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Abstract: This paper describes an exploratory analysis on the usefulness of the information made available from 

Ultrasonic Doppler signal data collected from a single speaker, to detect velum movement associated to 

European Portuguese nasal vowels. This is directly related to the unsolved problem of detecting nasality in 

silent speech interfaces. The applied procedure uses Real-Time Magnetic Resonance Imaging (RT-MRI), 

collected from the same speaker providing a method to interpret the reflected ultrasonic data. By ensuring 

compatible scenario conditions and proper time alignment between the Ultrasonic Doppler signal data and 

the RT-MRI data, we are able to accurately estimate the time when the velum moves and the type of 

movement under a nasal vowel occurrence. The combination of these two sources revealed a moderate 

relation between the average energy of frequency bands around the carrier, indicating a probable presence 

of velum information in the Ultrasonic Doppler signal. 

1 INTRODUCTION 

A known challenge in Silent Speech Interfaces 

(SSI), including those based on Ultrasonic Doppler 

Sensing (UDS) (Freitas et al., 2012a), is the 

detection of the nasality phenomena in speech 

production, being unclear if information on nasality 

is present in the UDS signal. Nasality is an 

important characteristic of several languages, such 

as French and European Portuguese (EP) (Teixeira, 

2000), being the latter the selected language for the 

experiments here reported. Additionally, it has been 

shown before, that nasality can cause severe word 

recognition degradation in UDS (Freitas et al., 

2012a) and Surface Electromyography (Freitas et 

al., 2012b) based interfaces for this language.  

An SSI can be seen as a possible alternative 

to conventional speech interfaces since they allow 

for communication to occur in the absence of an 

acoustic signal. It brings advantages when used in 

situations where privacy or confidentiality is 

required, in the presence of environmental noise, 

such as in office settings, or when used by speech-

impaired persons such as those who were subjected 

to a laryngectomy, making it a suitable candidate for 

an interface to be used in Ambient Assisted Living 

scenarios. An UDS-based SSI could eventually be 

included in a multimodal interface as one of the core 

input modalities (Zhu et al., 2007, Freitas et al., 

2013). 

The UDS approach main advantages are: its 

non-invasive nature, since the device is completely 

non-obtrusive and it has been proven to work 

without requiring any attachments; not being affect 

by environment noise in the audible frequency 

range; the required hardware is commercially 

available; and is very inexpensive. These advantages 

make UDS an interesting approach and an attractive 

research topic in the area of Human-Computer 

Interaction (HCI) (Raj et al., 2012). The sensing 

method is based on the emission of a pure tone in the 

ultrasonic range towards the moving target and the 

reflected signal is captured by an ultrasound receiver 

tuned to the transmitted frequency. The movement 



 

of the target will cause Doppler shifts in the 

reflected signal, creating components at different 

frequencies, proportional to their velocity relative to 

the sensor. This technique has been applied to many 

areas of speech technology (Kalgaonkar and Raj, 

2008; Toth et al., 2010), including speech and silent 

speech recognition (Srinivasan et al., 2010; Freitas 

et al., 2012a).  

This paper describes an exploratory analysis 

on the existence of velum movement information 

detected in the Ultrasonic Doppler signal. The 

reflected signal contains information about the 

articulators and the moving parts of the face of the 

speaker, however, it is yet unclear how to 

distinguish between articulators and if velum 

movement information is actually being captured. 

Therefore, considering our aim of detecting velum 

movement and to provide a ground truth for our 

research, we used images collected from Real-Time 

Magnetic Resonance Imaging (RT-MRI) and 

extracted the velum aperture information during the 

nasal vowels of European Portuguese. Then, by 

combining and registering these two sources, 

ensuring compatible scenario conditions and proper 

time alignment, we are able to accurately estimate 

the time when the velum moves and the type of 

movement (i.e. ascending or descending) under a 

nasal vowel production phenomenon. Using this 

method we are able to correlate the features 

extracted from the UDS signal with the signal that 

represents the velum movement and analyse if 

velum information is being captured in our UDS 

signal analysis, for all nasal vowels. 

