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Abstract: 

Forecasting models have been applied to many industries as a decision-making tool for over 100 

years. Their application in the aviation industry benefits a wide variety of stakeholders such as 

airliners and airport authorities, who use past data to predict demand and passenger choices so that 

they can better define fares, manage their fleet and make decisions on the airport layout and future 

expansions, among others. 

The main objective of this dissertation is the development of a forecasting model capable of 

predicting the number of flight movements at Lisbon Airport. The model was based on an 

autoregressive model, which uses past data in order to forecast future figures.  Weekly data 

regarding the flight movements at Lisbon Airport was the sample for this study, which was 

processed through RStudio programming software. 

Once the Autoregressive Moving Average (ARIMA) models were defined, the forecasting 

data was created and further tested for accuracy using extant data. The impact of COVID-19 had 

to be considered in this situation, leading to the breakdown of the original time-series into three 

different samples. The forecasting models were subsequently created through each of these 

models. 

The results were expressed through the three different models, and since two of them have 

extant data, meaning an existing sample to compare the predicted data, it was possible to determine 

the accuracy level. However, these models cannot be applied immediately since the impact of 

COVID-19 is still present and flights have not resumed normality. Once this normality resumes, 

the models can be applied. 

Keywords: Forecasting Methodologies, ARIMA Models, Airline Industry, COVID-19 

JEL Classification: 

C53: Forecasting and Prediction Methods - Simulation Method 

C55: Large Data Sets: Modeling and Analysis 

L93: Air Transportation 
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Resumo: 

Modelos preditivos têm sido aplicados a variados setores como ferramenta de tomada de decisão 

há mais de 100 anos. A sua aplicação na indústria aeronáutica beneficia uma ampla variedade de 

interessados, como companhias aéreas e autoridades aeroportuárias que utilizam dados para prever 

a procura, definir preços, gerir frotas e tomar decisões relativas ao layout do aeroporto, expansões 

futuras, entre outros.  

O principal objetivo desta dissertação é o desenvolvimento de um modelo de previsão capaz 

de prever o número de movimentos de voos no Aeroporto de Lisboa. O modelo foi baseado num 

modelo autorregressivo, que utiliza dados passados para prever valores futuros. O Aeroporto de 

Lisboa foi o objeto escolhido para esta dissertação. Dados semanais relativos aos movimentos 

aéreos no Aeroporto de Lisboa consistiram na amostra para este estudo, os quais foram 

processados através do software de programação RStudio. 

Assim que os modelos Autoregressive Moving Average (ARIMA) foram definidos, os dados 

de previsão foram criados e testados quanto à precisão usando os dados existentes. O impacto do 

COVID-19 teve que ser considerado nesta situação, levando à divisão da série temporal original 

em três amostras diferentes. Os modelos de previsão foram posteriormente criados através de cada 

um desses modelos. Os resultados foram expressos através dos três modelos, e como dois deles 

possuem dados existentes para comparação com dados previstos, foi possível determinar o nível 

de precisão. No entanto, os modelos não podem ser aplicados imediatamente, uma vez que o 

impacto do COVID-19 ainda está presente e os voos não voltaram à normalidade. Uma vez 

resumida essa normalidade, os modelos podem ser aplicados. 

Palavras Chave: Metodologias de Previsão, Modelos ARIMA, Indústria Aeronáutica, COVID-

19 

Classificação JEL: 

C53: Métodos de previsão e predição - Método de simulação 

C55: Grandes conjuntos de dados: modelagem e análise 

L93: Transporte Aéreo 
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1. Introduction 

For any given industry, forecasting is a useful tool that can help business gaining business 

advantage and make data-driven strategic decisions based on past consumer behavior. Anticipating 

a market’s movement and pattern allows a firm or company to gain advantage compared to its 

competitors as the more accurate the forecast is, the bigger chances of thriving a certain player has 

in said market.  

Ever since the air travel boom in the 1950s and 60s, airlines have developed predictive 

strategies in order to adapt themselves to the constant changing environment, aiming at 

maximizing profits and client satisfaction. Many studies regarding forecasts within the aviation 

industry have been conducted throughout the years, with most considering past data and behaviors 

as sample and indicators for the predictive model creation, whilst others additionally consider 

external factors such as the economic impact of new routes, increasing passenger movements or 

even local demographics.  

In the early 2020s, the most important economic factor to consider in any industry is the impact 

of COVID-19, since it has led to lockdowns, travel restrictions and overall halt of non-necessary 

services. The aviation industry was one of the most impacted by the virus since most international 

travel was banned due to governments restrictions, leaving only minimum services and rare 

domestic flights untouched. The creation of a forecasting model in this period is challenging due 

to the uncertainty of COVID-19’s consequences and how long will it take for air travel to resume 

its normality.  

1.1 Objectives 

The main objective of this dissertation was the development of a forecasting model to predict the 

number of flight movements at any given airport. Lisbon International Airport was the chosen case 

for this study. Another important aspect was the analysis of COVID-19 and its direct impact on 

the airport’s flight numbers.  

1.2 Methodology 

Since forecasting models are usually based on past data and behaviors, it was necessary to obtain 

flight movements regarding Lisbon International Airport. Once the data was obtained through 

EUROCONTROL (2020), RStudio was used to analyze it by conducting Stationarity and Unit 
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Root tests, and subsequently create the different ARIMA models. This type of model was chosen 

due to its use of past data in order to predict future values by using lagged moving averages to 

smooth time series data, consisting in a more flexible model when compared to exponential 

smoothing or simple linear regression. These ARIMA models were the basis for the future 

forecasting models, and the consequent results were tested for accuracy based on extant data for 

the respective periods.  

Whilst this model was directly applied to Lisbon International Airport, most commercial 

airport behave similarly in terms of seasonality, with higher peaks during the summer and lower 

peaks during the winter. This implies that different datasets can originate forecasting models with 

similar level of accuracy. 

1.3 Structure 

This thesis will be subdivided into five chapters: 

• Introduction – consisting of a general context, objective, an initial approach to the 

methodology, scope and structure. 

• Literature review – with the aim of providing the foundation for the research, this chapter 

provides a synopsis of the existing literature on factors affecting airport demand, different 

forecasting methodologies and time series models, and the impact of COVID-19 in the 

aviation industry. 

• Methodology – which incorporates the different methods and principles used to fulfil the 

objectives of this dissertation, with focus on the sample data, the used software and 

proposed models. 

• Results and Discussion – where the model development is exposed. The different models 

were then compared in terms of accuracy and further discussed on how can be applied to 

distinct situations. 

• Conclusion – a segment which contains a simplified analysis of the study results and how 

these relate to the overall objective of this dissertation. Furthermore, the model’s 

limitations and possible applications of this project are also dissected.   
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2. Literature Review 

In order to fulfil the objectives of this dissertation, a literature review is conducted to review 

relevant topics associated with this study’s subject. This section includes existing literature on 

airport operations, determinant factors on passenger demand, forecasting methodologies, and the 

impact of COVID-19 on the aviation industry. The development of the forecasting model will be 

influenced by previous studies along with present economic factors which will be further dissected 

in this section. The highly uncertain impact of the recent COVID-19 pandemic also plays a relevant 

role in the model creation and therefore is also being explored in this section.  

2.1 Factors Affecting Airport Demand 

Socio-economic characteristics have been shown to affect demand for health care (Celik and 

Hotchkiss, 2000), broadband connectivity (Dwivedi and Lal, 2007), fuel (Wadud et al., 2009), 

gambling (Layton and Worthington, 1999), and alcoholic beverages (Johnson and Oksanen, 1974), 

to name just a few examples. Hence, there is ample and long-term research documenting that socio-

economic characteristics are important determinants of demand for a variety of goods and services 

(Hofer et al, 2018). Since the emergence of railways and airports, many questions have been raised 

regarding the impact of economic factors on passenger demand. This research focuses on the 

airline industry, therefore, it’s important to reference how air traffic is influenced by external 

factors, and which of these have a greater impact on airline and airport operations. Both airlines 

and airports must be appropriately synchronized, since they depend on each other for the aviation 

industry’s well-being, leading to, on one hand, airports ensuring the new routes sustainability and 

satisfying the primary needs of the passengers in the catchment area, and on the other hand, public 

stakeholders asking airports management to measure the economic impact of active flights in order 

to grant a financial support (Perboli et al., 2011b). The studies that have dealt with this topic are 

presented in the section. 

