R
Fully Connected L2 2/Soft

Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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ples, the system trades-off the benefits of getting human help

and its associated cost (e.g., monetary, time).

The modelled CNNs output the probability of the input

sample to belong to each of the possible classes. These prob-

abilities can be interpreted as classification confidence levels,

and thus they can be used by the system to determine which

predictions are likely to be improved (i.e., corrected) by a

human expert. To accomplish this goal, the system applies

a simple threshold-based decision making process: if a pre-

diction is producedwith a confidence level below a predefined

threshold, it is submitted to the human expert for validation.

The higher the value for such confidence threshold, the

higher will be the number of predictions submitted for revi-

sion by the human expert. The more relevant accuracy is

for the task at hand, the higher this threshold should be set.

On the other hand, the higher the cost for obtaining access

to a human expert, the lower the threshold should be set.

Hence, the optimal confidence threshold must be obtained

under a multi-criteria optimisation framework, associating

weights (relevance) to each of the criteria involved in the

trade-off accuracy vs. expert invocation cost.

One can envision possible scenarios involving different

trade-offs. Environmental intervention teams assembled to

eliminate certain invasive plants in the field are not permit-

ted to remove erroneous plants. Therefore, in this scenario,

the confidence threshold should be pushed higher in order

to ensure an higher overall accuracy, accepting the cost of

also having an higher number of expert invocations for pre-

diction verification. If these experts are part of the interven-

tion team they should be available right way and thus they

would be affordable. Conversely, let us consider a scenario

in which a UAV is tasked to automatically scan a very wide

area from a high-altitude and coarsely pinpoint potential

presence of invasive plant spots, for subsequent low-

altitude fine verification. In this case, the delay (cost) result-

ing from frequent consultation of a human-expert (over

potentially multi-day missions) does not pay off the delay

resulting from having the robot on hold before approaching

the pinpointed spot. To avoid frequent human-expert invo-

cations, the system’s confidence threshold should be

pushed low and, as a consequence, only infrequent low
onvolutional filters/ size of the convolutional filters/
ate. Fully connected layers: number of neurons/ activation

in CNNmulti

7/ReLu 64/7x7/ReLu
5/ReLu 64/5x5/ReLu
.2 2x2/0.2
x5/ReLu 128/5x5/ReLu
x5/ReLu 128/5x5/ReLu
.2 2x2/0.2
x5/ReLu 256/5x5/ReLu
x5/ReLu 256/5x5/ReLu
.2 2x2/0.2
eLu/0.5 512/ReLu/0.5
Max/0 9/SoftMax/0

omatic detection of Acacia longifolia invasive species based on UAV-
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Fig. 3 – Architecture of the implemented CNN. The configuration of the output layer depends on the type of classification: nine

units, for themulti-class classification case, or two units, for the binary case. ’f’ represents the filter dimension (f � f) and ’S’ is

the stride.

Fig. 4 – Loss evolution during the training of CNNbin.
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confidence predictions would be verified by the human

expert.

The aforementioned trade-off is herein handled by esti-

mating the best confidence threshold according to a multi-

criteria optimisation procedure. To formulate this procedure

as a function minimisation process, a cost function needs to

be defined. This cost function evaluates how poorly a given

confidence threshold t allows the system to reach the desired

trade-off. The two terms involved in the trade-off are

weighted in the cost function according to an empirically

defined scalar a 2 ½0;1�. The higher is a, the more relevant

becomes the system’s accuracy over the cost of invoking the

expert for prediction correction. By tuning a, the system can

be configured to perform differently, depending on the appli-

cation scenario, as described in the previous paragraph.