The remainder of this paper is structured as 

follows: section 2 presents background notions of 

the nasality phenomenon and its impact on European 

Portuguese, as well as a description of how the 

Doppler Effect works; section 3 presents UDS 

related work in the area of HCI; section 4 describes 

the methodology used for extracting information 

from the RT-MRI images, the UDS device, how 

both signals were synchronized and the features 

extracted from the Ultrasonic signal; in section 5 the 

results of our exploratory analysis are presented; in 

section 6 we discuss these results and finally, in 

section 7, we present the conclusions of this study.  

2 BACKGROUND 

2.1 Nasality in European Portuguese 

The production of a nasal sound involves air flow 

through the oral and nasal cavities. This air passage 

for the nasal cavity is essentially controlled by the 

velum that when lowered allows for the 

velopharyngeal port to be open, enabling resonance 

in the nasal cavity and the sound to be perceived as 

nasal. The production of oral sounds occurs when 

the velum is raised and the access to the nasal cavity 

is closed (Teixeira, 2000). 

Nasality is a common characteristic of 

several languages around the world, however, only 

20% of these languages have nasal vowels (Rossato 

et al. 2006). In EP there are five nasal vowels ([ɐ̃, ẽ, 

ĩ, õ, ũ])); three nasal consonants ([m], [n], and [ɲ]); 

and several nasal diphthongs [wɐ̃] (e.g. quando), 

[wẽ] (e.g. aguentar), [jɐ̃] (e.g. fiando), [wĩ] (e.g. 

ruim) and triphthongs [wɐ̃w] (e.g. enxaguam). Nasal 

vowels also diverge among languages, for example, 

nasal vowels in EP differ from French in its wider 

variation in the initial segment and stronger nasality 

at the end (Trigo, 1993; Lacerda and Head, 1966). 

Differences at the pharyngeal cavity level and velum 

port opening quotient were also detected by Martins 

et al. (2008) when comparing the articulation of EP 

and French nasal vowels. 

2.2 The Doppler Effect 

The Doppler Effect is the modification of the 
frequency of a wave when the observer and the wave 
source are in relative motion. If 𝑣s and 𝑣o are the 
speed of the source and the observer measured on 
the direction observer-source, if c is the propagation 
velocity of the wave on the medium and if 𝑓0 is the 
source frequency, the observed frequency will be: 

𝑓 =
𝑐 + 𝑣𝑜

𝑐 + 𝑣𝑠

𝑓0 (1) 

Considering a standstill observer 𝑣𝑜 = 0 and 𝑣𝑠 ≪ c  
the following approximation is valid: 

𝑓 = (1 −
𝑣𝑠  

𝑐
) 𝑓0 or  ∆𝑓 = −

𝑣𝑠  

𝑐
𝑓0 (2) 

We are interested in echo ultrasound to characterize 
the moving articulators of a human speaker. In this 
case a moving body with a speed 𝑣  (positive when 
the object is moving towards the emitter/receiver) 
reflects an ultrasound wave, whose frequency is 
measured by a receiver placed closely to the emitter. 
The observed Doppler shift will then be the double: 
  

∆𝑓 =
2𝑣  

𝑐
𝑓0 (3) 



 

3 RELATED WORK 

In this section we present the work related with 

Ultrasonic sensors applied to HCI, in particular to 

speech recognition. Ultrasonic sensors have been 

applied to diverse and multiple areas that go from 

industrial automation to medical solutions, however, 

only in 1995 this technology was applied to speech 

recognition by Jennings and Ruck (1995), presenting 

the first “Ultrasonic Mike” with the goal of 

improving automatic speech recognition in noisy 

environments. In their work, Jennings and Ruck 

used an emitter and a receiver based on piezoelectric 

material and a 40 kHz oscillator to create a 

continuous wave ultrasonic signal.  