The first study worth analysing dates back to 2012, when Benedetti et al developed a logistic 

regression model to estimate the passenger flows in The Cagliari Airport impact on Sardinia 

tourism: a Logit-based analysis, while considering the airport schedule, the accessibility of the 

tourist destination from the airport area, the cost of the flight and the attractiveness of the 

destination region for the tourists. Given the model, a change in a target airport schedule was 

introduced, and the new tourist flows, as well as their expected economic impact, were forecasted. 
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Additionally, researchers intended to predict the effect of the opening of one or more new routes 

on the flow of passengers from chosen origins to Cagliari Airport and to measure the economic 

impact on the close area. 

The economic and spatial interaction logistic regression model was based on the forecasting 

analysis, which was mostly focused on a two-level Logit Analysis that can represent intermodal or 

transhipment transportation networks (Benedetti et al, 2012). It includes characteristics such as 

identifier of flight origins, identifier of intermediate points, identifier of destination, observed 

flows, generalized flight cost matrix, generalized travel cost matrix and the average total cost. The 

intention is to define a valid model for the estimated flows matrix considering both the airport and 

flight characteristics, as well as the odd features of the destination. 

Consequently, to calibrate the model and to simulate the changes due to the introduction of a 

new schedule, which is the basic information needed to estimate the economic impact of this 

schedule change the model must include the following input data: number of arrivals registered in 

tourist facilities; cost of the flight; cost of accommodation and cost for the rental car; presence of 

the direct flight. 

After the model was created, a what-if scenario was designed - the introduction of a route 

Cagliari-Russia represents a further and more interesting development for the Italian airport. 

Providing this direct connection, Cagliari could reach a larger range of potential customers, 

distinguishing itself from the airports of Olbia and Alghero, which do not handle any connections 

with any of Russian airports (Benedetti et al, 2012). The results estimate that an increase of 90% 

in terms of Russian tourists in the region and a significant revenue increment around 12 million 

euros, which leads to the conclusion that thoroughly understanding the economic and demographic 

characteristics of a specific location can bring benefits to players in the airline industries.  

The relationship between economic factors and air travel is symbiotic: The prediction of future 

air travel demand is of critical importance in the aviation industry and the basis for policy and 

managerial decision-making related to infrastructure and production planning (Carson et al., 

2011), since it’s determined by a set of factors such as ticket prices, income, and population, with 

characteristics such as quality of air service, consumer wealth and flight delays found to have a 

partial influence (Hofer et al, 2018)  
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Socio-economic mobility and passenger demand in the U.S. (Hofer et al, 2018), studies the 

impact of socioeconomic mobility (SEM) on passenger volume in the United States by applying 

recent findings on SEM research. Socioeconomic mobility in the United States refers to the 

ascendent or descendant movement of Americans from one social class or economic level to another, 

through job changes, inheritance, marriage, etc. The United States faced record levels of income 

inequality and one of the lowest rates of SEM among industrial nations (Piketty and Saez, 2003) 

since it is usually associated with higher diversity in a specific region. In regions with a diversified 

business base, workers with variable skills can be more successfully matched up with a wider range 

of employment opportunities, hence generating economic outcomes for both businesses and 

individuals that otherwise would be impossible to achieve, but at an individual level it’s not quite 

clear how SEM affects air traffic demand (Hofer et al, 2018) 

In order to conduct this research, different sets of passenger data were used along with income 

and population statistics. The dependent variables included Interest and Total Passenger 

Enplanements, while independent variables included Socioeconomic Mobility, Income and 

Population, AltAirports – substitute commercial airports for a given destination (Morrison, 2001). 

– and Yield – distance adjusted air fares. 

The study results show that greater SEM is widely associated with lower yields, and there’s 

also evidence that passenger volume decreases as SEM increases. This means SEM has a clear 

impact on air travel demand, and airlines should be cautious when operating in markets with higher 

socioeconomic mobility, regarding the impact of yields and this indicator should be considered 

when forecasting demand (Hofer et al, 2018). 

2.2 Short-term Forecasting 

Throughout aviation history, forecasting has been used as tool for mostly every player in the 

industry, with both airline companies and airports relying on a wide variety of models to enhance 

and optimize their operations. Forecasting the demand for aviation activities is an important task 

in economic planning (Ghobrial, 1997). Although the definition of short-term forecasting is not 

exact, most researchers acknowledge the time frame as up to two years. 

In the early 1990s, Atef Ghobrial developed a multiple regression model using both dependent 

and independent variables. The dependent variable in the model is the number of annual aircraft 

operations at a given general aviation (GA) airport (Ghobrial, 1997), whilst the independent 
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variables in the model include a set of descriptors of the nature and level of the socioeconomic 

activities in the county where the airport is located, and another set of supply variables that affect 

the levels of service at an airport (Ghobrial, 1997). 

The results showed that the existence of Air Traffic Control (ATC) and runway length are the 

most prominent factors in the 82 GA airports in terms of demand. Other services such as avionics, 

charter flights and rentals, aircraft repair, and crop dusting are shown to have an impact on the 

increased activity of such airports. However, the most important conclusion lies on the fact that 

there’s a need to analyse more variables and sensitivity of the model specifications and correlations 

between some variables in the model are also drawbacks to this particular of analysis. A method 

to overcome this problem would be to develop separate models for both local and itinerant aircraft 

operations. 

Multiple regression models are not the only used for short-term forecasting in the aviation 

industry. A combination of different models can be useful than other time series models, indicating 

that they are promising tools to predict complex time series with high volatility and irregularity 

(Xie et al, 2018). 

A relevant example of a hybrid model applied to short-term forecasting is the work developed 

by Xie et al in 2018, in which a Least Squares Support Vector Regression (LSSVR) was combined 

with a seasonal decomposition method in order to predict air passenger movements at Hong Kong 

International Airport. 

The Least squares support vector regression model transforms the regression model in an 

optimization model. There are two distinct seasonal decomposition methods: X-12-ARIMA, 

which decomposes time series into three components - trend-cycle component, seasonal factor and 

irregular component that can be combined into the original data in additive and multiplicative 

forms. TRAMO (Time series Regression with ARIMA noise, Missing values, and Outliers) is a 

program for estimation and forecasting of regression models with errors that follow mostly 

nonstationary ARIMA processes. Consequently, two distinct hybrid approaches were built which 

include X-12-LSSVR (combination of X-12- ARIMA and LSSVR) and TS-LSSVR (combination 

of TRAMO and LSSVR), (Xie et al, 2018). 
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Two hybrid approaches are developed for the comparison with other time series methods. The 

investigation suggests that seasonal decomposition is an effective way to air passenger forecasting. 

It is important to describe the seasonal characteristic and nonlinear nature of air passenger series 

for better forecasting performance. 

Another relevant of a hybrid model being used for the purpose of short-term forecasting in 

aviation is the work developed by Jin et al in 2018, entitled Forecasting air passenger demand 

with a new hybrid ensemble approach, which focused on analysing and modelling air passenger 

dynamic, concentrating on its impact on management and operation across the whole aviation 

industry. The combination of models was based on a Variational Mode Decomposition (VMD), 

an Autoregressive Moving Average (ARMA) and a Kernel Extreme Learning Machine (KELM). 

The hybrid model was then applied to three distinct data sets – Beijing Airport and Guangzhou 

to test the performance and Shanghai Airport to test the robustness and applicability. Monthly 

passenger demand from January 2006 to November 2017 from the three airports was collected, 

from which January 2006 to July 2015 was considered the training set and from August 2015 to 

November 2017 was considered the out-of-sample data (Jin et al, 2019). 

The main conclusions taken from this research were the following: 

• Internal characteristics can be more efficient to extract in the original air passenger 

demand by adopting VMD. 