Formally, for a given confidence threshold t, the cost func-

tion weights the cost associated to performing the expert

calls required to evaluate all predictions below t; ccðtÞ, and

the (symmetric of) accuracy improvement obtained as a result

of performing those expert calls, caðtÞ:
cðt; aÞ ¼ a � caðtÞ þ ð1� aÞ � ccðtÞ: ð1Þ
The accuracy improvement term, caðtÞ, accounts for the differ-

ence between the classification accuracy obtained directly

from the training data set, U, and the accuracy achieved once

all predictions with confidence level below t are corrected by

the human expert (assuming that the expert is flawless), /ðtÞ:
caðtÞ ¼ U� /ðtÞ: ð2Þ
The term related to the cost of invoking the human expert,

ccðtÞ, is defined as the ratio between the number of predic-

tions revised by the expert, eðtÞ, i.e., those with a confidence

level below t, and the total number of samples in the training

set Nt:

ccðtÞ ¼ eðtÞ
Nt

: ð3Þ

Finally, the confidence threshold that best handles the trade-

off defined by a given a; tminðaÞ 2 ½0 . . . 100�, is the one that min-

imizes the overall cost function:
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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tminðaÞ ¼ argmin
t2f0; 1; 2; ...; 100g

cðt; aÞ: ð4Þ

As mentioned, this minimisation process is run offline on

a training data set, given a user-defined trade-off a. The out-

come is a confidence threshold, tminðaÞ, that can be used by

the system during run-time, on the images that are to be

acquired by a UAV in post-training flight missions. During

run-time, all images that are classified by the CNNwith a con-

fidence level below the confidence threshold obtained during

training, tminðaÞ, are submitted to the human expert validation

and, potentially, corrected.

3. Results and discussion

This section presents the results achieved with the proposed

system for automatic detection of the Acacia longifolia species

from aerial images.

3.1. Automatic classification performance

Fig. 4 depicts the evolution of the loss function during training

of the binary network configuration, CNNbin. The absence of
omatic detection of Acacia longifolia invasive species based on UAV-
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Fig. 6 – Loss evolution during the training of CNNmulti.

Fig. 7 – Confusion matrix obtained with CNNmulti.

Fig. 8 – Binary confusion matrix obtained with CNNmulti.
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a U-shaped curve for the loss function computed over the val-

idation set shows that the network did not over fit the train-

ing set. The accuracy of the network at epoch 200 on the

validation set is 98:8%, which can be confirmed by the high

number of hits in the diagonal of the corresponding confusion

matrix, depicted in Fig. 5.

Fig. 6 depicts the evolution of the loss during training of

the multi-class network configuration, CNNmulti. Once again,

the network did not over fit the training set, which can be

visually confirmed by the evolution of the loss function in

the training and validation sets. After 200 training epochs,

the accuracy reached the value of 92:0%. The high number

of hits in the main diagonal of the confusion matrix, depicted

in Fig. 7, also shows that the network learned the ability to

classify into nine classes. However, by observing the confu-

sion matrix, it can be noticed that the dirt and short herbs

classes present an higher classification error between them-

selves. These prediction errors may be due to the high con-

tent similarity between sample images belonging to those

classes and/or due to a somewhat unbalanced data set.

To analyse how well the same network performs in the

main classification task (Acacia vs. non-Acacia) without further

training, the confusion matrix depicted in Fig. 7 was con-

verted into a binary confusion matrix, depicted in Fig. 8.

Based on this binary confusion matrix, the accuracy of the

multi-class network on the binary classification problem is

98:6%.

Given the small decrease of 0:2 in accuracy, when com-

pared with the binary network, CNNbin, it is possible to con-

clude that considering multiple classes does not hamper the

network when performing its primary task: detecting the

presence of the Acacia longifolia species.

Additionally, for the Acacia vs. non-Acacia classification

task, it is also important to evaluate the precision, recall and

F1-scores on both classification models. Table 4 presents such

results. It also presents a summary of the results obtained

with the test set, not used whatsoever during the training

phase, showing that all performance measures are similar

when the generalization requirements are pushed further.

The recall value obtained using the CNNbin classification net-

work is 95:2%, whichmeans that only about 4:8% of the images

belonging to the invasive species class were incorrectly classi-

fied; on the other hand, the precision achieved a high score of

99:1%, meaning that the occurrence of false positives is resid-

ual. The F1-score corresponding to these precision and recall

values is 97:1%. The multi-classification network also pre-

sented satisfactory results with recall and precision scores of

96:0% and 97:6%, respectively (F1-score of 96:8%). These results

show the advantage of using CNNs for the detection of Acacia

longifolia from aerial images acquired by a UAV.
Fig. 5 – Binary confusion matrix obtained with CNNbin.
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For visual analysis of the prediction errors, Fig. 9 depicts a

set of selected samples from the validation and test sets. The

figure presents a few failure cases, which were often due to

the presence of multiple classes in the same image patch.