More than a decade later, in 2007, Ultrasonic 

Doppler research saw new developments being 

applied to distinct areas of HCI, including speech 

recognition (Zhu et al., 2007). Since then, Ultrasonic 

Doppler has been applied to characterization and 

analysis of human gait (Kalgaonkar and Raj, 2007), 

gesture recognition (Kalgaonkar and Raj, 2009), 

speaker recognition (Kalgaonkar and Raj, 2008), 

speech synthesis (Toth et al., 2010), voice activity 

detection (Kalgaonkar et al., 2007), silent speech 

(Freitas et al. 2013) and speech recognition 

(Srinivasan et al., 2010; Freitas et al., 2012).  

Still, several issues that can be found in the 

state-of-the-art remain unsolved: speaker 

dependence, sensor distance sensitivity, spurious 

movements made by the speaker, silent articulation, 

amongst others. Since Doppler shifts capture the 

articulators’ movement, we believe that some of 

these problems can be attenuated or even solved if 

information about each articulator can be extracted.  

In terms of UDS signal analysis Livescu et al. 

(2009) studied the phonetic discrimination in the 

UDS signal. In this study the authors tried to 

determine a set of natural sub-word units, 

concluding that the most prominent groupings of 

consonants include both place and manner of 

articulation classes and, for vowels, the most salient 

groups include close, open and round vowels. 

In this paper we focus on determining if a 

particular articulator – the velum – is actually 

captured by the sensor and determine in which cases 

it is more evident by looking at the occurrence of 

nasal vowels in EP, a language with strong and 

particular nasal characteristics. 

4 DATA COLLECTION, 

SYNCHRONIZATION AND 

FEATURE EXTRACTION 

In order to understand if velum movement 

information can be found in the Doppler shifts of the 

echo signal, a signal that describes the velum 

movement is used as a reference. This signal was 

extracted from RT-MRI images, as described in 

section 4.2. This section also describes the hardware 

and setup of the Ultrasonic device and how 

synchronization of both signals is achieved. 

4.1 Ultrasonic Doppler Setup 

A custom build device, depicted on Figure 1, with a 
dedicated circuit board was developed based on the 
work of Zhu (2008). It includes 1) the ultrasound 
transducers (400ST and 400SR working at 40 kHz) 
and a microphone to receive the speech signal; 2) a 
crystal oscillator at 7.2 MHz and frequency dividers 
to obtain 40 and 36 kHz; 3) all the amplifiers and 
linear filters needed to process the echo signal and 
the speech signal. Since the board is placed in front 
of the speaker, the echo signal will be the sum of the 
contributions of all the articulators. If the ultrasound 
generated is a sine wave 𝑠𝑖𝑛2𝜋𝑓0 𝑡, an articulator 
with a velocity 𝑣𝑖 will generate an echo wave that 
can be characterized by: 

𝑥i = 𝑎isin2π𝑓0 (𝑡 +
2

𝑐
∫ 𝑣i

𝑡

0

d𝜏 + 𝜑i) (4) 

𝑎i, 𝜑i are parameters defining the reflection and are 
function of the distance. Although they are also 
function of time they are slow varying and are going 
to be considered constants. The total signals will be 
the sum for all articulators and the moving parts of 
the face of the speaker 

𝑥 = ∑ 𝑎isin2π𝑓0 (t +
2

c
∫ 𝑣i

t

0

d𝜏 + 𝜑i)
i

 (5) 

The signal is a sum of frequency modulated signals. 
It was decided to make a frequency translation by 
multiplying the echo signal  by a sine wave of a 
frequency 𝑓𝑎 = 36 𝑘𝐻𝑧 and low passing the result it 
is obtained a similar frequency modulated signal 
centered at 𝑓1 = 𝑓0 – 𝑓𝑎 , i.e., 𝑓1 = 4 𝑘𝐻𝑧. 

