
Automatic Question Generation about Introductory Programming Code

Tiago Filipe Martinho Soares

Master in Computer Engineering

Supervisor:
André Leal Santos, Assistant Professor
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
Nuno Miguel de Figueiredo Garrido, Assistant Professor
Iscte - Instituto Universitário de Lisboa

September, 2021

Department of Information Science and Technology

Automatic Question Generation about Introductory Programming Code

Tiago Filipe Martinho Soares

Master in Computer Engineering

Supervisor:
André Leal Santos, Assistant Professor
Iscte - Instituto Universitário de Lisboa

Co-Supervisor:
Nuno Miguel de Figueiredo Garrido, Assistant Professor
Iscte - Instituto Universitário de Lisboa

September, 2021

For the women of my life, my mother, my grandmother and my life partner Cláudia.

For Him, who created all things.

Acknowledgements

I would like to thank my supervisors, Prof. André Santos and Prof. Nuno Garrido for

their support on this project. I would like to thank Prof. André Santos especially, for

his mentoring, guidance and all the time he has dedicated to help me improve this

dissertation. Without him, this goal could not be achieved.

To my mother and my late grandmother, a special thank you for raising me and giving

me everything you could, despite all the hardships.

To my brother, thank you for always helping me getting out of trouble and being my

father figure when I was younger, and for always being so happy with my accomplish-

ments.

To my soon-to-be wife, Cláudia, thank you for your continuous support and love,

throughout all these years.

And finally, thank you God for inspiring me every day.

iii

Resumo

Muitos alunos que aprendem a programar acabam por escrever código que não enten-

dem. A maior parte dos sistemas de avaliação de código disponíveis avaliam a solução

submetida funcionalmente e não o conhecimento da pessoa que o submeteu. Esta disser-

tação propõe um sistema que gera questões sobre o código submetido pelo aluno, analisa

as suas respostas e devolve as respostas corretas. Desta forma, os alunos refletem so-

bre o código que escreveram e os professores das unidades curriculares de programação

conseguem identificar melhor as suas dificuldades.

Conduzimos uma experiência com alunos de licenciatura e mestrado em Engenharia

Informática e cursos relacionados de forma a perceber quais as suas dificuldades e testar

a robustez do protótipo. Concluímos que a maior parte dos alunos, embora entendam

detalhes simples do código que escrevem, não entendem o comportamento do programa

na sua totalidade e o estado que este possui num determinado momento. São também

sugeridas melhorias ao protótipo e à condução de futuras experiências.

Palavras-chave: Introdução à programação, ferramenta pedagógica, sistemas de tu-

toria inteligentes.

v

Abstract

Many students who learn to program end up writing code they do not understand. Most

of the available code evaluation systems evaluate the submitted solution functionally

and not the knowledge of the person who submitted it. This dissertation proposes a

system that generates questions about the code submitted by the student, analyses their

answers and returns the correct answers. In this way, students reflect about the code

they have written and the teachers of the programming courses can better pinpoint their

difficulties.

We carried out an experiment with undergraduate and master’s students in Com-

puter Science degrees in order to understand their difficulties and test the prototype’s

robustness. We concluded that most students, although understanding simple details

of the code they write, do not understand the behaviour of the program entirely, espe-

cially with respect to program state. Improvements to the prototype and how to conduct

future experiments are also suggested.

Keywords: Introductory programming, pedagogical tool, intelligent tutoring sys-

tems.

vii

Contents

Acknowledgements iii

Resumo v

Abstract vii

Code Listings ix

List of Figures xiii

List of Tables xv

Chapter 1. Introduction 1

1.1. Motivation 1

1.2. Context 2

1.3. Research Questions 2

1.4. Objectives 2

1.5. Research Method 3

1.6. Document Outline 4

Chapter 2. Literature Review 5

2.1. Problems students face when writing code 5

2.2. Static code analysis 6

2.3. Generic code feedback 7

2.4. Question generation as code feedback 9

Chapter 3. Question Definition 13

3.1. Question Templates 13

3.2. Static Questions 13

ix

3.3. Dynamic Questions 18

Chapter 4. Prototype Design and Implementation 23

4.1. High-Level Architecture 23

4.2. User Interaction Flow 25

4.3. Question Engine Architecture 27

4.4. Database Model 33

4.5. Limitations 35

Chapter 5. Evaluation 37

5.1. Context 37

5.2. Participants 37

5.3. Method 38

5.4. Results 38

5.5. Discussion 41

Chapter 6. Conclusions and Future Work 45

References 47

x

Code Listings

1 Code submission running example 14

2 Question Interface 29

3 Question Entity 32

4 Question Repository 33

xi

List of Figures

1 Design Science Research Process (DSRP) Model (Peffers, 2020) 3

2 Code bad practice detection (Alfredo, 2020) 9

3 Semantic-based AIG in computer programming 10

4 A process for generating QLCs (Lehtinen, 2021) 11

5 High-Level System Architecture 24

6 Code submission 25

7 Generated questions 26

8 System’s feedback on student’s answers 27

9 Question Engine Architecture 28

10 Question Interface Hierarchy 30

11 Question Engine Algorithm 31

12 Database Model 34

13 Correct and incorrect answers to questions by type 39

14 Percentage of correct answers by degree and year of study 40

xiii

List of Tables

1 Static Question Templates 15

2 Dynamic Question Templates 19

3 Total and percentage of correct answers by question template 40

xv

CHAPTER 1

Introduction

1.1. Motivation

Students that aspire to become professional developers or software engineers are faced

with multiple obstacles when learning the first steps and intricacies of programming.

While students can write code that works, it does not mean that they understand it,

at least entirely. However, any technique focused on artifact analysis assumes that

students understand the code they use in their projects. As noted by Brennan [1], this

is not necessarily true. This means that analysing code solutions submitted by a student

for a given problem is not enough to measure his or her programming knowledge.

Salac and Franklin [2] propose that written assessments or interviews are necessary

to find out whether students understand the concepts both included and not included in

their code. While interviews can provide a more complete picture of student learning,

they are very time-consuming, making them unrealistic for teachers who are already very

time-constrained. Further, these kinds of in-person approaches do not scale well to large

classes (e.g., hundreds of students) and online learning. This paper also concludes that

the correlation between the presence of specific code constructs on a student’s code

solution and his or her performance on a question asking about those code constructs is

very low. Essentially, artifact analysis only shows that a student built something, not

that they understand it.

Kennedy and Kraemer [3] also noticed that the ability to produce a program that

behaved correctly did not guarantee that the students fully grasped the underlying con-

cepts. Some students actually submitted erroneous code that just happened to work for

a given task, while expressing doubts about the correctness of their implementations.

1

1.2. Context

There are currently multiple systems oriented towards the goal of providing feedback

on a student’s code solution, mostly identifying errors [4]. The typical use case for code

submission platforms is focused around evaluating the code solution functionally (i.e. if

it works or not). As explained previously, this might not be enough to assess a student’s

understanding of the code. Having a system that could mimic a human mentor could be

more effective. The way a teacher usually assesses a student’s knowledge of a given

subject is through a test, oral or written, and provides individual feedback targeting

the specific issues that came up in the learning process. Usually though, programming

courses have lots of students and there are not enough resources to provide a continuous

follow-up process to assess if they understand what they are doing.

Questioning a student’s written code solution in detail can only be done by a human,

currently. Since this approach is not scalable the idea of creating a system that could

mimic this behaviour (to a certain extent) arose, as set out in [5]. The authors propose

an approach to automatically generate questions about student-written program code.

The prototype of this dissertation is a realisation of many of the ideas exposed in this

paper.

1.3. Research Questions

• How to automatically derive questions (and corresponding answers) about arbit-

rary introductory programming code?

• To what extent can students correctly answer questions about the properties of

their own code?