• The stationary and non-stationary series are predicted respectively by the compatible 

models based on the results of the stationarity test, and the unique characteristics of 

each subseries can more be captured completely. 

• By taking advantage of different forecasting models, the proposed approach can obtain 

more effective and convincing results, which are proved by different evaluation criteria. 

• The hybrid approach VMD-ARMA/ KELM-KELM is initially developed, and its 

stability is demonstrated from various aspects including running times, the number of 

iterations and so on (Jin et al, 2019). 

Short-term forecasting can also be used to predict variables with direct impact on passenger 

demand and aircraft movements. Robust and adaptive statistical models were previously 
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developed in order to explore the effect of intermediate weather variable related to accuracy 

prediction using single layer LSTM - Long Short-Term Memory - Multi Layers memory block 

(Salman et al, 2018). LSTM is a specific recurrent neural network (RNN) architecture that 

designed a model temporal sequences with their long-range dependencies, which is widely used 

for time series prediction (Salman et al, 2018). 

Dataset for this research was obtained from Weather Underground which collects weather data 

including temperature, dew point, humidity, and visibility from many weather stations all over the 

world. The range of data for this study was from year 2012 to year 2016 comprise of 40,025 time 

series data at Hang Nadim Airport Indonesia (Salman et al, 2018). The proposed model is a stacked 

LSTM with subsequent layers having 200, 100, 90, and 50 nodes of hidden layers.  

Despite many models have been proposed for weather prediction, most of these models used 

the same input and output variables. The result of this study, which exploited LSTM model variant, 

showed that intermediate variables can improve prediction capability of the model. The LSTM 

model is feasible and suggested to be implemented in predicting weather with the addition of 

intermediate data in order to improve the accuracy. The best model of LSTM model in this 

experiment is multiple layers LSTM and the best intermediate data is pressure variable. 

2.3 Long-Term Forecasting 

Long-term forecasting is likely to be dominated by trend curves, particularly the simple linear and 

exponential trends (Granger and Jeon, 2007). Nevertheless, players in the airline industry benefit 

from long-term forecasting and this subsection provides an insight on a few conducted studies 

regarding longer time frames of predicting methodologies within the aviation industry. Similarly 

to short-term models, there is a wide variety of models which can be applied to accurately predict 

long term indicators.  

The application of trends is very popular in fields such as business planning, financial market 

(Visser and Dangendorf, 2015), and the aviation industry can also be included. Trend is conceived 

as the part of the series which, when extrapolated, provides the clearest indication of the future 

long-term movements in the series (Visser and Dangendorf, 2015). Consequently, univariate and 

multivariate trend models are good methodologies to apply when predicting indicators such as 

demand levels. Andreoni and Postorino (2006) have calibrated and compared this type of model 



 

9 
 

in order to estimate the passenger demand at Reggio Calabria regional airport in Italy by using the 

annual passenger number between 1989 and 2004. 

The developed ARIMA model was based on the Autocorrelated Function (ACF) and a Partial 

Autocorrelated Function (PACF). The Box-Jenkins methodology was also applied to identify the 

model, estimate the parameters and diagnostic checking (Andreoni and Postorino, 2006) 

In 2004, during the months of March, April and May, the runway was on maintenance which 

means the full year has been considered an outlier. This led the researchers to create two separate 

univariate models – one in which the outlier had been removed and another in which the outliner’s 

values had been slightly altered in order to follow the trend (Andreoni and Postorino, 2006). Both 

results have been described as acceptable since they fit a time series model. The multivariate model 

was based on the univariate and includes two variables – income per capita and the number of 

movements in and out of Reggio Calabria airport – used to calculate the airport demand in the 

subsequent years. 

After the results were obtained, it was concluded that both models had satisfactory levels of 

accuracy, however, the univariate model had a better performance every time the function 

contained peaks. Despite this, it was not concluded that univariate was better than the multivariate 

models, since univariate can only forecast the demand level if all the underlying conditions are the 

same and cannot be used to simulate the effects of different policies. Contrarily, data for the 

independent variables is always more difficult to obtain, which compromises the structure of a 

time-series model and consequently, its validity (Andreoni and Postorino, 2006). 

Demand models also fit the purpose of long-term forecasting, as the German Aerospace Centre 

(DLR) developed a four-step model to forecast passenger and flight volume at German airports, 

whilst considering the impacts of Brexit. 

The traditional DLR-Demand Model used the phases of trip generation, trip distribution, 

modal split and trip assignment to follow the traditional four-step algorithm of models used for 

simulating and forecasting traffic (Gelhausen et al, 2018) This gravity model, where the interaction 

between two places was determined by the product of the population of both places, divided by the 

square of their distance from one another, was divided in four distinct steps: 

• First step - the number of journeys generated in and out of Germany, as the study region, 
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are forecasted by using different approaches depending on the trip purpose 

• Second step – the spatial division of Germany’s trip volume to the originating airports 

inside the country and destination zones outside Germany.  

• Third step - trip assignment by which the O-D flows were assigned to the routes served by 

direct flights. 

• Fourth step - vehicle assignment by which route specific travel volumes were converted to 

the number of flights (Gelhausen et al, 2018). 

While the four-step approach to demand modelling has a strong microeconomic foundation 

based on individual choice behaviour, this approach is not only very data-intense, but also needs 

rather well-defined, unswerving sub-models (Gelhausen et al, 2018). 

Another important subject to highpoint is that many socioeconomic and traffic time series are 

non- stationary because of a stochastic trend, which can produce a spurious regression (Gelhausen 

et al, 2018). Variables explained are annual passenger and flight volume growth at German airports 

and the growth rate of passengers per flight serves as a variable to model the supply side of the air 

transport market. Air fares and jet fuel prices are expected to have a significant effect on passenger 

and flight volume growth over time, since they are important parameters of the demand and supply 

side of air transport. 

The complete application of the model yields for each forecast year quite detailed forecast 

results, such as: 

• Passenger volumes of the study area (i.e. Germany) by trip purpose 

• OD-Passenger flows between the study area zones (in Germany) and foreign zones 

• Passenger volumes on routes served by scheduled and charter flights 

• Passenger volumes of airports of the study area (Germany) 

• Passenger flight volumes in scheduled and charter traffic by route 

• Passenger flight volumes of airports of the study area (Germany) 
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The new model has been employed to estimate the effects of Brexit on passenger and flight 

volumes at German airports. This case study focused on two scenarios, which were written by the 

IMF and HM Treasury, and compared them to a baseline scenario of no Brexit. Then, a distinction 

between effects that were due to a decrease in the UK GDP and a devaluation of GBP (Gelhausen 

et al, 2018). 

Compared to the classical DLR model, the new direct demand model employs a far lower 

number of input variables. Moreover, the forecast values for the input variables are easier to obtain 

for the new direct demand model because they are less specific and more commonly available, e.g. 

GDP forecast for the European Union. This holds both for the demand as well as the flight 

forecast. The new direct demand model combines step one and two of the classical DLR model 

and omits step three (“route-specific passenger volumes”). Instead, based on the results of the demand 

forecast, the new direct demand model proceeds to the flight forecast (step four) (Gelhausen et al, 

2018). 

Direct demand prediction is not the sole objective of long-term forecasting models, since there 

is a significant number of variables which need to be understood in order to explain fluctuations. 

Suh and Ryerson (2019) attempted to understand the explanatory variables that impact the outcome 

of a severe reduction in passenger volumes, rather than to achieve the highest predictive 

performance, by developing a predictive model using binary logistic regression which estimated 

the probability of an airport experiencing a dramatic contraction in passenger demand over a period 

of 10 years. This time period is crucial for airport authorities since it allows the perception of need 

in terms of building new infrastructures such as runways or terminals (Suh and Ryerson, 2019). 

The data revolves around 64 airports around the United States, located in the top 50 

metropolitan areas of the country. Then, a binary logistic regression model was built using several 

airport and MSA explanatory variables to predict the binary outcome. These variables included 

airport competition, connecting passenger share, avg. number of seats per aircraft, avg. ticket price, 

HHI, HHI change, population change, per capita income and service sector employment, and were 

all standardized in order to fit the proposed model. 

