

Department of Information Science and Technology

Open Source Face Recognition API

Diogo Neto Coxinho Mourisco da Conceição

Thesis in partial fulfillment of the requirements for the degree of

Master in Open Source Software

Supervisor
PhD, João Pedro Afonso Oliveira da Silva, Assistant Professor, ISCTE-IUL

Supervisor
PhD, Maurício Breternitz, Principal Integrated Reseacher, ISCTE-IUL

October, 2019

2

Abstract

Face recognition applications are widely used today for a variety of tasks, whether personal or

professional. When looking for a service that provides face detection and classification, it is easy

to find several solutions. In this project another way is described so that it is possible to perform

this task according to the desired needs without the need to use proprietary software. With the

emergence of the Django Rest Frame Work, web application development has become easier. This

work describes development of stable foundation and features that offer an administration panel,

relational database management, and support for a Restful Application Programming Interface

(API). This takes advantage of the exclusive use of Open Source technologies thus the application

code can be modified and distributed free of charge. For the development of an API that could

perform detection and facial recognition, applying an Open Source philosophy, in addition to

Django Rest Framework technologies such as Python, C++, MySql and JSON were used. The

prototype is initially capable of recognizing the number of faces per image, assessing eyes, smile,

age and gender. Flexibility is designed to increase application capabilities with new algorithms

implemented in various programing languages.

Key Words: Application, Algorithms, C++, Django, Framework, Image, Interface, JSON,

Language, MySQL, Python, Programming, Recognition.

3

Resumo

Atualmente, as aplicações de reconhecimento de facial são amplamente utilizadas para uma

variedade de tarefas, pessoais ou profissionais. Ao procurarmos um serviço que forneça deteção e

classificação de rosto, é fácil encontrar várias soluções. Neste projeto, é descrita outra maneira

para que seja possível executar esta tarefa de acordo com as necessidades desejadas, sem a

necessidade de usar software proprietário. Com o surgimento do Django Rest Framework, o

desenvolvimento de aplicações web ficou mais fácil. Este trabalho descreve o desenvolvimento de

bases e recursos estáveis que oferecem um painel de administração, gestão de uma base de dados

relacional e o suporte para uma API (Application Programming Interface) Restful. Ao tirar proveito

do uso exclusivo de tecnologias Open Source, é permitido que o código possa ser modificado e

distribuído gratuitamente. Para o desenvolvimento de uma API que pudesse realizar a deteção e o

reconhecimento facial, aplicando uma filosofia Open Source, para além da tecnologia Django Rest

Framework foram utilizadas tecnologias como Python, C ++, MySql e JSON. O protótipo é

inicialmente capaz de reconhecer o número de rostos por imagem, e avaliar olhos, sorriso, idade e

sexo. Mas para além disso, foi projetada flexibilidade para aumentar os recursos através da

implementação de novos algoritmos em várias linguagens de programação.

Palavras-chave: Aplicação, Algoritmos, C ++, Django, Framework, Imagem, Interface, JSON,

Linguagem, MySQL, Python, Programação, Reconhecimento.

4

Acknowlegement

To my thesis supervisors, family and friends, thank you for your support.