1.4. Objectives

The main objective of this work consists in investigating existing feedback generation

systems, including their methodologies, context and results, and implementing a proto-

type that can generate questions as described in the previous sections. These questions

can be static or dynamic, meaning that some questions can be generated by just stat-

ically analysing the code and inferring its context (e.g., ‘How many parameters does

function [F] have?’) while others can only be generated by running the code solution

2

on an execution environment (e.g., ‘How deep does the call stack grow from executing

[F]?’). Having a functional prototype, another objective is to use it to gather students’

answers to questions about their own code and then take relevant conclusions.

In short, having a system that analyses code solutions submitted by the students and

provides questions about their own code could help to measure their understanding of

the underlying concepts.

1.5. Research Method

The reference model used for the investigation method is the Design Science Research

Process (DSRP) [6] Model shown in Figure 1.

Figure 1. Design Science Research Process (DSRP) Model (Peffers, 2020)

In the context of this dissertation, the application of the DSRP model follows a

problem-centred approach, starting with the “Problem identification and motivation”

activity, since the idea for this research resulted from observation of an existing prob-

lem described in the motivation section of this dissertation. The main objective of the

proposed solution consists in being a complementary self-assessment tool that can help

students to better understand programming code concepts. The artifact is then created

3

in the ‘Design & Development’ activity. This activity includes determining the arti-

fact’s desired functionality and architecture as well as implementing it. In the “Demon-

stration” activity the artifact’s efficacy is demonstrated to solve the problem. This

demonstration consists in experimentation of the artifact in a particular context (e.g.,

classrooms or online classes). The results are then measured in the “Evaluation” activ-

ity. These results are measured by comparing them to the objectives proposed initially

in the “Objectives of a solution” activity. Depending on this measurement and time con-

straints one can iterate back to the “Design & Development” activity to further improve

the effectiveness of the artifact or continue to the “Communication” activity, i.e. when

the work is published and/or presented. This includes communication of the problem

and its importance as well as the artifact and its utility.

1.6. Document Outline

Regarding the document structure, chapter 2 describes the research conducted in mul-

tiple subjects related to the topic of this dissertation. Chapter 3 defines important

terms that serve as theoretical background that is necessary to understand the following

chapters. In chapter 4, technical aspects regarding the prototype’s architecture and

development are discussed, and how it accomplishes one of the main objectives pro-

posed. Chapter 5 describes how the prototype was evaluated and how it was used to

take relevant conclusions about students’ understanding of their own code, accomplish-

ing another proposed objective. Finally, conclusions are drawn and steps for future work

are described in chapter 6.

4

CHAPTER 2

Literature Review

This chapter shows the research conducted on multiple subjects related to this disserta-

tion. It starts by analysing studies related to problems that students face when writing

code and further establishes the relevance of this research. Then, a brief review on

the subject of static code analysis is done since it is a prerequisite for generating ques-

tions based on students’ code. Afterwards, existing general code feedback systems are

reviewed since it allows for understanding of the mechanisms and strategies used to gen-

erate and present feedback to the users. Finally, question generation as code feedback

in particular is also reviewed to understand how existing prototypes work and how the

prototype presented in this dissertation differs from these.

2.1. Problems students face when writing code

A literature review on students’ misconceptions and difficulties [7] asserts that students

exhibit misconceptions and other difficulties in syntactic knowledge, conceptual know-

ledge (how the code works) and strategic knowledge (when and how to use code to

solve a problem). Many sources of these difficulties are related to the students’ prior

knowledge in fields like math and natural language while others are related to teachers’

knowledge and instruction.

Derus [8] explored the views of students and the difficulties they experience while

learning to program in fundamental programming courses. It is concluded that lack of

visualisation of the program’s state during code execution is one of the major contrib-

uting factors of students’ difficulty in learning how to program along with lecturers not

providing enough practical code examples.

A study conducted by a ITiCSE working group [9] established that many students do

not know how to program at the conclusion of their introductory courses. The highlighted

cause for the problem was that students lack the ability to problem-solve, meaning that

5

they cannot decompose a problem into smaller problems, solve them and combine the

results to reach a final solution. A later ITiCSE working group [10] spanning twelve insti-

tutions in seven countries established that many students lack the knowledge and skills

that are prerequisites for problem solving. The skills are more related with the students

ability to read code, as opposed to writing it as many students failed to systematically

analyse a short piece of code.

This dissertation also aims to understand the difficulties faced by students when

writing code in order to further contribute to this area of study.

2.2. Static code analysis

Statically analysing programming code is a prerequisite for generating questions based

on a student’s code solution. Gomes et al. [11] wrote an overview on static code analysis

including existing static analysis tools for different programming languages. Essentially,

there are 2 types of software analysis: dynamic and static analysis. Static analysis is

the analysis of computer software without the execution of the programs built from

that software. Dynamic analysis is performed by executing programs on a real or virtual

processor. Some static analysis tools for Java noted in this paper include FindBugs, PMD,

CheckStyle and others. These tools perform syntactic checks on program source code

and report any breach of standards.

Striewe and Goedicke [12] reviewed different static analysis approaches for program-

ming exercises and the respective tools used. The approaches covered in the paper are

limited to the context of object-oriented programming in Java. These tools are categor-

ized depending if they analyse source code, bytecode or both. Since bytecode analysis

does not fulfill all requirements for learning scenarios and source code analysis seems

to do so, the latter might be the preferred approach. Some approaches use abstract

syntax trees (AST) while others use abstract syntax graphs (ASG). The main difference

between these is that an ASG is an AST enriched with additional arcs. Essentially, it

shows connections between method call nodes to respective method declarations, field

access and field declaration, etc. It should be noted that it’s only a difference of data

formats since ASGs are generated from ASTs so any information available in the graph

6

is also available in the tree, albeit implicitly. The paper also mentions how one can

integrate an external tool into an existing system. Essentially, two different ways of in-

tegration exist: integrate the tool as a library and use its API (Application Programming

Interface) or start the tool from the command line as a separate process. All the tools

listed in the paper provide API integration which is usually the preferred method.

2.3. Generic code feedback

Substantial work has been done regarding the subject of providing automatic feedback

to the user, according to [4]. However, this feedback is usually about the coding er-

rors, if they exist. This approach might not be enough considering the student might

just search for a solution he or she does not understand and submit it. According to

this systematic review, there are three great types of difficulties that students find:

syntax knowledge, conceptual knowledge and strategic knowledge. Syntax knowledge

can be acquired with feedback based on compiler errors. Conceptual knowledge can be

acquired with explanations on subject matter and examples illustrating concepts. The

solution proposed in the context section of this dissertation can be used to address this

type of difficulty and improve conceptual knowledge of the problem as the student will

always have to reflect on his or her code solution, regardless if his or her submission was

correct. Lastly, strategic knowledge can be acquired with compiler errors, knowledge

about task constraints and knowledge about how to proceed. This review also concludes

that, despite many techniques and studies have been done on this matter, it is still a

challenge to provide significant and diversified feedback to the user that does not focus

only on errors.

Rivers and Koedinger [13] used a method that relies on using solution spaces. A

solution space is, in this context, ‘a graph representation of all the possible paths a

student could take in order to get from the problem statement to a correct answer,

where the nodes are candidate solutions and the edges are the actions used to move

from one solution state to another’. After creating the solution space a method based

on the Hint Factory [14] is used, i.e a logic tutor which uses prior data to give stuck

students feedback on how to proceed. Essentially, the method described uses solution

7

spaces to determine where a student is in his or her problem-solving process and then

traverses that space to find the nearest correct solution to determine what feedback to

provide to the student. Nevertheless, the authors note that despite having the solution

spaces implemented and tested, the process of generating feedback is still in progress.