The results expressed an increased importance of variables such as: 

• HHI – since most airports with large airline presence (hubs) are likely to suffer a decline 
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in passenger movements if operations are ceased in the respective location. 

• Per capita income – noted as one of the most important demand influencer in terms of 

passenger movements. 

• Connecting passenger share – this factor correlates with HHI, since most hubs are prone to 

have a high number of passengers on connecting flights and a “de-hubbing” can bring 

significant impact to the airport’s demand. 

Another topic focused on this research was the optimism bias regarding forecasting in the 

aviation industry. To overcome this problem, the researchers have proposed a reference class 

forecasting, which was tested for feasibility and can be manifested in four different models: 

• Mean Forecast Error (MFE): which uses each airport’s own past empirical forecast errors. 

• Mean Growth-Based Forecast Error (MGBFE): To reflect the observation that there may 

exist a correlation between forecasted growth percentage and forecast error, the empirical 

forecast errors of the past forecasts (of any airport) were used with forecasted growth 

percentage, meaning within a range of the forecasted growth percentage of interest. 

• Mean Peer-Based Forecast Error (MPBFE): airports with similar socioeconomic and 

airport characteristics are compared and their past forecast errors to adjust the current 

forecast are used. 

• Enhanced Mean Peer-Based Forecast Error (EMPBFE): the predicted probabilities of a 

severe contraction in passenger were incorporated to adjust the MPBFE in the previous 

method. Because the predicted probabilities provide the information on how likely it is for 

an airport to experience a dramatic drop in the passenger volumes (and thus, a potentially 

larger forecast error), we use this additional information to calibrate the MPBFE and name 

this approach Enhanced Peer-Based Forecast Error (EPBFE). 

Consequently, four different forecasts were compared to the actual forecast in order to 

determine which one has a more approximated value. The study concluded that only the first 

method (MFE) did not bring any significant difference to the actual forecast values, and that the 

remaining three can be used as tools to minimize this optimism regarding aviation forecast and 

provide a more realistic set of results. 
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It is fair to assume the aviation industry is progressively becoming performance driven, with 

KPIs gaining importance from a strategic point of view. Delgado et al (2020) have presented a 

new holistic, microscopic model for air transport management system with the objective of 

predicting how projected changes in 2035 and 2050 will likely interact by using a set of parameters 

such as macroeconomic, technological or regulatory and it is aimed at five different stakeholders 

in the aviation industry, including ANSPs (Air Navigation Service Provider), airlines, airports, 

passengers and the environment. It modelled the three temporal phases of ATM (strategic, pre-

tactical and tactical) for each considered scenario, with the objective of generating a representative 

day of operations for each given situation. 

Large airports’ current business models rely heavily on non-aeronautical revenues (parking, 

shopping, etc.) (D’Alfonso et al., 2013). Congestion is a major issue for most, and different 

strategies are implemented to increase their capacity, such as soft management procedures or 

heavy changes in infrastructure (Berster et al., 2013), or improvements from airport expansion 

programs and technological enhancements. 

From a strategic point of view, the economic block was the first block of this layer and had 

the objective of creating accurate supply-demand prediction for any given scenario. It implemented 

agents such as airliners, flights, passengers and ANSPs (Delgado et al, 2020). Supply and demand 

interact in this network in a complex mode. On one hand, the supply is leg-based, each airline 

creating its own capacity for each leg and on the other hand, demand reacts to the prices of 

itineraries. The schedule mapper is the second block in the strategic layer (Delgado et al, 2020). It 

converts the high-level flows of the economic model into individual schedules to be used by the 

flight plan generator, which is a very demanding task with several constraints. It goes through the 

following steps: 

• load data on airports, historical schedules, pattern and strategic flows; 

• compute average travelling times between every OD pair; 

• compute likely departure times; 

• load the decision tree for the turnaround times; 

• for each airline: 
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• trim its network by removing aircraft which are in excess; 

• grow the network by adding aircraft to meet demand; 

• compute the new schedules and add them to the database. 

The pre-tactical layer aimed at creating the required level of detail in order to create each flight 

and passenger’s routes by generating outputs such as individual flight plans, ATFM regulations 

and probabilities of being assigned delay due to a regulation, and individual passengers’ itineraries. 

Flight plan generator transforms origin-destination schedules into actual flight plans through a 

route generator, a trajectory generator and a fuel estimation; ATFM regulation generator estimates 

the probability of a route being affected by ATFM regulations and the consequent delay, and is 

divided into two sections – capacity issues and remaining; and passenger itinerary generator creates 

the passenger flow and respective schedule by computing the possible options available for the 

passengers in each flow considering the minimum connecting times at the airports, optimizing the 

assignment of passengers among their options considering aircraft capacities and minimum 

connecting times at airports and Creating additional passengers’ itineraries to ensure that the load 

factors of the aircraft are realistic. 

The tactical layer models delayed propagation between flights and the flexibility of the system 

during disruptions such as cancellations or delays and with limited resources such as airports and 

en-route capacity. It is the result of two processes: 

• Gate-to-gate simulation – based on flight plan submission, previous aircraft ready, push back 

process and arrival processes: 

• Door-to-door simulation (Delgado et al, 2020). 

In order to create the model, the following data was used extensively: 

• set the initial state of the economic model; 

• extract the distribution of delays for airports and ANSPs, which helped to: 

• infer delay-traffic relationships (for airports); 

• perform a mean–variance analysis on airport delay; 

• perform an analysis of ATFM regulations; 
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• compute the length of trajectories in each ANSP’s area; 

• cluster possible routes between origin and destination airports; 

• model flight plan preferences (flight level and speed requests); 

• model flight trajectories (characteristics of climb and descent phases); 

• estimate average wind distributions between regions by comparing ground speed with 

requested air speed. 

Additionally, in order to calibrate the model, a few analyses such as the pairs of variables 

analysis, route clustering, ATFM probabilities and passenger itineraries were performed. In terms 

of results, it is easier to demonstrate the obtained results through each of the previously mentioned 

layer.  

For the strategic layer, the strategic layer shows a tendency for airlines to increase the average 

size of their aircraft when capacity is scarce, whilst the operational cost decreases from 2035 to 

2050. Additionally, delays increase throughout this period, driven by the large increase in traffic, 

barely mitigated by the increase in airport capacity 

For the pre-tactical layer, the computation of flight plans indicates that the average flight plan 

distance tends to increase in the period from 2014 to 2050, leading to higher fuel burn per flight, 

accompanied by an increase in the percentage of connecting passengers, since the number of flights 

increase thus widening the range of connecting possibilities. Also, different operating costs might 

shift demand for particular airspace areas, resulting in variations in revenues per ANSP. 

For the tactical layer, average gate-to-gate times do not increase, despite the increment in delays. 

This is a volume effect, due to the fact that airlines tend, on average, to operate longer routes (in 

time) in 2035 and 2050. 

To conclude, the model was run based on a series of different factors and scenarios in order to 

consider distinct outputs, by using two different baselines which would somewhat regulate the 

uncertainties and inconsistencies. Additionally, it was proven that this model is actually effective 

when working with a large quantity of metrics. 
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2.4 COVID-19 in the aviation industry 

Since the outbreak of COVID-19 in late 2019, the aviation industry has gone through a multitude 

of changes which have impacted airlines, airports and consequently passengers and local 

economies. The huge uncertainty regarding the consequences of this pandemic and the concerns 

over when “normality” will resume are probably one of the biggest challenges of this study, since 

the used data is highly affected by the enormous drop in passenger movements registered in the 

early weeks of 2020. Nonetheless, a few researchers have already developed papers and studies 

regarding the impact of COVID-19, which will be explored in the following section. 

In early 2021, Sun, Zhang, Zheng and Wandelt have released a paper entitled COVID-19 

pandemic and air transportation: Successfully navigating the paper hurricane, which focus not only 

on the impact COVID- 19 has had in the aviation industry, but also how the industry has impacted 

the pandemic itself based on the analysis of the global air transportation system during COVID-

19, the impacts on the passenger-centric flight experience, and the long-term impacts on broad 

aviation. 

