
University Institute of Lisbon

Department of Information Science and Technology

Pulmonary Nodule Segmentation in

Computed Tomography with Deep Learning

João Henriques Oliveira Gomes

A Dissertation presented in partial fulfillment of the Requirements for the Degree of

Master in Computer Science

Supervisor:

PhD, João Pedro Afonso Oliveira da Silva, Assistant Professor,

ISCTE - University Institute of Lisbon

September 2017

Pulm
onary

N
odule

Segm
entation

in
C

om
puted

Tom
ography

w
ith

D
eep

L
earning,João

G
om

es
Septem

ber,2017

Resumo

A deteção do cancro do pulmão numa fase inicial é essencial para o tratamento da doença.
Sistemas de segmentação de nódulos pulmonares, usados em junção com sistemas de
Deteção Assistida por Computador (DAC), podem ajudar médicos a diagnosticar e gerir
o cancro do pulmão. Neste trabalho propomos um sistema de segmentação de nódulos
pulmonares, recorrendo a técnicas de aprendizagem profunda. Aprendizagem profunda é
um sub-campo de aprendizagem automática, responsável por vários resultados estado da
arte em datasets de segmentação de imagem, como o PASCAL VOC 2012. O nosso modelo
final é uma 3D U-Net modificada, treinada no dataset LIDC-IDRI, usando interseção sobre
união como função de custo. Mostramos que o nosso modelo final funciona com vários
tipos de nódulos pulmonares. O nosso modelo consegue resultados estado da arte no
LIDC test set, usando nódulos anotados pelo menos por 3 radiologistas, com uma verdade
consensual de 50%.

Palavras-chave: visão computacional, imagiologia médica, nódulos pulmonares,
segmentação de imagem, aprendizagem profunda

v

Abstract

Early detection of lung cancer is essential for treating the disease. Lung nodule segmenta-
tion systems can be used together with Computer-Aided Detection (CAD) systems, and
help doctors diagnose and manage lung cancer. In this work, we create a lung nodule
segmentation system based on deep learning. Deep learning is a sub-field of machine
learning responsible for state-of-the-art results in several segmentation datasets such as
the PASCAL VOC 2012. Our model is a modified 3D U-Net, trained on the LIDC-IDRI
dataset, using the intersection over union (IOU) loss function. We show our model works
for multiple types of lung nodules. Our model achieves state-of-the-art performance on
the LIDC test set, using nodules annotated by at least 3 radiologists and with a consensus
truth of 50%.

Keywords: computer vision, medical imaging, pulmonary nodules, image segmenta-
tion, deep learning

vi

Acknowledgements

This work was made possible by the support of many people.
First, I must thank my advisor, Prof. Dr. João Pedro Afonso Oliveira da Silva, for

always being available when I needed him the most, and for providing valuable advice.
Also, without my advisor, I wouldn’t have access to the server where the foundation for
this work was built upon. Thank you for setting everything up, and for your support.

Also, I’d like to thank ISCTE, the institution where I worked on my master’s degree
for the last two years. To the teachers and faculty, thank you for your professionalism, and
for the respect you always treated me with.

A huge thank you to my parents, for always supporting me, always wanting what’s
best for me, and believing in me when no one else would.

This work wouldn’t exist if not for the LIDC-IDRI dataset. I’d like to acknowledge the
great work done by all the people involved in creating the dataset, and the Cancer Imaging
Archive for making the dataset publicly available.

Finally, an honorable mention goes out to the Google Cloud’s free tier program, for
allowing us to train deep neural networks using advanced GPUs.

vii

Contents

Resumo v

Abstract vi

Acknowledgements vii

List of Tables xi

List of Figures xiii

1 Introduction 1
1.1 Lung Cancer and Lung Nodules . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Document Structure . 4

2 State of the Art 5
2.1 Lung Nodule Segmentation . 6

2.1.1 Region Growing . 9

2.1.2 Morphology Based . 10

2.1.3 Other Methods . 11

2.2 Deep Learning . 12

2.2.1 Problem Formulation . 13

2.2.2 Neural Networks . 18

2.2.3 Convolutional Neural Networks 21

2.3 Segmentation via Deep Learning . 26

2.3.1 Fully Convolutional Networks 26

2.3.2 U-Net . 27

2.3.3 Pyramid Spatial Pooling Network 29

3 Building our Lung Nodule Segmentation System 31

ix

CONTENTS

3.1 Data and Tools . 31
3.1.1 Computed Tomography . 31
3.1.2 LIDC-IDRI Dataset . 32
3.1.3 Data Cleaning and Pre-Processing 35

3.2 Model Details and Training Techniques 38
3.2.1 Final Architecture . 38
3.2.2 Optimization . 40
3.2.3 Improving our Model’s Performance 41

3.3 Training Experiments . 41
3.3.1 Regularization Experiments . 42
3.3.2 Learning Rate . 42
3.3.3 Decision Threshold . 44
3.3.4 Summary . 44
3.3.5 Failed Experiments . 45

3.4 Results and Discussion . 46

4 Conclusion and Future Work 51

A Model Summary 53

References 55

x

List of Tables

3.1 Our reported number of nodules in the LIDC-IDRI dataset, training, validation
and test sets. The train, val and test sets are all subsets of the LIDC-IDRI
dataset. Nodules with only 1 annotation were excluded from the train, val
and test sets. All nodules were grouped with the pylidc library. The first line
in the Table reads: “LIDC-IDRI has 2651 nodules annotated by 1 or more
radiologists”. 36

3.2 Information on the first 4 layers in our model. 40

3.3 Effect of L2 regularization on the training and validation IOU scores. As we
lower λ , the training IOU score improves, while the validation IOU decreases
(as is expected - if λ is close to 0, then there is no regularization and the net
goes back to overfitting). The higher the IOU, the better. The learning rate
was fixed at 10−5. The highlighted validation set value (0.715) was the best
result we got in this experiment. 43

3.4 Effect of the learning rate on the training and validation IOU scores. The
higher the IOU, the better. The regularization parameter λ was fixed at 10−5.
Also, note that all of these learning rate values were tested on a model already
trained for 80 epochs, with stagnated IOU scores (both on the training and
validation set). The highlighted validation set value (0.721) was the best result
we got in this experiment. 43

3.5 Performance of several different lung nodule segmentation systems, including
our own. All the systems’ IOU scores were calculated using scans from the
LIDC dataset, with nodules annotated by three or more radiologists. These
results all use a 50% consensus truth for defining nodule segmentation masks.
Note that despite using the LIDC dataset, the test set’s nodules are possibly
different from system to system (e.g. our system’s test set had 79 nodules,
while Messay, Hardie, and Tuinstra (2015) had 77). This Table was based on
Table 7 from Messay et al. (2015) . 46

xi

LIST OF TABLES

3.6 Model’s performance on nodules of different subtlety. A nodule’s subtlety
indicates how easy it is to detect. For a given nodule, the subtlety value (1 to
5) was calculated by averaging all of the subtlety values assigned by different
radiologists. There were no extremely subtle nodules in the test set. 47

3.7 Model’s performance on nodules of different texture (or solidity). Texture
indicates how solid the nodule is. For a given nodule, the texture value (1 to
5) was calculated by averaging all of the texture values assigned by different
radiologists. 47

3.8 Model’s performance on nodules of different margin. The margin value
indicates how well defined a nodule’s margin is. For a given nodule, the
margin value (1 to 5) was calculated by averaging all of the margin values
assigned by different radiologists. There were no nodules with poorly defined
margins in the test set. 48

A.1 Summary of our final model. 54

xii

List of Figures

2.1 Difference between object detection, semantic segmentation and instance seg-
mentation. Object Detection is the task of finding bounding boxes, rectangles,
circles, or other shapes that best fit certain objects of interest. Semantic seg-
mentation consists of labeling every pixel in an image with a class (in this
case, the label is “cat’). Instance segmentation, unlike semantic segmentation,
provides two different segmentation masks, one for each cat instance. Original
cat picture by payaovat (2017), distributed with the Pixabay License. 7

2.2 Example of a Juxta-Pleural Nodule (JPN). Scan taken from the LIDC-IDRI
dataset (Armato et al., 2011). 8

2.3 Example of a Ground-Glass Opacity Nodule (GGON). The nodule we see
here is almost invisible, but there were even more subtle GGON nodules in
the LIDC-IDRI dataset. Scan taken from the LIDC-IDRI dataset (Armato et
al., 2011). 8

2.4 A Juxta-Pleural Nodule (JPN). Good segmentation (in green) compared to a
naive, bad segmentation (in red). The bad segmentation may result from an
improper implementation of the region growing segmentation algorithm. A
regular version of this nodule can be seen in Figure 2.2. Scan taken from the
LIDC-IDRI dataset (Armato et al., 2011). 10

2.5 Example of a nodule connected to vascular structures, also known as Juxta-
Vascular Nodule, or JVN. Scan taken from the LIDC-IDRI dataset (Armato et
al., 2011) . 11

2.6 An artificial neuron. The neuron’s inputs x are multiplied by the parameters,
or weights, w. The cell body sums up the multiplication results, takes the sum
result and passes it through an activation function. Image taken from the PhD
thesis of Andrej Karpathy (Karpathy, 2016). 18

xiii

LIST OF FIGURES

2.7 A neural network with two layers. The input layer doesn’t count as a neural
network layer, only the single hidden layer and output layer count. There are
three inputs. The inputs, in our case, are pixels from CT scans, which will be
far more than just three values. The hidden layer has four artificial neurons.
The artificial neurons are the same as in Figure 2.6. Finally, we have an output
layer, which produces our final scores. 19

2.8 Two examples of activation functions: the ReLU function, and the Sigmoid
function. 19

2.9 Convolution operation. The inner box f1 is a convolutional filter, being applied
to the input image I at a certain position. The result of applying filter f1 to
region r is the neuron n1,r. If we convolve filter f1 on the whole input image I,
we get M1, also known as a feature map (or just map, hence the M). The other
feature maps (M2,M3,M4) are the result of convolving other filters (f2, f3, f4)
which are not shown in this Figure. A convolution layer is defined by a
set of filters (f1, f2, f3, ..., fi), also known as a filter bank. The output of a
convolution layer is thus a volume of feature maps, [M1,M2,M3, ...,Mi], also
known as an output volume. 22

2.10 Example of a pooling operation. This particular type of pooling is called max-
pooling. It looks at different regions of the input matrix (matrix on the left),
and calculates their max. In this particular case, the max pooling operation
has a window size of 2×2, and a stride of 2. There are other types of pooling,
but pooling is usually associated with downsampling. 23

2.11 Example of a convolutional neural network architecture. Typical CNNs are
made up of convolutional layers, followed by pooling layers. At the end, the
dense layers (also known as fully connected layers) may be inserted. Dense
layers are simple neural networks, as seen in Figure 2.7. Original image taken
from Krizhevsky, Sutskever, and Hinton (2012). 24

2.12 An example of the features learned by the filters in the first convolutional layer
of a CNN. The first layer filters usually learn low-level features, like edges
at different orientations and scales. The layers higher up in the architecture
learn higher-level features (e.g. eyes, noses, etc, if the neural net was trained
to detect human faces). Image taken from Krizhevsky et al. (2012). 25

2.13 Image taken from He, Zhang, Ren, and Sun (2015). F (x) represents the
output of the two weight layers. These weight layers are layers with learnable
weights, like typical convolution layers. Residual neural networks add a
shortcut connection between the input of these layers, x, and their output. . . 25

xiv

List of Figures

2.14 Image taken from Shelhamer, Long, and Darrell (2016). This image depicts a
fully convolutional network, which is a neural network architecture designed
for semantic segmentation. It is designed like a typical CNN, except that
instead of dense layers at the end, the authors introduce an upsampling opera-
tion. This final upsampling operation guarantees that the output (segmentation
mask) is the size of the input image. 27

2.15 Image taken from Ronneberger, Fischer, and Brox (2015). The U-Net archi-
tecture. Very similar to the FCN architecture (see Figure 2.14). The main
difference is how the upsampling is done across multiple layers. 28

2.16 Image taken from H. Zhao, Shi, Qi, Wang, and Jia (2016). The PSP Net
architecture. A pre-trained CNN is used (CNN in this Figure). It produces an
output volume, which is then fed into the PSP module (zone with the dashed
rectangle). This module takes the output volume, and performs multiple
pooling operations on it. The result of these pooling operations is passed
through a 1×1 convolution, upsampled, and concatenated with the original
output volume. 29

3.1 This particular nodule was annotated by all radiologists. In this Figure we see
two very different segmentation contours by two different radiologists. Scan
taken from the LIDC-IDRI dataset (Armato et al., 2011). 34

3.2 Drawing of our model’s architecture, the 3D U-Net Architecture, originally
by Çiçek, Abdulkadir, Lienkamp, Brox, and Ronneberger (2016). A grey
box indicates a feature volume that has been concatenated. The numbers on
top of the boxes indicate the number of feature maps belonging to each box.
I represents the input image, which in our case, is a 40× 40× 40 lung CT
region. O is the model’s output, a 40×40×40 matrix of scores, with values
in the range of [0,1]. Scores near 1 should indicate pixels that belong to a lung
nodule, while scores near 0 should indicate non-nodule pixels. 39

3.3 Validation IOU score, for different threshold values. 44

3.4 Two nodules with the best IOU score: 0.886 and 0.885, respectively. Both
are attached to lung structures: figure (a) is attached to vascular structures,
and figure (b) appears to be attached to the lung wall. Red is the original
segmentation contour, green is our model’s segmentation contour. The slices
we see here were selected manually, for better visualization of the nodule. . . 48

3.5 Two nodules clearly attached to lung structures. Red is the original segmenta-
tion contour, green is our model’s segmentation contour. 49

3.6 Two nodules with the worst IOU scores: 0.259 and 0.438, respectively. Red is
the original segmentation contour, green is our model’s segmentation contour. 50

xv

Dedicated to our future AI overlords

Chapter 1

Introduction

In this introductory chapter, we talk about lung nodule segmentation systems, and the role
they play in fighting lung cancer. We briefly mention deep learning, and how it relates
to image analysis systems. We discuss our objectives, and give a broad overview of this
document.

1.1 Lung Cancer and Lung Nodules

Lung cancer is the leading cause of cancer deaths worldwide (World Health Organization,
2017). In the United States of America, lung cancer accounts for approximately 27%
of cancer-related deaths (American Cancer Society, 2016). One of the reasons why this
disease is so deadly is because symptoms only appear at an advanced, non-curable stage.
Not only that, but radiologists may misdiagnose the disease by pointing out abnormalities
that turn out not to be cancer (false positives). This may lead to additional tests such
as more CT (Computed Tomography) scans, needle biopsies or even surgery (National
Cancer Institute, 2016).

Despite all, there have been important breakthroughs in the fight against lung cancer.
Screening trials, for example, have shown that lung cancer screening can help prevent
fatalities associated with the disease. In particular, the National Lung Screening Trial
(or NLST) showed that: “... participants who received low-dose helical CT scans had
a 15 to 20 percent lower risk of dying from lung cancer than participants who received
standard chest X-rays. This is equivalent to approximately three fewer deaths per 1,000
people screened in the CT group compared to the chest X-ray group over a period of about
7 years of observation (17.6 per 1,000 versus 20.7 per 1,000, respectively)” (National
Cancer Institute, 2014). As a result of the NLST and later studies, the U.S. is currently
implementing lung cancer screening programs using low-dose CT. Other countries will
likely implement similar lung screening trials in the near future. There is, however, one

1

1. INTRODUCTION

significant challenge associated with these trials: the massive amount of CT images needed
to be analyzed by radiologists. And that’s where Computer Aided Detection comes into
play.

A Computer Aided Detection (CAD) system is a piece of software that receives medical
images as input, identifies suspicious features on the image, and brings them to the attention
of the physicians. CAD systems can potentially decrease observational oversights (e.g.
reduce false negative rates), and, in general, facilitate the work of physicians who interpret
medical images.

While the main goal of this dissertation is not to build a fully functional CAD system, a
lung nodule segmentation system is a key component in CAD systems used for screening,
diagnosing and managing lung cancer.

A lung nodule is a lesion in the lungs which potentially represents lung cancer. The
diameter and volume of a nodule are both useful metrics for assessing its malignancy
(de Hoop et al., 2010; Eisenhauer et al., 2009). Lung nodule segmentation systems help
provide these measures.

Lung nodule segmentation systems traditionally rely on hand crafted lung features (a
process known as “feature-engineering”). Features can be anything from the pixel intesity
in a certain area, to measuring the sphericity of certain objects. Traditional segmentation
systems also rely on hand written segmentation rules, such as: if a pixel is above a
certain threshold, label it as “lung nodule pixel” (Farag, Munim, Graham, & Farag, 2013).
However, our final system will not make use of either handcrafted features of segmentation
rules. Our final model will be based on deep learning, which is a sub-field of machine
learning centered around neural networks (LeCun, Bengio, & Hinton, 2015). Deep learning
removes the necessity for handcrafted features and segmentation rules.