Parihar et al. [15] developed the GradeIT system. It provides automated grading,

repairing and feedback. They noted that compiler messages are generally geared to-

wards professional programmers and may refer to advanced concepts not covered in

class despite forming the basic feedback for most programming assignments. Therefore,

a simplified feedback for most frequent errors was created. A fixed set of rewrite rules is

used to reformat the compiler error message into a simple message suitable for a novice

programmer. Furthermore, two types of examples are provided: valid code fragments

to explain to the student how to correct the error and invalid code fragments to show

common variations of the error.

Marin et al. [16] proposed a semantic-aware technique to provide personalized feed-

back for java assignments in the context of Massive Open Online Courses (MOOCs). For a

given assignment, instructors select relevant patterns they expect to find in student sub-

missions from a provided knowledge base. They can also set different types of constraints

among these patterns to correlate them and provide more fine-grained feedback. The

student’s code submission is transformed into an extended program dependence graph

and subgraph pattern matching is performed over it to provide personalized feedback

associated with the patterns and constraints indicated by the instructor.

Alfredo [17] developed a pedagogical tool that uses static analysis to identify issues

with students’ code, while providing an explanation on why a given bad practice present

in the code can harm their learning. The tool uses the notion of a Control Flow Graph

to implement detectors of bad practices. A detection example is show in Figure 2.

The type of feedback provided by the prototype of this dissertation has a different

approach from the ones mentioned previously in the sense that it does not provide steps

for a student to reach a solution. The code solution is submitted and then questions are

generated as feedback so both students and professors can assess students’ understand-

ing of their own code.

8

Figure 2. Code bad practice detection (Alfredo, 2020)

2.4. Question generation as code feedback

There is earlier work on automatic generation of questions for programming code. For

instance, Zavala and Mendoza [18] used semantic-based Automatic Item Generation (AIG)

in order to create programming exercises that can be used for assignments or quizzes in

introductory programming courses. The idea behind AIG is that one can use a test-item

template with embedded variables and formulas to generate hundreds or even thousands

of test-items, i.e variations of the same question. In this case, Linked Open Data 1 is

a method used in this semantic-based AIG approach to generate programming exercises

that reflect real-world concepts. An example of this approach, based on a diagram

present in the article, is shown in Figure 3. It shows a test-item template serving as

input to the algorithm that instantiates it and outputs multiple test-items.

Thomas et al. [19] used a stochastic tree-based generation algorithm and a sub-

sequent simulation of execution to generate small programs accompanied by multiple-

choice questions. The incorrect answer options serve as distractors that correspond to

reasonable paths of execution of the program but are ultimately incorrect. This line of

work is primarily motivated by the need to provide many fresh questions for students

to practice on, and/or as a precaution for plagiarism. The approach presented in this

dissertation, while sharing the same general objective of generating questions automat-

ically, differs specifically in what types of questions are generated. The objective is to

infer the context of the student’s solution and generate questions adapted to that same

context, not generate variants of the same exercise.

1https://www.w3.org/standards/semanticweb/data

9

https://www.w3.org/standards/semanticweb/data

Figure 3. Semantic-based AIG in computer programming

As previously mentioned, this dissertation is a realization of many of the ideas ex-

posed in [5]. This paper defines the concept of questions about learner’s code (QLCs)

as well as a process for generating them automatically. Figure 4 illustrates this process.

Essentially, when a student submits code, it passes through a static analyser that ex-

tracts static facts (e.g., the number of variables) and through an execution engine that

gathers dynamic facts (e.g., the call stack depth). Both these types of facts are used by

the ‘Question Engine’ to determine which of the QLC templates present in the ‘Template

Database’ are applicable to the submitted code. The authors also propose other inputs

for the system like test cases and settings defined by a teacher. This dissertation builds

on many of these concepts in order to implement the proposed prototype.

10

Figure 4. A process for generating QLCs (Lehtinen, 2021)

11

CHAPTER 3

Question Definition

This chapter starts by defining what question templates are and why they are important

to generate relevant questions to the students. It then describes the existing question

types and lists concrete question template examples segregated by these types.

3.1. Question Templates

In order to generate questions for students based on their submitted code, outlines

for the questions must be prepared beforehand. These outlines are called ‘Question

Templates’ and depending on the submitted code, instances of these templates, i.e.

the questions themselves, will be generated. This dependency is expressed through

a concept called ‘Applicability’ and each question template defines its own applicable

rules. For example, a question concerning the number of parameters in a method should

only be asked about a method that has at least one parameter defined in its method

signature. The code snippet in Listing 1 shows a simple Java class composed of three

methods and will be used as a running example for this chapter.

3.2. Static Questions

Static questions are questions that are generated by statically analysing the code. Static

analysis is performed without actually executing the code and allows to retrieve relevant

information from it, for example, the number of variables, parameters, method calls,

etc. In order to generate static questions for a particular code construct, it must be

possible to get elements (e.g., methods or functions) of a particular code file or program.

In this case, a code analysis tool like Paddle 2 provides an API that allows to extract

relevant information from the code. Each method contains variable declarations and

assignments, method calls, etc. From the collected information it is then possible to

2https://github.com/andre-santos-pt/paddle

13

https://github.com/andre-santos-pt/paddle

generate an appropriate question for a particular method or function and the respective

answer. For instance, considering the code present in Listing 1, it is possible to verify

that method calculate depends on two other methods and that it has three parameters.

This type of information about the code can be posed as questions to the student after

statically analysing it. Overall, these types of questions are more focused on introductory

programming concepts like code semantics and are typically easier to answer compared

to dynamic questions since they do not require the student to follow the code’s execution

path.

Table 1 contains descriptions as well as the applicability of static question templates.

1 public class Calculator {

2

3 public int calculate(int x, int y, char operation) {

4 if (operation == '+') return sum(x, y);

5 else if (operation == '-') return sub(x, y);

6 return 0;

7 }

8

9 private int sum(int x, int y) {

10 return x+y;

11 }

12

13 private int sub(int x, int y) {

14 return x-y;

15 }

16 }

Listing 1. Code submission running example

14

Table 1: Static Question Templates

Question Template Applicability? Other observations

Does {function} depend on

other functions?

This is a ‘yes or no’ ques-

tion that is asked about

any function present on the

submitted code. Since it

can be asked about any

function in the code it does

not have any rule in order

to be applied to a particu-

lar context.

The user is expected to an-

swer with a boolean value

(true or false) that indic-

ates if the function de-

pends on other functions or

not.

How many functions does

{function} depend on?

This question is asked if

a given function depends

on other functions, i.e.

it is applicable to a given

function if the answer to

the question ’Does {func-

tion} depend on other

functions?’ is true.

The user is expected to an-

swer with an integer value,

indicating how many func-

tions or methods the given

function depends on.

How many loops does

{function} have?

This question is asked if a

given function has at least

one loop construct (e.g.,

while/for) present in the

code.

The user is expected to an-

swer with an integer value,

indicating how many loop

constructs are present in a

given function.

How many parameters does

{function} have?

This question is asked if a

given function has at least

one parameter.

The user is expected to an-

swer with an integer value,

indicating how many para-

meters a given function

has.

How many variables (not

including parameters) does

{function} have?

This question is asked if a

given function has at least

one variable.

The user is expected to an-

swer with an integer value,

indicating how many vari-

ables (not including para-

meters) a given function

has.

15

Question Template Applicability? Other observations

Is {function} recursive? This is a ‘yes or no’ ques-

tion that is asked if a given

function is recursive or has

loop constructs present in

the code. The reason for

the latter is that it allows

to distinguish between stu-

dents that understand the

difference between recur-

sion and use of loop con-

structs.

The user is expected to an-

swer with a boolean value

(true or false) that indic-

ates if the function is re-

cursive or not.

What are the fixed value

variables of {function}?

This question is asked if a

given function has at least

one variable and it only

has one assignment. It

can be though of as a con-

stant even though it does

not need to be represented

as such (i.e. it can be a

simple variable declaration

that does not have more

than one assignment).

The user is expected to an-

swer with a list of string

values that represent the

variables that have a fixed

value.