COVID-19 is the most severe pandemic in recent decades, with highly contagious indexes and 

consequently very fast spreading rates. Airports are critical points since they aggregate people 

from all over the world in relatively small, shared environments such as gates, lounges, shops or 

baggage claims. The network perspective has forced many airports to close in the early stages of 

the pandemic, where the level of uncertainty was considerably high, and the infrastructures were 

not satisfactory for travellers to use safely. As a consequence, most airports have experienced a 

massive drop in traffic in the period ranging from February to June 2020, to either domestic or 

international destinations. However, it’s not possible to equally compare these two categories of 

destinations, since domestic flights were shortly resumed after the mention period, and at the time, 

governments had many traveling restrictions between countries and in many cases, international 

flights were very limited. 

Since the virus is highly contagious, it was fundamental to ensure travellers felt safe and had 

the lower possible risk of contracting the disease whilst on the airport or inside the aircraft. There 

was a need for a major infrastructure redesign, so that the safety measures could be applied. 

COVID-19 testing stations were one of the first features to be implemented, which obligated 

travellers to arrive at the airport earlier and restricted those whose temperature did not meet the 
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requirements. Despite being a debate on whether these tests were effective or not, it did not stop 

most airports adhering to this particular measure. In-airport shopping was severely restricted since 

it is one of the most crucial points of converging passengers from all over the world. The boarding 

process was also altered, with many considering it one of the most challenging adaptations of the 

COVID-19 era. Whilst before the pandemic each airliner had its predefined boarding method, with 

aircraft configuration, presence of hand baggage, load factor and many others being the 

determinant factors of the considered technique, during the pandemic airliners were recommended 

not to operate their aircrafts at full capacity, and therefore distribute passengers in compliance with 

safe distancing. The more common techniques include an empty middle seat, boarding in small 

groups of people or by seat number, with all relying on a passenger self-will to practice social 

distancing as much as possible. In-flight practices were highly debated since its implied dozens or 

even hundreds of people enclosed inside an aircraft cabin, however, there’s little evidence that 

those cabins can accelerate the virus propagation. Nevertheless, airliners have acted by 

implementing measures such as the previously mentioned operation at lower-than-full capacity, 

mandatory usage of mask, limited food and drinking services and reinforced sanitary disinfection. 

Despite some of these measures can still be applied post-COVID-19, it’s fair to say they are 

short-term since once the virus is somewhat controlled, there will no longer be the need for social 

distancing and extreme sanitization.  

However, it’s also interesting to predict the long-term impact of the pandemic in the aviation 

industry. The aviation industry was the most affected by the travel restrictions, which is mirrored 

by the enormous financial losses airliners have suffered since the beginning of the pandemic. Due 

to the economic impact air travel has on a particular country, many companies will require a 

financial aid from government entities. Whereas in the past, many airlines were aided by private 

investors, the uncertainty of the future economic situation has created some reluctance among 

these, shifting the recovery plan to a more political point of view, with government help being the 

most reliable alternative for airline companies to pursue. Passenger demand is also facing a high 

level of uncertainty, with experts such as the Oxford Analytica predicting that air traffic will 

resume the normal growing path observed before the pandemic in about 2 to 4 years. It is expected 

that the Asian market bounces back faster than others such as the European, American or Middle 

Eastern, with China as the main contributor to this rise. Overall, the future of aviation cannot be 
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accurately predicted with sample data collected in early 2021, but a few studies have reached 

potential solutions to the COVID-19 problem. For instance, Chen et al. (2020) discussed the 

possibility of creating an immunity passport which would lead to less enforced screening at 

airports by only allowing travelers with a clean bill of health (in terms of COVID and other 

potential future diseases); Tardivo et al. (2020) has recommended that sustainable European 

mobility would be made through rail and not air; and Hendrickson and Rilett (2020) who have 

debated the role of air travel when society has the necessary tools to operate via 

telecommunication, and the emergence of more and more automated vehicles. 

To conclude, in early 2021 the insufficient available information, alongside the high levels of 

uncertainty difficult the task of accurately predicting the long-term consequences of the COVID-

19 pandemic on the aviation industry. For now, measures such as the usage of protective masks, 

social distancing and disinfection practices will continue to be standard at airports, alongside 

limited services such as shopping and lounges. Additionally, in order to minimize economic losses, 

alternatives to air transport have been emerging such as the creation of upgraded rail systems, 

capable of transporting people as fast as air travel does. 

2.5 Time-Series Models 

Whilst economic factors and previous forecasting studies will influence the model development, 

understanding time series models is also crucial for constructing an accurate predictive model. 

This section will briefly clarify the meaning of Auto Regressive models and how they can be used 

to predict future values. 

Autoregressive Integrated Moving Average models are widely used in statistics and 

econometrics, specifically to study events happening over a time period and consequently forecast 

future values. Applied to stationary time series, the models are given by ARIMA (p,d,q), of which 

p represents the order of autoregression, d the differentiation order, and q the moving average 

order. 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is a statistical model 

used time-series data analysis in which the variance error is believed to be serially autocorrelated. 

Heteroskedasticity describes the irregular pattern of variation of an error term, or variable, in a 

statistical model.  
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The hybrid model was put in practice by using real data from the Bureau of Transportation 

Statistics, who publishes the United States monthly aggregated pax at national level from January 

1990 to April 2016. The data was then divided in two sets: The first from January 1990 to April 

2013, and the second from May 2013 to April 2016. The first data set was used for the assessment 

of four-time series methods: Holt-Winters, ARIMA, DTGM and the ARIMA + GARCH + 

Bootstrap, whilst the second data set was used as out of sample data to compare the time series 

methods one-step ahead forecasts with the original data for pax demand, and to validate them.  
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3. Methodology 

The following section encompasses the different methods used to conduct this study by describing 

the various stages of research, in which the use data and software will be broken-down. A well-

structured and concise method description is fundamental to expose the research’s objectives and 

the numerous stages it goes through in order to reach the goals.  

Developing a forecasting model using real data requires a thorough data analysis and 

comprehension due to the multitude of existing prediction models, since the slight 

misinterpretation can lead to erroneous results. 

3.1 Data 

The research aims at creating an accurate prediction model in order to forecast the number of 

aircraft movements at Lisbon’s Humberto Delgado International Airport, located 7 km north of 

the Portuguese capital’s city centre. Data collected from EUROCONTROL displayed the total 

number of daily Instrument Flight Rules (IFR) arrivals and departures – flights using on-board 

instruments and electronic signals as opposed to a visual flight plan (VFR) – between the 3rd of 

January 2016 and 31st of December 2020. In this period, Lisbon Airport registered 912,913 flight 

movements, of which 456,320 were departures and the remaining 456,593 were arrivals.  

The data was then aggregated in weekly batches, in order to reduce the period sample and still 

embrace seasonality. For instance, if the number of daily movements was considered as the data 

unit, the sample would involve 1827 periods instead of the 261 periods extracted from the weekly 

reports. 

3.2 Software 

RStudio was the selected tool to analyse the data and subsequently create the accurate model for 

air traffic movement prediction through R language, a form of programming language useful for 

statistical computing and graphic display.  

The wide variety of packages in this software - collections of R functions, data, and compiled 

code in a well-defined format, created to add specific functionality – allowed the performance of 

several tests on the time series data, which were fundamental to create an optimal Auto Regressive 

Integrated Moving Average model and consequent forecasting technique.  



 

22 
 

3.3 Model 

To estimate the model, the data has been classified as a time series and several tests have been 

computed in order to highlight the characteristics of data. The first step was the Autocorrelation 

Function and Partial Autocorrelation Function, which allowed to determine the correlation 

coefficient within the series’ data sets and graphically represent it. The functions compared values 

within the series and described how the earlier values of the series are related to the most recent 

ones.  

Subsequently, Unit Root Tests were performed in order to check stationarity of the time series. 