Deep learning systems achieve state-of-the-art results in several image analysis tasks,
like image segmentation (Everingham et al., 2015). Deep learning systems are also
known to outperform humans in some image classification tasks (He et al., 2015). A lung
nodule segmentation system built on deep learning can potentially allow doctors evaluate
more patients, in a more efficient and effective way (compared to traditional lung nodule
segmentation systems).

1.2 Objectives

The main goal of this dissertation is to develop a pulmonary nodule segmentation system,
based entirely on deep learning. A system for pulmonary nodule segmentation can be
used for measuring whether a nodule is malignant or not. This is usually done in two
ways: by measuring the diameter of a nodule, or by measuring the volume. Nodule

2

1.3. Contributions

mass (volume× density) can also be used (de Hoop et al., 2010). Volume and mass
measurements require nodule segmentation masks. Diameter measurements can also be
made using nodule segmentation masks.

The final segmentation system has to be fast, given that manual segmentation of a
single nodule can take up to 10 minutes (de Hoop et al., 2010). If a CT scan has multiple
nodules (as they often do), the segmentation process can take way more than just 10
minutes. Besides speed, the system has to be consistent, by producing the same results for
the same scans. In other words, the final system should always produce the same output
for a given input. Result consistency can be achieved with software based segmentation
systems. However, in real life, result consistency can be an issue, since physicians tend to
segment nodules differently (Revel et al., 2004).

Finally, and perhaps most importantly, the produced nodule segmentation masks have
to be accurate. We will measure our system’s accuracy in accordance with the literature on
lung nodule segmentation (Messay et al., 2015):

• The intersection over union (IOU) metric will be used. The IOU metric is discussed
in Section 2.2.1.

• Lung nodules from the original LIDC dataset (McNitt-Gray et al., 2007) will be
used as test set.

1.3 Contributions

We build a lung nodule segmentation system based on deep learning techniques. Our deep
learning model has a modified 3D U-Net architecture (Çiçek et al., 2016). The 3D U-Net is
a deep learning architecture used to segment 3D images (more information on Chapter 3).

In the original 3D U-Net paper (Çiçek et al., 2016), the authors trained their model
using a softmax with weighted cross-entropy loss function. Our model, on the other hand,
was trained with the intersection over union (IOU) loss (Rahman & Wang, 2016) (more
information on loss functions and performance metrics is available in Section 2.2.1). We
show deep learning segmentation models can be trained with the IOU loss, and still achieve
state-of-the-art performance.

The training, validation and test sets used in this work were all obtained with the pylidc
library (Matthew C. Hancock, 2016). Using a 3rd party library to create our sets of data
ensures future reproducibility, by providing a reliable and independent source of data. In
other words, if someone wishes to recreate our results, they will be able to use the exact
same data we used, thanks to the pylidc library. To our knowledge, this work is the first to
allow this kind of reproducibility.

3

1. INTRODUCTION

Finally, our system achieves state-of-the-art performance on the LIDC test set, using
nodules annotated by at least 3 radiologists and with a consensus truth of 50%. More
information on the performance of our model can be found in Section 3.4.

1.4 Document Structure

In Chapter 2, we discuss the theory on which our final segmentation system is based on.
First, we provide an overview of techniques typically used in lung nodule segmentation.
Then, we briefly discuss existing methods for performing image segmentation using deep
learning. Finally, we combine the two, and give a broad overview of how deep learning
can be used for lung nodule segmentation.

Chapter 3 provides a roadmap of all the experiments made, and detailed information
on how to recreate them. We give information on how to pre-process the data, set up and
train the deep learning model, among others. The final system’s performance is discussed
and a comparison is made with existing systems.

Finally, in Chapter 4 we conclude this dissertation by sharing our final thoughts, and
discuss possible future work in this area.

4

Chapter 2

State of the Art

What is a lung nodule? This is not an easy question, and there are different (sometimes
conflicting) definitions (Armato et al., 2009; van Ginneken et al., 2010). A nodule can
be anything from “primary lung cancer, metastatic disease, a noncancerous process, or
indeterminate in nature” (Armato et al., 2011). Sometimes, the term “lesion” may be used
to denote a lung nodule. It is true that lung nodules are lesions. However, there are certain
lung lesions that do not classify as nodules (also known as non-nodular lesions), such as:
bronchiolitis lesions, pleural or fissural lesions, and apical scars (Armato et al., 2011). As
an apart, the term lesion can also be misleading, as certain lesions like apical scars, despite
being considered “lesions”, can sometimes be harmless.

Considering all of the above, we will define a lung nodule as a lesion in the lungs which
potentially represents lung cancer. However, determining if a lung nodule is cancerous is
not a trivial task. A typical process involves the following two steps:

1. Nodule identification: after a lung CT (Computed Tomography) scan is taken, a
physician examines it, and identifies possible nodules. Nodules are classified by
their shape, pixel intensities, texture and size. Nodules can be classified, for example,
as positive (cancerous), negative or indeterminate.

2. Nodule management: This is a very broad process, with extensive guidelines defined
by several institutions, such as the Fleischner Society (MacMahon et al., 2017).
After identifying nodules in the first CT scan, a follow-up CT scan is performed.
The Fleischner Society proposes a follow-up scan in 3-12 months to measure the
nodules’ growth rate. For indeterminate nodules, if the follow-up CT scan shows an
increase in diameter or volume, then there is a high chance the nodule is malignant.

The are two typical lung nodule measurements a physician can make: diameter and
volume measurements. The current standard for measuring tumor response, Response

5

2. STATE OF THE ART

Evaluation Criteria in Solid Tumors (RECIST) (Eisenhauer et al., 2009), is based on
measurements of the tumor diameter.

However, despite nodule diameter being the standard, nodule volume has been shown
to be more reliable (de Hoop et al., 2010; Heuvelmans et al., 2013). In fact, the Nederlands-
Leuvens Longkanker Screenings Onderzoek (NELSON) trial, the largest European lung
cancer screening trial, relied on nodule volumetric measurements.

Nodule segmentation systems can be used to measure both nodule volume and diameter.
These systems provide nodule segmentation masks with consistency and speed, making it
easier for physicians to screen, diagnose and manage lung cancer. Consistent results are
important, because in real life, physicians can show substantial inter-observer variability
when measuring lung nodules (Revel et al., 2004). Speed is also crucial, because a
physician can take up to 10 minutes do produce a nodule segmentation mask (de Hoop et
al., 2010).

This chapter provides the theoretical background necessary to build a lung nodule
segmentation system using deep learning. First, we give an overview on traditional lung
nodule segmentation techniques, like region growing and morphology based segmentation.
As we’ll see, these techniques rely heavily on hand written segmentation rules. We’ll
explain why and how hand written rules can fail in some cases.

Finally, in this chapter, we provide some technical background on segmentation via
deep learning. Some commonly used deep learning architectures are discussed, along with
the theoretical foundation to fully understand them.

2.1 Lung Nodule Segmentation

Segmentation consists in dividing an image in multiple coherent parts (Ho, 2011). A
“coherent part” can be anything from an image part that belongs to one specific object, a
part with similar color, texture, etc. In machine learning based segmentation, there are two
main tasks:

1. Semantic Segmentation — Classify every single pixel in an image.

2. Instance Segmentation — Identify instances of an object in an image, and segment
each instance separately.

Figure 2.1 shows the difference between the two kinds of machine learning segmen-
tation tasks. Most work in image segmentation is in the area of semantic segmentation.
In fact, the terms “semantic segmentation” and “segmentation” are sometimes used inter-
changeably. This work will focus on semantic segmentation. The two pixel classes we’ll
be working with are: nodule and not nodule (or background).

6

2.1. Lung Nodule Segmentation

(a) Object Detection (b) Semantic Segmentation (c) Instance Segmentation

Figure 2.1: Difference between object detection, semantic segmentation and instance
segmentation. Object Detection is the task of finding bounding boxes, rectangles, circles,
or other shapes that best fit certain objects of interest. Semantic segmentation consists
of labeling every pixel in an image with a class (in this case, the label is “cat’). Instance
segmentation, unlike semantic segmentation, provides two different segmentation masks,
one for each cat instance. Original cat picture by payaovat (2017), distributed with the
Pixabay License.

Segmentation should not be confused with detection. Detection (or object detection)
consists in creating bounding boxes (sometimes bounding rectangles, circles, or other
shapes) around objects of interest. Lung Nodule Detection is an area where deep learning
has made significant contributions in the past two years. These contributions can be seen
in the LUNA16 challenge, where the majority of solutions involve deep learning (Setio et
al., 2017).

Historically, automatic lung nodule segmentation has been a difficult task. Mainly due
to lung nodules’ variability in shape, size, position inside the lungs, among others. The
nodules that present the biggest challenge are:

1. Nodules attached to structures inside the lung, e.g. nodes attached to the walls of
the lungs, also known as Juxta-Pleural Nodules, or JPN (Li et al., 2016). See Figure
2.2 for an example of a JPN.

2. Subsolid nodules with heterogeneous texture and weak edges. There are two types
of subsolid nodules: part-solid and non-solid nodules, also known as ground-glass
opacity nodules, or GGON (Lassen, Jacobs, Kuhnigk, van Ginneken, & van Rikxoort,
2015). See Figure 2.3 for an example of a GGON.

Subsolid nodules, while being a challenge to both segment and detect, also tend to
be more malignant compared to other nodules (Henschke et al., 2002). Developing a
segmentation framework that works for all types of nodules is a challenging task (Farag
et al., 2013). As such, literature on lung nodule segmentation can sometimes focus on
just one type of nodules: subsolid nodules (Lassen et al., 2015), nodules attached to other

7

2. STATE OF THE ART

(a) Scan with a Juxta-Pleural Nodule (b) Zoomed in Juxta-Pleural Nodule

Figure 2.2: Example of a Juxta-Pleural Nodule (JPN). Scan taken from the LIDC-IDRI
dataset (Armato et al., 2011).

(a) Scan with a Ground-Glass Opacity Nodule (b) Zoomed in Ground-Glass Opacity Nodule

Figure 2.3: Example of a Ground-Glass Opacity Nodule (GGON). The nodule we see here
is almost invisible, but there were even more subtle GGON nodules in the LIDC-IDRI
dataset. Scan taken from the LIDC-IDRI dataset (Armato et al., 2011).

8

2.1. Lung Nodule Segmentation

lung structures (Diciotti, Lombardo, Falchini, Picozzi, & Mascalchi, 2011), etc. The deep
learning approach presented in Section 2.2 is designed to work for all kinds of nodules.

Some of the traditional segmentation and detection methods require pre or post removal
of certain lung structures like the chest wall, bones and vessels. This facilitates the
segmentation/detection of the nodules. With deep learning, the removal of certain lung
structures could help, but it is not strictly necessary.

Most segmentation methods are semi-automatic, requiring variable amount of user
input. For example, traditional region growing (discussed in the next section) methods
require the user to define an initial seed point. Other methods may require a greater amount
of user input. There are also fully automatic methods, which require no user input. As an
aside, the definitions of “semi-automatic” and “fully automatic” may vary from author to
author. For example, in Messay et al. (2015), the described fully automatic segmentation
method requires a “cue point” from the user.

In the next sections, we describe commonly used segmentation methods, like re-
gion growing and morphology based segmentation. We will discuss the strengths and
weaknesses of these methods, and show why they may fail for certain types of nodules.

2.1.1 Region Growing

Region growing is a segmentation technique used not only in lung nodule segmentation,
but in other segmentation tasks as well (Adams & Bischof, 1994). In its simplest form,
region growing is a thresholding technique that involves the following two steps:

1. Start the segmentation mask in one point, also known as seed point. This point is
usually chosen manually by the physician, but can also be chosen by a Computer
Aided Detection system. This seed point is typically somewhere inside a lung
nodule.

2. Grow the segmentation mask from the seed point in all directions. As the segmenta-
tion mask grows, only include new points if they are similar to the seed point. Pixel
similarity can be defined in many ways, such as whether or not a pixel’s intensity is
bellow a given threshold.

When lung nodules are attached to lung structures (e.g. wall of the lungs), region
growing can mistakenly select points belonging to said lung structures as part of the
final segmentation mask. This failure happens when lung structures have similar pixel
intensities to the attached lung nodules. An example of this phenomenon can be seen in
Figure 2.4.

However, there are region growing methods that fix such problematic cases. In
Dehmeshki, Amin, Valdivieso, and Ye (2008), the authors begin by roughly separat-

9

2. STATE OF THE ART

Figure 2.4: A Juxta-Pleural Nodule (JPN). Good segmentation (in green) compared to
a naive, bad segmentation (in red). The bad segmentation may result from an improper
implementation of the region growing segmentation algorithm. A regular version of this
nodule can be seen in Figure 2.2. Scan taken from the LIDC-IDRI dataset (Armato et al.,
2011).

ing foreground (parts of interest inside the lung) and background (non interesting parts of
the lung). Then, they create a rough, initial segmentation mask by refining the foreground.
Once the segmentation mask is created, each point is assigned a value that represents how
likely they belong to the same object as the seed point. This is done for every point in
the segmentation mask, and creates a so called fuzzy connectivity map. The authors then
apply region growing on this map, and are able to correctly segment different types of lung
nodules.

Region growing techniques can be performed both slice by slice (2D) and voxel
by voxel (3D or voxel-wise). Other region growing based solutions for lung nodule
segmentation include Diciotti et al. (2011); Kubota, Jerebko, Dewan, Salganicoff, and
Krishnan (2011). These methods often combine region growing and morphology based
segmentation, which we will discuss next.

2.1.2 Morphology Based

Morphology based segmentation makes prior assumptions on the shapes of the objects
to be segmented (Diciotti et al., 2011; Kubota et al., 2011; Kuhnigk et al., 2006). For
example, if we know nodules tend to have round shape, and the final segmentation mask

10

2.1. Lung Nodule Segmentation

Figure 2.5: Example of a nodule connected to vascular structures, also known as Juxta-
Vascular Nodule, or JVN. Scan taken from the LIDC-IDRI dataset (Armato et al., 2011)

.

has a square shape, then it may be a good idea to instead look for a rounder shape. These
methods fall in the category of knowledge-based methods, given that they rely on domain
specific knowledge.

In Kuhnigk et al. (2006), the authors begin by creating a rudimentary segmentation
mask via region growing. In order remove the lungs from the mask, they assume the lungs
are “mostly convex”. A convex hull operation is then used to separate nodules from the
lung wall. To accurately separate nodules connected to vascular structures (see Figure 2.5),
the authors assume that the vascular structures are thinner than the nodules. Relying on this
fact, the authors perform “morphological opening’, which consists of erosion, removing
the possibly attached “thinner” vascular structures, followed by dilation (Kuhnigk et al.,
2006).

The main drawback of morphology based segmentation is the fact lung nodules have
variable sizes, shapes, and degrees of connectivity to other lung structures. And so,
assuming a pre-defined shape for all lung nodules is a strategy that will fail sooner or later,
as nodules with shapes that are beyond our imagination may appear in real life.

2.1.3 Other Methods

There are many different ways to segment an image. A comprehensive list of available
segmentation methods can be found in Pei-Gee Ho (Ho, 2011).

Besides the lung nodule segmentation methods described so far, many more have been
proposed (Diciotti et al., 2011). There are two methods that, while not as common as

11

2. STATE OF THE ART

region growing or morphology based segmentation, are sometimes used in lung nodule
segmentation literature: Active Contour Models (ACM), and feature based methods.

Active Contour Models

An Active Contour Model (also known as ACM or Snakes) is a framework that can be
used for image segmentation. ACMs make use of deformable splines that are adjusted
to shapes in an image. ACMs rely on energy minimization techniques to find the best fit
between deformable splines and shapes inside an image. Active Contour Models can be
used for multiple image segmentation tasks, including lung nodule segmentation (Li et al.,
2016; Way et al., 2006).

Feature based methods

Feature based methods rely on the extraction of features from CT scans or existing
segmentation masks. These methods are typically used to refine the final segmentation
results. Features like segmentation volume and pixel intensity information are extracted,
and fed into a previously trained machine learning model. The model then outputs the
probability of a given segmentation mask being a lung nodule (true positive) or not (false
positive).

One downside of this approach is the fact that the features need to be previously defined
by a human, usually in a rule-based fashion (Messay et al., 2015). Most of these methods
rely on domain specific knowledge in order to extract the best possible features. Also,
the more features the machine learning model receives as input, the longer it will take to
execute, as feature extraction can be computationally expensive (Campos, Simões, Ramos,
& Campilho, 2014; Messay et al., 2015).