𝑑 = ∑ 𝑎isin2πf1 (𝑡 +
2

𝑐
∫ 𝑣i

t

0

d𝜏 + 𝜑i)
i

 (6) 

This analogue operation is performed on the board 
and it was used an analogue multiplier AD633. The 



 

Doppler echo signal and speech are then digitized at 
44.1 kHz and the following process is digital and 
implemented in Matlab. 
 

 

 

 

 

 

 

 

Figure 1: Custom built UDS device with two ultrasound 

transducers and a microphone. 

4.2 RT-MRI Data Collection 

The RT-MRI data collection was previously 

conducted at IBILI/Coimbra for nasal production 

studies. Images were acquired at the mid-sagittal and 

coronal oblique planes of the vocal tract (see Figure 

2) using an Ultra-Fast RF-spoiled Gradient Echo 

(GE) pulse sequence and yielding a frame rate of 14 

frames/second. Each recorded sequence contained 

75 images. Additional information concerning the 

image acquisition protocol can be found in Silva et 

al. (2012). 

 

 

Figure 2: From left to right: mid-sagittal plane depicting 

orientation of the oblique plane used during acquisition, 

sample oblique plane showing the oral and nasal cavities 

and image sequence details (Teixeira et al., 2012). 

Audio was recorded simultaneously with the 

real-time images, inside the scanner, at a sampling 

rate of 16 kHz, using a fiber optic microphone. For 

synchronization purposes a TTL pulse was 

generated from the RT-MRI scanner (Teixeira et al. 

2012). 

4.3 Extraction of information on nasal 
port from RT-MRI data 

For the mid-sagittal RT-MRI sequences of the vocal 

tract, since the main interest was to interpret velum 

position/movement from the sagittal RT-MRI 

sequences, instead of measuring distances (e.g., 

from velum tip to the posterior pharyngeal wall), we 

opted for a method based on the area variation 

between the velum and pharynx, closely related to 

velum position. 

An image with the velum fully lowered was 

used to define a region of interest (ROI). Then, a 

region growing algorithm was applied with a seed 

defined in a hypo intense pixel inside the ROI. This 

ROI is roughly positioned between the open velum 

and the back of the vocal tract and the main purpose 

is that the velum will move over that region when 

closing. Since this first ROI could be defined 

enclosing also a larger region, even including a part 

of the velum (which will not influence the process), 

it is only important that the seed is placed in a dark 

(hypo intense) pixel inside it, in order to exclude the 

most of the velum from the region growing when it 

is positioned inside the ROI.  Figure 3 presents the 

contours of the segmented region over different 

image frames encompassing velum lowering and 

rising. For representation purposes, in order not to 

occlude the image beneath, only the contour of the 

segmented region is presented. Processing is always 

performed over the pixels enclosed in the depicted 

region. Notice that the white boundaries presented in 

the images depict the result of the region growing 

inside the defined ROI (which just limits the growth) 

and not the ROI itself. The number of hypo intense 

pixels (corresponding to an area) inside the ROI 

decreases when the velum closes and increases when 

the velum opens. Therefore, a closed velum 

corresponds to area minima while an open velum 

corresponds to local area maxima, which allows 

detecting the frames where the velum is open. Since 

for all image sequences there was no informant 

movement, the ROI has only to be set once, for each 

informant, and can then be reused throughout all the 

processed sagittal real-time sequences. After ROI 

definition (around one minute and reusable 

throughout all image sequences from the same 

speaker), setting a seed, revising the results and 

storing the data took one minute per image 

sequence. 
These images allowed deriving a signal over 

time that describes the velum movement (also shown 
in Figure 3 and depicted as dashed line in Figure 4). 
As can be observed, minima correspond to a closed 
velopharingeal port (oral sound) and maxima to an 
open port (nasal sound). 
 