5

Index

Abstract .. 2

Resumo ... 3

Acknowlegement .. 4

Index ... 5

Table Index... 7

Figure Index ... 8

List of Abbreviations and Acronyms ... 10

1. Introduction .. 11

1.1. Motivation and relevance of the theme ... 11

1.2. Open Source Software ... 12

1.2.1. Open Source Definition ... 12

1.2.2. Open source history ... 14

1.3. Django Framework ... 15

1.4. Structure and organization of work ... 16

2. State of Art / Literature Revision .. 17

2.1. Face Analisys in Images .. 17

2.2. REST Architecture.. 20

2.3. Application Programming Interfaces ... 23

2.4. Algorithms for Facial Recognition.. 23

2.4.1. Traditional Algorithms .. 24

2.4.2. OpenCV ... 25

2.4.3. Artificial Neural Networks .. 25

2.4.4. Deep Learning ... 26

3. Problem Formulation ... 29

3.1. Architecture... 29

3.1.1. Input .. 30

3.1.2. Storage ... 30

3.1.3. Algorithms ... 32

3.1.4. Output .. 38

4. Proposed solution (architecture) .. 40

4.1. Good Practices Web API Opensource .. 40

4.2. Architecture... 41

6

4.2.1. Architectural Patterns ... 41

4.2.2. MVT Pattern ... 42

4.2.3. Default ORM ... 43

4.3. API Creation Phases ... 44

4.4. Specification Of Operation Mode ... 44

4.4.1. Regular User.. 45

4.4.2. Administrator User.. 47

4.4.3. Choose the License .. 49

5. Implementation and Deployment ... 50

5.1. Django Rest Framework Implementation .. 50

5.2. Technologies Used ... 58

5.3. Functionalities ... 60

6. Conclusion .. 62

References .. 63

7

Table Index

Table 1 – Historical Context (part 1) .. 17

Table 2 – Historical Context (part 2) .. 18

Table 3 – Storage Analysis .. 31

Table 4 – Deep Learning Framework Features (part 1) .. 34

Table 5 – Deep Learning Framework Features (part 2).. 35

Table 6 – Serialization Analyse .. 38

8

Figure Index

Figure 1 – Artificial Neurons .. 26

Figure 2 – Deep Learning Architecture .. 27

Figure 3 – Supervised Training Model ... 28

Figure 4 – Unsupervised Training Model ... 28

Figure 5 – API Architecture ... 29

Figure 6 – Boltzman Machines ... 36

Figure 7 – Model-View-Template Architecture .. 42

Figure 8 - Regular User Use Case Diagram ... 46

Figure 9 – Activity Administrator User Diagram ... 48

Figure 10 – API Implementation ... 50

Figure 11 –Administrator Login .. 53

9

Figure 12 – Image List .. 54

Figure 13 – Image Insert .. 54

Figure 14 – Recognise Face and Eyes ... 55

Figure 15 – Landmarks Response ... 55

Figure 16 – Smile Analysis ... 56

Figure 17 – Smile Analysis(2) .. 57

Figure 18 – Regular User Use Case Diagram ... 60

Figure 19 – Administrator Use Case Diagram... 61

10

List of Abbreviations and Acronyms

BM - Boltzmann Machines

CPU - Central Processing Unit

CRUD – Create Remove Update Delete

DBMS – Database Management System

DBN - Deep Belief Network

DSP - Digital Signal Processor

DRY - Don’t Repeat Yourself

DBMS - Database management systems

FPGA - Programmable Field Arrays

FSF - Free Software Foundation

GNU - Gnu is not Unix

GPU - Graphic Processor Unit

HTML - Hypertext Markup Language

JSON - JavaScript Object Notation

LPB – Local Binary Pattern

MAX - Model Asset Exchange

MIT - Massachusets Institute of Technology

MVC - Model-View-Controller

MVT - Model-View-Template

OSI - Open Source Initiative

ORM - Object Relational Mapping

ROI - Region of Interest

RBM - Boltzmann Restricted Machine

REST - Representational State Transfer

SQL - Structured Query Language

URI - Uniform Resource Identifier

XML - Extensible Markup Language

11

1. Introduction

Facial recognition algorithms and open source software are two themes that merge in this research.

This thesis makes an analysis of the potential that exists in face recognition and classification, and

observes where open source software is used and how it can be beneficial for creating an API that

can recognize and classify faces using Open Source technologies exclusively, taking advantage of

it.

Open Source Application Programming Interfaces (APIs) allow communication between services

through available features that allow creation of new applications using existing tools. This makes

it possible to add different standards, routines and languages without the need for complex

implementation processes. With different algorithms of different complexities, we can develop

processes that allow classification of faces by various characteristics.

1.1. Motivation and relevance of the theme

Facial recognition and its classification is a task which humans perform in a natural way and with

virtually no effort. However, for a machine, this process is not that easy. Currently the increase in

computational power has generated a great interest in image processing, applying it to several areas.

This thesis aims to describe the various phases for the creation of an API that, through algorithms

in the field of computer vision and pattern recognition, can classify faces. Using only Open Source

technologies, such as, Python, Django and MySQL, the process for its construction is described,

as well as the different types of algorithms that can be used. This application includes a scalable

architecture where new capabilities may be added. At the end some future works are suggested that

can be used as a starting point for the continuation of this research or even new research related to

this theme.

12

1.2. Open Source Software

Open source software is free software where its use and alteration is concerned. It is usually created

by developer communities that ensure its development and maintenance without the usual

restrictions of proprietary software. This software development paradigm has large implications,

either technologically or at a culturally level.

Some people are still a little confused with this philosophy, because free is not associated with free

software monetarily, but yes with freedom. According to FSF, the term free software refers to the

freedom to execute, copy, distribute and improve the program. “The term free is used in the sense

of free speech, not of free of charge.” (Stallman, 2013) [45].

1.2.1. Open Source Definition

Open source software is software in which the source code is visible to that can be analyzed,

changed and improved. Given this, many programmers inspect the code for bugs, which makes

corrections faster and improve stability levels. The distribution should be the same terms as the

original license. However, in some cases modified programs have different names and version

numbers than original versions. The programmer has to take into account the various types of

existing licenses (‘Open Source Initiative’, n.d.) [36]:

 Copyleft Licenses - A of copyright protection that places barriers to the use, dissemination

and modification of a creative work due to the classical application of the intellectual

property.

 Permissive Licenses - Few restrictions imposed on those who obtain the product. These

licenses should be used when someone wants the project to reach more people for broader

dissemination. A major case of success in this case is the Apache web server of the Apache

Software Foundation.

 Proprietary Licenses - In this type of license, all copying, redistribution are strictly

prohibited, and violations can lead to legal proceedings. In order to circumvent the

previously mentioned restrictions, one should contact the developer for permission to do

so, or to acquire a license for each one of the cases described above.

13

In order to better understand the concept, it must be mentioned that there are two main international

organizations which are responsible for the protection and open source software, the Free Software

Foundation (FSF) and the Open Source Initiative (OSI).

For the FSF, software can only be considered free when it considers the four types of freedoms for

users. These are:

• Run the program for any purpose

• Study how the program works, and adapt it to customer needs

• Distribute copies of the program so that to can help the next user

• Change the program and distribute the changes so that the entire community benefits from

them

As we can see, the issue of freedom is associated with a of a movement of ethical and political

character, this means that any type of person or legal entity can use the software on as many

computers as wanted, in any type of computer system, for any type of work or activity, without

any restriction imposed by the supplier.

According to OSI, the availability of the source code is not a sufficient condition for it to be

considered open source. It is necessary to meet ten criteria:

1.1. The license cannot restrict anyone, prohibiting the sale or donation of software to

third parties;

1.2. The program must include source code and distribution of both the source code and

the program already compiled;

1.3. The license must allow for changes and works that may be redistributed under the

same terms as the original license;

1.4. The license can restrict source-code from being distributed in changed form only if

the license grants the distribution of "patch files" with the source code for the

intention of changing the program at construct time. The license shall explicitly

allow distribution of software built from mutated source code. The license may

demand derived works to take a different name or version number from the original

software;

14

1.5. The license cannot discriminate against persons or groups;

1.6. The license cannot restrict users from using the program in an specific area;

1.7. The rights associated with the program through the license are automatically

transferred to all persons to whom the program is redistributed without the need to

define or accept a new license;

1.8. The rights associated with a program do not depend on which distribution a

particular program is inserted;

1.9. The license may not place restrictions on other programs that are distributed along

with the software in question;

1.10. No license requirement may be specific to a particular technology or

interface style.