2.2 Deep Learning

Deep learning is a subset of machine learning, focused mainly on training multilayered
neural networks (LeCun et al., 2015). To be precise, a deep learning model can be
any machine learning model composed of multiple processing layers, and able to learn
representations of data with multiple levels of abstraction. A multilayer neural network is a
machine learning model that achieves both: it is composed of multiple layers, and is able to
learn representations of data with multiple levels of abstraction. This means multilayered
neural networks are fed with raw data, and automatically discover the representations
needed for image classification and object detection. For example, when using a neural net
to identify cats in images, the first neural net layers may learn low level representations
like small edges at particular orientations and locations in the image. Layers higher up

12

2.2. Deep Learning

in the neural net may learn more abstract representations, like cat eyes or cat ears. These
features (small edges, cat eyes, etc.) are not designed by humans. Rather, neural networks
are able to learn features from data using general-purpose learning techniques (LeCun et
al., 2015). This is called Representation Learning, or Feature Learning, and is one of the
main ideas behind deep learning. Deep learning can be applied to multiple tasks, including
the task at hand: lung nodule segmentation.

Deep learning methods have produced state-of-the-art results in applications such
as speech recognition (Hinton et al., 2012) and machine translation (Sutskever, Vinyals,
& Le, 2014). They have been shown to outperform humans in certain tasks like image
classification (He et al., 2015). Recently, a deep learning approach was used to beat one
of the top players in Go, a task many thought to be impossible (Silver et al., 2016). All
of these deep learning success stories have neural networks at their core. Specifically,
they involve neural network architectures with many layers, also known as deep neural
networks.

Note that not all multilayer neural networks are considered deep neural networks. A
neural network can be considered “shallow” or “deep”, depending on the number of layers
it has. According to Juergen Schmidhuber, there is no consensus on the number of layers
necessary for a neural network to be considered “deep” (Schmidhuber, 2014). However,
some researchers consider a neural network with 3 or more hidden layers to be a deep
neural network. A hidden layer is any layer located between the input layer and output
layer of a neural network.

In theory, deep learning models don’t need to rely on neural networks, as long as they
have multiple processing layers and achieve representation learning (LeCun et al., 2015).
However, in practice, the majority of deep learning research and applications rely on neural
networks. This work is no exception.

2.2.1 Problem Formulation

Before we go further into neural networks and deep learning, we need to formalize some
basic concepts. Let X denote a 3D matrix with dimensions 40× 40× 40, where each
element inside the matrix represents a 1mm× 1mm× 1mm voxel (or 3D pixel). In our
case, the X matrix represents a region of interest (ROI) inside a CT scan, containing a lung
nodule.

Let f be a function that maps X to Ŷ,

f : X→ Ŷ, (2.1)

where Ŷ is a 40×40×40 with 1mm×1mm×1mm voxel elements (same dimensions as
X). A voxel is a 3-dimensional pixel. The terms pixel and voxel are used interchangeably

13

2. STATE OF THE ART

in this document.
We will call each element in the output matrix Ŷ a score, and f will be called a score

function. For the task at hand (lung nodule segmentation), a Ŷ score in position (x,y,z)

represents how likely a voxel from X in the same position (x,y,z) belongs to a certain
class. For the lung nodule segmentation task, two classes are used: 0 (non nodule pixel)
and 1 (nodule pixel).

Let the score function f be a linear classifier, given by

f (X) = MX+B, (2.2)

where M is a weight matrix (i.e. the “slope” in a linear function), and B is a bias matrix
(i.e. the “intercept” in a linear function). Linear classifiers play a central role in neural
networks, as we’ll see in Section 2.2.2.

For simplicity, we will merge the matrices B and M into a new matrix W, according to

MX+B =
[
M B

]
︸ ︷︷ ︸

W

·

[
X
I

]
, (2.3)

where I is the identity matrix.
The goal of this work is to find a score function f that produces the best possible

segmentation score matrices, Ŷ. In order to measure the fitness of a particular Ŷ, we need
to first choose a performance metric.

Image Segmentation Metrics

Metrics measure the performance of our score function f . For an output matrix Ŷi, if there
exists a truth matrix Yi with the desired score values, we can compare the two with

∑
P
p=1 [Ŷi,p = Yi,p]

P
, (2.4)

where the statement inside the brackets [...] is evaluated, resulting in 1 if the statement
is true, or 0 otherwise. This notation if called the Iverson bracket notation. P is the total
number of elements in Y (and, consequently, Ŷ, given both matrices have the same shape),
and p represents a matrix element in a specific position (x,y,z). The sum should include
all p positions from each matrix. The metric in Equation 2.4 is called Pixel Accuracy. This
metric counts the number of pixels score function f scored correctly, divided by the total
number of pixels in matrix Y (or Ŷ).

Another metric used in segmentation tasks is the dice coefficient, given by

Dice(Ŷi,Yi) =
2|Ŷi∩Yi|
|Ŷi|+ |Yi|

=
2|Ŷi ·Yi|
|Ŷi|+ |Yi|

, (2.5)

14

2.2. Deep Learning

where |Y| represents the sum of all the elements in matrix Y, and Ŷi∩Yi is the intersection
of matrices Yi and Ŷi. Matrix intersection can be represented by the entrywise product of
the matrices, Ŷi ·Yi, also known as the Hadamard or Schur product.

Closely related to the dice coefficient is the intersection over union (IOU) metric, given
by

IOU(Ŷi,Yi) =
|Ŷi∩Yi|
|Ŷi∪Yi|

=
|Ŷi ·Yi|

|Ŷi|+ |Yi|− |Ŷi ·Yi|
. (2.6)

The IOU metric (also known as Overlap) is perhaps the most commonly used metric in
lung nodule segmentation literature (Messay et al., 2015).

The 3 metrics we’ve seen so far compared a single output matrix Ŷ with a single
ground truth matrix Y. In practice however, if we want an accurate measurement of the
performance of our score function f , we average the metric function’s results over N

different Ŷ and Y matrices, where N is the total number of examples in our dataset.

Our ultimate goal is to develop a score function f that produces accurate Ŷ matrices,
according to a previously defined metric. In order to find the best possible f , we will
use supervised learning. Supervised learning consists in utilizing a set of data (called
training data) to infer the best possibel score function f . The training data is of the form
{(X1,Y1),(X2,Y2), ...,(XN ,YN)}. Each pair (Xi,Yi) is called a training example, where
Xi is the input to f (in our case, a CT scan region), and Yi is the matching ground truth
matrix (in our case, the correct segmentation mask). During the training process, the
following steps are repeated multiple times:

1. An input image Xi is given as input to f , which produces an output matrix Ŷi.

2. The produced Ŷi is compared to the ground truth matrix, Yi. If these matrices are
different, a penalty is made. Usually, the greater the difference between Ŷi and Yi,
the greater the penalty.

This penalty is given by a function L, called loss function. Thus, our goal is to find a
score function f such that, for a chosen loss function L, the penalties are the lowest.

Loss Functions

The purpose of a loss function is to penalize wrong outputs from our score function f .
Typically, the output of a loss function is called an error, because it calculates some sort of
distance between Ŷ and Y. If Ŷ is very similar to Y, the loss function will output a value
close to 0 (small error). If the loss function’s result is a large value, the error is big and Ŷ
is most likely very different from Y. A popular loss function is the squared error loss (or

15

2. STATE OF THE ART

quadratic loss), given by

L =
1

2N

N

∑
i=1

P

∑
p=1

(Ŷi,p−Yi,p)
2, (2.7)

where N is the total number of images in the training set, and P is the total number of
elements in Yi (and Ŷi, since both these matrices have the same dimensions). The letter
p represents a matrix element in a specific position (x,y,z), and the inner sum ∑

P
p=1 (...)

goes through every element in the 3D matrices. The i in Ŷi indicates that the output score
matrix was obtained by passing training example Xi through our score function f . In other
words, f (Xi) = Ŷi. This loss function takes into account all N training examples, hence
the outer sum ∑

N
i=1 (...). As an example, Ŷ2,4 can be read as “single value in position 4

inside the output 3D matrix Ŷ2”.
In segmentation problems, a commonly used loss function is the Dice Coefficient loss

function. For a given training example Xi, the loss is given by

Li = 1−Dice(Ŷi,Yi), (2.8)

where Dice(Ŷi,Yi) is the Dice Coefficient.
Another perhaps less commonly used loss function, is the IOU loss function (Rahman

& Wang, 2016),
Li = 1− IOU(Ŷi,Yi), (2.9)

where IOU is the intersection over union (also known as Jaccard Index), given by Equa-
tion 2.6.

L2 Regularization

Machine learning models with a high amount of weights (e.g. deep neural networks)
can overfit. In a nutshell, overfitting occurs when a machine learning model has good
performance on the training set, but fails to generalize to data outside the training set
(Hawkins, 2004). L2 regularization is a technique used to prevent overfitting and reduce
the search space for our score function’s weights, i.e., the values of matrix W (Krogh &
Hertz, 1992).

If we consider the loss of a single training example Xi to be represented by Li, the final
loss function with regularization is given by

L =
1
N

N

∑
i=1

Li +λ

K

∑
k=1

W2
k , (2.10)

where ∑
K
k=1 W2

k is the L2 regularization term, λ is the regularization parameter, and K is
the number of entries in the weight matrix W.

16

2.2. Deep Learning

Joining equations 2.6, 2.9 and 2.10, our loss function will be

L =
1
N

N

∑
i=1

Li +λ

K

∑
k=1

W2
k (2.11)

=
1
N

N

∑
i=1

(1− IOU(Ŷi,Yi))+λ

K

∑
k=1

W2
k (2.12)

=
1
N

N

∑
i=1

(
1− |Ŷi ·Yi|
|Ŷi|+ |Yi|− |Ŷi ·Yi|

)
+λ

K

∑
k=1

W2
k , (2.13)

where Ŷi is the output of our score function f , Yi is the real segmentation mask, Wk is
element k of the score function’s weight matrix, and N is the number of training examples.

Optimization

The goal of training is to find the weight matrix W that will make our score function f

produce the most accurate segmentation scores possible. This can be accomplished by
solving the optimization problem

W∗ = argmin
W

L(X,Y,W), (2.14)

where L is the loss function given by Equation 2.13.
One way of solving the optimization problem described in Equation 2.14 is by using a

method called gradient descent (Bottou, 2010). Gradient descent consists in updating the
weights W in the opposite direction of the gradient ∇ L(W). A simple weight update rule
based on gradient descent is, for example,

W := W−α∇ L(W) , (2.15)

where := is the assignment operator, and α is the learning rate, a key hyperparameter
in machine learning. A hyperparameter is a value that is set before the training process
begins.

For our work, we’ll use the Adam (Kingma & Ba, 2014) update rule, which is a bit
more complex than the one in 2.15. The Adam update rule combines different optimization
techniques like first and second moments of the gradients, and is available in multiple deep
learning frameworks.

After training, our score function f should have weights W that produce the lowest
possible loss function output values. In other words, f should be able to receive any input
3D CT Scan region X, and produce a score matrix Ŷ such that the error produced by our
loss function is minimal.

In our case, since the final segmentation masks have binary values, the score function’s
output (Ŷ) values must be converted to binary values. This is done by applying a threshold
t on the output of f , Ŷ.

17

2. STATE OF THE ART

2.2.2 Neural Networks

Neural networks (artificial neural networks, to be precise) are machine learning models
made up of units called neurons (or artificial neurons). These neurons perform a linear
multiplication of their inputs followed by a non-linear, element-wise operation, performed
by a function called activation function.

Figure 2.6: An artificial neuron. The neuron’s inputs x are multiplied by the parameters,
or weights, w. The cell body sums up the multiplication results, takes the sum result
and passes it through an activation function. Image taken from the PhD thesis of Andrej
Karpathy (Karpathy, 2016).

Neurons are organized across layers in a neural network, according to Figure 2.7.
Neurons in one layer have connections to all neurons in the previous layer but are not
connected to neurons within the same layer.

As we can see in Figure 2.6, a neuron computes a composite function. This composite
function is a linear function followed by a non-linear function,

h(x) = f (∑
i

wigi(x)) , (2.16)

where wi is a single weight, gi(x) is the output of the previous layer, and f is an activation
function (i.e. the non-linear part in h(x)).

Activation Functions

An activation function (also known as non-linearity) is responsible for the non-linear
part of a neural network. They are used to guarantee neural networks are able to learn
non-linear patterns in the data. If a neural network didn’t have non-linearities, it would just
be a composition of linear functions, i.e. a linear function. Two examples of non-linearities
are the Rectified Linear Unit (ReLU),

f (x) = max(0,x) , (2.17)

18

2.2. Deep Learning

X1

X2

X3

H1

H2

H3

H4

Ŷ1

Ŷ2

Ŷ3

Input
layer

Hidden
layer

Ouput
layer

Figure 2.7: A neural network with two layers. The input layer doesn’t count as a neural
network layer, only the single hidden layer and output layer count. There are three inputs.
The inputs, in our case, are pixels from CT scans, which will be far more than just three
values. The hidden layer has four artificial neurons. The artificial neurons are the same as
in Figure 2.6. Finally, we have an output layer, which produces our final scores.

commonly used in recent years, and the sigmoid function,

f (x) =
1

1+ e−x . (2.18)

Both activation functions can be visualized in Figure 2.8.

-3 -2 -1 0 1 2 3

0

1

2

3

(a) ReLU

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

(b) Sigmoid

Figure 2.8: Two examples of activation functions: the ReLU function, and the Sigmoid
function.

19

2. STATE OF THE ART

Optimization Techniques for Neural Networks

To properly adjust the weights in a neural network (and in other score functions), we need
to compute the gradients of the loss function with respect to the weights. However, unlike
most score functions, a neural network is a composite function, with an arbitrary number
of composite inner functions (i.e. layers). In order to find the gradients of a composite
function, we can use the chain rule,

∂L
∂wi

=
∂L
∂ f

∂ f
∂wi

, (2.19)

where f is our score function (i.e. the whole neural network), wi is a single neural net
weight, and L is the loss function.

Neural networks use a method similar to the chain rule, called backpropagation. In
a nutshell, backpropagation consists in propagating gradients throughout the neural net,
starting from the output at the top (where the neural net produces its scores) all the way
to the bottom (where the neural network receives its external inputs, e.g. a lung nodule
3D image). The process of applying backpropagation to find the gradients is also called
“backward pass” (LeCun et al., 2015).

Once we have gradients from all the layers (thanks to backpropagation), we can update
our weights using, for example, the weight update rule in Equation 2.15. During the
training process, multiple weight updates are performed. The weight updates should steer
the neural network’s weights towards producing the best possible outputs (LeCun et al.,
2015).

Training a Neural Network

Overall, there are two main processes that are repeated many times throughout the training
of a neural network:

1. Feeding an input image to the neural network and computing its corresponding
scores. This is called a “forward pass”.

2. Finding the gradients of the loss function with respect to all the weights in the neural
network, via backpropagation. Also known as a “backward pass”.

An epoch is a concept that frequently shows up in deep learning literature. During
training, we say “one epoch has passed” when the neural network has processed all the
training examples once. In other words, “one epoch has passed” when one forward and
backward pass of all the training data has been performed. Training usually requires the
neural networks to process all the training examples multiple times, so epochs are used to
define how much the neural nets are trained.

To recap and give a broad overview of the whole process:

20

2.2. Deep Learning

• The machine learning model we’ll use is called a neural network, which is a com-
position of linear and non-linear mathematical functions. The final model should
receive a 3D image (CT Scan region that contains a lung nodule) and produce an
accurate lung nodule segmentation score matrix. This will be treated as a supervised
learning problem, so we need a dataset consisting of two things: lung nodules, and
their corresponding segmentation masks.

• Before training begins, the parameters (or weights) of the neural network are initially
set to pseudo-random values. At this point, the neural network is able to receive any
3D image and produce a segmentation mask. However, the produced segmentation
masks are likely useless, given that the neural network hasn’t been trained yet.

• Forward pass: Images are given as input to the neural network, and the final scores
are calculated. The scores are the neural network’s output, and in our case, can be
converted into segmentation masks. During training the scores are passed through a
loss function, responsible for computing the difference between the output scores
and real segmentation masks.

• Backward pass: Gradients are computed for all the weights in the neural network.
The training process solves an optimization problem, where the goal is to minimize
the loss function. The minimization methods used in deep learning rely on first
finding the gradients of the loss function with respect to the model’s weights. These
gradients are calculated using a technique called backpropagation. Once we have
the gradients, we can update our model’s weights.