 

 

 

 

 

 



 

 

 

 

 

Figure 3: Mid-sagittal RT-MRI images of the vocal tract 

for several velum positions, over time, showing evolution 

from a raised velum, to a lowered velum and back to 

initial conditions. The presented curve, used for analysis, 

was derived from the images. 

4.4 Corpora 

The corpora used in this study, both RT-MRI and 
UDS, share a set of prompts composed by several 
non-sense words that contain five EP nasal vowels 
([ɐ̃, ẽ, ĩ, õ, ũ]) isolated and in word-initial, word-
internal and word-final context (e.g. ampa [ɐ̃pɐ], 
pampa [pɐ̃pɐ], pam [pɐ̃]). The nasal vowels are 
flanked by the bilabial stop or the labiodental 
fricative. This set contains 3 utterances per nasal 
vowels and data from a single speaker. The UDS 
data was recorded at a distance of 12 cm from the 
speaker. 

4.5 Signals synchronization 

In order to be able to take advantage of the RT-MRI 

velum information we need to synchronize the UDS 

and RT-MRI signals. We start by aligning both UDS 

and the information extracted from the RT-MRI with 

the corresponding audio recordings. We resample 

the audio recordings to 12 kHz and apply Dynamic 

Time Warping (DTW) to the signals, finding the 

optimal match between the two sequences. Based on 

the DTW result we map the information extracted 

from RT-MRI from the original production to the 

UDS time axis, establishing the needed 

correspondence between the UDS and the RT-MRI 

information, as depicted on Figure 4. 

 

 

Figure 4: Exemplification of the warped signal 

representing the nasal information extracted from RT-MRI 

(dashed line) superimposed on the speech recorded during 

the corresponding RT-MRI and UDS acquisition, for the 

sentence [ɐ̃pɐ, pɐp̃ɐ, pɐ̃]. 

4.6 UDS Feature Extraction 

For this experiment we have selected two types of 

features - frequency-band energy averages and 

energy-band frequency averages (Livescu et al., 

2009; Zhu, 2008). To obtain the frequency-band 

energy averages, we split the signal spectrum into 

several non-linearly divided bands centered around 

the carrier. Then, the mean energy is computed for 

each band. The frequency interval for each band 𝑛 is 

given by: 

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛 = [𝑓𝑚𝑖𝑛𝑛 , 𝑓𝑚𝑎𝑥𝑛], −5 ≤ 𝑛 ≤ 4 (7) 

where 𝑓𝑚𝑖𝑛0 = 4000 𝐻𝑧 (carrier frequency), 

𝑓𝑚𝑖𝑛𝑛 =  𝑓𝑚𝑎𝑥𝑛−1, 𝑓𝑚𝑎𝑥𝑛 =  𝑓𝑚𝑖𝑛𝑛 + 𝛼 (|𝑛| +
1), and 𝛼 = 40 𝐻𝑧. As such, the bandwidths slowly 

increase from 40 Hz to 280 Hz, capturing higher 

resolution information near the carrier. 

 In order to compute the energy-band 

frequency averages we split the spectrum into 

several energy bands and compute frequency 

centroid for each band. We extract values from 14 

bands (7 below and 7 above the carrier frequency) 

using 10 dB energy thresholds that range from 0 dB 

to -70 dB. 

5 EXPLORATORY ANALYSIS 

In order to achieve our aim of finding if velum 

movement information is present in the ultrasonic 

signal, we decided to measure the strength of 

association between the obtained features, which 

describes the ultrasonic signal and RT-MRI 

information and is an accurate representation of the 

ground truth. Below, we present several results 

based on Pearson’s product-moment correlation 

coefficient, which measures how well the two 

signals are related and also the results of 

Independent Component Analysis application to the 

extracted features. The correlation values range 

between -1 and 1, thus the greater the absolute value 

of a correlation coefficient, the stronger the linear 

relationship is. The weakest relationship is indicated 

by a correlation coefficient equal to 0. 