It is possible to observe that there is no great disagreement between the two institutions. The

difference focuses on the discourse in relation to the target audience. User freedom features

referred to by the OSI include some restrictions to corporate and business models developed

around the software. However, the licenses approved by both foundations are almost the same and

therefore, we can consider that the free software movement and the Open Source initiative (‘Open

Source Initiative’, n.d.) [36] are concerned with similar software categories.

1.2.2. Open source history

With the emergence of the first commercially available computers, which it is from the 1950s, the

first software was also created for them. Usually hardware sales presupposed the respective

software because programs were strongly associated with the architecture of the machines on

which they were executed. At that time, the focus of companies was the sale of the hardware, and

there were not many restrictions placed on the use of software. It was possible to adapt it as they

wished, in order to better use the available hardware. Then in the 1970s the situation began at some

companies, such as Microsoft, which were not satisfied with the way their programs were

redistributed without the company receiving royalties for copies. Thus, on February 3, 1976, Bill

Gates wrote "Open Letter to Hobbyists" (Gates, 1976) [18], which was published in the Homebrew

Computer Club newsletter. In this letter, Bill Gates states that the total royalties received by Altair

BASIC were equivalent to just two dollars per hour spent on its development and documentation.

He further

15

claims that the practice of sharing software is not fair and states that such practice prevents well-

written software from being written. So began a changing posture in the industry, which now

prohibits software from being copied or modified. Then came closed source software,

characterized by restrictions which are made to the way it is used. In response to this new situation,

initiatives to regain the freedom to improve and to share software were started. One of these

initiatives was the GNU Project created by Richard Stallman.

In September 1983, being a programmer of the Laboratory of Artificial Intelligence MIT

(Massachusets Institute of Technology), Richard Stallman posted a message on the net.unix

wizards and net.usoft with the subject "new Unix implementation" (Stallman, 1983) [44]. In this

message, he informs that groups are starting a system with UNIX called GNU (a recursive acronym

for Gnu is not Unix) to be shared with all interested people. It also refers to some of the components

that would be included, such as an operating system core, C compiler and text editor, and some

articles to improve on existing UNIX systems at the time to leave also in its message of search or

edition of GNU by its principles. “To take it is motivated due to the development of software

already not be one. People are in compliance with the new companies, but yes, software, such as

neither access nor modification of the source code.” It explains that who like a program need to

share with others people who like it. “To be possible to continue to use computers without

violations, to create a sufficient set of free software so that can be possible without using any

software”.

In 1985 Richard Stallman published the “GNU Manifesto” (Stallman, n.d.) [46] to describe the

project and to explain the importance of free software. In 1986 a definition of "Free Software" was

published and created a Free Software Foundation (FSF), and in 1989 was published the first

edition of the “GNU General Public License” (General Public License—GPL, 1989) [19] for an

external site (General Public License - GPL).

1.3. Django Framework

The Django Rest Framework is an Open Source Framework that makes building APIs much easier,

using serializers and views to allow developing applications very quickly. It is developed through

a high level and easy to implement language. It is scalable, thus allowing the application growth,

as well as the use of different databases using the Object Relation Mapping Layer.

16

Operating through the widely used HTTP transfer protocol, Django can be adopted by virtually

any client which supports HTTP, with the flexibility to represent resources in different formats.

Django applies the principle of DRY (Don’t Repeat Yourself), in other words, take advantage of

code already made, avoiding its repetition. It is an open source project published with the BSD

license, which is considered public domain and may be modified without restriction.

1.4. Structure and organization of work

This dissertation describes the entire investigation process of development of a Django REST API

for image classification. In addition to this chapter (Introduction), this report contains five more

chapters:

In Chapter 2 (State of Art / Literature revision) the contextual framing is done through a brief

characterization of the state of the art which the functionalities available in APIs, as well as the

algorithms used.

In Chapter 3 (Problem Formulation) this project is discussed in more depth along with, the

concepts and technologies that are the necessary knowledge base for its development.

In Chapter 4 (Proposed solution) some good practices for the development of a Web API are

described, the standard of the implemented architecture, the stages of creation of an API and the

specification of an operation mode.

In Chapter 5 (Implementation and Deployment) are presented technologies used in the

development of API, the methodology applied, the various functionalit ies implemented,

technologies used in API development and a description of how the API was implemented.

Finally, in chapter 6 (Conclusion) presents a conclusion about the project status in the final phase

and it gives suggestions for future work.

17

2. State of Art / Literature Revision

Computer vision technology provides the ability of recognizing different objects through the

identification and processing of images, similarly to human vision. Through artificial intelligence

algorithms the images may be interpreted through an appropriate analysis. In this chapter we will

look at the capabilities of the most well-known Face Recognitions APIs, architecture features and

the different types of algorithms used.

2.1. Face Analisys in Images

Face detection and classification is one of the most popular challenges in computer vision today

(Computer Vision and Image Understanding, 2015) [11]. There are several solutions available,

including many made available in proprietary code. The features, which these applications usually

offer are: face detection; extraction of facial features such as eyes, nose and mouth coordinates;

face comparison; and finding the face of a particular person in a group of people.

For companies like Facebook or Google this is one of the most significant topics in the field of

artificial intelligence systems. Companies in the sectors of Banking, health, security and travel are

also investing heavily in this area. In Tables 1 and 2 we can observe some of the features provided

by some APIs in this area.

The above tables illustrate common features of such APIs, green represent an included feature and

red a non-included feature:

Table 1 – Historical Context (part 1)

18

Table 2 –Historical Context (part 2)

We can notice that face detection is a feature common to all APIs, and they differ in features related

to classification. Regarding the most frequent classifications, it can be verified that they are age,

gender, position and emotions. The number of Landmarks also differ, with Betaface API having

the most (123) and Animetric Face API having the least (24). Following is a description of each of

the analyzed APIs.