For instance, images in Figs. 9(c) and (g), hand-labelled as Aca-

cia, were predicted as non-Acacia probably due to the fact that

the plant only fills a small portion of the image. Images in

Figs. 9 depict samples that were erroneously hand-labelled

as Acacia, when they should have been labelled as short herbs.
omatic detection of Acacia longifolia invasive species based on UAV-
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Table 4 – Performance of Acacia vs. non-Acacia detection for both classification
models.

CNNMulti CNNBin

Validation set Test set Validation set Test set

Accuracy 98:6% 98:5% 95:5% 98:7%
Recall 96:2% 96:0% 96:9% 95:2%
Precision 97:7% 97:6% 99:5% 99:1%
F1-Score 96:9% 96:8% 98:1% 97:1%

Fig. 9 – Selected samples from validation and test data sets that were correctly classified (green check), misclassified (red

cross), and incorrectly hand-labelled though correctly classified by the network (letter L) by CNNbin (bottom row) and

CNNmulti (top row) networks.
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Nevertheless, the CNNmulti and CNNbin networks were able

to correctly classify them as short herbs and non-Acacia,

respectively. This shows that the CNNs can cope with the

noise that often pollutes hand-labelled data sets.

Table 5 presents the class probabilities predicted by the

networks for a sub-set of the samples depicted in Fig. 9. The

table shows that there are misclassified samples whose prob-

ability is nevertheless close to the actual predominant class.

For instance, the sample depicted in Fig. 9(k) exhibits proba-

bilities that are strongly concentrated, yet equally distributed,

on the Acacia and non-Acacia classes. These results suggest

that the false negative rate could be eventually reduced by

classifying a sample as Acacia if that class is the one predicted

as the most likely or, if not, it is close to the most likely. Under

this assumption, the samples depicted in Figs. 9(k) and (o)

would have been correctly classified as Acacia. However, addi-
Table 5 – Class probabilities predicted for a set of selected samp
(2); Other yellow (3); Pine tree (4); Roadway (5); Short herbs (6); Veget
and Non-Acacia (1).

Network Sample

CNNmulti Fig. 9(d)
Fig. 9(h)

CNNbin Fig. 9(k)
Fig. 9(l)
Fig. 9(o)
Fig. 9(p)

Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
acquired aerial imagery, Information Processing in Agriculture, https://do
tional testing would be required in order to take the above

assumption for granted.

Since the proposed system provides classifications for

200� 200 image patches, an additional mechanism is

required for segmenting an entire input image acquired by

the UAV. Two approaches can be considered. The fastest

approach is to sample the input image with a regular grid,

extracting non-overlapping samples of 200� 200 pixels which

are individually submitted to the classification network. The

output is a low resolution segmentation of the input image,

which can be sufficient if the UAV only needs to obtain a

coarse estimation of the Acacia longifolia presence. An exam-

ple is depicted in Fig. 10.

A finer segmentation output can be produced by applying

the classification network to a sliding window. In this case,

the prediction produced by the network is used for classifying
les. Labels for CNNmulti network: Acacia (0); Cork oak (1); Dirt
ation (7); and Wood (8). Labels for CNNbin network: Acacia (0);

Class Probabilities

[0: 0:027; 1 to 5: � 0; 6: 0:969; 7: 0:004; 8: � 0]
[0: 0:100; 1 to 5: � 0; 6: 0:892; 7: 0:008; 8: � 0]
[0: 0.486; 1: 0.514]
[0: 0.047; 1: 0.953]
[0: 0.461; 1:0.539]
[0: 0.0983; 1:0.902]

omatic detection of Acacia longifolia invasive species based on UAV-
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Fig. 10 – Full image segmentation obtained with the classifier applied on top of a regular grid. Left: CNNbin applied to the

image depicted in Fig. 2b. Right: CNNmulti applied to the image depicted in Fig. 2b.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e x x x ( x x x x ) x x x 9
the central pixel of the processed patch. The result will be an

image with smoother regions that correspond to the different

classes. An example can be observed in Fig. 11. It is worth to

mention that this approach produced segmented images that

did not exhibit significant noise, which denotes that the sys-

tem is not sensitive to small input variations.