What functions does {func-

tion} depend on?

This question is asked if a

given function has at least

one other function refer-

ence present in its body.

This means it is applic-

able to a given function if

the answer to the ques-

tion ’Does {function} de-

pend on other functions?’ is

the value true.

The user is expected to an-

swer with a list of string

values that represent the

function or method calls

present in a given function

or method body.

16

Question Template Applicability? Other observations

What is the most determ-

inant role of {variable} in

{function}?

This question is asked if a

given function has a vari-

able with a particular role.

For example, a variable

might be responsible for

accumulating, increment-

ing or decrementing values,

etc.

Since the names for these

roles are subjective (i.e.

do not have a strict, ob-

jective naming convention)

a list of string values is

provided to the user and he

or she is expected to pick

one of the values as the an-

swer.

What are the parameters of

{function}?

This question is asked if

a given function has at

least one parameter. This

means that this question

is applicable if the answer

to the question ’How many

parameters does {func-

tion} have?’ is greater

than zero.

The user is expected to an-

swer with a list of string

values that represent the

function’s parameters.

What are the variables (not

including parameters) of

{function}?

This question is asked if a

given function has at least

one variable (not including

parameters). This means

that this questions is ap-

plicable if the answer to

the question ’How many

variables (not including

parameters) does {func-

tion} have?’ is greater

than zero.

The user is expected to an-

swer with a list of string

values that represent the

function’s variables.

17

Question Template Applicability? Other observations

Which variable will hold the

return value of {function}?

This question is asked if

the function uses only one

variable in its return state-

ment. Since it is a static

question and the code is

not executed to generate

this question, the question

is only applicable if the

return statements, should

there be more than one,

use the same variable.

The user is expected to an-

swer with a string value

that represents the vari-

able that holds the return

value.

3.3. Dynamic Questions

By contrast, dynamic questions are generated by analysing the code’s behaviour. Dy-

namic analysis is performed by executing the code on a real or virtual processor. Since

code is executed, this type of analysis allows the retrieval of information not present

in the code itself including the return value of a given function, call stack depth of a

program, variable assignments and method calls. Considering Listing 1, a student can

be asked about the return value of method calculate. Since the value is not present in

the code the student has to think about the code’s execution path in order to provide

an answer.

When generating dynamic questions, the way in which information is collected is

different from generating static questions. With the latter, the values or responses for a

given question are naturally present in the code while with the former these values are

retrieved from the code execution. One has to keep in mind that for distinct executions

of a given method the code path might be different depending on the code constructs and

arguments generated to execute it. For example, in Listing 1, in the calculatemethod, if

the operation argument is ‘+’ or ‘-’ the sum and sub methods will be called, respectively

while any other operation argument will make the method return 0. In this case, the

entire trace from a single method execution must be collected and persisted on a proper

data structure, not only because of consistency but also performance reasons. From this

18

data, appropriate questions can be posed to the student for a particular method, for

example, the return value, number of variable assignments, call stack depth, etc.

Since the code is executed on a virtual processor it is also necessary to generate

appropriate arguments in case one or more parameters are present in the method defin-

itions.

Table 2 contains descriptions as well as the applicability of dynamic question tem-

plates, assuming the method definitions contain parameters. The alternate, paramet-

erless, versions of the question templates are similar and differ only on the use of some

words and the lack of arguments. They are not shown for the sake of brevity.

Table 2: Dynamic Question Templates

Question Template Applicability? Other observations

How deep does the call

stack grow from the fol-

lowing invocation: {func-

tion(arguments)}?

This question is asked if a

given function has a call

stack depth greater than 1.

Considering the function in-

vocation itself makes the

call stack have a depth of

1 a method call in this func-

tion increases the call stack

depth to 2. Other method

calls in the original func-

tion do not increase the

call stack depth. For ex-

ample, in order for the call

stack to have a depth of

3 the method that the ori-

ginal function calls must

also have a method call in-

side its body.

This question allows to dis-

tinguish between students

that understand how the

call stack works and those

that know how to follow

the logic in a program that

calls multiple functions but

do not know how the call

stack itself works intern-

ally. The user is expected

to answer with an integer

value that represents the

function’s call stack depth.

19

Question Template Applicability? Other observations

How many function calls

are made with the fol-

lowing invocation: {func-

tion(arguments)}?

This question is asked if a

given function calls one or

more functions. This ques-

tion differs from its ana-

logous static question men-

tioned previously in the

sense that it asks about the

calls effectively made in

the code’s execution, not

the presence of the func-

tion definitions in its body.

For example, if a function

call is present inside a con-

ditional if statement it will

not get called if the expres-

sion evaluates to ‘false’. In

this case, it does not count

as a function call but it

counts for the number of

functions the original func-

tion is dependent on.

This question requires the

student to follow the func-

tion’s logic path instead of

simply counting the num-

ber of function references

present in the code. The

user is expected to answer

with a integer value that

represents the number of

function calls made.

20

Question Template Applicability? Other observations

How many times a value

is assigned to {vari-

able} from the following

invocation: {function(ar-

guments)}?

This question is asked if

the given function has at

least one variable that is

assigned a value more than

once. Like the previous

dynamic questions, this

question requires the user

to follow the function’s

logic path instead of simply

counting the number

of assignments that are

visually perceived. The

number of assignments can

greatly vary depending on

the existence of condi-

tional statements and loop

constructs.

The user is expected to an-

swer with a integer value

that represents the number

of times a value is assigned

to a given variable.

What is the return value

from the following invoc-

ation: {function(argu-

ments)}?

This question is asked if

a given function does not

have a void return type.

The user is expected to an-

swer with a string that rep-

resents the function’s re-

turn value. The value itself

might be a string or num-

ber.

What is the value sequence

taken by {variable} with

the following invocation:

{function(arguments)}?

This question is asked if

there is at least one vari-

able in the given function

that has more than one as-

signment.

The user is expected to an-

swer with a list of string

values that represent the

variable’s ordered values,

from the beginning to the

end of the function’s exe-

cution.

21

CHAPTER 4

Prototype Design and Implementation

This chapter describes the system that was built and used to generate the previously

discussed questions. It starts by describing the system’s architecture, namely how its

components interact and the technologies used. Then, it describes how users can in-

teract with it and how it behaves. Afterwards, the architecture of the question engine

component is discussed specifically since it generates the actual questions and is this dis-

sertation’s main focus. It then proceeds with an overview of the database model and its

relation with the question engine component. Finally, the chapter ends by mentioning

a couple of technical limitations present in the prototype.

4.1. High-Level Architecture

The whole systemwas designed taking user experience and usability into account. There-

fore, it is built, looks and feels like a web application for the end users, i.e. the students.

The diagram in Figure 5 shows a high-level overview of the main components of the pro-

totype.

The system follows a traditional client-server architecture and the interactions between

these two components are made through REST 3 calls. The ‘Question Generator UI’ is

a frontend application built with the TypeScript programming language and the Angular

4 framework. It is deployed and publicly available on the Firebase 5 platform for the

user to interact with, including submitting the code and the answers to the generated

questions.

3https://restfulapi.net/
4https://angular.io/
5https://firebase.google.com/

23

https://restfulapi.net/
https://angular.io/
https://firebase.google.com/

Figure 5. High-Level System Architecture

The business logic, including question generation and data processing occurs in the

‘Question Engine’ server application, a backend application built with the Kotlin pro-

gramming language and the Spring Boot framework 6. It also uses the ‘Paddle’ library

for static code analysis and running the code in a virtual machine. The data generated

from user interactions (code, questions, submitted and correct answers) is mapped to

each user and persisted in a PostreSQL database. Both the server application and the

database are deployed on the Heroku platform 7.