Betaface API

Betaface API is a face detection and recognition web service (‘BetaFace API’, n.d.) [6]. It is

possible scan image files or uploaded image URLs, identify faces and analyze them. It also

provides verification (face comparison) and identification (face search) services, and maintains

multiple user-defined recognition databases (namespaces).

Face ++

Detects and locates human faces in an image and returns high precision bounding boxes. It also

allows the storage of metadata for each detected face for future use (‘Face ++’, n.d.) [16].

It checks the probability of two faces belonging to the same person, and finds faces that appear to

be a new face from a particular collection of faces. Face ++'s quick and accurate search returns a

collection of similar faces, along with confidence scores and thresholds for assessing similarity.

19

Amazon AWS Rekognition

Amazon Rekognition makes it easy to add image and video analytics to applications (‘Amazon

AWS Rekognitions’, n.d.) [15]. Simply provide an image or video to the Rekognition API and the

service will be able to identify objects, people, text, scenes and activities, as well as detect any

inappropriate content. In addition, it offers highly accurate facial analysis and recognition for

images and videos. It is available to detect, analyze, and compare faces for a wide variety of user

verification, people counting, and public safety use cases.

Microsoft Cognitive Face API

It detects one or more human faces in an image and obtains facial rectangles at the points where

the faces are in the image (‘Microsoft Cognitive Face API’, n.d.) [33], along with facial attributes

that contain machine learning-based predictions of facial features. The features of facial attributes

available are: Age, Emotion, Gender, Position, Smile, and Facial Hair, along with 27 references to

each face in the image.

Google Cloud Platform

The Google Cloud Vision API offers advanced machine learning models pre-trained through

REST APIs (‘Google Cloud Platform’, n.d.) [20]. It can label images and quickly sort them into

millions of predefined categories. It detects objects and faces, reads printed and handwritten texts

and creates valuable metadata in the image catalog.

IBM Watson Face

The IBM Watson Visual Recognition service uses deep learning algorithms to identify scenes and

objects in images (‘IBM Watson Face’, n.d.) [25]. It allows one to create and train a custom

classifier to identify specific subjects.

20

Animetrics Face Recognition

The Animetrics Face Recognition API can be used to find human faces, detect feature points,

correct off-angle photographs, and ultimately perform face recognition (‘Animetrics Face API’,

n.d.) [3]. Information on facial features including ears, nose, eyebrows, lips, chin is returned as

coordinates in the image. The Animetrics Face Recognition API will also detect and return the

gender and orientation of faces along 3 axes.

Kairos

Kairos is a face recognition platform that enables one to quickly and easily integrate human

identity resources into products and services (‘Kairos API’, n.d.) [27]. Deep learning algorithms

analyze the faces found, then the API returns useful data about the faces found. It can be used to

search, match and compare faces or measure features like age and gender.

Meerkat FR

No system installation required, it uses simple HTTP calls and, the on-premise version has a web

interface that allows to setup in less than 5 minutes with an assertiveness of over 98%, providing

fast responses and a high availability server (‘Meerkat FR’, n.d.) [32].

2.2. REST Architecture

Representational State Transfer (REST) is a World Wide Web style of software architecture

designed to build Web applications. REST offers a set of guidelines to develop a cohesive,

scalable, high performance service. This style of architecture is based on the following basic

principles:

21

Client - Server

A REST application must separate architecture and responsibilities into two

environments (client and server), becoming standalone and consequently more

scalable. The service consumer is concerned only with the interface while the

service provider (server) is responsible for returning a response to the customer by

executing a request sent by the customer.

Stateless

The server does not store any client status information. This information is stored

on the client. A customer can place multiple requests to the server. Each request to

the server is made independently and standardized, passing only the necessary

information to the server so that it can process it properly and correctly.

Cacheable

In order to avoid unnecessary processing and significantly increase performance,

when a client makes a request to the server, the response is temporarily copied and

stored. Thus, if multiple clients make the same request to the server, the server

returns what is cached without having to process it again, improving efficiency,

scalability and user performance. However, cached information when overused can

decrease the reliability of the data making it obsolete, so it is important to implement

a gateway (or reverse proxy) cache, that is, a network server (independent layer)

that caches responses as they are returned, reusing them for future requests,

decreasing thus the number of direct server interactions.

Uniformized Interface

Communication between clients and server follows simple rules that follow certain

guideline, which when well defined, make communication more uniform and

22

normalized. The following is a set of guidelines based on the defined architectural

pattern:

 Each resource is identified through a Uniform Resource Identifier

(URI) specific and cohesive;

 A URI represents resources, not actions;

 Actions are represented by HTTP verbs (‘HTTP Methods’, n.d.) [23] (or

methods);

 The format in which the resource can be returned to the customer is

chosen according to the specific needs of the service provider, the

most commonly used formats being JavaScript Object Notation

(JSON) and eXtensible Markup Language (XML);

 The format of client / server communication must be defined in

Content Type;

 The client receives all the necessary information in the response so

that he can navigate and have access to all application resources;

 In requests and responses, metadata information must be passed (for

example, HTTP code, Content-Type, Host, among others).

Layered System

The REST application should consist of layers that can be easily changed, added and / or removed.

Each layer communicates or processes information between client and server either specifically or

individually. Thus, as a rule, the client should not invoke the application server directly without

first going through middleware, for example a load balancer or a machine that interfaces with the

server. Middleware is responsible for distributing requests to the server, ensuring that each layer

performs specific functions leading to a much more flexible structure for changing, providing

better performance, scalability, simplicity, flexibility, visibility, portability, reliability and

security.