Once the training process has finished, our neural network model should be able to
look at pixel intensities from an input 3D lung scan region, and produce the best possible
lung nodule segmentation score matrix, which is then thresholded into a real segmentation
mask.

2.2.3 Convolutional Neural Networks

A convolutional neural network (CNN) is a type of neural network in which the connectivity
pattern between its neurons is inspired by the visual cortex of animals. Traditional CNNs
are built using two main building blocks: convolutional layers and pooling layers (LeCun
et al., 2015). They often appear alternating in a CNN. However, two or more convolutional
layers may appear together in the architecture.

Convolution layers perform n convolution operations on their input X, where n is the
number of convolution filters. A tradition convolution operation outputs a feature map (M
in Figure 2.9), which is the results of convolving a filter all over the convolution layer’s

21

2. STATE OF THE ART

f1

n1,r

I M1 M2 M3 M4

Figure 2.9: Convolution operation. The inner box f1 is a convolutional filter, being applied
to the input image I at a certain position. The result of applying filter f1 to region r is the
neuron n1,r. If we convolve filter f1 on the whole input image I, we get M1, also known
as a feature map (or just map, hence the M). The other feature maps (M2,M3,M4) are
the result of convolving other filters (f2, f3, f4) which are not shown in this Figure. A
convolution layer is defined by a set of filters (f1, f2, f3, ..., fi), also known as a filter bank.
The output of a convolution layer is thus a volume of feature maps, [M1,M2,M3, ...,Mi],
also known as an output volume.

input X. For a given input X region, with values [x1,x2, ...,x9], if we apply a convolution
filter fi on that region, we will get a scalar value ni,r,

ni,r = ∑

(filter fi︷ ︸︸ ︷w1 w2 w3

w4 w5 w6

w7 w8 w9

 ·
region r︷ ︸︸ ︷x1 x2 x3

x4 x5 x6

x7 x8 x9

) (2.20)

= (w1× x1)+(w2× x2)+(w3× x3)+ ...+(w9× x9) , (2.21)

where · denotes the entrywise multiplication operation, i is the filter number (because
convolutional layers can have multiple filters), and r is the region in X where the filter is
applied. In this case, region r has values [x1,x2, ...,x9]. Applying a convolution filter to an
image X consists in repeating the operation in Equation 2.21 multiple times for multiple
regions r in X. The result is a feature map, which is a multidimensional array of ni,r values,
e.g. [ni,1,ni,2, ...,ni, f inalr]. A visual representation of a convolution operation can be seen
in Figure 2.9.

The other basic building block of a CNN is the max-pooling layer, responsible for
downsampling feature maps along a CNN. A visual explanation of the max-pooling
operation is given in Figure 2.10. The pooling layers are responsible for providing local

22

2.2. Deep Learning

8 4 4 2

5 3 7 3

3 9 0 7

6 8 4 1

max pooling 8 7

9 7

Figure 2.10: Example of a pooling operation. This particular type of pooling is called
max-pooling. It looks at different regions of the input matrix (matrix on the left), and
calculates their max. In this particular case, the max pooling operation has a window
size of 2×2, and a stride of 2. There are other types of pooling, but pooling is usually
associated with downsampling.

translation invariance (Jaderberg, Simonyan, Zisserman, & Kavukcuoglu, 2015). This is
achieved by combining the outputs of the convolutional layers in a way that is position-
independent, but only within a certain spatial location.

The last layers of a CNN are usually fully connected layers. These layers are traditional
artificial neural networks (as seen in Figure 2.7), and they are responsible for outputting
the final score vector. If we want to reshape the output vector of a CNN (i.e. the CNN’s
final output scores), we can leave the rest of the CNN intact and just change the number of
neurons in the fully connected layers. A CNN architecture with fully connected layers can
be seen in Figure 2.11.

A recent trend in deep learning is to remove pooling layers and/or fully connected
layers. This allows convolutional neural networks to be built with only convolutional
layers (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2014).

CNNs have seen widespread use for computer vision tasks. They owe their success
largely to their scalability: the convolution operation allows for the same filter (small set of
weights) to be applied multiple times across a single image (see Figure 2.9 and Equation
2.21). This allows the model to be used much more effectively, compared to typical fully
connected neural networks, which would require 1 weight per pixel or image area.

Recent CNN architectures can have 10 to 20 convolution layers, hundreds of millions
of weights, and billions of connections between units. Training such large networks
could have taken weeks only two years ago, but progress in hardware (specifically GPUs),
software and parallelization techniques have reduced training times significantly. Today,
some deep learning models are trained in less than one day (LeCun et al., 2015).

23

2. STATE OF THE ART

Figure 2.11: Example of a convolutional neural network architecture. Typical CNNs are
made up of convolutional layers, followed by pooling layers. At the end, the dense layers
(also known as fully connected layers) may be inserted. Dense layers are simple neural
networks, as seen in Figure 2.7. Original image taken from Krizhevsky et al. (2012).

Invariance to Image Transformations

Filters in a CNN consist of learnable weights (as in Equation 2.21). They learn to detect
particular patterns at multiple locations in the input images. These patterns often occur
in different orientations and scales in real life images. As a result, CNNs will often learn
multiple copies of the same filter in different orientations and scales (see Figure 2.12).
However, despite CNN’s ability to learn features at different orientations, CNNs are not
invariant to some transformations, like image rotations (Worrall, Garbin, Turmukhambetov,
& Brostow, 2016).

Not being rotation invariant means CNNs may classify the same image differently if
the image is rotated. For some tasks, this makes perfect sense (e.g. people don’t walk on
walls), but for the task at hand (lung nodule segmentation in computed tomography scans)
and other medical applications, rotation invariance is essential. In our case, a rotation
invariant model is desirable because we don’t care about the orientation of a lung nodule
(i.e. whether the nodule appears at 30 or 60 degrees). We just care about the presence of
the nodule, and whether a pixel belongs to a nodule or not.

The simplest way to achieve approximate invariance to rotation transformations (among
other types of transformations) is to train a neural network with data augmentation. If,
during training, the training examples are randomly perturbed with transformations, the
neural network can learn to become (approximately) invariant to that particular transfor-
mation. Data augmentation via image rotation can be useful not only if the data exhibits
rotational symmetry, but also in domains where professionally labeled datasets are scarce
(e.g. medical imaging).

24

2.2. Deep Learning

Figure 2.12: An example of the features learned by the filters in the first convolutional
layer of a CNN. The first layer filters usually learn low-level features, like edges at different
orientations and scales. The layers higher up in the architecture learn higher-level features
(e.g. eyes, noses, etc, if the neural net was trained to detect human faces). Image taken
from Krizhevsky et al. (2012).

Residual Neural Networks

He et al. (2015) achieved state-of-the-art performance in the ImageNet competition,
obtaining a top 5 error of 3.57% - lower than 5.1%, which is what humans get (Russakovsky
et al., 2015). These results were obtained using a deep learning architecture they named
residual neural network.

He et al. (2015) showed that increasing the number of layers in a convolutional neural
network doesn’t necessarily increase performance. In fact, an increase in layers can hurt
performance, not only on the test data, but on the training data as well.

In theory, a model with many layers (e.g. 100 layers) should be able mimic the
performance of a model with less layers (e.g. 10 layers), without losing performance.
This could be done by adding identity layers (i.e. layers that don’t modify the input, or
“dummy” layers) to the larger model, forcing the larger model to behave like the smaller
one. Residual neural network models can learn to do something similar if necessary, by
introducing “shortcut connections” between layers.

Figure 2.13: Image taken from He et al. (2015). F (x) represents the output of the
two weight layers. These weight layers are layers with learnable weights, like typical
convolution layers. Residual neural networks add a shortcut connection between the input
of these layers, x, and their output.

25

2. STATE OF THE ART

Shortcut connections, as seen in Figure 2.13, are the main idea behind residual neural
networks. These shortcut connections allow the network to have many more layers than
traditional CNNs (e.g. a hundred more layers). With shortcut connections, layers can learn
to be discarded, when necessary. This has a regularizing effect, allowing the final networks
to have many more layers. Some researchers believe shortcut connections enable ResNets
to behave like an ensemble of smaller neural networks (Veit, Wilber, & Belongie, 2016).
During the backward pass, shortcut connections also help with propagating the gradient
signal, reducing the risk of vanishing gradients.

Residual neural networks were an important contribution to deep learning, and some
of the best results in image segmentation were achieved thanks to them (H. Zhao et al.,
2016).

2.3 Segmentation via Deep Learning

There have been multiple attempts at using deep learning models to perform image seg-
mentation. Early work made extensive of patchwise models, e.g. patchwise convolutional
neural networks (Farabet, Couprie, Najman, & LeCun, 2013; Pinheiro & Collobert, 2014).
Patchwise models look at a small region (often square) in the image, and output the
label for that region’s central pixel. This is done for all the regions in the image, and
the end result is a label for every pixel in the image. The work of Farabet et al. (2013)
mixes patchwise convolutional neural networks with other techniques like superpixels and
segmentation trees.

2.3.1 Fully Convolutional Networks

A fully convolutional network (Shelhamer et al., 2016), or FCN, is built upon a pre-
trained convolutional neural network. The pre-trained CNN was trained on the ImageNet
Large Scale Visual Recognition Challenge classification dataset (Russakovsky et al.,
2015). As such, the pre-trained CNN was initially used for image classification instead of
segmentation. Classification is the task of assigning a label to an image. A label can be
anything from “cat”, “airplane”, “car”, and so on. Two modifications are made to turn the
classification CNN into a segmentation CNN:

1. The last fully connected layers are changed to 1x1 convolutional layers. This allows
the CNN to output a spatial map (i.e. an output matrix that resembles an image),
instead of a traditional classification label vector.

2. An upsampling layer is added at the end, ensuring the final spatial map has the same
dimensions as the input image.

26

2.3. Segmentation via Deep Learning

Figure 2.14: Image taken from Shelhamer et al. (2016). This image depicts a fully
convolutional network, which is a neural network architecture designed for semantic
segmentation. It is designed like a typical CNN, except that instead of dense layers at
the end, the authors introduce an upsampling operation. This final upsampling operation
guarantees that the output (segmentation mask) is the size of the input image.

In addition to the two mentioned modifications, FCNs make use of skip connections
(Shelhamer et al., 2016). Skip connections fuse shallower layers (i.e. layers closer to the
network’s input) and deeper layers, creating a feature volume consisting of feature maps
from different places in the network. A 1x1 convolution is then applied to this volume,
creating the final output. Skip connections allow the final prediction to have higher
precision, by taking into account information from different layers along the network.

2.3.2 U-Net

The U-Net architecture (Ronneberger et al., 2015) builds upon the FCN architecture. The
architecture is made up of two parts: a contracting path, and an expanding path. The
contracting part behaves like a typical CNN, with feature maps getting smaller as max-
pooling operations are applied. The expanding path is similar to the contracting path, but
instead of using max-pooling operations to reduce feature map size, upsampling operations
are applied to increase feature map size.

The main difference between U-Nets and FCNs is the upsampling part, or the expanding
path, as the authors call it. U-Nets apply upsampling operations multiple times, across
different layers. This results in several different upsampled volumes, which are then
fused with previous feature maps of corresponding size. In the FCN architecture, the
upsampled feature maps are joined into one single feature map volume. Also, the FCN

27

2. STATE OF THE ART

uses a pre-trained network, while the U-Net is trained from scratch.

Figure 2.15: Image taken from Ronneberger et al. (2015). The U-Net architecture. Very
similar to the FCN architecture (see Figure 2.14). The main difference is how the upsam-
pling is done across multiple layers.

In addition to the architecture, the authors make use of extensive data augmentation
techniques, and achieved the number one position in the ISBI cell tracking challenge
(Arganda-Carreras et al., 2015).

The U-Net architecture is used widely in image segmentation challenges (e.g. in the
“Dstl Satellite Imagery Feature Detection” challenge (Kaggle, 2017), top entries were
based mostly on U-Nets). The wide use of U-Nets is mainly due to their simplicity. There
are only 4 operations involved:

1. Convolutions — standard convolution operations, like we’ve seen in Section 2.2.3.

2. Deconvolutions — up-sampling operation (up-conv in Figure 2.15). In a nutshell,
deconvolution consists in convolving a filter across an input image X, in such a
way that X is upsampled. Deconvolution filters have learnable weights, just like
convolution filters (Dumoulin & Visin, 2016). Deconvolution is sometimes called
transposed convolution.

3. Concatenation — feature maps from some layers are concatenated with feature
maps from other layers, as we can see in Figure 2.15. This is similar to the skip
connections found in fully convolutional networks (Shelhamer et al., 2016).

28

2.3. Segmentation via Deep Learning

4. Pooling — regular max-pooling, as described in Section 2.2.3.

All these operations are illustrated in Figure 2.15.

2.3.3 Pyramid Spatial Pooling Network

Figure 2.16: Image taken from H. Zhao et al. (2016). The PSP Net architecture. A
pre-trained CNN is used (CNN in this Figure). It produces an output volume, which is
then fed into the PSP module (zone with the dashed rectangle). This module takes the
output volume, and performs multiple pooling operations on it. The result of these pooling
operations is passed through a 1×1 convolution, upsampled, and concatenated with the
original output volume.

The pyramid spatial pooling network (H. Zhao et al., 2016), or PSP Net, is also built
upon the fully convolutional network. Just like FCNs, the PSP Net is based on a pre-
trained network (a ResNet, represented by the words “CNN” in Figure 2.16), and utilizes a
learnable up-sampling operation (deconvolution).

Unlike fully convolutional networks, PSP nets make use of a special kind of convolu-
tional filters, called dilated convolutional filters (Yu & Koltun, 2015). The dilated filters get
to keep the pre-trained filters’ weights (that’s the point of using pre-trained nets), and are
applied to a greater region of the image. The region a neuron looks at in an image is also
called “field of view”, or FOV. By applying a filter to a greater image area, the neurons’
FOV increases, and the neurons take into account more contextual information. In other
words, dilated filters give greater contextual information than traditional filters, while
having the same amount of weights. Also, now that the filters cover a greater region of the
input image, the amount of calculations associated with convolution layers is reduced. To
illustrate why this happens, imagine a filter so big, that it covered the whole input image.
This filter would only need to be applied once - no need to convolve the filter across the
input image.

29

2. STATE OF THE ART

Using pre-trained ResNets with dilated filters is not a novel idea. The work of Chen,
Papandreou, Kokkinos, Murphy, and Yuille (2016) used a similar method. The main
contribution of PSP Nets is the pyramid spatial pooling module (or PSP module, hence
the name of the architecture). The PSP module offers global contextual information that
most deep learning architectures fail to provide. Global contextual information is obtained
by taking the pre-trained ResNet’s output volume and performing average pooling on it.
The average pooling is performed multiple times, at different scales. The pooling results
are upsampled and concatenated with the original pre-trained ResNet’s output volume.
Then, a 1x1 convolution is applied to the final concatenated volume, just like it’s done
with Fully Connected Networks and U-Nets. See Figure 2.16 for a visual explanation. The
PSP module is a clever and simple way to improve the neural network’s performance.

There are several datasets used to benchmark image segmentation models. A popular
one is the PASCAL VOC 2012 Object Segmentation challenge. The challenge ended in
2012, however, to this day there are still submissions being made, and researchers around
the world are constantly competing to get top results. As of May 2017, the PSP Net is
currently placed 1st in the leaderboard (University of Oxford, 2012).

30

Chapter 3

Building our Lung Nodule
Segmentation System

In this chapter, we’ll go into detail about the data, experiments, and the techniques utilized
to build our model. Finally, we discuss our model’s performance, along with some of the
observed results. The next section talks about the dataset we utilized to train our final
model, along with some tools that helped us build our lung nodule segmentation system.

3.1 Data and Tools

Data is at the heart of this work, and as such, it deserves a dedicated section. The used
dataset, and sole reason why this work was made possible, was the LIDC-IDRI dataset
(Armato et al., 2011). The LIDC-IDRI dataset is made available by The Cancer Imaging
Archive (Clark et al., 2013), under the Creative Commons 3.0 Unported License.

The LIDC-IDRI dataset is not easy to navigate: it comes with a lot of information
associated with each scan, so much so that the original authors call it a “database”, instead
of a dataset. However, there are free valuable tools online to help navigate the LIDC-IDRI
dataset. In particular, the pylidc python library (Hancock & Magnan, 2016; Matthew C.
Hancock, 2016) was used to extract and clean nodules and their segmentation masks.

There are many types of medical scans: MRI, X-ray, DXA, Ultrasound Scans, etc. The
scans in the LIDC-IDRI dataset are CT (Computed Tomography) scans, and so, these will
be the scans our model is built upon.