One of the main reasons for splitting the frontend and backend applications in this

case is to allow separate deployments. At a given time in the prototype where further

development on a particular application may not be needed, one can develop and de-

ploy another application without affecting the former. This also translates into overall

increased system availability as a user might be interacting with the ‘Question Generator

UI’ (e.g., typing the code in the editor) while a quick deployment of the server applica-

tion is being performed. It is also easier to understand where a given problem might be

6https://spring.io/projects/spring-boot
7https://www.heroku.com/

24

https://spring.io/projects/spring-boot
https://www.heroku.com/

coming from any stage of development (i.e. building, testing or deploying the solution)

if the components are isolated.

4.2. User Interaction Flow

In order to interact with the system, the user uses a browser to access the frontend

application, which is the only application that is exposed directly to this user. The user

first logs in with his or her google account and can then type his or her code (in Java)

directly on the code editor, copy and paste or upload prepared code as shown in Figure

6.

Figure 6. Code submission

After submitting the code, the user is presented with relevant questions. A subset of

generated questions can be seen in Figure 7.

25

Figure 7. Generated questions

For each question type the user has the appropriate input in order to answer, i.e.

number, text, selection, etc. For each answer, the user also selects and submits a con-

fidence level indicating how confident he or she is that the answer to a given question is

correct, with a value of 1 indicating the lowest confidence level and a value of 5 indicat-

ing the highest confidence level. After the user submits the answers and corresponding

confidence levels, the system processes and persists this data and returns the correct

answers to the questions as can be seen in Figure 8. This way, the user can see which

answers are correct or incorrect and try to improve his or her level of understanding

26

about the code. Afterwards, the user can make a new code submission to restart the

process.

Figure 8. System’s feedback on student’s answers

4.3. Question Engine Architecture

The ‘Question Engine’ component is responsible for receiving, processing and persisting

user data as well as generating appropriate questions and respective answers for the

code the user submits. The service’s main components are presented in Figure 9.

27

Figure 9. Question Engine Architecture

The QuestionEngineController is responsible for exposing the necessary endpoints

for a client to use, in this case, the ‘Question Generator UI’ application. These end-

points correspond to the two main actions that the user of the system will take, namely,

submitting code and answers to the generated questions. The QuestionEngineService is

injected into the controller through dependency injection, which allows it to use the

public methods exposed by the service without manually instantiating it. This service is

responsible for the whole systems’ orchestration which includes making the necessary

calls to other services, repositories or other components depending on the action that

is being taken, i.e. code submission and answer submission. When code is submitted

to the system, it is first formatted and validated and in case there is a syntactic error,

an exception occurs alerting the user to this fact. In case the code is valid, the system

stores it in the database and associates it with a particular user. It then calls the Ques-

tionGeneratorService to generate appropriate questions about the code, i.e. instances

of question templates.

28

Each question template is represented as a class that ultimately implements beha-

viour from the question interface represented in Listing 2.

1 interface Question <T> {

2 fun question(target: T): String

3 fun applicableTo(target: T): Boolean

4 fun answer(target: T): Any

5 fun proficiencyLevel(): ProficiencyLevel

6 }

Listing 2. Question Interface

The T represents a generic type that serves as an input parameter to define the ques-

tion in the question function. The correct answer for the question is determined in the

answer function and depending on the question template, T can represent a procedure,

a variable or even a complex object containing data about the whole procedure. The

proficiencyLevel function defines the question’s proficiency level, from ‘C’ to ‘A’, where

‘C’ indicates the lowest level of proficiency and ‘A’ indicates the highest level of profi-

ciency. Each user is also assigned a level of proficiency based on his or her correct/total

submitted answers ratio.

The question interface hierarchy is represented in Figure 10. As previously men-

tioned, questions are conceptually split into two types, static and dynamic. In the case

of static questions, only static analysis is performed. Otherwise, the code is also run in

a virtual machine. For both these use cases the ‘Paddle’ library is used.

The StaticQuestion interface extends the Question interface indicating that the T

generic type should be any element present in a given code submission like a procedure

or a variable. In fact, the StaticQuestion interface is extended to represent this exact

use case. When generating questions about a given procedure, classes implementing the

ProcedureQuestion interface will be instantiated. When generating questions about a

given variable declaration, classes implementing the VariableQuestion interface will be

instantiated.

29

Figure 10. Question Interface Hierarchy

The DynamicQuestion interface extends the Question interface indicating that the

T generic type should be a special object class. This class holds runtime related in-

formation about a given procedure, including a collection of code constructs named

‘Procedure Call Facts’. A ‘Procedure Call Fact’ can be though of as any action or relev-

ant value that has been taken or preserved from running the referred procedure in the

virtual machine. For instance, the call stack depth, the number of methods called, the

return value and the number of variable assignments are all procedure facts gathered

from a single procedure execution. This data, along with the generated arguments, is

then used to generate relevant questions and answers for a code submission.

A simplified diagram of the question generating process is shown in Figure 11. The

way these questions are generated is by iterating each question template instance and

calling the applicableTo function using the T argument to filter out the non-relevant

questions for a given function in a code submission. For example, considering a function

‘F’ with no parameters, when passed as an argument for the applicableTo function of

the question template that asks about the number of parameters of a given function, this

last function will return ‘false’. This happens because the rules defined in this question

30

template specify that the question is applicable if the code submission contains at least

one parameter. In this case, it is filtered out of the set of applicable questions to be

asked about a given function in a code submission. This type of validation occurs for

every question template.

Figure 11. Question Engine Algorithm

Once these questions are generated, they are persisted in the database along with

the respective correct answers, code submission and other relevant information includ-

ing user information through the use of entities and repositories. In this context, an

entity can be defined as a unit of data that captures the properties of a row of a table

in the database. Listing 3 shows a representation of the Question entity class. The @En-

tity annotation specifies that the Question class is an entity and the @Table annotation

31

specifies the table name and the schema that it belongs to. Each field represents a par-

ticular column in the the table and they can also be annotated depending on their role

or relationship to other tables. More details on the database schema are given later in

the database section of this chapter.

1 @Entity

2 @Table(name = "question", schema = "question_engine")

3 data class Question(@Id @GeneratedValue(strategy = GenerationType.IDENTITY)

4 var id: Long? = null,

5 @ManyToOne @JoinColumn

6 var questionTemplate: QuestionTemplate ,

7 @ManyToOne @JoinColumn

8 var codeSubmission: CodeSubmission ,

9 @ManyToOne @JoinColumn

10 var language: Language ,

11 @OneToOne

12 var answerSubmission: AnswerSubmission?,

13 var question: String ,

14 var correctAnswer: String ,

15 var function: String) : AuditableEntity()

16 {}

Listing 3. Question Entity

A repository is a mechanism for encapsulating storage, retrieval, and search beha-

viour, which emulates a collection of objects [20]. Each repository is associated with

a particular entity and, like services are used in controllers, they are used in services

through dependency injection. Figure 4 shows a representation of the QuestionRepos-

itory interface, that is associated with the Question entity. This interface is annot-

ated with the @Repository annotation to indicate that it is a repository. It extends the

CrudRepository interface from the Spring framework so CRUD (Create, Read, Update,

Delete) methods can be executed on the database table.

32

1 @Repository

2 interface QuestionRepository : CrudRepository <Question , Long> {}

Listing 4. Question Repository

After persisting the data, the questions are then returned back to the user through

a model or DTO (Data Transfer Object) class. As the name suggests, a DTO is an object

that is used to encapsulate data, and send it from one subsystem of an application to

another 8.

When the user’s answers to the questions are submitted to the system, it finds the

saved questions and correct answers and associates them with the user’s submitted an-

swers. The user proficiency level is then updated based on the new correct/total sub-

mitted answers ratio and the correct answers are returned back to the client application,

also through a DTO class.

4.4. Database Model

From the beginning of the conception of this prototype one of the core ideas was to some-

how persist all the user interactions and respective generated information. Even though

a functional version of this system could be built without it, having a database that re-

cords all these transactions is very beneficial. It allows splitting the whole problem into

smaller steps (submitting code and submitting answers), gives the student a sense of

progress and accomplishment between sessions through proficiency level updates and,

probably most importantly, it allows for relevant conclusions regarding student’s pro-

gramming understanding to be drawn from the persisted data.