23

2.3. Application Programming Interfaces

Application Programming Interfaces (APIs) (‘Red Hat: What is an API?’, n.d.) [43] allow one to

communicate with other services, to use their existing functionality without knowing how they were

implemented, or to develop and provide functionality for use by others. With this we receive

flexibility to develop new applications using existing tools, saving time and simplifying

development. This connection between different applications/services, enables aggregation of

different patterns, routines and languages without the need for complex implementation processes.

For the creation of face recognition APIs, it is possible to use various algorithms from the

traditional face detection algorithms to those using artificial neural networks such as Machine

Learning or Deep Learning (Chi-Fa, Yu-Shan, & Chia-Yen, 2013) [10]. These kinds of APIs are

widely used in everyday life in various areas such as security implementation, face modeling and

multimedia data management techniques, computer entertainment and improvements in digital

communication tools.

2.4. Algorithms for Facial Recognition

Facial recognition is the procedure for automatically locating people's faces in images or videos.

(‘Face Recognition Using Evolutionary Pursuit’, n.d.) [17] Although this technology has been

around for decades and its use has become more noticeable and affordable in recently years. It is

now used in innovative solutions such as applications of personal photo recognition and

classification, investigation tool, means of surveillance and authentication for mobile devices.

When a face is detected it can be analyzed for several characteristics, such as position, size,

orientation, eyes, nose and mouth, through reference points that follow the shape of a facial feature.

By this means it is feasible to classify a particular facial feature if it is present at detection. As this

technology is implemented by the use of Artificial Intelligence algorithms, it makes it possible to

learn with the evolution of the records becoming more accurate and with greater detection capacity.

24

2.4.1. Traditional Algorithms

Traditional Algorithms are based on handcrafted resources such as edges and texture descriptors

mixed with Machine Learning techniques such as principal component analysis, linear

discriminant analysis or support vector analysis. Researchers focus on specialized methods for

each type of variation such as age (U. Park, & A. K. Jain, 2010) [51], pose (C. Ding & D. Tao,

2016) [8] or lighting (Liu, Lam, & Shen, 2005) [29].

These traditional methods can be categorized into two different groups: holistic resources and local

resource approaches. The holistic group can also be separated into the linear and nonlinear

projection methods. Many applications demonstrate good results from the methods used in linear

projection, such as principal component analysis (PCA) (Turk, Pentland, & J. Cogn, 1991) [50],

independent component analysis (ICA) (Bartlett, Movellan, & Sejnowski, 2002) [4], linear

discrimination analysis (LDA) (Belhumeur, Hespanha, & Kriegman, 1997) [5] and linear

regression classifier (LRC) (Naseem, Togneri, & Bennamoun, 2010) [34]. However, due to

changes in lighting, facial expression, and other aspects, these methods cannot classify faces as

correctly as possible. The main cause is complex variability with non-convex, nonlinearly exposed

face patterns. To use these cases, applications may be non linear such as kernel PCA, kernel LDA

(KLDA) (Lu, Plataniotis, & Venetsanopoulos, 2003) [30] or linear local embedding (LLE) (He,

Yan, Hu, Niyogi, & Zhang, 2005) [22]. These nonlinear methods use kernel techniques to map face

images into a larger space without any simplified linear face variety, what makes traditional linear

methods usable. But while there is a strong theoretical basis for kernel methods, their application

in practice does not yield a significant improvement in comparison to linear methods. That said,

the methods of nonlinear projection, inherited the simplicity of linear methods and the ability to

handle complex data from nonlinear methods. Among which it is worth highlighting LLE and LLP

(Xiaofei & Partha, 2003) [52].

The second group, with local resources, has certain advantages over holistic resources. They are

better prepared methods for altering the image, such as expression, desalination and illumination.

The common method is identifying Local Binary Patterns (LBPs) (Ahonen, Hadid, & Pietikäinen,

2006) [1]. Neighbouring changes around the centre pixel are made a simple but effective way

described by LBP. It is a constant transformation of intensity that supports minor lighting changes.

LBP variants have been suggested for the creation of an LBP original, such as the Gabor Phase

Pattern Histogram (Zhang, Shan, Chen, & Gao, 2007) [55] and the local Gabor Binary Pattern

25

Histogram Sequence (Yang & Chen, 2013) [53], with a view to the model or close relationship in

the spatial, frequency and orientation domains (Zhang, Gao, Zhao, & Liu, 2010) [54].

These traditional methods that provided cutting edge efficacy for a few years have been lately

replaced by Deep Learning methods based on CNNs and RNNs due to the significant improvement

in achieved accuracy.

2.4.2. OpenCV

OpenCV (‘OpenCV’, n.d.) [38] is one of the most popular open source Machine Vision and

Machine Learning software libraries. It is licensed by BSD, making it easier for companies to use

and modify their code. Its purpose is to provide a common infrastructure for Computer Vision

applications and to accelerate their process. It contains over 2500 optimized algorithms, including

an extensive set of algorithms in Computer Vision and Machine Learning. In these algorithms there

is the ability to identify faces, facial expressions, to find similar faces and to remove red eyes,

through small patterns and features that must be matched. The algorithms divide the task of

identifying the face into a large number of smaller and simpler tasks to facilitate this resolution.

2.4.3. Artificial Neural Networks

An ANN can be defined as a network of several parallel and distributed information processing

systems composed of artificial neurons, with a simple processing, and of highly degree of

interconnection. This processing structure, which can be implemented in electronic devices, is

made up of a number of interconnected units, called artificial neurons. Each unit exhibits specific

input/output behavior, determined by its transfer function, by interconnections with other units

within a vicinity radius, and possibly external inputs. These simple and highly interconnected

functional processing units may generate complex behaviors.

26

Figure 1 – Artificial Neurons

Neurons are organized in layers, where each layer handles information received in a different way.