3.1.1 Computed Tomography

Computed Tomography (CT) (Brenner & Hall, 2007) is the preferred imaging modality
for lung nodule detection and analysis (Kurihara et al., 2014). As such, our lung nodule

31

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

segmentation system will be designed to work exclusively on CT scans. The system will
likely to fail on images originating from MRI scans, chest X-Rays, or other types of scans.

Tomography is an image extraction technique that relies on penetrating waves to extract
2D images from 3D objects. The 2D images are created by sections, and resemble slices
from the original 3D object. In Computed Tomography, the penetrating wave is an X-ray,
and the resulting 2D slices are then combined and processed by a computer. CT scans
allow the user to see inside the scanned objects without recurring to surgical procedures.
CT scans are sometimes called Computed Axial Tomography (CAT) scans, or Computer
Aided Tomography scans.

Some say the X-ray radiation needed to perform CT scans can increase the risk of
cancer (Brenner & Hall, 2007). That’s why lung cancer screening programs like the NLST
(National Cancer Institute, 2014) opt for CT scans that require a smaller radiation dose
(low-dose CT scans), compared to standard-dose CT scans. Low-dose CT scans reduce
the amount of radiation the patients are exposed to, while achieving comparable results to
standard-dose CT scans (Kubo et al., 2016). The dataset our work is based on contains
both standard-dose and lower-dose CT scans.

3.1.2 LIDC-IDRI Dataset

Our final lung nodule segmentation system will be trained on the LIDC-IDRI dataset
(Armato III et al., 2015). The LIDC-IDRI dataset is a public, free dataset of thoracic CT
scans. Each CT scans has been annotated by expert radiologists. The CT scan annotations
provide multiple information lung nodules present in the scan.

There are 1018 CT scans in the LIDC-IDRI dataset. There are 8 patients with 2 CT
scans, but other than these 8 patients, every scan belongs to a different patient. So, in total,
the LIDC-IDRI database has CT scans from 1010 patients.

The CT scans in the LIDC-IDRI dataset were taken with different types of CT scanners.
Not only were the scanners different, their settings (e.g. tube voltage used, exposure,
etc.) may also differ from scan to scan. The dataset is made up of both standard dose
and lower-dose CT scans. Also, the CT scans may display various types of unexpected
artifacts. All these factors lead to great variability between CT scans. In our case, this will
make our final deep learning model work for a wider range of CT scans. The final model
will also be robust to unexpected anomalies present in CT scans.

Each scan may have multiple annotations in the XML format. These annotations are
made by radiologists. The radiologists were asked to find three possible types of lesions in
a CT scan:

1. Nodules with diameter under 3mm (nodules < 3mm).

32

3.1. Data and Tools

2. Nodules with diameter greater or equal to 3mm (nodules ≥ 3mm).

3. Non-Nodular lesions (e.g. apical scars).

The radiologists used the following three step process for defining lesion types:

1. Lesion identification — Is the observed structure a possible lung lesion?

2. Lesion size specification — Is the lesion < 3mm or ≥ 3mm?

3. Definition of the lesion type — Is the lesion a nodule? If the lesion is < 3mm, is it
benign?

The main type of lesion, and the main focus of the LIDC-IDRI are nodules≥ 3mm. For
these nodules, the radiologists were asked to provide the following additional information:

1. Subtlety — How difficult is the nodule to detect.

2. Internal Structure — What’s inside the nodule (soft tissue, fluid, fat or air).

3. Calcification — Is the lung nodule calcified or not, and what is the pattern of
calcification.

4. Spiculation — Nodule’s degree of spiculation. Can be either “none” or “marked”.
Spiculation is “marked” when there are linear strands extending from the nodule
margin, making the nodule’s margin look uneven or “spiky”.

5. Lobulation — Nodule’s degree of lobulation. Can be either “none” or “marked”.
Lobulation is “marked” when a nodule looks like several round nodules joined into
one.

6. Shape Sphericity — How spherical is the nodule.

7. Solidity (or texture) — How solid is the nodule (solid, ground glass or mixed).

8. Margin — How well-defined is the nodule’s margin.

9. Likelihood of Malignancy — Nodule’s likelihood of malignancy, assuming the
patient is a 60 year old male smoker. This feature is a valuable feature if we wanted
to create a machine learning model that looks for cancer in pulmonary CT scans.

10. Segmentation Mask — Hand drawn outline of the nodule. Some segmentation masks
were created with the help of computer programs.

Most of these features are ranked using values ranging from 1 to 5. Again, these
features are only present for nodules with a diameter greater than 3mm.

A total of 12 radiologists participated in annotating the LIDC-IDRI CT scans. However,
only 4 radiologists looked at any single scan. This means that for every CT scan, there

33

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

are 4 sets of annotation belonging to 4 different radiologists. Some of the resulting
annotations show substantial difference among radiologists, not only in the segmentation
masks, but also on the labeling of nodules (e.g. one radiologist could say a nodule was
malignant, while others say it’s not). See Figure 3.1 for an example of how much the
nodule segmentation masks differ from radiologist to radiologist. Also, the definition of
“lung nodule” was deliberately not specified by the LIDC-IDRI Research Group, meaning
radiologists could have different definitions of what constitutes a “lung nodule”.

(a) Annotation 1 (b) Annotation 2

Figure 3.1: This particular nodule was annotated by all radiologists. In this Figure we see
two very different segmentation contours by two different radiologists. Scan taken from
the LIDC-IDRI dataset (Armato et al., 2011).

One very important detail for our work is how annotation grouping is done. Annotation
grouping is the process of grouping annotations that belong to a specific lesion in a
given scan. The LIDC-IDRI dataset doesn’t provide information on which lesion a given
annotation belongs to. Let’s assume a CT scan, S1, shows lesions l1,2,...,i. The radiologists
look at S1, identify the lesions, and create annotations a1,2,..., j. Notice that the amount of
lesions (i) may be different from the amount of annotations (j), because certain lesions
may go unnoticed by some radiologists, and some lesions may have multiple annotations
by different radiologists. In theory, the maximum amount of annotations a lesion may
have is 4, because a maximum of 4 radiologists looked at any given scan. The issue here
is that there is no way for the dataset user to know which annotations belong to a given
lesion. For example, annotations a2, a11 and a26 in the LIDC-IDRI dataset may all belong
to lesion l1, but LIDC-IDRI doesn’t provide this information. The process of establishing

34

3.1. Data and Tools

which annotations belong to which lesions is referred to as “grouping” or “clustering”
annotations. This process is highly subjective, and literature based on the LIDC-IDRI
dataset may report different amounts of lesions for the same set of scans, due to different
grouping procedures.

The grouping of annotations in the LIDC-IDRI main paper (Armato et al., 2011) was
done by visual inspection of the annotations. The internal inventory of lesions reported in
the LIDC-IDRI main paper was:

• 7371 nodules (either < 3mm or ≥ 3mm), by at least 1 radiologist.

• 2669 nodules ≥ 3mm by at least 1 radiologist.

• 928 nodules ≥ 3mm by all 4 radiologists.

Grouping of annotations can not only be a highly subjective process, but it can also be
a tedious one. And that’s where the pylidc library (Matthew C. Hancock, 2016) comes
into play. The pylidc library is written in python, and was built to facilitate user interaction
with the LIDC-IDRI dataset. It does a lot of things, but most importantly for our work, it
has a built-in algorithm for grouping nodules together. The pylidc library is able to handle
CT scans in their original filetype - the DICOM (Digital Imaging and Communications in
Medicine) filetype.

3.1.3 Data Cleaning and Pre-Processing

Thanks to the pylidc library, we now have a reliable and consistent way to group nodules
with a diameter of 3mm or more (our lesions of interest). The next step is the creation of
the training, validation and test sets. All of these sets are made up of volumetric regions
that contain lung nodules. In other words, only certain volumes of interest inside a given
CT scan are used, instead of the whole CT scan. These volumes of interest (VOIs) have
40×40×40 pixels, where each pixel represents a 1mm×1mm×1mm cube. Every VOI
has a matching lung nodule segmentation mask. The segmentation masks have the same
dimensions as the VOIs, and are made up of binary data, with “1” indicating that a pixel
belongs to a lung nodule, and “0” if the pixel doesn’t belong to a lung nodule.

The creation of the segmentation masks is not a trivial task. We need to take into
account all the existing segmentation masks for a given nodule, and create a single, final
segmentation mask. Following the approach of Kubota et al. (2011), Messay et al. (2015)
and others, our final segmentation masks were composed of pixels with a 50% consensus
truth. 50% consensus truth means that a pixel belongs to a nodule (i.e. has label “1”) if
that pixel is in at least 50% of the segmentation masks. So if a nodule has 4 segmentation
masks, a pixel has to be in at least 2 of the masks to be labeled as “1”, or “nodule”. If a

35

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

Table 3.1: Our reported number of nodules in the LIDC-IDRI dataset, training, validation
and test sets. The train, val and test sets are all subsets of the LIDC-IDRI dataset. Nodules
with only 1 annotation were excluded from the train, val and test sets. All nodules were
grouped with the pylidc library. The first line in the Table reads: “LIDC-IDRI has 2651
nodules annotated by 1 or more radiologists”.

Nodule Set Number of Nodules Annotated by X Radiologists

LIDC-IDRI 2651 1+

LIDC-IDRI 1882 2+

LIDC-IDRI 910 4 (All)

Training Set 1605 2+

Validation Set 178 2+

Test Set 79 3+

nodule has 3 annotations, a pixel has to be in 1.5 (rounded to 2) masks. If a nodule has 2
annotations, pixels belonging in either mask are considered. Finally, nodules annotated by
only 1 radiologist were not considered.

From Table 3.1, we can see that our test set is made up of 79 lung nodules. The test set
is based on CT scans from the original LIDC dataset (McNitt-Gray et al., 2007), which
was a precursor to the LIDC-IDRI dataset. The original CT scans belonging to the LIDC
dataset are now part of the LIDC-IDRI dataset, so all we’re doing is defining the test set a
sub-set of the LIDC-IDRI dataset. There have been multiple papers that utilize this test set,
using only nodules that were annotated by 3 or more radiologists (Messay et al., 2015).
The specific scans used for the test set are available in the following URL (via the link
“LIDC Image Dataset”):

• http://dx.doi.org/10.7937/K9/TCIA.2014.V7CVH1JO

This particular link was made available by Messay et al. (2015), in an effort to help
and encourage future work on this area.

The training and validation sets are defined by all the nodules that are not in the LIDC
test set. There are 1783 such nodules. The validation set is 10% of 1783, or 178 nodules,
as we can see in Table 3.1. The training set is thus 1783−178 = 1605 nodules.

Also from Table 3.1, we can see that leaving out nodules only annotated by 1 radi-
ologists means discarding a huge portion of the LIDC-IDRI dataset. This may not be
such a good idea, given that deep learning models require large datasets to work properly
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014).

Considering the original LIDC-IDRI paper reported 2669 nodules annotated by 1+
radiologists, and 928 nodules annotated by all four, looking at Table 3.1 we can conclude

36

3.1. Data and Tools

that the pylidc library is doing a good job grouping nodules together. The numbers aren’t
exactly the same, but they’re fairly close.

Pixel Values

Pixels in a CT scan slice have values from +3071 to -1024 on the Hounsfield scale. The
Hounsfield scale is a quantitative scale used for describing radiodensity, i.e. the relative
inability of X-rays to pass through a particular material. In the Hounsfield scale, water has
a radiodensity of 0, and air has a value of -1000.

Neural networks tend to work better with values in a lower range (Lapedes & Farber,
1987). So, in order to reduce the magnitude of the input values, we rescaled the values into
a range of [0,1]. But before they were rescaled, any Hounsfield values above 400 were
removed, as these values tend indicate bones in the Hounsfield scale. Also, lung nodules
measurements with values above 400 are most likely due to unwanted artifacts (Perandini
et al., 2016; Swensen et al., 2000). Thresholding values at 400 was also common practice
in the LUNA16 challenge (Setio et al., 2017).

After the values were in the range of [0,1], a mean was performed of all the pixel
values in the LIDC-IDRI dataset. The mean pixel value was found to be µ = 0.25. The
mean is then subtracted for all the images in the dataset, zero-centering the dataset. This
tends to help with the training process, and is common practice in neural network literature
(Krizhevsky et al., 2012).

Voxel Volume

The next step was to make the voxel volume uniform across all CT scans, setting it to
1mm× 1mm× 1mm. A voxel is a 3D version of a pixel. Since we’re dealing with 3D
scans, the term “pixel” is not scientifically accurate, voxel should be used instead. But for
simplicity, we sometimes use both terms interchangeably.

There were 2 DICOM properties used to make voxel volume uniform:

• The “Pixel Spacing” property. This property represents the distance between pixel
centers, in a 2D horizontal scan slice.

• The “Slice Thickness” property, which represents the distance between consecutive
2D horizontal scan slices. Slice thickness has values between 0.6mm and 5.0mm.

Once we have pixel spacing and slice thickness, we can resample (upsample or down-
sample) the 3D scans into having 1mm× 1mm× 1mm voxel volume. Resampling was
done using cubic spline interpolation (McKinley & Levine, 1998).

37

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

Summary

To recap, the data cleaning and pre-processing phase are made up of the following ordered
steps:

1. Define the training, validation and test sets. The test set consists of nodules in the
original LIDC dataset (McNitt-Gray et al., 2007). The training set is made up of
all the remaining nodules in the LIDC-IDRI dataset (Armato et al., 2011). The
validation set is made up of 178 randomly selected nodules from the training set.
The segmentation masks for these sets are created using a 50% consensus truth.

2. Rescale the original Hounsfield values to values between [0,1].

3. Normalize the voxel size via resampling, ensuring every voxel is 1mm×1mm×1mm.

4. Subtract the dataset mean from each picture.

The NumPy library (van der Walt, Colbert, & Varoquaux, 2011) was used to pre-
process the data. The original DICOM scans, once loaded into python via the pylidc
library, have a property called “pixel_array”. This property contains the CT scan data as a
3D NumPy array, in Hounsfield values. Once we have access to the data in the form of a
NumPy 3D array, we can use the NumPy library and all its functions to manipulate the
data.

3.2 Model Details and Training Techniques

In this section we’ll describe our model’s architecture, along with some optimization
details and performance enhancing techniques.

3.2.1 Final Architecture

The chosen deep learning model was a modified 3D U-Net (Çiçek et al., 2016). The
model’s architecture was chosen because it’s a model used specifically for segmentation,
and contains 3D convolution filters, instead of the regular 2D filters.

In theory, we could use 2D convolution filters. However, there are some issues
associated with 2D filters, such as:

• If our input images are 3D, we must convert them to 2D. There are multiple ways
to do this, and finding the best one could be a difficult task. Also, most pre-trained
neural networks take 2D images with 3 channels (R,G,B), so we’d have to find some
way to reshape our original 3D images, not only making them 2D, but also giving
them 3 color channels (or something similar).

38

3.2. Model Details and Training Techniques

• Incorrect segmentation results may occur in slices near the end of a nodule. These
slices are mostly empty. 2D CNNs may be incapable of learning how to segment
these almost empty slices, given 2D convolution filters don’t take into account
information from adjacent slices.

Concat
Conv

MaxPool
DeConv

32 64

64 128

128 256

256

256+512 256

256+128 128

128+64 64 64

I O

Figure 3.2: Drawing of our model’s architecture, the 3D U-Net Architecture, originally
by Çiçek et al. (2016). A grey box indicates a feature volume that has been concatenated.
The numbers on top of the boxes indicate the number of feature maps belonging to each
box. I represents the input image, which in our case, is a 40×40×40 lung CT region. O
is the model’s output, a 40×40×40 matrix of scores, with values in the range of [0,1].
Scores near 1 should indicate pixels that belong to a lung nodule, while scores near 0
should indicate non-nodule pixels.

Figure 3.2 depicts our architecture, the 3D U-Net (Çiçek et al., 2016). All the convolu-
tions use 3×3×3 filters with a ReLU activation function, except for the last convolution
(before O), which uses a 1×1×1 filter, followed by a sigmoid activation function (and
thus, producing values in the range [0,1]). From Figure 3.2, we can also see that the
max-pooling operation (downward arrow) downsamples the volumes (i.e. makes the boxes
smaller in height, but not smaller in width). These operations create what the authors call
the “contracting path”. The deconvolution operation, on the other hand, upsamples the
volumes to their original shape, making up the “expanding path”.

There are some slight differences between our 3D U-Net and the original. The differ-
ences are:

39

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

Table 3.2: Information on the first 4 layers in our model.