The previously discussed prototype implementation is tightly coupled with the data-

base model displayed in Figure 12 (some details omitted for brevity).

The question templates are represented in the question_template table. Each ques-

tion is associated with one question template and, as previously mentioned, a question

template is associated with a proficiency level. It holds data regarding the return type

8https://martinfowler.com/eaaCatalog/dataTransferObject.html

33

https://martinfowler.com/eaaCatalog/dataTransferObject.html

Figure 12. Database Model

allowing the client application to determine which type of input to display to the user,

the question template type itself, i.e. static or dynamic, and the class name that models

this behaviour. Since question templates are implemented in the code and it is hard to

tell what question template is being processed or read from its id, the class name is used

as a unique constraint in the table. When there is a code submission, the system will

insert question templates of the generated questions in this table if they are not already

present.

A question is represented in the question table and it is mapped to a given answer.

It holds some relevant data to be used in the system’s processing, including the correct

answer for the question, which function the question asks about and the question it-

self. Each question, unlike question templates, is associated with one code submission

meaning the system will always insert questions in question table for each submission.

It is also associated with the language table. This allows the system to support multiple

languages. A user can potentially generate questions in english or his or her native lan-

guage. Naturally, translations for each language need to be added for the system to

support this behaviour completely.

34

The user table holds user related data including their name, email and proficiency.

This proficiency is represented in the proficiency table. It holds proficiency levels that

can be assigned to both users and question templates and it is one of the links between

these two entities. As discussed previously, the current prototype implements the pro-

ficiency levels ‘C’, ‘B’ and ‘A’, from the lowest to the highest proficiency level respect-

ively.

The code_submission table holds the code submitted by a user and the answer_sub-

mission table holds the answer submitted by a user for a particular question.

4.5. Limitations

Although the prototype fulfills the proposed objectives it has some technical limitations

that should be noted. For instance, there are a couple of questions that are presented as

multiple-choice even though the system was not designed to generate incorrect answers

as distractors for the student. In the case of the multiple-choice questions that exist,

the values are hard coded and this is not a scalable solution. A concrete example of this

is the question that asks about a variable role in a function. As previously mentioned,

a list of choices is provided to the user but only one is correct. The incorrect choices

are actually coded in the frontend application and are not generated by the question

engine. This is by design since the system itself is mainly concerned with asking relevant

questions, not providing relevant answers for these questions. In fact, the questions are

generated after analysing and extracting certain values (the correct answers) from the

code, not the other way around. Nonetheless, this design decision makes it harder to

implement these types of questions which can be more visually appealing and intuitive

for certain use cases. Therefore, generating more of these types of questions and finding

a strategy to do so in a more technical appropriate way can be desirable.

35

CHAPTER 5

Evaluation

This chapter describes the experiment that was conducted using the developed prototype

described in the previous section. It starts by describing the context and the participants

of the experiment. Then, it describes how these participants were exposed to the system

and how they used it. Finally, it lays down the results from the experiment as well as

relevant observations and interpretations.

5.1. Context

In order to understand to what extent could students correctly answer questions about

the properties of their code, the developed prototype was put to test in a few program-

ming classes at the ISCTE-IUL university in the second semester of the 2020/2021 school

year. These test runs also allowed to improve the prototype’s stability and usability

based on students’ feedback and user experience. Initially, the system had a few bugs

when submitting code and persisting data which resulted in some relevant data not being

saved. Furthermore, some of the data that was persisted was not very useful on its own,

i.e. some students submitted code and the system generated questions for it but they

did not submit answers to the questions, possibly due to different reasons like system

failure or just unwillingness to do so. Nonetheless, the data that was persisted can be

used to draw some conclusions and insights.

5.2. Participants

For the purposes of this dissertation, there were 14 students that submitted valid code

and answered to generated questions about it. These students all studied for either

a bachelor’s or master’s degree with a very significant computer science background.

Half of these students were in the first year of study while the other half was spread

37

through the second and third years of the bachelor’s degree and also the first year of

the master’s degree.

5.3. Method

The students were exposed to the tool in two ways. First, some students that were taking

the ‘Introduction to Programming’ class used the tool with some guidance of the course

coordinator (professor Nuno Garrido), essentially on how to access and use the tool. In

this case, each student used a computer in the classroom to access the tool online and

then followed the flow described in the previous chapter. The code submitted by each

student represented a solution to a particular problem given previously by the course

teacher. However, the prototype was still at a very incomplete stage so there were

some unexpected errors and only a few code and answer submissions.

Later, the prototype was refined and stabilised and there was a more proper planning

for the conduct of future experiments. We then asked other students, through university

email, to participate in the experiment, out of class hours. We also asked them to bring

code solutions to particular problems in advance so the time used in the sessions was

exclusively for code and answer submissions. A couple of sessions were done involving

more or less four or five students at a given time. There was a bit more adherence

through this method. We provided guidance to these students, through the Zoom Cloud

Meetings 9 videoconferencing software, on how to use the tool and on how to get past

any errors that might occur. First we showed a demo of the prototype, by accessing it

online, submitting a code sample and the answers to the generated questions. After-

wards, students did the same process with the code they prepared beforehand while we

addressed any problems that were encountered with the tool’s usability.

5.4. Results

In total, 185 questions and answers were generated and submitted, respectively. Of

these questions, 144 are static and 41 are dynamic. Figure 13 shows the percentage of

correct and incorrect answers to static and dynamic questions, respectively.

9https://explore.zoom.us/en/products/meetings/

38

https://explore.zoom.us/en/products/meetings/

78%

22%

Correct

Incorrect

29%

71%

Static Dynamic

Figure 13. Correct and incorrect answers to questions by type

Approximately 78% of static questions were answered correctly while only about 29%

of dynamic questions were answered correctly. Overall, students answered questions

correctly about 68% of the time.

Table 3 shows the correct answers ratio by question template. As it can be observed,

there is a considerably higher correct answer ratio present in static questions compared

to dynamic questions. The only exception is the WhatIsTheReturnValue question tem-

plate. This is because this template has the lowest amount of generated questions, with

a total count of 2, which means there was one correct answer and one incorrect answer.

This is mainly due to the nature of the code that was submitted in the classes since it

consisted in having random arrays and matrices as return values. This means that this

type of question was not generated or was generated and the result was discarded as

the student had no way of knowing the result.

Figure 14 shows the relation between the students’ performance and their degree

and year of study. Ideally, senior students should have the highest percentage of correct

answers. However, while the worst performances belong to first year students, the best

performances do not belong to the most senior students necessarily. It can be observed

that a few students from the first and second years had a better performance than all

other students, including students studying for a master’s degree.

39

Table 3. Total and percentage of correct answers by question template

Question Template Total answers Percentage of correct answers

HowManyVariableAssignments 13 15%

HowDeepCallStack 8 25%

WhatVariableValues 13 38%

HowManyMethodCalls 5 40%

WhatFixedValueVariables 14 43%

WhatVariables 14 43%

WhatIsTheReturnValue 2 50%

HowManyVariables 14 64%

WhatParameters 14 64%

WhichVariableHoldsReturn 14 86%

WhatIsTheVariableRole 9 89%

HowManyLoops 14 93%

IsRecursive 14 93%

CallsOtherFunctions 13 100%

HowManyFunctions 5 100%

HowManyParams 14 100%

WhatFunctions 5 100%

BS 1st BS 2nd BS 3rd MS 1st
0

10

20

30

40

50

60

70

80

90

100

Degree and year of study

P
e
rc
e
n
ta
g
e
o
f
c
o
rr
e
c
t
a
n
sw

e
rs

Figure 14. Percentage of correct answers by degree and year of study

40

5.5. Discussion

The discrepancy in Figure 13 is to be expected since dynamic questions require the

student to have a better understanding of how their code works instead of just pointing

out names of elements present in their code, like in static questions. This makes dynamic

questions naturally harder to answer. The difficulty discrepancy between static and

dynamic questions is even more apparent when drilling through the data and inspecting

answers to each question.