3.2. Expert-based accuracy improvement

As described in Section 2.4, the proposed system includes a

mechanism that computes an optimal prediction confidence

threshold. This mechanism weights the cost of calling a

human expert for classification revision and the benefit of

an improved accuracy resulting from those revisions. The

user is able to control the importance (weight) of each of

these two conflicting criteria by tuning the scalar a in Eq.

(1). When a is zero, the cost of calling the expert is given the

maximum importance, whereas when a is one, the accuracy

gain is given the maximum importance. All run-time predic-
Fig. 11 – Full image segmentation obtained with the classifier a

image depicted in Fig. 2b. Right: CNNmulti applied to the image
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tions associated to a confidence level below the optimal con-

fidence threshold are submitted for revision by a human

expert.

Fig. 12 plots the optimal confidence thresholds, tminðaÞ,
computed for each possible value of a in the range ½0 . . . 1�with

increments of 0:01, according to Eq. (4). It can be observed

that, as a increases, the confidence threshold that minimizes

the cost function, tminðaÞ, also increases. With higher a, the

cost of improving the accuracy is emphasized and, conse-

quently, the confidence threshold increases; this ensures a

gain in terms of accuracy that results from correcting the

samples that have been classified with a confidence level

below tminðaÞ. On the other hand, with lower values of a,

emphasizing the cost of performing expert calls, the optimal

confidence threshold decreases, resulting in a smaller

amount of sample classifications to be revised by the expert.

Fig. 13 depicts the evolution of the accuracy gain over the

percentage of samples reviewed by the expert, using the

training set on both the CNNbin and CNNmulti classification
pplied with a sliding window. Left: CNNbin applied to the

depicted in Fig. 2b.

omatic detection of Acacia longifolia invasive species based on UAV-
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Fig. 12 – Confidence threshold, tmin, that minimizes the trade-off cost as a function of a, for CNNbin (a) and CNNmulti (b).

Fig. 13 – Accuracy improvement as a function of the number of expert calls using CNNBin (a) and CNNMulti (b).
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models. As expected, the accuracy increases with an increas-

ing number of reviewed samples. Since the original system’s

accuracy for the multi-class classification was lower than

the accuracy for the binary classification, its curve exhibits

a smoother increase as a higher percentage of samples need

to be reviewed to achieve a given accuracy target. The figure

also shows that the proposed expert-based method for post-

training accuracy improvement displays a predictable beha-

viour over the range of a values. Concretely, the expected

accuracy gain increases as a increases, meaning that the a

system’s user is able to predict the outcome of a given trade

off between accuracy gain and expert calls cost. The user is

thus able to fine tune the system as a function of the task

at hand and the cost of using the specialist. If the task is

related to the physical control of the invasive species, namely

grubbing or cutting, it is important to ensure that the flora

subject to the control procedures belongs to the invasive spe-

cies. Therefore, the confidence level of the prediction should

be close to 100%. Since sample predictions of the invasive spe-

cies may present lower confidence values, it may be required

to invoke the specialist, accepting the cost of it, in order to

ensure that no costly labour resources will be spent for

unnecessary physical control.

The analysis presented in the previous paragraph is based

on the results obtained with the training set. It is also neces-
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
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sary to verify whether these results are consistent with the

ones obtained with the validation data set, that is, if they

generalise to data that was not observed during training.

Hence, the validation data set is herein used as a surrogate

of the data sets that are to be acquired and processed in

post-training flight missions.

To assess the generalisation capabilities of the method

proposed to compute a confidence threshold, Eq. (4) is

applied, for every possible a, to both training and validation

data sets, separately. As a result, for every possible a, two con-

fidence thresholds are produced, one for the training data set,

tminðaÞ, and another for the validation data set, t�minðaÞ. The

confidence values obtained for the two data sets can be com-

pared using the RMSE error metric:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðtminðaÞ � t�minðaÞÞ2

Na

s
; ð5Þ

where Na represents the total number of possible values for a.