5.1 Results 

When comparing the RT-MRI velum information 

with the obtained features along each frequency 

band, based on correlation magnitude presented in 

Figure 5, it is not clear which band presents the 

higher correlation, although the values near the 



 

carrier are slightly higher. However, if we split our 

analysis by vowel, more interesting results are 

visible. Figure 6 shows the correlation results for 

utterances where only the nasal vowel [ɐ̃] occurs 

(e.g. ampa [ɐ̃pɐ], pampa [pɐ̃pɐ], pan [pɐ̃]) and it is 

visible a more distinct group of correlation values at 

the frequency interval [4040..4120] Hz. When 

looking at the nasal vowel [ẽ] a stronger correlation 

is also noticed in that interval. However, in the case 

of the nasal vowel [õ] and [ũ] higher correlation 

values are found in the [3880..4040] Hz range, with 

an average correlation magnitude of 0.42 for [õ] and 

0.44 for [ũ] (depicted in Figure 7).  For the nasal 

vowel [ĩ], we find much lower correlation values 

when compared with the remaining vowels such as 

[ɐ̃], [õ] or [ũ] and the best interval can be found in 

the [4240..4400] Hz range with an average 

correlation magnitude of 0.25. 

 

 

Figure 5: Boxplot for all utterances. The x axis lists the 

frequency-band features and the y axis corresponds to the 

absolute Pearson’s correlation value. The central mark is 

the median and the edges of the box are the 25th and 75th 

percentiles. 

 

Figure 6: Boxplot for utterances with [ɐ̃]. The x axis lists 

the frequency-band features and the y axis corresponds to 

the absolute Pearson’s correlation value. 

 

Figure 7: Boxplot for utterances with [ũ]. The x axis lists 

the frequency-band features and the y axis corresponds to 

the absolute Pearson’s correlation value. 

When looking at the energy-band features for all 

vowels we find similar values for the energy bands 

below -30dB, where the highest average correlation 

value is achieved by the [-30..-40] dB range above 

and below the carrier with 0.23. If we split out 

analysis by vowel, the highest value is achieved by 

the nasal vowel [õ] with an average correlation of 

0.43 for the [-40..-50] dB interval above the carrier. 

The second best result using energy-band features is 

obtained by the nasal vowel [ũ] in the [-30..-40] dB 

range with values of 0.40 above the carrier and 0.39 

below the carrier.  

5.1.1 Applying Independent Component 

Analysis 

As mentioned earlier the Ultrasonic Doppler signal 

can be seen as the sum for all articulators and the 

moving parts of the face of the speaker. Thus, the 

signal can be interpreted as a mix of multiple 

signals. Considering our goal, an ideal solution 

would be to find a process to isolate the signal 

created by the velum. Independent Component 

Analysis (ICA) is a method used for separating a 

multivariate signal with independent sources linearly 

mixed, thus the underlying idea is to understand if 

by applying blind source separation we can obtain 

independent components that relate with each 

articulator movement, including the velum. 

 For that purpose we applied the FastICA 

algorithm (Hyvarinen, 1999) using the RT-MRI 

information as a priori to build the separating 

matrix. This allowed to obtain independent 

components with a higher correlation value than 

when compared to the extracted features without any 

transformation, as shown in Table 1. Also, due to the 

singularity of the covariance matrix we observe a 

dimensionality reduction of 4 to 8 components 



 

depending on the utterance when using frequency-

band features. When using energy-band features we 

observe a dimensionality reduction of 6 to 12 

components. 

Table 1: Average correlation magnitude values with 95% 

confidence interval using frequency-band and energy band 

features for the best independent components of each 

utterance. 