When considering Table 3, among static questions, there is a group of related ques-

tions that had a considerable lower percentage of correct answers. This group consists

in the following question templates: HowManyVariables,WhatVariables andWhatFixed-

ValueVariables. The first question of the group asks the student the number of variables

that exist in a given function. The problem with this question is that some students

did not consider certain variable declarations in their code, especially iterator variables

declared in for loop constructs. Unlike the previously discussed dynamic question, this

question was asked to each of the 14 students (typically variables exist in any program)

which means that 5 students answered incorrectly.

The WhatVariables question template asks the student what variables are present in

the code. It only differs from the the previous question in the sense that the user not only

has to count the number of variables but also identify their names which makes this ques-

tion somewhat harder and therefore resulting in a lower percentage of correct answers.

This question was also posed to all students and 9 students answered incorrectly. Com-

pared to the previous question, the additional 3 students that got this question wrong

named the parameters of the function instead of variables present in loop constructs,

even though the question mentions that parameters should not be included in the answer

(although they are indeed variables). This shows that these students answered correctly

to the HowManyVariables question by accident and that the fact that the number of

parameters was the same as the number of variables declared in loop constructs, was

a lucky coincidence. It also shows that some students do not read or understand ques-

tions completely since the information about not including parameters in the answer was

ignored.

41

Regarding the WhatFixedValueVariables question template, it was also asked to all

students and 9 of them answered incorrectly. There seems to be a few different reasons

for this. The first is that some students did not consider parameters that did not change

their value as fixed value variables. Another reason is related to assigning values to array

indices. Some students assumed that by assigning values to array indices the array itself

is being mutated and do not consider the array variable a fixed value variable in this

case. Lastly, some students simply did not know what the question meant and replied

with ‘0’ or ‘I do not know’.

Regarding the dynamic questions, most students that answered the HowManyMeth-

odCalls question seemed to only count the number of functions called directly by the

function that the question refers to. They did not take into consideration calls that were

made in other functions, caused indirectly by the first call. This might be considered

an interpretation problem and not necessarily a lack of understanding on the code’s

flow execution. This question was posed and answered 5 times, with only 2 students

submitting a correct answer.

TheWhatVariableValues and HowManyVariableAssignemnts question templates have

similar reasons for having a low percentage of correct answers mainly due to the fact that

some the generated arguments to the question had high values and these were used as

upper value limits of iterator variables in nested loop constructs. As such, inside these

loop constructs some variables were assigned tens of times which probably made the

respective questions tedious to answer. In the case of the HowManyVariableAssignments

question some students also did not consider the line where a variable is both declared

and assigned as an assignment. Therefore many students missed the correct answer just

by one count. Only 2 students out of 13 answered the HowManyVariableAssignments

question correctly and 5 out of 13 answered the WhatVariableValues question correctly.

Finally, the HowDeepCallStack question template was asked 8 times and answered

correctly only 2 times. It is not obvious what the incorrect answers submitted by the

students mean as the values are, most of the time, very different from the expected

ones. The data indicates an overall lack of familiarisation with the concept of a call

stack. One student answered one value below the correct call stack depth, possibly

42

indicating that he or she did not assume that the function that starts the call stack

counts to its depth.

Overall, taking the question templates with the highest correct answer percentage

into account it can be observed that students do not have problems identifying function

calls in their code and how many parameters they have. However, while all students

could identify the number of a parameters of a given function some did not understand

what is the definition of a parameter. Some students ended up answering to the What-

Parameters question with both the type and the name of the parameter and others

answered with the parameter’s initial value, i.e. the argument.

Regarding Figure 14 it is hard to take meaningful conclusions from this since the

student sample size is small but it is safe to say that senior students do not necessarily

know how to program better than junior students.

43

CHAPTER 6

Conclusions and Future Work

We demonstrated that the idea of generating questions automatically based on student

submitted code is achievable. Nonetheless, some problems and limitations were found.

The system has a low count of dynamic questions and more of these could be added, for

instance, questions that relate to loop iterations. In addition, this prototype can only

ask questions about introductory programming code that is not using complex objects

or non-standard language methods, written in the Java programming language. This is

due to the fact that this prototype relies entirely on the ‘Paddle’ framework for static

analysis and dynamic execution and only focuses on creating an engine that generates

questions. In this way, the prototype itself can be improved in order to handle these

cases.

Nonetheless, researchers from Aalto University (Finland), including the main author

of (Lehtinen, 2021), are currently testing a prototype in an algorithms course that is

based on the question engine developed in this work. Their course uses Python as the

programming language, but given that the question engine is built on ‘Paddle’, they could

use our question engine by developing a Python translator to obtain ’Paddle’ models. The

prototype as a whole will also be used in the ‘Introduction to Programming’ classes at

the ISCTE-IUL university as a small part of the course’s evaluation process.

Another research question was to understand to what extent could students correctly

answer questions about the properties of their own code. While poorer performances

seem to come from first year students, the best performances do not necessarily come

from the most senior students as some students from the first and second years scored

higher than all others. Also, while most students can grasp simple details about their own

code (i.e., what function calls are present inside another function, howmany parameters

a function has, etc.) most students cannot understand its behaviour, meaning that they

45

fail to keep up with the program’s state (i.e., variable values and assignments, call stack

depth, etc.), which indicates a lack of conceptual knowledge in the subject. Moreover,

a designed experiment with homogeneous groups and larger sample sizes, for each given

year of study, would provide more reliable results. We believe that the difficulty in

recruiting volunteers for the study was partially justified by the pandemic context of

the past academic year.

46

References

[1] K. Brennan and M. Resnick, ‘New frameworks for studying and assessing the devel-

opment of computational thinking’, in Proceedings of the 2012 annual meeting of

the American educational research association, Vancouver, Canada, vol. 1, 2012,

p. 25.

[2] J. Salac and D. Franklin, ‘If they build it, will they understand it? exploring the

relationship between student code and performance’, in Proceedings of the 2020

ACM Conference on Innovation and Technology in Computer Science Education,

ITiCSE 2020, Trondheim, Norway, June 15-19, 2020, M. N. Giannakos, G. Sindre, A.

Luxton-Reilly and M. Divitini, Eds., ACM, 2020, pp. 473–479. doi: 10.1145/3341525.

3387379. [Online]. Available: https://doi.org/10.1145/3341525.3387379.

[3] C. Kennedy and E. T. Kraemer, ‘Qualitative observations of student reasoning:

Coding in the wild’, in Proceedings of the 2019 ACM Conference on Innovation and

Technology in Computer Science Education, Aberdeen, Scotland, UK, July 15-17,

2019, B. Scharlau, R. McDermott, A. Pears and M. Sabin, Eds., ACM, 2019, pp. 224–

230. doi: 10.1145/3304221.3319751. [Online]. Available: https://doi.org/10.

1145/3304221.3319751.

[4] H. Keuning, J. Jeuring and B. Heeren, ‘A systematic literature review of automated

feedback generation for programming exercises’, ACM Trans. Comput. Educ., vol. 19,

no. 1, 3:1–3:43, 2019. doi: 10.1145/3231711. [Online]. Available: https://doi.

org/10.1145/3231711.

[5] T. Lehtinen, A. L. Santos and J. Sorva, ‘Let’s ask students about their programs,

automatically’, in 29th IEEE/ACM International Conference on Program Compre-

hension, ICPC 2021, Madrid, Spain, May 20-21, 2021, IEEE, 2021, pp. 467–475. doi:

47

https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3341525.3387379
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711

10.1109/ICPC52881.2021.00054. [Online]. Available: https://doi.org/10.1109/

ICPC52881.2021.00054.