Layer (type) Output Shape Parameters Connected to

input_1 (InputLayer) (None, 40, 40, 40, 1) 0 0

conv3d_1 (Conv3D) (None, 40, 40, 40, 32) 896 input_1

conv3d_2 (Conv3D) (None, 40, 40, 40, 64) 55360 conv3d_1

maxpool3d_1 (MaxPooling3D) (None, 20, 20, 20, 64) 0 conv3d_2

• No batch normalization (Ioffe & Szegedy, 2015). Batch normalization is a technique
used to ensure the inputs of every convolution layer have zero mean and unit variance.
The authors claim this makes the training process faster, more robust, and also has a
regularizing effect.

• Different loss function. The authors used a modified softmax loss, while we used
the intersection over union loss.

• The original 3D u-net has 19,069,955 parameters (or trainable weights), while ours
has 19,068,993 (approx. minus 1000 parameters). The difference of parameters is
possibly due to the lack of batch normalization in our model.

The first 4 layers in our model and their corresponding number of parameters can be
seen in Table 3.2. Table A.1, in the appendix section, has information on all our model’s
layers.

3.2.2 Optimization

The intersection over union (IOU) loss function and the Adam (Kingma & Ba, 2014)
update rule were used. The IOU loss function was used instead of the traditional Dice loss
function, because the most commonly used metric in lung nodule literature is the IOU
metric (Messay et al., 2015), and so we decided to optimize directly for that metric.

There was no IOU loss function in the Keras (Chollet et al., 2015) framework, so we
had to create our own. The code for the IOU loss function is:

40

3.3. Training Experiments

1 def iou_loss(y_true, y_pred):
2 return 1. - iou(y_true, y_pred)
3

4 def iou(y_true, y_pred):
5 y_true_f = K.flatten(y_true)
6 y_pred_f = K.flatten(y_pred)
7

8 intersection_vec = y_true_f * y_pred_f
9 union_vec = y_true_f + y_pred_f - intersection_vec
10

11 return K.sum(intersection_vec) / K.sum(union_vec)

In the above code, K is the Keras backend, a library that provides optimized, low-level
multidimensional array manipulation functions.

The Adam update rule was used, with a learning rate that was changed multiple times
during training. This was done mainly manually, without a fixed learning rate schedule.
The manual changing of the learning rate was performed when the training and validation
loss stagnated after a few epochs. More details on the learning rate will be given in
Section 3.3.

3.2.3 Improving our Model’s Performance

To improve our model’s performance and reduce overfitting, we used data augmentation
and L2 regularization. L2 regularization was applied to every weight in every layer.

In terms of data augmentation techniques, two techniques were used: image rotation,
and image scaling. Both scaling and rotating were applied to the 3D images, meaning the
augmentations were possible in different combinations of axis, e.g. scaling along X and Z
axis, only along Y axis, rotating along X and Y axis, etc. Having three axis means the data
augmentation possibilities with 3D images are greater compared to regular 2D images.
The axis selection for the augmentations were random. Whether to apply or not apply
these augmentations was also a random choice, meaning any image could have scaling
augmentation, rotation, both or none.

The data augmentation techniques were applied to the images in a minibatch before
being fed into our model, i.e. they were done at training time.

3.3 Training Experiments

The Keras (Chollet et al., 2015) framework was used for creating and training our deep
learning model, using the tensorflow backend (Abadi et al., 2015).

Training involved a lot of trial and error. The first step in training was to make sure the
model overfitted on a small subset of the training data. This first test was done because
large neural networks are prone to overfitting (Srivastava et al., 2014), so if our neural
network fails to overfit, it probabily isn’t big enough. A big neural network is one with a

41

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

large amount of parameters (learnable weights). After overfitting on a small subset of data,
we overfitted the model on the whole training set.

In order to overfit the model on the whole training set, we started with a learning rate
of 10−5, and let the model train this way for the first 20 epochs. After the first 20 epochs,
the model’s training error wasn’t going down, and the training and validation errors were
very similar. In other words, this learning rate wasn’t enough to make the model overfit.
So after the first 20 epochs, we lowered the learning rate to 10−6, and the model trained
for another 60 epochs. Again, this learning rate wasn’t low enough. It wasn’t until the
learning rate got down to 10−7 that the model started to overfit. The training loss got down
to 0.1 (with an IoU of 90%), while the validation loss stayed at 0.6 (IoU of 40%).

Once the model overfitted on the training set, it was time to make it operate in accept-
able ways. This meant reducing the overfitting caused in the previous step, by introducing
two techniques: data augmentation, and L2 regularization, as explained in Section 3.2.3.

3.3.1 Regularization Experiments

The regularization techniques described in this section were performed with a learning rate
of 10−5. The batch size was 4 for all the experiments we made. The batch size was fixed
at 4 due to GPU memory constraints (batch sizes over 4 exhausted the GPU’s memory).

The first regularization experiment was done with a regularization hyperparameter λ

of 10−2. Next, we tried λ values of 10−3, 10−4 and 10−5. Any of these λ values, along
with data augmentation, were sufficient to reduce the overfitting caused in the previous
step. The training set’s IOU was now between 0.73 and 0.75, with the validation set’s
IOU between 0.69 and 0.71. To give some perspective on these values, the best ever IOU
reported during training was 0.72 (with 50% consensus truth), in the work of Messay et al.
(2015), although they used a different sub set of LIDC-IDRI nodules. Table 3.3 has more
information on the effect of the regularization parameter λ on the training results.

The final model’s λ value was 10−5, as smaller values seemed to hurt the validation
set’s performance (maybe because the model started to overfit).

3.3.2 Learning Rate

The learning rate experiments in this section were made with a fixed regularization pa-
rameter λ of 10−5. Also, the model had trained for 80 epochs when we began these
experiments.

Until now, the learning rate was fixed at 10−5. However, the model’s performance
started to stagnate, and we decided to tune the learning rate to see if we could improve the
model’s performance.

42

3.3. Training Experiments

Table 3.3: Effect of L2 regularization on the training and validation IOU scores. As
we lower λ , the training IOU score improves, while the validation IOU decreases (as
is expected - if λ is close to 0, then there is no regularization and the net goes back to
overfitting). The higher the IOU, the better. The learning rate was fixed at 10−5. The
highlighted validation set value (0.715) was the best result we got in this experiment.

λ (Reg. Parameter) Training IOU Validation IOU

10−2 0.712 0.68

10−3 0.72 0.693

10−4 0.735 0.7

10−5 0.736 0.715
10−6 0.74 0.706

10−7 0.74 0.7

The basic strategy for finding the best learning rate was:

1. For a given learning rate, train the model until the validation performance stagnates.

2. Once the model’s performance stagnates, lower the learning rate. Repeat step 1.

In Table 3.4 we show the model’s performance for different learning rates. Overall,
reducing the learning rate had a positive effect on the IOU scores, but this effect seemed to
wear off for values under 10−6.

Table 3.4: Effect of the learning rate on the training and validation IOU scores. The higher
the IOU, the better. The regularization parameter λ was fixed at 10−5. Also, note that all
of these learning rate values were tested on a model already trained for 80 epochs, with
stagnated IOU scores (both on the training and validation set). The highlighted validation
set value (0.721) was the best result we got in this experiment.

Learning Rate Training IOU Validation IOU

1×10−4 0.731 0.7

5×10−5 0.73 0.71

1×10−5 0.736 0.715

5×10−6 0.74 0.713

1×10−6 0.742 0.721
5×10−7 0.742 0.72

43

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

3.3.3 Decision Threshold

The decision threshold was defined after we found our final λ and learning rate: 10−5

and 10−6, respectively. The outputs of our deep learning model are real values between
0 and 1. However, segmentation masks are made up of boolean values, with 0’s and 1’s
indicating whether or not a pixel belongs to a lung nodule. To convert the score value to
booleans, we must specify a decision threshold t. Every score above the threshold t is
considered as 1, or belonging to a nodule, and every score below t is considered a 0.

Before applying threshold t, the performance (Intersection Over Union) scores were
computed with our model’s raw output values (in the range [0,1]). Thresholding the raw
output values using a t value of 0.5 seemed improve performance, but only by about
0.005%. From the validation set, we found that the best t value was approximately 0.8,
which gave a minor 0.03% increase in the validation IOU (from 0.72% to 0.724%). While
this increase is minor, Figure 3.3 shows a pattern: increasing t seems to also increase
performance.

0.4 0.6 0.8 1
0.719

0.72

0.721

0.722

0.723

0.724

t

V
al

id
at

io
n

IO
U

Sc
or

e

Figure 3.3: Validation IOU score, for different threshold values.

3.3.4 Summary

To recap, our training strategy was based on the following three steps:

1. Overfit the model. This is a test done to see if the deep learning architecture we
chose is capable of dealing with the task at hand. If the a model isn’t capable of
overfitting on a small set of data, there’s probably something wrong.

2. Reduce overfitting, by applying techniques with a regularizing effect.

44

3.3. Training Experiments

3. Increase the model’s final performance, by lowering the learning rate manually.

The hyperparameters we tuned were:

1. The batch size. The final batch size was 4, due to GPU memory constraints.

2. The regularization parameter, λ . The final λ was 10−5.

3. The learning rate. The final learning rate was 10−6.

4. The decision threshold, t. This is not a machine learning model’s hyperparameter,
but it’s an important value to adjust. The final t was 0.8.

3.3.5 Failed Experiments

There are two additional techniques we tried, which unfortunately didn’t bring any benefit
to our final system:

1. Batch normalization (Ioffe & Szegedy, 2015), also known as BatchNorm - in a
nutshell, this technique applies a set of transformations to the convolution layers’
inputs, ensuring they have zero mean and unit variance. The authors claim this
makes the training process faster, more robust, while also having a regularizing
effect.

2. DropOut (Srivastava et al., 2014) - to put it simply, DropOut is a technique that helps
prevent overfitting in neural networks. It works by randomly removing (or dropping
out) neurons in a neural network during training.

In the original 3D U-Net paper (Çiçek et al., 2016), the authors used BatchNorm
after each convolutional layer. We tried to implement BatchNorm in two separate ways:
before and after each convolution layer. Both seemed to have no effect on the model’s
performance, so we decided to not include BatchNorm layers in our final model. One of
the claims of the original BatchNorm paper is a decrease in training time. However, our
training time was about 1 day for the model without BatchNorm, so training time wasn’t
an issue for us.

DropOut, unlike BatchNorm, had a very negative effect on our model’s performance.
Instead of getting around 72% IOU score on the validation set (which was our best
performance), with DropOut, our model’s performance peaked at 55%. Since DropOut
reduces the number of neurons used in each forward pass, we speculate DropOut failed
because our model needs to have a great number of neurons to perform well. After all, our
model produces a 40×40×40 output matrix of scores. That’s a total of 64,000 scores.
Accurately predicting such a large amount of numbers is bound to require a model with
large capacity.

45

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

Table 3.5: Performance of several different lung nodule segmentation systems, including
our own. All the systems’ IOU scores were calculated using scans from the LIDC dataset,
with nodules annotated by three or more radiologists. These results all use a 50% consensus
truth for defining nodule segmentation masks. Note that despite using the LIDC dataset,
the test set’s nodules are possibly different from system to system (e.g. our system’s test
set had 79 nodules, while Messay et al. (2015) had 77). This Table was based on Table 7
from Messay et al. (2015)

System IOU

B. Zhao, Yankelevitz, Reeves, and Henschke (1999) 43%

Okada and Akdemir (2005) 45%

Kuhnigk et al. (2006) 56%

Wang et al. (2009) 58%

Kubota et al. (2011) 59%

Messay, Hardie, and Rogers (2010) 63%

Messay et al. (2015) 69%

Our System 70%

3.4 Results and Discussion

The final model’s predictions were scored with the intersection over union (IOU) metric,
as is tradition in lung nodule segmentation literature (Messay et al., 2015). Our final model
achieved an IOU score of 70% on the LIDC dataset’s nodules. A comparison with other
lung nodule segmentation approaches is given in Table 3.5.

To our knowledge, our 70% IOU score is the best score on the LIDC dataset, using
nodules annotated by 3 or more radiologists and with a consensus truth of 50%. However,
it is hard to say if this result would be the same for other test sets, as the LIDC dataset
presents a great amount of irregular and subtle nodules, thus presenting a greater challenge
than other nodules in the LIDC-IDRI dataset (Kubota et al., 2011; Wang et al., 2009).

Tables 3.6, 3.7 and 3.8 show our model’s performance for nodules of different subtlety,
texture and margin. We created these tables because literature on lung nodule segmentation
sometimes focuses on a specific type of lung nodule (e.g. solid, non-solid, etc.), and also
to make sure our model was general enough to work for different types of nodules. The
performance results were all obtained in the test set, which is made up of 79 nodules found
in the LIDC dataset.

In Table 3.6, we show the performance of our model for different subtlety values.
Subtlety is a measure of how easy a nodule is to detect. The values in Table 3.6 were
obtained by averaging the radiologists’ subtlety values for a given nodule. So if a nodule

46

3.4. Results and Discussion

Table 3.6: Model’s performance on nodules of different subtlety. A nodule’s subtlety
indicates how easy it is to detect. For a given nodule, the subtlety value (1 to 5) was
calculated by averaging all of the subtlety values assigned by different radiologists. There
were no extremely subtle nodules in the test set.

Subtlety Number of Nodules IOU

5 (Obvious) 26 0.738

4 (Moderately Obvious) 33 0.717

3 (Fairly Subtle) 13 0.654

2 (Moderately Subtle) 7 0.564

1 (Extremely Subtle) 0 ?

Table 3.7: Model’s performance on nodules of different texture (or solidity). Texture
indicates how solid the nodule is. For a given nodule, the texture value (1 to 5) was
calculated by averaging all of the texture values assigned by different radiologists.

Texture Number of Nodules IOU

5 (Solid) 47 0.731

4 (Solid/Mixed) 25 0.663

3 (Part Solid/Mixed) 2 0.707

2 (Non-Solid/Mixed) 4 0.588

1 (Non-Solid/GGO) 1 0.633

was assigned subtlety values of 3, 3, and 5, by 3 different radiologists, the final subtlety
value is the average,

3+3+5
3

= 3.667, (3.1)

which is then rounded to 4. The same principle was applied in Tables 3.7 and 3.8.

From Table 3.6, there is a clear relation between subtlety and the model’s performance:
the more subtle the nodule is, the worse our model performs. This relation is also observed
in Table 3.8, which shows our model’s performance for nodules with different kinds
of margin (well defined / poorly defined margins). Maybe there is a direct relation
between poorly defined margins and nodule subtlety. This would explain the performance
similarities.

Table 3.7 shows our model’s performance for nodules with different texture (also
known as solidity). Texture is a measure of how solid a nodule is. It’s hard to say if there
is any relation between texture and performance, given that most of the test set’s nodules
were either solid or solid/mixed. However, we can see that our model performs best with
solid nodules, and the performance seems to decrease with nodule solidity.

47

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

Table 3.8: Model’s performance on nodules of different margin. The margin value indicates
how well defined a nodule’s margin is. For a given nodule, the margin value (1 to 5) was
calculated by averaging all of the margin values assigned by different radiologists. There
were no nodules with poorly defined margins in the test set.

Margin Number of Nodules IOU

5 (Sharp) 18 0.737

4 (Near Sharp) 37 0.714

3 (Medium Margin) 17 0.655

2 (Near Poorly Defined) 7 0.641

1 (Poorly Defined) 0 ?

Figures 3.4, 3.5 and 3.6 compare our model’s segmentation masks (in green) with the
real segmentation masks (in red). Seeing more a lot of green and little red is a good thing -
this means our system’s segmentation mask overlaps with the real one. In some nodule
slices, we see only a red contour. This means our model didn’t produce a segmentation
contour for that given slice.

(a) IOU = 0.886 (b) IOU = 0.885

Figure 3.4: Two nodules with the best IOU score: 0.886 and 0.885, respectively. Both
are attached to lung structures: figure (a) is attached to vascular structures, and figure (b)
appears to be attached to the lung wall. Red is the original segmentation contour, green
is our model’s segmentation contour. The slices we see here were selected manually, for
better visualization of the nodule.

In Figure 3.4, we have the 2 nodules with the best IOU scores. We can see that our
model is able to produce good segmentation masks, even if the nodules are attached to

48

3.4. Results and Discussion

(a) IOU = 0.837 (b) IOU = 0.833

Figure 3.5: Two nodules clearly attached to lung structures. Red is the original segmenta-
tion contour, green is our model’s segmentation contour.

different types of lung structure (vascularity, lung wall, etc). Figure 3.5 shows 2 additional
nodules attached to the lung wall.