The signal enters the input layer and passes through the hidden layers until it reaches the output

layer. Each connection between neurons can transmit signals to another neuron. The receiving

neuron processes the input signal, applies a mathematical function and it sends the result to the next

neuron to which it is connected. Each connection, in turn, has an associated weight, which

corresponds to the information stored by the neuron, which can increase or decrease the signal

strength that is transmitted. By executing this process multiple times with various examples,

learning is provided to the network through a gain of experience that will allow it to recognize

patterns.

2.4.4. Deep Learning

Dealing is an important part of Artificial Intelligence, and a subcategory of Machine Learning,

Deep Learning has a specific approach of building and shaping neural networks that can support

and also work with big data, as this type of architectures tends to operate better with more input

data, and operate autonomously by overlapping nonlinear data processing layers. Based on the way

the human brain processes information and learns, it is capable to learn unsupervised from

unstructured, unlabeled data to take on a variety of computational tasks such as speech recognition,

vision, and natural language processing. A simple Neural Network has up to 5 layers, a Deep

Network has more than 5 layers. (‘Deep Learning: The Confluence of Big Data, Big Models, Big

Compute’, n.d.) [14]

27

Figure 2 – Deep Learning Architecture

This requires a higher processing capacity to train deep networks, depending on the network

architecture used, leading to the need for advancement of parallel and GPU processing techniques.

The leading companies focused on developing hardware, which is dedicated for deep learning and

also graphics processing, are Google TPU (‘Google TPU, n.d.) [21], Intel Processor Graphics

(‘Intel Porcessing Graphics’, n.d.) [26] and Nvidia AI Computing (‘Nvidia AI Computing’, n.d.)

[35].

It is possible to train images in a deep learning network in two different ways:

 Supervised Training

Supervised Training is the most usual form of Machine Learning. With Supervised Learning, a set

of samples are sent as input to the system during the training phase. Each input is labeled with a

desired output value, so the system knows what the output should be when the input is received.

The training is accomplished by minimizing a particular cost function which represents the input

connection and the desired output. Figure 3 illustrates the Supervised Training process.

28

Figure 3 – Supervised Training Model

 Unsupervised Training

Unsupervised Training works with an unlabeled sample set. Thus, the system develops and

organizes data by seeking common characteristics between them based on inferred knowledge.

Figure 4 illustrates the Unsupervised Training process.

Figure 4 – Unsupervised Training Model

29

3. Problem Formulation

In preparing this project a solution was developed that differs from the ones observed in the

previous chapter. Based on a free software philosophy, using exclusively opensource technologies,

we propose an API architecture that allows the user to observe, create and modify algorithms for

face recognition and classification. This will allow not only the use of the original features, but

also the freedom to improve and implement algorithms in different languages.

3.1. Architecture

The proposed architectural approach to create this API is fundamentally supported by five

elements, which are: ‘Storage’, ‘Algorithms’, ‘Data Stream’ and ‘Users’ and ‘Data Management’.

The available features allow private, public or restricted access to API access, which can be

changed or expanded later. Figure 5 illustrates the proposed architecture.

Figure 5 – API Architecture

30

3.1.1. Input

The input is provided through a URL and Path of an image (or a directory which contains multiple

images, if it is for the purpose of classifying multiple images at once). The image name is associated

with the identifier with which it will be associated in the database.

3.1.2. Storage

The stored databases are required for the proper functioning of an application. For information to

be easily accessible, used and understood, Database Management Systems (DBMS) are used.

DBMS can provide information stored in the database as well as statistics of changes and

information in a database.

DBMS perform the same basic task, which is to allow users to create, edit, and access information

in databases, and to update it. For this reason, it is critical to choose the database that works with

large-scale information. Often the first options are relational databases, which are best known

among programmers, but they are not always the most appropriate solutions. When comparing

different popular databases, we should consider how much the DBMS is friendly and scalable, as

well as being able to be integrated into other products as well. The differences between relational

and nonrelational databases have to do with how information is inserted and organized. A relational

database provides greater consistency and reliability, but it requires the relationship between

multiple tables for access. With the help of the SQL (Structured Query Language), information is

stored in rows and columns. However, in order to insert data into the tables, the programmer must

design each structure, offering greater consistency for each operation. DBMS have functions such

as validation, verification and integrity assurance, concurrency control and fault recovery, as well

as transaction management and query optimization. Non-relational DBMS has a greater

advantage, with information grouped and stored in the same registry. It has better performance and

high scalability, ensures more efficient management with the NoSQL language. It does not require

design of its implementation, because all information is grouped into a single record. Focusing on

cross-variables, dimensional modeling allows for making miscellaneous analytic combinations of

information stored in a non-relational database. Each type of NoSQL database has its own schema

for query. The key-value category, which is

31

simpler, can be accomplished by means of a key. To perform a search, one may simply access the

hash of the key to retrieve the information that is being sought.

Table 3 – Storage Analysis

Non-relacional Relacional

Stores data in JSON documents, key/value

pairs, wide column stores, or graphs

Stores data in a table

Offers flexibility as not every record needs to

store the same properties

Great for solutions where every record has the

same properties

New properties can be added on the fly Adding a new property may require altering

schemas or backfilling data

Relationships are often captured by

denormalizing data and presenting all data for

an object in a single record

Relationships are often captured in

normalized model using joins to resolve

references across tables

Good for semi-structured, complex or nested

data

Good for structured data

Dynamic or flexible schemas Strict schema

Database is schema-agnostic an the schema is

dictated by the application. This allows for

agility and highly iterative development

Schema must be maintained and kept in sync

between application and database

ACID transaction support varies per solution Supports ACID transactions

Eventual to strong consistency supported,

depending solution

Strong consistency enforced

Consistency, availability and performance can

be traded to meet the needs of the application

Consistency is prioritized over availability

and performance

Performance can be maximized by using

scaling up available resources and using in-

memory structures.