The application of the RMSE error metric aims at testing the

similarity between the obtained confidence thresholds for

both training and validation data sets. The resulting mean

squared error (dissimilarity) was very small, corresponding

to 0:105 and 0:249, for the binary andmulti-class classification

models, respectively. These values suggest that the calculated

confidence threshold using the training set may be
omatic detection of Acacia longifolia invasive species based on UAV-
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generalized to the validation set and, possibly, to data that

was not observed during the training phase. As expected,

the error is higher for the CNNmulti network, which displays

higher difficulty in determining a properly generalisable

threshold, when comparedwith the binary classification case.

3.3. Discussion

The results depicted along this section show that the devel-

oped CNN architecture accurately predicts the presence of

Acacia longifolia species. Satisfactory results were also

achieved for the prediction of other terrain classes, which

can be useful for providing the UAV with semantic informa-

tion about the environment. The proposed end-to-end solu-

tion does not depend on a manual feature extraction

process, as required by traditional classification methods,

such as shallow artificial neural networks.

Previous work in detection and classification of flora from

images in the visible spectrum does not cover the specific

case of the Acacia longifolia species, hampering a direct com-

parison with the present work. Nevertheless, the following

discusses the main differences between the present and pre-

vious work. Transfer learning was often employed to boost

flora detection from images using general purpose classifica-

tion and semantic segmentation CNNs: a GoogLeNet-based

solution achieved an overall accuracy of 89:0% for the classi-

fication of seven distinct tree species [9]; a fully convolutional

network-based approach achieved an accuracy of 88:3% for

weed detection in rice fields [11]; and a Segnet encoder-

decoder network achieved a F1-score of about 84:9% for weed

detection in sugar beet crop fields [12]. More recently, Qian

et al. [20] proposed a CNN architecture inspired on concepts

taken from the AlexNet, GoogLeNet and VGG networks,

achieving a global accuracy of 93:4% for the classification of

seven different tree-like invasive species. Despite presenting

good results, the complexity associated to the solutions based

on pre-existing CNN models poses challenges when deploy-

ing in small UAVs with limited energy, memory, and compu-

tational resources. Conversely, the present work proposes a

simpler CNN architecture, with fewer convolution layers,

while achieving an overall accuracy of 98:7% and a F1-score

of 97:1% for the detection of Acacia longifolia.

4. Conclusion

The application of convolutional neural networks for detect-

ing the Acacia longifolia invasive species from aerial images

acquired by unmanned aerial vehicles was studied. Two mod-

els based on the same CNN architecture were elaborated: one

for the distinction of nine classes, and another focused on the

Acacia/non-Acacia binary classification. The accuracy scores

attained for the multi-class and binary-class models were of

98:5% and 98:7%, respectively. These results show the validity

of the CNN-based approach and, consequently, the viability of

using aerial vehicles for automated large-scale mapping of

Acacia longifolia individuals. Moreover, it was also shown that

the use of a multi-class classifier does not degrade the sys-

tem’s performance when applied to the primary binary classi-

fication task. Therefore, the aerial vehicle may exploit the
Please cite this article as: C. Gonçalves, P. Santana, T. Brandão et al., Aut
acquired aerial imagery, Information Processing in Agriculture, https://do
multi-class classifier to obtain a richer semantic description

of the environment without hampering its ability to accu-

rately detect Acacia longifolia individuals.

The proposed system includes a mechanism to determine

when to invoke an expert for revision and correction of low

confidence predictions. These predictions are selected by

trading off the benefit of improving the classification accuracy

and the cost of invoking the expert. Given the final applica-

tion requirements, the system user is allowed to manage this

trade-off by tuning a single free parameter.

Future work involves allowing the aerial vehicle approach-

ing detected individuals for closer inspection and recognition

of other Acacia species. This detailed inspection would allow

to distinguish the various species by using imagery of the leaf

structure or other relevant plant characteristics.
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