Statistical properties such as mean, variance and autocorrelation were constant over time if the 

series was stationary and the opposite if the series was non-stationarity. Generally, Unit Root Tests 

imply that the null hypothesis is the presence of Unit Roots or non-stationarity and the alternative 

hypothesis is stationarity (the exception is KPSS test). This research has encompassed the three 

following Unit Root Tests: 

• The Dickey-Fuller Test - based on a simple autoregression with or without a constant or 

time trend; 

• Phillips-Perron Test; 

• Kwiatowski, Phillips, Schmidt and Shin Test – uses stationarity as a null hypothesis. 

Since the three tests treat serial correlation in the errors of the auxiliar regression in different ways, 

all of them were computed to check if all corroborate the same conclusion. 

As previously mentioned in the literature review section, COVID-19 brought noteworthy 

implications to the aviation sector, which were reflected by the significant drop in air traffic 

movements in February 2020. This factor massively impacted the time series in terms of 

stationarity, which required the performance of two different tests in order to check the existence 

of a break within the series. Breaks occur when there is a change in the standards for defining and 

observing a variable over time, and can be substantiated by: 

• Chow Test – checks if regression coefficients are different for split data sets; 

• Bai-Perron Test - estimates multiple structural shifts in a linear model estimated by least 

squares. 
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As the structural breaks can affect the unit tests results, the previously mentioned Unit Root 

Tests were applied to the newly defined time series periods (pre and post break) in order to check 

stationarity once again.  

Furthermore, the proposed ARIMA models were built through different periods, determined 

by the break, which meant the data set was different for each period, and the optimal ARIMA 

model was different for each case. Nonetheless, several ARIMA models were estimated for each 

period, serving as a base for the forecasting method. 

In order to create a realistic timeline for the model, all forecasts were aimed at the end of 2021, 

which meant the number (n) of periods ahead would correspond to the number of weeks until the 

31st of December 2021. A practical example can be demonstrated by the previously mentioned 

time series period between the 3rd of January 2016 and the 31st of December 2020, which would 

imply a prediction sample of n=60 – the number of weeks between 1st of November 2020 and the 

31st of December 2021.  

The forecast function in RStudio enabled to convert the estimated ARIMA models into a wider 

time series, according to the number of samples, and subsequently plot the results. The function 

was applied to every ARIMA model, corresponding to each of the periods determined by the 

existence of a break. 

Since it was not possible to classify a model as either correct or incorrect, accuracy tests were 

fundamental in order to estimate which of the models is predicts better the dependent variable. The 

accuracy function in R determined the level of “agreement” between the observed and the 

predicted values from the models, based on loss functions such as Mean Squared Error (MSE), 

Mean Absolute Percent Error (MAPE), Mean Absolute Error (MAE), among others. Each 

prediction model was submitted to this accuracy test and the optimal result corresponded to a lower 

value of loss function, meaning the cost or error margin between the previously mentioned 

indicators.  
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4. Results and Discussion 

4.1 Results 

The data retrieved from EUROCONTROL, 2020 has provided the necessary basis to conduct this 

study. As previously mentioned in the methodology section, Lisbon International Airport has 

registered over 900,000 flight movements between January 2016 and December 2020. The 

database compiled daily information about IFR departures and arrivals in Lisbon, which gave 

around 1766 samples for the mentioned time period. In order to reduce the sample size and 

furthermore increase the chances of creating a precise model, the daily data was transformed into 

weekly values, reducing the number of observations to 261. This transformation was vital in order 

to attenuate daily fluctuations which could massively impact the final outcome of the predictive 

model.   

 Once the data set was well established, it was necessary to classify the weekly flights into a 

time series, which was performed by using the ts function in RStudio. The plotted time series is 

visible in figure 1. 

Figure 1 - Time Series for Weekly Flights at Lisbon Airport from January 2016 to December 2020 
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As it is perceivable in fig.1, during the first weeks of 2020 the world was struck by the COVID-

19 pandemic, which brought severe implications for a wide variety of sectors, where the aviation 

industry is well included. Closed borders and travel restrictions heavily struck both airliners and 

airports, leaving enormous question marks regarding the future of aviation in the short and medium 

term. To put in perspective, on the 15th of March 2020, Lisbon airport had registered 518 

movements, compared to just 5 on the 12th of April of the same year, which corresponds to a 

96,5% drop in just 28 days. The impact of COVID-19 consisted in one of the biggest challenges 

to the creation of the forecasting model.  

To test correlation between observations within the time series, Autocorrelation Function and 

Partial Autocorrelation tests were performed. The results can be seen on fig. 2 and fig. 3 

respectively.  

The plotted Autocorrelated function shows strong correlation indexes in lower lag – fixed 

amount of passing time – values. The autocorrelation function shows a linear decay point to a non-

Figure 2 - Autocorrelated function for Lisbon Weekly Data 
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stationary series. The Partial Autocorrelated Function show significant correlation level only for 

the first lag. For higher lag values, the correlation index is also substantially lower. 

Furthermore, Unit Root Tests were performed in order to check the series’ stationarity, as three 

distinct types provided the necessary accuracy to reach the optimal outcome. The results obtained 

from Dickey-Fuller (DF), Phillips-Perron (PP) and Kwiatowski, Phillips, Schmidt and Shin 

(KPSS) tests could be explained as following:  

• DF Test – the null hypothesis (H0) was not rejected and the presence of Unit Root in this 

time-series was confirmed. This hypothesis could be obtained by comparing the calculated 

values (value of test statistic) with the tabulated values (tau1). Since the value of test 

statistic (0.8878) was in fact lower than any percentile of tabulated values (2.58 for 1pct, 

1.95 for 5pct, and 1.62 for 10pct), the Dickey-Fuller Test revealed non-stationarity within 

the time series.  

• PP Test – follows the same hypothesis principle as the DF test, and in this particular case, 

the calculated value is -10.5128 compared to the 2.341 calculated value. Therefore, the null 

Figure 3 - Partial Autocorrelated function for Lisbon Weekly Data 
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hypothesis can’t be rejected, and the series is non-stationary. 

• KPSS Test – contrarily to the DF and PP tests, this test follows a reverse methodology, in 

which the null hypothesis is the non-presence of Unit Root, and since the calculated value 

for this time series (0.836) is higher than the tabulated values for each percentile (0.347 for 

1pct, 0.463 for 2.5pct, 0.574 for 5pct, and 0.739 for 10pct) the null hypothesis was rejected, 

and the non-stationarity also confirmed by using this test. 

The impact of COVID-19 and consequent decrease in weekly flights has implied the presence 

of one or more breaks within the series. In order to test the existence and consequent period in 

which the time series breaks, Chow and Bai Perron tests were applied. Through the breakpoints 

functionality in R, it was determined that the series registered the presence of breaks in two distinct 

periods – 66 and 213 – corresponding to the weeks starting on the 26th of March 2017 and the 27th 

of January 2020 respectively.  

The model development was based on each of the periods, which meant three distinct 

approaches for each time series. Figures 4, 5 and 6 represent the plotted graph for each time series 

data set. 

• Pre-break – From the 3rd of January 2016 unit the 25th of March 2017 (week 1 to 65); 

• Break 1 – From the 26th of March 2017 until the 26th of January 2020 (week 66 to 212); 

• Break 2 – From the 27th of January 2020 until the 31st of December. 
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Figure 5 - Lisbon Weekly Flights from January 2016 until March 2017 

Figure 6 - Lisbon Weekly Flights after the 1st Break 

Figure 4 - Lisbon Weekly Flight Data after the 2nd Break 
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Once the new time series were defined, both Autocorrelation and Unit Root Tests were 

computed once again for each period in order to check its correlation and stationarity. The same 

method was applied to the new periods, which meant ACF and PACF were the designated tests 

for correlation; and ADF, KPSS and PP tests were performed to check the presence of Unit Root. 

The pre-break period was the first to be submitted to the tests, with ACF and PACF represented 

in figure 7. Similarly to the whole time series, the pre break period also expresses stronger 

correlation levels in lower lag values, with progressively weaker correlation as the number of lags 

increase.  