Performance can be maximized

optimizing queries

Information are stored on a flexible format

Information about an entity may be spread

across many tables or rows, requiring many

joins to complete an update or a query

Supports horizontally scaling Scaling is typically achieved vertically with

more server resources

32

In the context of the developed application we opted for the use of a relational database such as

MySQL, because it allows a more systematic and clear view of the data and it is an available,

widely used DBMS. It is free and also can be used by anyone, under the GNU General Public

License and the source code is available under the domain.

3.1.3. Algorithms

For the operation of this API we can use various types of API – Software comunications

mechanims, in this section we will characterize and understand the differences between them.

 Embedded

To allow an API to perform an image classification, we use algorithms that makes this task

possible. To do this, we may simply use of algorithms embedded in the API code itself or apply

external algorithms, where we can adapt, remove or update the rules as needed. The use of

algorithms is already an indicator of a quick task that provides an API, such as the Facial Age

Estimator case available in the IBM Model Asset Exchange (MAX) (‘IBM Model Asset Exchange

(Max)’, n.d.) [24].

 OpenCV library

With regard to the development of algorithms one can use an OpenCV library (‘OpenCV’, n.d.)

[38] that already contains many pre-trained classifiers of eyes, smiles, facial expressions and so

on. To make it work, first we must use the XML classifiers and then load an input image and

convert it into shades of gray, as shown in the following piece of code:

import numpy as np

import cv2 as cv

face_cascade = cv.CascadeClassifier ('haarcascade_frontalface_default.xml')

eye_cascade = cv.CascadeClassifier ('haarcascade_eye.xml')

img = cv.imread ('image.jpg')

33

gray = cv.cvtColor (img, cv.COLOR_BGR2GRAY)

The main faces in the image are provided, as markings with a rectangle likes Rect (x, y, w, h).

Now that we find the faces in the picture, we can look for aspects in the face. If we want to find

the position of the eyes, we will have to create a Region of Interest (ROI) within the face and

apply a detection of eyes in this ROI. The following piece of code illustrates this actions:

faces = face_cascade.detectMultiScale (gray, 1.3, 5)

for (x, y, w, h) in faces:

cv.rectangle (img, (x, y), (x + w, y + h), (255,0,0), 2)

roi_gray = gray [y: y + h, x: x + w]

roi_color = img [y: y + h, x: x + w]

eyes = eye_cascade.detectMultiScale (roi_gray)

for (ex, ey, ew, eh) in eyes:

cv.rectangle (roi_color, (ex, ey), (ex + ew, ey + eh), (0,255,0), 2)

cv.imshow ('img', img)

cv.waitKey (0)

cv.destroyAllWindows ()

 Deep Learning

It is also possible to use Deep Learning techniques to classify an image. Models of Deep Learning,

involve knowledge of Mathematics, Statistics, Programming, Computer Vision, Image

Preprocessing, among other areas, for the recognition of Images with Neural Convolutional

Networks. There are many frameworks that can be used like TensorFlow, Keras, PyTorch, Caffe

and Deeplearning4J.

These tools help to quickly implement an appropriate framework to optimize performance,

parallelize processes, facilitate code comprehension, and have good community support. In the

tables below it's possible to see some specifications about this Open Source Frameworks:

34

Table 4 – Deep Learning Framework Features (part 1)

Framework Creator Initial

Release

Software

license

Written in Interface

TensorFlow Google Brain 2015 Apache 2.0 C++, Python C, C++, Go,

Java,

JavaScript,

Julia, Python,

R, Swift

Keras François

Chollet

2015 MIT License Python Python, R

PyTorch Adam

Paszke, Sam

Gross,

Soumith

Chintala,

Gregory

Chanan

(Facebook)

2016 BSD C, C++,

Python

Python, C++

Caffe Berkeley

Vision and

Learning

Center

2013 BSD C++ Python,

MATLAB,

C++

Deeplearning

4J

Skymind

engineering

team;

Deeplearning

4j

community;

originally

Adam Gibson

2014 Apache 2.0 C++, Java Clojure, Java,

Kotlin, Scala,

Python

As can be seen in the table above all Frameworks were mostly built with the C ++ and Python

languages. All use an Open Source license, giving them the flexibility to modify the software and

use it privately. For the implementation of algorithms several languages can be used with Python

being the most usual.

35

Table 5 – Deep Learning Framework Features (part 2)

Framework OpenMP OpenCL CUDA RBM DBN

TensorFlow No Yes Yes Yes Yes

Keras Only if using

Theano as

backend

Yes Yes No No

PyTorch Yes Yes Yes No No

Caffe Yes No Yes No No

Deeplearning

4J

Yes No Yes Yes Yes

Table 5 shows some technologies which can improve algorithms to get better results in terms of

evaluation precision and velocity. It is possible to verify that all of them use CUDA to accelerate

frameworks performance, but others techniques are also used. Next is we provide more details

about each one:

OpenMP

OpenMP (‘OpenMP’, n.d.) [39] is an API for multi-platform shared memory multi-processing. It

allows one to add concurrency to the programs written in various languages based on the fork-join

execution model. Its portability and scalability gives to programmers a simple and flexible

interface for the development of applications built with a parallel programming model.

OpenCL

OpenCL(‘OpenCL’, n.d.) [37] is the first open, royalty-free unified programming standard to

accelerate algorithms in heterogeneous systems. OpenCL allows the use of a C-based programming

language to develop code on different platforms, such as central processing units (CPUs), Graphic

Processor Unit (GPUs), Digital Signal Processors (DSPs), and Programmable Field Arrays

(FPGAs).