Figure 3.6 shows the 2 worst performing nodules in the test set. These are both
small, slightly subtle nodules. When dealing with small nodules, a small slip up in the
segmentation output can have a serious impact on the IOU score. For example, in Figure
3.6 (b), we can see that our model failed to segment the nodule in 2 slices. Since the
nodule was small to begin with (only 5 slices, 1mm thick), the IOU score was calculated
by dividing a small intersection term by a large union term, resulting in a small IOU score.
Furthermore, in Figure 3.6 (a) we can see that our model created 2 contours in 1 single
mask. It’s unlikely that our model learned to detect multiple nodules in a 40× 40× 40
image, given that the training set had images with multiple nodules close together. In
this particular instance, we think it’s more likely that the model thought it was looking at
a nodule made up of two weakly connected portions. Such results were rare, and could
possibly be fixed with a simple set of hand written rules (e.g. if there is more than 1 contour,
only keep the contour nearest to the volume center). However, this would add unnecessary
complexity to our system, which already achieves state-of-the-art performance.

49

3. BUILDING OUR LUNG NODULE SEGMENTATION SYSTEM

(a) IOU = 0.259 (b) IOU = 0.438

Figure 3.6: Two nodules with the worst IOU scores: 0.259 and 0.438, respectively. Red is
the original segmentation contour, green is our model’s segmentation contour.

50

Chapter 4

Conclusion and Future Work

We have built a lung nodule segmentation system using exclusively deep learning. Our
deep learning model uses a modified 3D U-Net architecture (Çiçek et al., 2016), and was
trained with the intersection over union loss function (Rahman & Wang, 2016). We have
showed deep learning models can be trained with the intersection over union loss, and still
achieve state-of-the-art results. To be precise, our system achieved a 70% intersection over
union score on a test set consisting of nodules from the original LIDC dataset. The nodules
on our test set were annotated by at least 3 radiologists. The segmentation masks were
created using a 50% consensus truth. This was all done in accordance with lung nodule
segmentation literature (Messay et al., 2015).

Lung nodule segmentation system such as the ones described in this work have strong
potential to assist doctors in evaluating more patients, in a more efficient and effective way.
The results look promising, but there is still a lot of work to do.

In particular, one aspect that could be worked on is the input to lung nodule seg-
mentation systems. Our system’s input is a CT Scan VOI (Volume Of Interest) with a
lung nodule. In real life, these CT Scan VOIs are not readily available. They are either
created by radiologists, or by a Computer-Aided Detection system. Most lung nodule
segmentation systems in literature take as input a seed point. However, in theory this is
also not necessary. Ideally, a system would look at a complete CT scan, detect all the
nodules, and automatically segment them, without any interaction from the user.

He, Gkioxari, Dollár, and Girshick (2017) introduced a deep learning architecture called
Mask R-CNN. This architecture is capable of performing both detection and instance
segmentation. Creating a lung nodule CAD system with such an architecture would
eliminate the need for human input.

Our architecture used 3D convolution filters because we thought a 2D filter neural
net would be harder to implement, and probably have worse performance. However, no
experiments were done to verify these claims. It’s true, using pre-trained neural nets

51

4. CONCLUSION AND FUTURE WORK

(especially pre-trained ResNets) has been the go to approach in producing some of the best
performing image segmentation results. Finding a way to utilize pre-trained neural nets
with 2D filters on 3D medical images could yield satisfactory results.

In terms of data, there are still some improvements to be made. Despite the LIDC-IDRI
being a glorious dataset, it is not a reliable segmentation dataset: the nodules still need to
be grouped together, and how the final segmentation masks are created varies from author
to author. We believe a dedicated dataset for lung nodule segmentation would help future
work on this area.

Finally, segmenting a lung nodule is only one part in a multi-step process that leads to
diagnosing lung cancer. Further research is necessary to determine the viability of using
deep learning segmentation models in a clinical setting.

52

Appendix A

Model Summary

Table A.1 has all the layers in our final model, along with the number of parameters and
output shapes.

If a convolution layer has output shape (None,40,40,40,32), this means the layer has
32 filters, each producing a 40× 40× 40 feature map. The same logic applies to other
convolution and deconvolution layers. These layers all use 3×3×3 filters, except for the
final convolution layer (conv3d_15), which uses a 1×1×1 filter. The final convolution
layer is also not followed by a ReLU activation function, unlike all the other convolution
and deconvolution layers. Instead, it uses a sigmoid activation function,

f (x) =
1

1+ e−x , (A.1)

producing output scores in the range of [0,1]. All the other activation functions are ReLUs,

f (x) = max(0,x) , (A.2)

not represented in Table A.1, since they were considered to be an integral part of the
convolution and deconvolution layers.

The total number of trainable parameters in our model is 19,068,993.

53

A. MODEL SUMMARY

Table A.1: Summary of our final model.

Layer (type) Output Shape Parameters Connected to

input_1 (InputLayer) (None, 40, 40, 40, 1) 0 0

conv3d_1 (Conv3D) (None, 40, 40, 40, 32) 896 input_1

conv3d_2 (Conv3D) (None, 40, 40, 40, 64) 55,360 conv3d_1

maxpool3d_1 (MaxPooling3D) (None, 20, 20, 20, 64) 0 conv3d_2

conv3d_3 (Conv3D) (None, 20, 20, 20, 64) 110,656 maxpool3d_1

conv3d_4 (Conv3D) (None, 20, 20, 20, 12) 221,312 conv3d_3

maxpool3d_2 (MaxPooling3D) (None, 10, 10, 10, 12) 0 conv3d_4

conv3d_5 (Conv3D) (None, 10, 10, 10, 12) 442,496 maxpool3d_2

conv3d_6 (Conv3D) (None, 10, 10, 10, 25) 884,992 conv3d_5

maxpool3d_3 (MaxPooling3D) (None, 5, 5, 5, 256) 0 conv3d_6

conv3d_7 (Conv3D) (None, 5, 5, 5, 256) 1,769,728 maxpool3d_3

conv3d_8 (Conv3D) (None, 5, 5, 5, 512) 3,539,456 conv3d_7

deconv3d_1 (Deconvolution) (None, 10, 10, 10, 51) 2,097,664 conv3d_8

concat_1 (Concatenate) (None, 10, 10, 10, 76) 0 deconv3d_1,

conv3d_6

conv3d_9 (Conv3D) (None, 10, 10, 10, 25) 5,308,672 concat_1

conv3d_10 (Conv3D) (None, 10, 10, 10, 25) 1,769,728 conv3d_9

deconv3d_2 (Deconvolution) (None, 20, 20, 20, 25) 524,544 conv3d_10

concat_2 (Concatenate) (None, 20, 20, 20, 38) 0 deconv3d_2,

conv3d_4

conv3d_11 (Conv3D) (None, 20, 20, 20, 12) 1,327,232 concat_2

conv3d_12 (Conv3D) (None, 20, 20, 20, 12) 442,496 conv3d_11

deconv3d_3 (Deconvolution) (None, 40, 40, 40, 12) 131,200 conv3d_12

concat_3 (Concatenate) (None, 40, 40, 40, 19) 0 deconv3d_3,

conv3d_2

conv3d_13 (Conv3D) (None, 40, 40, 40, 64) 331,840 concat_3

conv3d_14 (Conv3D) (None, 40, 40, 40, 64) 110,656 conv3d_13

conv3d_15 (Conv3D) (None, 40, 40, 40, 1) 65 conv3d_14

activation_1 (Activation) (None, 40, 40, 40, 1) 0 conv3d_15

54

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved
from http://tensorflow.org/ (Software available from tensorflow.org)

Adams, R., & Bischof, L. (1994, jun). Seeded region growing. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16(6), 641–647. Retrieved from
https://doi.org/10.1109/34.295913 doi: 10.1109/34.295913

American Cancer Society. (2016). Cancer Facts & Figures 2016. https://

www.cancer.org/research/cancer-facts-statistics/all

-cancer-facts-figures/cancer-facts-figures-2016.html.
(Accessed: 2017-05-10)

Arganda-Carreras, I., Turaga, S. C., Berger, D. R., Cireşan, D., Giusti, A., Gam-
bardella, L. M., . . . Seung, H. S. (2015, nov). Crowdsourcing the creation of
image segmentation algorithms for connectomics. Frontiers in Neuroanatomy, 9.
Retrieved from https://doi.org/10.3389/fnana.2015.00142 doi:
10.3389/fnana.2015.00142

Armato, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves,
A. P., . . . Clarke, L. P. (2011, jan). The lung image database consortium (LIDC)
and image database resource initiative (IDRI): A completed reference database
of lung nodules on CT scans. Medical Physics, 38(2), 915–931. Retrieved from
https://doi.org/10.1118/1.3528204 doi: 10.1118/1.3528204

Armato, S. G., Roberts, R. Y., Kocherginsky, M., Aberle, D. R., Kazerooni, E. A.,
MacMahon, H., . . . Clarke, L. P. (2009, jan). Assessment of radiologist per-
formance in the detection of lung nodules. Academic Radiology, 16(1), 28–38. Re-
trieved from https://doi.org/10.1016/j.acra.2008.05.022 doi:
10.1016/j.acra.2008.05.022

Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves,

55

http://tensorflow.org/
https://doi.org/10.1109/34.295913
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.html
https://doi.org/10.3389/fnana.2015.00142
https://doi.org/10.1118/1.3528204
https://doi.org/10.1016/j.acra.2008.05.022

REFERENCES

A. P., . . . Clarke, L. P. (2015). Data from lidc-idri. The Cancer Imaging Archive.
doi: 10.7937/k9/tcia.2015.lo9ql9sx

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of compstat 2010 (pp. 177–186). Physica-Verlag HD. Retrieved from
https://doi.org/10.1007/978-3-7908-2604-3_16 doi: 10.1007/
978-3-7908-2604-3_16

Brenner, D. J., & Hall, E. J. (2007, nov). Computed tomography — an increasing
source of radiation exposure. New England Journal of Medicine, 357(22), 2277–
2284. Retrieved from https://doi.org/10.1056/nejmra072149 doi:
10.1056/nejmra072149

Campos, D. M., Simões, A., Ramos, I., & Campilho, A. (2014). Feature-based super-
vised lung nodule segmentation. In IFMBE proceedings (pp. 23–26). Springer
International Publishing. Retrieved from https://doi.org/10.1007/978

-3-319-03005-0_7 doi: 10.1007/978-3-319-03005-0_7

Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2016). Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. CoRR, abs/1606.00915. Retrieved from http://arxiv

.org/abs/1606.00915

Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras.
GitHub.

Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., & Ronneberger, O. (2016). 3d
u-net: Learning dense volumetric segmentation from sparse annotation. CoRR,
abs/1606.06650. Retrieved from http://arxiv.org/abs/1606.06650

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., . . . Prior, F. (2013,
jul). The cancer imaging archive (TCIA): Maintaining and operating a public
information repository. Journal of Digital Imaging, 26(6), 1045–1057. Retrieved
from https://doi.org/10.1007/s10278-013-9622-7 doi: 10.1007/
s10278-013-9622-7

Dehmeshki, J., Amin, H., Valdivieso, M., & Ye, X. (2008, apr). Segmentation of pulmonary
nodules in thoracic CT scans: A region growing approach. IEEE Transactions

on Medical Imaging, 27(4), 467–480. Retrieved from https://doi.org/10

.1109/tmi.2007.907555 doi: 10.1109/tmi.2007.907555

56

https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1056/nejmra072149
https://doi.org/10.1007/978-3-319-03005-0_7
https://doi.org/10.1007/978-3-319-03005-0_7
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1606.00915
https://github.com/fchollet/keras
http://arxiv.org/abs/1606.06650
https://doi.org/10.1007/s10278-013-9622-7
https://doi.org/10.1109/tmi.2007.907555
https://doi.org/10.1109/tmi.2007.907555

References

de Hoop, B., Gietema, H., van de Vorst, S., Murphy, K., van Klaveren, R. J., & Prokop,
M. (2010). Pulmonary ground-glass nodules: Increase in mass as an early indicator
of growth. Radiology, 255(1), 199-206. Retrieved from https://doi.org/10

.1148/radiol.09090571 (PMID: 20123896) doi: 10.1148/radiol.09090571

Diciotti, S., Lombardo, S., Falchini, M., Picozzi, G., & Mascalchi, M. (2011, dec).
Automated segmentation refinement of small lung nodules in CT scans by local
shape analysis. IEEE Transactions on Biomedical Engineering, 58(12), 3418–3428.
Retrieved from https://doi.org/10.1109/tbme.2011.2167621 doi:
10.1109/tbme.2011.2167621

Dumoulin, V., & Visin, F. (2016, March). A guide to convolution arithmetic for deep
learning. ArXiv e-prints.

Eisenhauer, E., Therasse, P., Bogaerts, J., Schwartz, L., Sargent, D., Ford, R., . . . Verweij,
J. (2009, jan). New response evaluation criteria in solid tumours: Revised RECIST
guideline (version 1.1). European Journal of Cancer, 45(2), 228–247. Retrieved
from https://doi.org/10.1016/j.ejca.2008.10.026 doi: 10.1016/
j.ejca.2008.10.026

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman,
A. (2015, January). The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1), 98–136.

Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2013, aug). Learning hierarchical
features for scene labeling. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(8), 1915–1929. Retrieved from https://doi.org/10.1109/

tpami.2012.231 doi: 10.1109/tpami.2012.231

Farag, A. A., Munim, H. E. A. E., Graham, J. H., & Farag, A. A. (2013, dec). A
novel approach for lung nodules segmentation in chest CT using level sets. IEEE

Transactions on Image Processing, 22(12), 5202–5213. Retrieved from https://

doi.org/10.1109/tip.2013.2282899 doi: 10.1109/tip.2013.2282899

Hancock, M. C., & Magnan, J. F. (2016, dec). Lung nodule malignancy classification using
only radiologist-quantified image features as inputs to statistical learning algorithms:
probing the lung image database consortium dataset with two statistical learning
methods. Journal of Medical Imaging, 3(4), 044504. Retrieved from https://

doi.org/10.1117/1.jmi.3.4.044504 doi: 10.1117/1.jmi.3.4.044504

Hawkins, D. M. (2004, jan). The problem of overfitting. Journal of Chemical Information

57

https://doi.org/10.1148/radiol.09090571
https://doi.org/10.1148/radiol.09090571
https://doi.org/10.1109/tbme.2011.2167621
https://doi.org/10.1016/j.ejca.2008.10.026
https://doi.org/10.1109/tpami.2012.231
https://doi.org/10.1109/tpami.2012.231
https://doi.org/10.1109/tip.2013.2282899
https://doi.org/10.1109/tip.2013.2282899
https://doi.org/10.1117/1.jmi.3.4.044504
https://doi.org/10.1117/1.jmi.3.4.044504

REFERENCES

and Computer Sciences, 44(1), 1–12. Retrieved from https://doi.org/10

.1021/ci0342472 doi: 10.1021/ci0342472

He, K., Gkioxari, G., Dollár, P., & Girshick, R. B. (2017). Mask R-CNN. CoRR,
abs/1703.06870. Retrieved from http://arxiv.org/abs/1703.06870

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recog-
nition. CoRR, abs/1512.03385. Retrieved from http://arxiv.org/abs/

1512.03385

Henschke, C. I., Yankelevitz, D. F., Mirtcheva, R., McGuinness, G., McCauley, D., &
Miettinen, O. S. (2002, may). CT screening for lung cancer. American Journal

of Roentgenology, 178(5), 1053–1057. Retrieved from https://doi.org/

10.2214/ajr.178.5.1781053 doi: 10.2214/ajr.178.5.1781053

Heuvelmans, M. A., Oudkerk, M., de Bock, G. H., de Koning, H. J., Xie, X., van
Ooijen, P. M. A., . . . Vliegenthart, R. (2013, mar). Optimisation of volume-
doubling time cutoff for fast-growing lung nodules in CT lung cancer screening
reduces false-positive referrals. European Radiology, 23(7), 1836–1845. Retrieved
from https://doi.org/10.1007/s00330-013-2799-9 doi: 10.1007/
s00330-013-2799-9

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., . . . others (2012).
Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 29(6), 82–97.

Ho, P.-G. (Ed.). (2011). Image segmentation. InTech. Retrieved from https://

doi.org/10.5772/628 doi: 10.5772/628

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. CoRR, abs/1502.03167. Retrieved from
http://arxiv.org/abs/1502.03167

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial trans-
former networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, &
R. Garnett (Eds.), Advances in neural information processing systems 28 (pp. 2017–
2025). Curran Associates, Inc. Retrieved from http://papers.nips.cc/

paper/5854-spatial-transformer-networks.pdf

Kaggle. (2017). Dstl Satellite Imagery Feature Detection. https://www.kaggle

.com/c/dstl-satellite-imagery-feature-detection. (Accessed:

58

https://doi.org/10.1021/ci0342472
https://doi.org/10.1021/ci0342472
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.2214/ajr.178.5.1781053
https://doi.org/10.2214/ajr.178.5.1781053
https://doi.org/10.1007/s00330-013-2799-9
https://doi.org/10.5772/628
https://doi.org/10.5772/628
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection

References

2017-06-10)

Karpathy, A. (2016). Connecting images and natural language (Unpublished doctoral
dissertation). Stanford University.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980. Retrieved from http://arxiv.org/abs/1412.6980

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing

systems (pp. 1097–1105).