In terms of Unit Root Tests, the decision of the Dickey-Fuller points to the non-stationarity of 

the series since the calculated values are lower than the tabulated values. The presence of Unit 

Root may indicate the need for differencing the data in order to transform the series into a 

stationary one. By taking the first difference through the diff function in R, the data was again 

submitted to a Dickey Fuller Test, with the results expressing stationarity within the series since 

the calculated values were higher than the tabulated ones, thus rejecting the null hypothesis stating 

the existence of Unit Root. The PP test has brought the same conclusions regarding the existence 

of Unit Root in the time series, as the first test registered lower calculated compared to tabulated 

values and thus not rejecting the null hypothesis, with the first differenced data pointing to a 

stationary series by rejecting the existence of a Unit Root. Differencing has proven to be a useful 

manner to eliminate trends and enable stationarity within the time series. 
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On the other hand, the KPSS test rejected the hypothesis of stationarity as the calculated values 

exceeded the tabulated, leading to a first difference application of the test in which the null 

hypothesis could not be rejected, and the series was considered stationary. 

The same methodology was applied to the second sample, containing the time series between 

the two breaks – from week 66 to week 212. The ACF and PACF plots are represented in figure 

8. Similarly to the pre-break data the Break 1 time series, also demonstrates stronger correlation 

indexes in lower lag values and decreasing values as the number of lags increases.  

Equivalently to the results expressed by the applied Unit Root Tests on the Pre-Break period, 

Break 1 only rejected the null hypothesis of non-stationarity for the first differenced data through 

ADF and PP tests. Additionally, the KPSS test rejected the stationarity hypothesis for the original 

time series and the contrary result for the differenced data. 

Figure 7 - ACF and PACF tests for Pre-break 
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The third time series, designated as Break 2 which comprises weeks 213 to 252, was also put 

through the exact same process with similar results. The ACF and PACF tests are shown on figure 

9. 

The Unit Root Tests also required a transformation into a first order differenced data in order 

to meet the time series stationarity requirements. Differenced data influenced the estimation of 

each ARIMA model since the level of differentiation is determined by the presence of Unit Root. 

The three time series could be considered stationary if the first difference was calculated. 

Figure 9 - ACF and PACF for Break 

Figure 8 - ACF and PACF for Break 2 
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Since ARIMA (p,d,q) is given by the Autoregressive (p), Moving Average (q), and the level 

of differencing (d), the models we consider are ARIMA (p,1,d) in order to match the required 1st 

order differencing to make the series stationary.  

The ARIMA (p,d,q) model is restricted to non-seasonal data, and since the weekly flight data 

is highly seasonal, the regular part of the model is not enough to capture all the dependence in our 

data. By using a SARIMA (p,d,q) (P,D,Q) model, it is possible to incorporate also the seasonal 

components and improve the model accuracy. 

The ARIMA models developed though the pre-break period were based on the previous 

autocorrelation functions and the results of the Unit Root tests. The list is presented below: 

• ARIMA (1,1,2) (0,1,1)52 

• ARIMA (1,1,2) (0,1,2)52 

• ARIMA (1,1,3) (0,1,1)52 

• ARIMA (1,1,3) (0,1,2)52 

The pre-break period proved to be the most challenging for creating the forecasting model, as 

the number of periods to predict is far superior when compared to the other two periods, and the 

level of accuracy of latter stages can be impacted by the long-term prediction. 

The second sample comprises the period between the first and second breaks, ranging from 

week 66 to week 66. The order of the models was found in the same way as in the previous period, 

were not only chosen manually, but also through the auto.arima function in R. This function 

returns the best ARIMA model for each time series, but it should not limit our model development 

to the assigned ARIMA. The list of models for Break 1 are listed below. 

• ARIMA (0,1,1) (0,1,0)52 – developed through the auto.arima function 

• ARIMA (1,1,1) (0,1,0)52 

• ARIMA (2,1,1) (0,1,0)52 

• ARIMA (3,1,1) (0,1,0)52 

• ARIMA (2,1,2) (0,1,0)52 
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• ARIMA (1,1,2) (0,1,0)52 

• ARIMA (1,1,1) (0,1,1)52 

• ARIMA (1,1,2) (0,1,1)52 

• ARIMA (1,1,3) (0,1,1)52 

• ARIMA (1,1,3) (0,2,1)52 

• ARIMA (1,1,3) (0,2,1)52 

• ARIMA (3,1,2) (0,1,1)52 

The last sampled period was modelled through the same process as the remaining two, 

including the auto.arima function and the variety of ARIMA models. The period comprises week 

213 until week 252, leading the forecasting period to be the one with fewer samples, if we consider 

the end of 2021 as the timeline objective. The only difference is the impossibility of creating a 

seasonal ARIMA or SARIMA(p,d,q) (P,D,Q) model, as the minimum number of observations for 

this model is 50, and this time-series only comprises 39. The list for Break 2 is displayed below: 

• ARIMA (1,0,1) – chosen through the auto.arima function 

• ARIMA (1,1,1) 

• ARIMA (3,1,1) 

• ARIMA (2,1,2) 

• ARIMA (1,1,2) 

• ARIMA (1,1,3) 

• ARIMA (3,1,2) 

• ARIMA (1,1,1) 

• ARIMA (1,2,1) 

• ARIMA (2,2,1) 

• ARIMA (2,2,2) 
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Once each ARIMA model was estimated, the forecasting was available through another 

function in R. The forecast command allowed to predict future values for the ARIMA models by 

computing the respective model and the n number of periods ahead. Comparably to the remaining 

processes, each of the forecasting models was based on the three distinct time series, given by 

forecast (model, h=n). 

The first forecasting models were applied to the Pre-Break time series and subsequent ARIMA 

models. The data sample for this time series comprises the weekly flights from the 3rd of January 

2016 until the 25h of March 2017, which meant the highest number n of predicted samples. Until 

the end of 2021, 248 periods had to be predicted in order to meet the forecasting timeline, 

represented in figure 10. 

 

Afterwards, the forecasting models for Break 1 were also developed, by determining the 

number of periods ahead. In this case, the models were estimated with 100 weeks ahead, 

Figure 10 - Forecasting Models for Pre-Break period 
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corresponding to the number of weeks between the 27th of January 2020 and the last week of 2021. 

Ten different models were developed for the forecasting estimation, each with different parameters 

and outcomes. Figure 11 gives a graphic representation of each model. 

 The forementioned period encompasses the largest sample of data, as it comprises weekly 

data between the 26th of March 2017 and the 26th of January 2020, accounting in almost 3 years of 

information.  

The last forecasting models were based on the Break 2 time series, comprising 49 samples 

between 28th of January 2020 and 31st of December 2020. Similarly to the remaining two periods, 

the forecasting model aims at the end of 2021, consisting in 52 periods to predict. Figure 12 

represents the models for Break 2. 

Figure 11 - Forecasting models for Break 1 
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At first sight, the graphs for Break 2’s models are vastly different from Pre Break and Break 

1 models. This difference results from the fact Break 2 models could not be predicted as SARIMA, 

due to the lack of observed samples. As previously mentioned, Break 2 consists in 49 periods, 

which remains below the recommended 50-100 samples in order to compute a seasonal model 

such as Pre Break and Break 1.  

4.2 Discussion 

Three different sets of models have produced three distinct results in terms of forecasting values 

within the same time frame. However, the first two sets of models – Pre-Break and Break 1- are 

partially extant, since a portion of the forecasted samples can be verified with real data. For 

instance, the Pre-Break forecasted sample ranges from March 2017 until December 2022, which 

divides the data into extant – from March 2017 until December 2020 – and expost – from 

December 2020 onwards. The extant data serves as an indicator for the differences between real 

and predicted data. Nevertheless, the impact of COVID-19 could not be mirrored in any of the 

extent data since the model was not capable enough to consider this variable. 

Figure 12 - Forecasting models for Break 2 
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One of the objectives of this study is the model application by players in the airline industry 

such as airliners and airport authorities in order to predict future flight movements in a short to 

medium term.  

 

Extant data can be a good indicator of forecasting accuracy since it’s possible to compare 

predicted values with real data. For this study, both Pre-Break and Break 1 periods will be 

compared with the actual data in order to observe major differences between the two sets.  