[6] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen and J. Bragge,

‘Design science research process: A model for producing and presenting informa-

tion systems research’, CoRR, vol. abs/2006.02763, 2020. arXiv: 2006.02763. [On-

line]. Available: https://arxiv.org/abs/2006.02763.

[7] Y. Qian and J. Lehman, ‘Students’ misconceptions and other difficulties in intro-

ductory programming: A literature review’, ACM Trans. Comput. Educ., vol. 18,

no. 1, 1:1–1:24, 2017. doi: 10.1145/3077618. [Online]. Available: https://doi.

org/10.1145/3077618.

[8] S. Derus and A. M. Ali, ‘Difficulties in learning programming: Views of students’,

in 1st International Conference on Current Issues in Education (ICCIE 2012), 2012,

pp. 74–79.

[9] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant, C.

Laxer, L. Thomas, I. Utting and T. Wilusz, ‘A multi-national, multi-institutional

study of assessment of programming skills of first-year cs students’, in Working

Group Reports from ITiCSE on Innovation and Technology in Computer Science

Education, ser. ITiCSE-WGR ’01, Canterbury, UK: Association for Computing Ma-

chinery, 2001, pp. 125–180, isbn: 9781450373593. doi: 10.1145/572133.572137.

[Online]. Available: https://doi.org/10.1145/572133.572137.

[10] R. Lister, E. S. Adams, S. Fitzgerald, W. Fone, J. Hamer, M. Lindholm, R. McCart-

ney, J. E. Moström, K. Sanders, O. Seppälä, B. Simon and L. Thomas, ‘A multi-

national study of reading and tracing skills in novice programmers’, ACM SIGCSE

Bull., vol. 36, no. 4, pp. 119–150, 2004. doi: 10.1145/1041624.1041673. [Online].

Available: https://doi.org/10.1145/1041624.1041673.

[11] I. Gomes, P. Morgado, T. Gomes and R. Moreira, ‘An overview on the static code

analysis approach in software development’, Faculdade de Engenharia da Univer-

sidade do Porto, Portugal, 2009.

[12] M. Striewe and M. Goedicke, ‘A review of static analysis approaches for program-

ming exercises’, in Computer Assisted Assessment. Research into E-Assessment -

48

https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://arxiv.org/abs/2006.02763
https://arxiv.org/abs/2006.02763
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/572133.572137
https://doi.org/10.1145/1041624.1041673
https://doi.org/10.1145/1041624.1041673

International Conference, CAA 2014, Zeist, The Netherlands, June 30 - July 1,

2014. Proceedings, M. Kalz and E. Ras, Eds., ser. Communications in Computer and

Information Science, vol. 439, Springer, 2014, pp. 100–113. doi: 10.1007/978-3-

319-08657-6_10. [Online]. Available: https://doi.org/10.1007/978-3-319-

08657-6%5C_10.

[13] K. Rivers and K. R. Koedinger, ‘Automatic generation of programming feedback;

A data-driven approach’, in Proceedings of the Workshops at the 16th Interna-

tional Conference on Artificial Intelligence in Education AIED 2013, Memphis, USA,

July 9-13, 2013, E. Walker and C.-K. Looi, Eds., ser. CEUR Workshop Proceedings,

vol. 1009, CEUR-WS.org, 2013. [Online]. Available: http://ceur-ws.org/Vol-

1009/0906.pdf.

[14] J. Stamper, T. Barnes, L. Lehmann and M. Croy, ‘The hint factory: Automatic gen-

eration of contextualized help for existing computer aided instruction’, in Proceed-

ings of the 9th International Conference on Intelligent Tutoring Systems Young

Researchers Track, 2008, pp. 71–78.

[15] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare and A. Bhattacharya,

‘Automatic grading and feedback using program repair for introductory program-

ming courses’, in Proceedings of the 2017 ACM Conference on Innovation and Tech-

nology in Computer Science Education, ITiCSE 2017, Bologna, Italy, July 3-5, 2017,

R. Davoli, M. Goldweber, G. Rößling and I. Polycarpou, Eds., ACM, 2017, pp. 92–97.

doi: 10.1145/3059009.3059026. [Online]. Available: https://doi.org/10.1145/

3059009.3059026.

[16] V. J. Marin, T. Pereira, S. Sridharan and C. R. Rivero, ‘Automated personalized

feedback in introductory java programming moocs’, in 33rd IEEE International Con-

ference on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017,

IEEE Computer Society, 2017, pp. 1259–1270. doi: 10.1109/ICDE.2017.169. [On-

line]. Available: https://doi.org/10.1109/ICDE.2017.169.

[17] F. Alfredo, ‘Avaliador pedagógico da qualidade de código’, M.S. thesis, Iscte - In-

stituto Universitário de Lisboa, 2020. [Online]. Available: http://hdl.handle.

net/10071/22052.

49

https://doi.org/10.1007/978-3-319-08657-6_10
https://doi.org/10.1007/978-3-319-08657-6_10
https://doi.org/10.1007/978-3-319-08657-6%5C_10
https://doi.org/10.1007/978-3-319-08657-6%5C_10
http://ceur-ws.org/Vol-1009/0906.pdf
http://ceur-ws.org/Vol-1009/0906.pdf
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1145/3059009.3059026
https://doi.org/10.1109/ICDE.2017.169
https://doi.org/10.1109/ICDE.2017.169
http://hdl.handle.net/10071/22052
http://hdl.handle.net/10071/22052

[18] L. Zavala and B. Mendoza, ‘On the use of semantic-based AIG to automatically gen-

erate programming exercises’, pp. 14–19, 21st Feb. 2018. doi: 10.1145/3159450.

3159608. [Online]. Available: https : / / dl . acm . org / doi / 10 . 1145 / 3159450 .

3159608 (visited on 07/12/2020).

[19] A. Thomas, T. Stopera, P. Frank-Bolton and R. Simha, ‘Stochastic tree-based gen-

eration of program-tracing practice questions’, in Proceedings of the 50th ACM

Technical Symposium on Computer Science Education, SIGCSE 2019, Minneapolis,

MN, USA, February 27 - March 02, 2019, E. K. Hawthorne, M. A. Pérez-Quiñones,

S. Heckman and J. Zhang, Eds., ACM, 2019, pp. 91–97. doi: 10.1145/3287324.

3287492. [Online]. Available: https://doi.org/10.1145/3287324.3287492.

[20] Domain-driven design - tackling complexity in the heart of software. Addison-

Wesley, 2004, isbn: 978-0-321-12521-7.

50

https://doi.org/10.1145/3159450.3159608
https://doi.org/10.1145/3159450.3159608
https://dl.acm.org/doi/10.1145/3159450.3159608
https://dl.acm.org/doi/10.1145/3159450.3159608
https://doi.org/10.1145/3287324.3287492
https://doi.org/10.1145/3287324.3287492
https://doi.org/10.1145/3287324.3287492

	Acknowledgements
	Resumo
	Abstract
	Code Listings
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Context
	1.3. Research Questions
	1.4. Objectives
	1.5. Research Method
	1.6. Document Outline

	Chapter 2. Literature Review
	2.1. Problems students face when writing code
	2.2. Static code analysis
	2.3. Generic code feedback
	2.4. Question generation as code feedback

	Chapter 3. Question Definition
	3.1. Question Templates
	3.2. Static Questions
	3.3. Dynamic Questions

	Chapter 4. Prototype Design and Implementation
	4.1. High-Level Architecture
	4.2. User Interaction Flow
	4.3. Question Engine Architecture
	4.4. Database Model
	4.5. Limitations

	Chapter 5. Evaluation
	5.1. Context
	5.2. Participants
	5.3. Method
	5.4. Results
	5.5. Discussion

	Chapter 6. Conclusions and Future Work
	References