Krogh, A., & Hertz, J. A. (1992). A simple weight decay can improve generalization. In
Advances in neural information processing systems (pp. 950–957).

Kubo, T., Ohno, Y., Takenaka, D., Nishino, M., Gautam, S., Sugimura, K., . . . Hatabu, H.
(2016). Standard-dose vs. low-dose CT protocols in the evaluation of localized lung
lesions: Capability for lesion characterization—iLEAD study. European Journal

of Radiology Open, 3, 67–73. Retrieved from https://doi.org/10.1016/

j.ejro.2016.03.002 doi: 10.1016/j.ejro.2016.03.002

Kubota, T., Jerebko, A. K., Dewan, M., Salganicoff, M., & Krishnan, A. (2011, feb).
Segmentation of pulmonary nodules of various densities with morphological ap-
proaches and convexity models. Medical Image Analysis, 15(1), 133–154. Re-
trieved from https://doi.org/10.1016/j.media.2010.08.005 doi:
10.1016/j.media.2010.08.005

Kuhnigk, J.-M., Dicken, V., Bornemann, L., Bakai, A., Wormanns, D., Krass, S., &
Peitgen, H.-O. (2006, apr). Morphological segmentation and partial volume analysis
for volumetry of solid pulmonary lesions in thoracic CT scans. IEEE Transactions

on Medical Imaging, 25(4), 417–434. Retrieved from https://doi.org/10

.1109/tmi.2006.871547 doi: 10.1109/tmi.2006.871547

Kurihara, Y., Matsuoka, S., Yamashiro, T., Fujikawa, A., Matsushita, S., Yagihashi, K.,
& Nakajima, Y. (2014, mar). MRI of pulmonary nodules. American Journal

of Roentgenology, 202(3), W210–W216. Retrieved from https://doi.org/

10.2214/ajr.13.11618 doi: 10.2214/ajr.13.11618

Lapedes, A., & Farber, R. (1987). How neural nets work. In Proceedings of the 1987

international conference on neural information processing systems (pp. 442–456).

59

http://arxiv.org/abs/1412.6980
https://doi.org/10.1016/j.ejro.2016.03.002
https://doi.org/10.1016/j.ejro.2016.03.002
https://doi.org/10.1016/j.media.2010.08.005
https://doi.org/10.1109/tmi.2006.871547
https://doi.org/10.1109/tmi.2006.871547
https://doi.org/10.2214/ajr.13.11618
https://doi.org/10.2214/ajr.13.11618

REFERENCES

Cambridge, MA, USA: MIT Press. Retrieved from http://dl.acm.org/

citation.cfm?id=2969644.2969691

Lassen, B. C., Jacobs, C., Kuhnigk, J.-M., van Ginneken, B., & van Rikxoort, E. M.
(2015, jan). Robust semi-automatic segmentation of pulmonary subsolid nodules
in chest computed tomography scans. Physics in Medicine and Biology, 60(3),
1307–1323. Retrieved from https://doi.org/10.1088/0031-9155/60/

3/1307 doi: 10.1088/0031-9155/60/3/1307

LeCun, Y., Bengio, Y., & Hinton, G. (2015, May 28). Deep learning. Nature, 521(7553),
436-444. Retrieved from http://dx.doi.org/10.1038/nature14539

(Insight)

Li, B., Chen, Q., Peng, G., Guo, Y., Chen, K., Tian, L., . . . Wang, L. (2016, may). Seg-
mentation of pulmonary nodules using adaptive local region energy with probability
density function-based similarity distance and multi-features clustering. BioMedical

Engineering OnLine, 15(1). Retrieved from https://doi.org/10.1186/

s12938-016-0164-3 doi: 10.1186/s12938-016-0164-3

MacMahon, H., Naidich, D. P., Goo, J. M., Lee, K. S., Leung, A. N. C., Mayo, J. R., . . .
Bankier, A. A. (2017). Guidelines for management of incidental pulmonary nodules
detected on ct images: From the fleischner society 2017. Radiology, 284(1), 228-
243. Retrieved from https://doi.org/10.1148/radiol.2017161659

(PMID: 28240562) doi: 10.1148/radiol.2017161659

Matthew C. Hancock. (2016). Pylidc - An object relational mapping for the LIDC dataset

using sqlalchemy. https://github.com/pylidc/pylidc/. (Accessed:
2017-06-10)

McKinley, S., & Levine, M. (1998). Cubic spline interpolation. College of the Redwoods,
45(1), 1049–1060.

McNitt-Gray, M. F., Armato, S. G., Meyer, C. R., Reeves, A. P., McLennan, G., Pais,
R. C., . . . Clarke, L. P. (2007, dec). The lung image database consortium (LIDC)
data collection process for nodule detection and annotation. Academic Radiology,
14(12), 1464–1474. Retrieved from https://doi.org/10.1016/j.acra

.2007.07.021 doi: 10.1016/j.acra.2007.07.021

Messay, T., Hardie, R. C., & Rogers, S. K. (2010, jun). A new computationally efficient
CAD system for pulmonary nodule detection in CT imagery. Medical Image

60

http://dl.acm.org/citation.cfm?id=2969644.2969691
http://dl.acm.org/citation.cfm?id=2969644.2969691
https://doi.org/10.1088/0031-9155/60/3/1307
https://doi.org/10.1088/0031-9155/60/3/1307
http://dx.doi.org/10.1038/nature14539
https://doi.org/10.1186/s12938-016-0164-3
https://doi.org/10.1186/s12938-016-0164-3
https://doi.org/10.1148/radiol.2017161659
https://github.com/pylidc/pylidc/
https://doi.org/10.1016/j.acra.2007.07.021
https://doi.org/10.1016/j.acra.2007.07.021

References

Analysis, 14(3), 390–406. Retrieved from https://doi.org/10.1016/j

.media.2010.02.004 doi: 10.1016/j.media.2010.02.004

Messay, T., Hardie, R. C., & Tuinstra, T. R. (2015, may). Segmentation of pulmonary
nodules in computed tomography using a regression neural network approach and
its application to the lung image database consortium and image database resource
initiative dataset. Medical Image Analysis, 22(1), 48–62. Retrieved from https://

doi.org/10.1016/j.media.2015.02.002 doi: 10.1016/j.media.2015.02
.002

National Cancer Institute. (2014). National Lung Screening Trial. https://www

.cancer.gov/types/lung/research/nlst. (Accessed: 2017-05-11)

National Cancer Institute. (2016). Can Lung Cancer Be Found Early?

https://www.cancer.org/cancer/lung-cancer/prevention

-and-early-detection/early-detection.html. (Accessed: 2017-05-
11)

Okada, K., & Akdemir, U. (2005). Blob segmentation using joint space-intensity likelihood
ratio test: application to 3d tumor segmentation. In Computer vision and pattern

recognition, 2005. cvpr 2005. ieee computer society conference on (Vol. 2, pp.
437–444).

payaovat. (2017). Cats. https://pixabay.com/en/cat-eyes-face

-animals-home-2438095/. Pixabay.

Perandini, S., Soardi, G. A., Motton, M., Augelli, R., Zantedeschi, L., & Montemezzi,
S. (2016, feb). CT imaging features in the characterization of non-growing
solid pulmonary nodules in non-smokers. Polish Journal of Radiology, 81, 46–
50. Retrieved from https://doi.org/10.12659/pjr.895307 doi:
10.12659/pjr.895307

Pinheiro, P., & Collobert, R. (2014). Recurrent convolutional neural networks for scene
labeling. In T. Jebara & E. P. Xing (Eds.), Proceedings of the 31st international con-

ference on machine learning (icml-14) (p. 82-90). JMLR Workshop and Conference
Proceedings. Retrieved from http://jmlr.org/proceedings/papers/

v32/pinheiro14.pdf

Rahman, M. A., & Wang, Y. (2016). Optimizing intersection-over-union in deep neural
networks for image segmentation. In Advances in visual computing (pp. 234–

61

https://doi.org/10.1016/j.media.2010.02.004
https://doi.org/10.1016/j.media.2010.02.004
https://doi.org/10.1016/j.media.2015.02.002
https://doi.org/10.1016/j.media.2015.02.002
https://www.cancer.gov/types/lung/research/nlst
https://www.cancer.gov/types/lung/research/nlst
https://www.cancer.org/cancer/lung-cancer/prevention-and-early-detection/early-detection.html
https://www.cancer.org/cancer/lung-cancer/prevention-and-early-detection/early-detection.html
https://pixabay.com/en/cat-eyes-face-animals-home-2438095/
https://pixabay.com/en/cat-eyes-face-animals-home-2438095/
https://doi.org/10.12659/pjr.895307
http://jmlr.org/proceedings/papers/v32/pinheiro14.pdf
http://jmlr.org/proceedings/papers/v32/pinheiro14.pdf

REFERENCES

244). Springer International Publishing. Retrieved from https://doi.org/

10.1007/978-3-319-50835-1_22 doi: 10.1007/978-3-319-50835-1_22

Revel, M.-P., Bissery, A., Bienvenu, M., Aycard, L., Lefort, C., & Frija, G. (2004, may).
Are two-dimensional CT measurements of small noncalcified pulmonary nodules
reliable? Radiology, 231(2), 453–458. Retrieved from https://doi.org/

10.1148/radiol.2312030167 doi: 10.1148/radiol.2312030167

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597. Retrieved from http://

arxiv.org/abs/1505.04597

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., . . . Fei-Fei, L.
(2015). Imagenet large scale visual recognition challenge. International Journal

of Computer Vision, 115(3), 211–252. Retrieved from http://dx.doi.org/

10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y

Schmidhuber, J. (2014). Deep learning in neural networks: An overview. CoRR,
abs/1404.7828. Retrieved from http://arxiv.org/abs/1404.7828

Setio, A. A. A., Traverso, A., de Bel, T., Berens, M. S., van den Bogaard, C., Cerello, P.,
. . . Jacobs, C. (2017, dec). Validation, comparison, and combination of algorithms
for automatic detection of pulmonary nodules in computed tomography images:
The LUNA16 challenge. Medical Image Analysis, 42, 1–13. Retrieved from
https://doi.org/10.1016/j.media.2017.06.015 doi: 10.1016/j
.media.2017.06.015

Shelhamer, E., Long, J., & Darrell, T. (2016). Fully convolutional networks for semantic
segmentation. CoRR, abs/1605.06211. Retrieved from http://arxiv.org/

abs/1605.06211

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., . . .
Hassabis, D. (2016). Mastering the game of go with deep neural networks and
tree search. Nature, 529, 484–503. Retrieved from http://www.nature.com/

nature/journal/v529/n7587/full/nature16961.html

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. A. (2014). Striving
for simplicity: The all convolutional net. CoRR, abs/1412.6806. Retrieved from
http://arxiv.org/abs/1412.6806

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

62

https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.1148/radiol.2312030167
https://doi.org/10.1148/radiol.2312030167
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1404.7828
https://doi.org/10.1016/j.media.2017.06.015
http://arxiv.org/abs/1605.06211
http://arxiv.org/abs/1605.06211
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://arxiv.org/abs/1412.6806

References

Dropout: a simple way to prevent neural networks from overfitting. Journal of

machine learning research, 15(1), 1929–1958.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215. Retrieved from http://arxiv.org/abs/

1409.3215

Swensen, S. J., Viggiano, R. W., Midthun, D. E., Müller, N. L., Sherrick, A., Yamashita, K.,
. . . Weaver, A. L. (2000, jan). Lung nodule enhancement at CT: Multicenter study.
Radiology, 214(1), 73–80. Retrieved from https://doi.org/10.1148/

radiology.214.1.r00ja1473 doi: 10.1148/radiology.214.1.r00ja1473

University of Oxford. (2012). PASCAL VOC Challenge performance evaluation and down-

load server. http://host.robots.ox.ac.uk:8080/leaderboard/

displaylb.php?challengeid=11&compid=6. (Accessed: 2017-05-10)

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011, mar). The NumPy array: A
structure for efficient numerical computation. Computing in Science & Engineering,
13(2), 22–30. Retrieved from https://doi.org/10.1109/mcse.2011.37

doi: 10.1109/mcse.2011.37

van Ginneken, B., Armato, S. G., de Hoop, B., van Amelsvoort-van de Vorst, S., Duindam,
T., Niemeijer, M., . . . Prokop, M. (2010, dec). Comparing and combining algorithms
for computer-aided detection of pulmonary nodules in computed tomography scans:
The ANODE09 study. Medical Image Analysis, 14(6), 707–722. Retrieved from
https://doi.org/10.1016/j.media.2010.05.005 doi: 10.1016/j
.media.2010.05.005

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles
of relatively shallow networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
& R. Garnett (Eds.), Advances in neural information processing systems 29 (pp.
550–558). Curran Associates, Inc. Retrieved from http://papers.nips.cc/

paper/6556-residual-networks-behave-like-ensembles-of

-relatively-shallow-networks.pdf

Wang, Q., Song, E., Jin, R., Han, P., Wang, X., Zhou, Y., & Zeng, J. (2009, jun).
Segmentation of lung nodules in computed tomography images using dynamic
programming and multidirection fusion techniques1. Academic Radiology, 16(6),
678–688. Retrieved from https://doi.org/10.1016/j.acra.2008.12

.019 doi: 10.1016/j.acra.2008.12.019

63

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://doi.org/10.1148/radiology.214.1.r00ja1473
https://doi.org/10.1148/radiology.214.1.r00ja1473
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1016/j.media.2010.05.005
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
http://papers.nips.cc/paper/6556-residual-networks-behave-like-ensembles-of-relatively-shallow-networks.pdf
https://doi.org/10.1016/j.acra.2008.12.019
https://doi.org/10.1016/j.acra.2008.12.019

REFERENCES

Way, T. W., Hadjiiski, L. M., Sahiner, B., Chan, H.-P., Cascade, P. N., Kazerooni,
E. A., . . . Zhou, C. (2006, jun). Computer-aided diagnosis of pulmonary nodules
on CT scans: Segmentation and classification using 3d active contours. Med-

ical Physics, 33(7Part1), 2323–2337. Retrieved from https://doi.org/

10.1118/1.2207129 doi: 10.1118/1.2207129

World Health Organization. (2017). Cancer Fact sheet. http://www.who.int/

mediacentre/factsheets/fs297/en/. (Accessed: 2017-05-10)

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., & Brostow, G. J. (2016). Harmonic
networks: Deep translation and rotation equivariance. CoRR, abs/1612.04642.
Retrieved from http://arxiv.org/abs/1612.04642

Yu, F., & Koltun, V. (2015). Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122. Retrieved from http://arxiv.org/abs/1511.07122

Zhao, B., Yankelevitz, D., Reeves, A., & Henschke, C. (1999, jun). Two-dimensional multi-
criterion segmentation of pulmonary nodules on helical CT images. Medical Physics,
26(6), 889–895. Retrieved from https://doi.org/10.1118/1.598605

doi: 10.1118/1.598605

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2016). Pyramid scene parsing network. CoRR,
abs/1612.01105. Retrieved from http://arxiv.org/abs/1612.01105

64

https://doi.org/10.1118/1.2207129
https://doi.org/10.1118/1.2207129
http://www.who.int/mediacentre/factsheets/fs297/en/
http://www.who.int/mediacentre/factsheets/fs297/en/
http://arxiv.org/abs/1612.04642
http://arxiv.org/abs/1511.07122
https://doi.org/10.1118/1.598605
http://arxiv.org/abs/1612.01105

	Resumo
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Dedication
	Introduction
	Lung Cancer and Lung Nodules
	Objectives
	Contributions
	Document Structure

	State of the Art
	Lung Nodule Segmentation
	Region Growing
	Morphology Based
	Other Methods

	Deep Learning
	Problem Formulation
	Neural Networks
	Convolutional Neural Networks

	Segmentation via Deep Learning
	Fully Convolutional Networks
	U-Net
	Pyramid Spatial Pooling Network

	Building our Lung Nodule Segmentation System
	Data and Tools
	Computed Tomography
	LIDC-IDRI Dataset
	Data Cleaning and Pre-Processing

	Model Details and Training Techniques
	Final Architecture
	Optimization
	Improving our Model's Performance

	Training Experiments
	Regularization Experiments
	Learning Rate
	Decision Threshold
	Summary
	Failed Experiments

	Results and Discussion

	Conclusion and Future Work
	Model Summary
	References