Firstly, the Pre-Break forecasted sample ARIMA (1,1,2) (0,1,1)52 was compared with the 

actual data as seen in Figure 13. If we consider the period between March 2017 and January 2020, 

we can clearly substantiate the similarities between the predicted and actual values. This similarity, 

however, is weaker over time, since ARIMA models are more accurate in short term predictions 

rather than long-term. In addition, the occurrence of COVID-19 clearly diverges the two sets of 

data, making the predicted values after January 2020 not possible to predict with this model.  
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When comparing Break 1’s auto.arima function forecast with the actual data between January 

2020 and the end of the same year, it’s possible to conclude two different points regarding the 

visual representation: 

• The effect of COVID-19 was registered almost immediately after the forecasting period; 

• The forecasted values follow the same pattern as the previous actual data. 

This analysis suggests that if it hadn’t been for COVID-19, the model could actually perform 

significantly well on a short-term range, much like Pre-Break’s extant forecasting period, whose 

predicted values were extremely close to the real flight data, as shown in Figure 13. Break 1’s 

comparison with the real data is represented in Figure 14.  

In order to better analyse the two forecasted samples and the actual data, a graphic 

representation of the three data sets is shown in Figure 15. The comparison allows a deeper 

understanding of not only how the forecasted values relate with real data, but with each other as 

well.  
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When considering the first two years of forecasted data on the Pre-Break period it’s possible 

to verify the strong correlation with real data, since the two lines follow the same pattern with 

overlapping values. However, after 2019 the lines diverge, and the forecasting accuracy 

subsequently reduces. Whilst the forecast for Break 1 cannot be accurately compared with existing 

data because of COVID-19, it’s possible to overview how the two distinct forecasts have extremely 

similar behaviors, with Pre-Break registering higher values for the same time periods. This can be 

explained by the fact Pre-Break forecast values tend to increase more than the actual data over 

time, meaning when Break 1 data becomes forecasted values in January 2020, Pre-Break has 

slightly higher values for the same period. Since both models were constructed based on similar 

methodologies, it was expected their behavior would be somewhat similar and matching the profile 

of an airport’s yearly flight evolution – seasonal with higher peaks during the summer.  

Finally, Break 2’ forecasting model was the most difficult to evaluate in terms of accuracy, 

mostly because of the lack of extant data, leading to the impossibility of comparing real and 

forecasted values for the year 2021. Additionally, the period sample does not contain sufficient 

observations in order to construct a seasonal model and match it with the traditional behavior of 

an airport’s yearly flight movement data. The first weeks following the outbreak of COVID-19 

were extremely uncertain and difficult to predict, since most national governments had banned 

travelling between countries, and air travel was extremely restricted, and since Break 2 period only 
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contains values inside the COVID-19 time frame, it was not possible to establish a trend and 

predict the expost period comparable to the other two models. The collected data for this study did 

not allow the construction of an accurate model for post-COVID period, as data from at least the 

first six months of 2021 is required to understand the rate at which airline movements return to 

normality. 

However, it’s quite important to understand how the pandemic impacted airport operations 

since it’s not empirically correct to assume the model can be immediately applied after the last 

period data (end of 2020). Whilst the forecast function on R does not allow the prediction of a 

post-COVID model, if the trendline function is applied on Excel, it gives an estimation of future 

values, based on past observations. For this matter, the sample corresponding to Break 2 – from 

the end of January 2020 until the end of December 2020 – was selected and applied the trendline 

function, and the results are expressed on Figure 16. 

As it’s possible to perceive on the figure above, the trendline estimates that the number of 

weekly flights can resume the pre-COVID figures around the end of 2023, resulting in a three-year 

recovery period for most airport and airliners, which coincides with studies conducted by 

Bloomberg’s Angus Whitley, Jason Gale, Tara Patel, and Christopher Jasper; and IATA Director-

General Alexandre de Juniac. In this specific situation, the last observations before the major drop 

are being considered, with around 4000 weekly flight movements. The trendline estimates a return 

to 4000 weekly flights around October of 2023.  
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Once the expected normality resumes, the constructed model can be applied to the specific 

situation and consequently accurately predict the number of weekly flight movements at Lisbon’s 

Humberto Delgado Airport on a short to medium term basis. 
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5. Conclusions 

The objective of this Management of Services and Technology dissertation was to develop an 

accurate prediction model, capable of forecasting the number of registered flight movements at 

Lisbon’s Humberto Delgado International Airport, based on weekly data ranging from January 

2016 until December 2020.  

The weekly flight data consisted in 261 different periods, which were then classified as a time-

series and subsequently tested for stationarity. The presence of structural breaks was also tested, 

leading to two distinct breaks being defined within the time series. The two breaks resulted in the 

dissection of the original time series in three different periods – Pre Break, Break 1 and Break 2 – 

which were then tested again for stationarity. The three different periods resulted in three different 

forecasting models being developed and each one’s accuracy was determined separately.  

Developing prediction models with no extant data to compare leaves question marks regarding 

its accuracy. Of the three forecasting models, only one of them – Break 2 – did not have any real 

data to be compared with, which leaves Pre-Break’s model in clear advantage for having the largest 

amount of real data to compare the predicted values with. This analysis has determined that the 

Pre-Break model performs significantly well on a short-term range, since the first two predicted 

years – 2017 and 2018 – expressed extremely similar results to the ones collected from the actual 

data.  

Additionally, Break 1’s forecasted sample could also be compared with existing data, if it was 

not for the presence of COVID-19. The model’s behavior was extremely similar to Pre-Break’s, 

however, the extant data suffered severe alterations leading to a wide gap between real and 

forecasted data since the model was unable to predict the occurrence of COVID-19 and its 

devastating consequences for the industry. The impact of this pandemic was also felt on the last 

forecasted model – Break 2’s – as the data sample for this period was simply not enough to create 

a seasonal model, and the uncertainty revolving around COVID in the early days of 2021 resulted 

in a significant accuracy reduction for this model’s outcome.  

Nevertheless, the devastating impact of this pandemic cannot be overseen since it has been 

affecting airports, airliners and ultimately every single passenger. Whilst not recurring to this 

study’s basis model, it was still possible to determine a future trend based on the post-COVID 
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outbreak period, which predicted normality to resume in the latter stages of 2023. If we consider 

the early weeks of 2020 as the critical point regarding the virus’ outbreak, it means almost 4 full 

years where the aviation industry was significantly wounded by the negative impact of government 

travel restrictions or improvised airport layouts to accommodate testing and distancing, which all 

connect to the number of flights each airline and subsequently airport will register in this period. 

Since most airports have similar behaviors regarding air traffic patterns, the first two models 

are applicable to most regional, domestic and international airports. The models can be used as a 

beneficial tool for the majority of players in the airline industry, since the number of flights and 

consequent passenger volume has a crucial impact in decision making. Accurately predicting the 

number of flight movements can assist airliners and airports in short to medium term decisions 

such as terminal expansions, planning new routes or even acquiring new aircraft. The next few 

years are crucial for this industry in order to recover from the devastating effects of COVID-19 

and using an accurate forecasting model can be an interesting tool to rapidly recover. 

Lastly, the first two models are applicable to most airports, as long as the traffic patterns has 

similarities to the one registered in Lisbon – where there’s clearly a seasonal component with 

higher peaks during the summer months, contrasting with a lower peak during winter months. 

Despite the extant data relevantly regarding the predicted data as accurate, the models cannot 

correctly reflect the future short-term prediction due to the impact of COVID-19, meaning the 

values for 2021, 2022 and 2023 will most definitely differ in terms of prediction and reality. The 

uncertainty regarding the pandemic has consisted in a major limitation for this study due to the 

irregular patterns of flight movements which consequently interdict the immediate application of 

a model.  

The main conclusion of this study can be mirrored by the possibility of applying an accurate 

forecasting model to any airport following a standard seasonal trend on a short to medium term 

basis, whilst at this precise moment in time this application is suspended by the negative impact 

of COVID-19, which has brough high uncertainty affecting all players in the aviation industry. 

This effect has consequently restricted a correct prediction starting in early 2021, which implies 

only once the pre-pandemic figures are restored the model can truly be applied.   
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