Average correlation magnitude 

 Frequency Energy 

All vowels 0.42 ± 0.05 0.41 ± 0.04 

[ɐ̃] 0.44 ± 0.04 0.33 ± 0.05 

[ẽ] 0.41 ± 0.09 0.41 ± 0.10 

[ĩ] 0.30 ± 0.05 0.42 ± 0.03 

[õ] 0.47 ± 0.08 0.41 ± 0.05 

[ũ] 0.48 ± 0.14 0.50 ± 0.07 

6 DISCUSSION 

The applied methodology uses the audio signal to 

synchronize two distinct signals that otherwise were 

very hard to align. Although the two sources of 

information were recorded at different times, it is 

our belief that by reproducing the articulation 

movements we are able to obtain a very good 

indication of how the velum behaves upon the same 

stimulus for most cases. The utterances containing 

the [ũ] nasal vowels presented some alignment 

inaccuracies mainly at the end of the first phoneme 

and further improvements need to be considered for 

this particular case. 

Knowing that the velum is a slow articulator, 

as shown by the RT-MRI velum movement 

information in Figure 4, and considering equation 2, 

it is expected that velum movement, if detected by 

UDS, is found in the regions near the carrier, which 

is where the results for [ɐ̃, ẽ, õ and ũ] present higher 

correlation. However, the velum is not the only 

slowly moving articulator and a different corpora 

which allows, for example, to discard jaw 

movements should be considered for future studies. 

Another point of discussion is the differences 

found between nasal vowels. When looking at the 

correlation results of frequency-band features, a 

difference is noticed from [ĩ] to the remaining 

vowels. One possible explanation for this difference 

might be the articulation variances of each nasal 

vowel previously reported in literature (Schwartz, 

1968). Since our technique is based on the reflection 

of the signal it is plausible that the tongue position 

influences the detection of the velum, particularly 

for the case of [ĩ] in which the tongue posture may 

block the UDS signal. 

It would also be expected to find a clear 

difference between close and open vowels (Livescu 

et al., 2009). Although this is true for the nasal 

vowel [ĩ], it was not verified in the [ũ] case, which 

presented the highest correlation values along with 

[õ]. Further investigation is required to understand if 

for example the rounding of the lips during the 

articulation of these two vowels is influencing the 

signal reflection and in which way. 

In this study we have also applied blind source 

separation as an attempt to split the signal into 

independent components. This technique has given 

slightly better results for both sets of features, 

showing that isolating the velum movement in the 

Doppler shifts might be possible. It is also 

noteworthy the fact that this process has led to a 

dimensionality reduction of 4 to 8 components 

depending on the utterance, which may have a 

relation with the number of mobile articulators that 

can cause Doppler shifts in the signal (i.e. tongue, 

lower jaw, velum, lips, cheeks, oral cavity). 

7 CONCLUSIONS 

This paper analysis the presence of information 

about the velum movement for European Portuguese 

nasal vowels in the Ultrasonic Doppler signal. As 

ground truth for our study, we use previously 

collected RT-MRI information from the same 

speaker and, after extracting a signal that describes 

the movement of the velum, we apply a 

synchronization technique based on the audio signal 

collected from both corpora. With this approach we 

are able to estimate the velum behaviour and 

measure the strength of association between the 

features that describe the ultrasonic signal data and 

RT-MRI data, via computing the Pearson’s product-

moment correlation coefficient.  

The obtained results show that for features 

based on the energy of pre-determined frequency 

bands, we are able find moderate correlation values, 

for the case of the vowels [ɐ̃], [õ] and [ũ] and weaker 

correlation values in the [ĩ] case. Moderate 

correlation values were also found using energy 

based features for bands below -30dB. We have also 

applied a blind source separation technique 

obtaining components with a better description of 

the velum movement. 

For future work and based on this methodology, 

we plan to apply the same process to other 



 

articulators such as the tongue or lips, which will 

help to determine important aspects and more details 

about the captured information. We also intend to 

expand the current corpora with more speakers and 

adequate prompts for these scenarios. It would also 

be important to analyse the impact of distance from 

the UDS emitter to the speaker face in the captured 

information. 
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