CUDA

CUDA (‘CUDA’, n.d.) [12] is a platform that uses the GPU for parallel computing using a

36

programming model that makes its use it as simple and elegant. The use of multiple computing

cores in a graphics processor to perform general-purpose mathematical calculations, achieving

considerable acceleration in computing performance. It is proprietary to Nvidia.

Boltzmann Machines

The Boltzmann Machines (BM) (‘Bolzmann Machine’, n.d.) [7] were one of the first neural

networks capable of learning internal representations, which are capable of representing and

solving difficult combinatorial problems. They played a major role in the resurgence of neural

networks, allowing efficient deep learning training.

Figure 6 – Boltzmann Machines

Boltzmann Restricted Machine

A Boltzmann Restricted Machine (RBM) (‘RBM’, n.d.) [42] is a BM in which each visible node is

connected to each hidden node. There are usually no other connections. This transforms the RBM

into a bipartite graph, which means that the values of the nodes can be inferred in blocks, first

inferring all visible nodes and then inferring all hidden nodes. Because of this, RBM is considered

a neural network of two layers, with a visible and a hidden layer.

Deep Belief Network

A Deep Belief Network (DBN) (‘DBN’, n.d.) [13] is formed by training RBMs one at a time and

then stacking them one on top of the other to infer successive hidden layers. After the RBMs are

stacked, it changes to the previous distribution over the hidden values of the lower RBM in the

37

stack (the former is now determined by the upper layer rather than by the hidden deviations of the

lower layer). While the RBMs have very simple inference rules, the inference in a DBM is

approximate and depends on several passages through the hidden layers. To infer the state of a

hidden layer, it is necessary to know about the state of the layer above and below it, so it is

necessary to do some iterative sampling to find the hidden states.

TensorFlow

TensorFlow (‘Tensorflow’, n.d.) [48] was developed by engineers of the Google Brain team, being

the software library most used in the field of Deep Learning. It works well on a sequence-based

data images and concepts such as calculus.

Keras

Keras (‘Keras’, n.d.) [28] is a very solid framework and the one to start the study in Deep Learning,

for those who are familiar with Python. With the focus on getting results, it makes it possible to

get a working model quickly. Keras is also integrated with TensorFlow. By creating a tf.keras

template it makes TensorFlow easier to use without sacrificing flexibility and performance.

PyTorch

PyTorch (‘Pytorch’, n.d.) [41] is a more intuitive Framework than TensorFlow, without the need

for much mathematical knowledge, Machine Learning experience and easier to understand models.

Although it does not contain a preview tool such as TensorBoard, it allows the use of graphic tools

such as matplotlib (‘Tensorflow’, n.d.) [48].

Caffe

Caffe (‘Caffe’, n.d.) [9] is mainly used to build Deep Learning models for mobile phones and other

computationally restricted platforms. It is quite functional for modeling in image data, but stays a

bit behind the other frameworks in recurrent neural networks and language models.

38

Deeplearning4J

Deeplearning4J (‘Deeplearning4J’, n.d.) [15] is a framework for Java programmers. It provides

massive support for some different neural networks like CNNs, RNNs and LSTMs. It can process

a huge amount of data without sacrificing speed. Through a composition approach, neural

networks such as restricted Boltzmann machines, convolutional networks, self-encoders and

recurrent networks can be interconnected to create deep networks of varied types.

3.1.4. Output

Once the algorithms have performed the image classification and information tasks have been

stored in the database, it is necessary to transmit this information to anyone consuming the

generator API information. This requires that these data be serialized in a given format.

This serialization is used to convert an object to a canonical data storage format. This format can

be text, such as JSON and XML, or binary as Protobuf (‘Protobuf’, n.d.) [40]. This format change

facilitates data storage (either on the computer or in a memory buffer) or transmission over a

network connection. Upon receipt, the object can be recreated in the same state as the original.

Table 6 – Serialization Analyse

JSON XML Protobuf

Human readable/editable Human readable/editable Very dense data (small

output)

Can be parsed without

knowing schema in advance

Can be parsed without

knowing schema in advance

Hard to robustly decode

without knowing the schema

(data format is internally

ambiguous, and needs

schema to clarify)

Excellent browser support Good tooling support (xsd,

xslt, sax, dom, etc)

Very fast processing

Less verbose than XML Pretty verbose Not intended for human eyes

(dense binary)

39

In this project the option for integration with the RESTful API fell on JSON with the

comparison that we can verify in the Table 2 considering the following aspects:

 Less verbose: JSON is more compact and generally it is a more readable style. JSON's

lightweight approach can make significant improvements in performance.

 Fast: JSON uses less data overall, reducing the cost and increasing the speed of analysis.

 Readable: Easier mapping for domain objects.

 Structure Matches data: Key / value pairs may at some point limit what is possible to do,

but it is a predictable, easy-to-understand data model.

 Alignment of objects in code: a JSON structure is intuitive, making it easier to read and

map directly to domain objects.

 Alignment of objects in code: JSON objects and code objects match which is beneficial

when quickly creating domain objects in dynamic languages.

40

4. Proposed solution (architecture)

As seen in the previous chapter the architecture for developing this API is made up of five

elements. In this chapter we will cover the best practices for their construction, the design patterns

used, the design phases and specify their mode of operation for different types of users.

4.1. Good Practices Web API Opensource

In the development of this project we must take into account several aspects that allow us to apply

good development practices. A well-structured Web API Opensource must comply with certain

rules:

Should support all platforms. Any client should be able to call the API, regardless of how the API

is implemented internally. This requires the use of standard protocols, as well as a mechanism

from which the client and the Web service can agree on the format of the data to be exchanged.

The Web API must be able to evolve and add functionality independently from client applications,

in order to support evolution of service. As the API evolves, existing client applications must

continue to function without modification. All features should be Detectable, so that client

applications can fully utilize it.

The version numbering system used should be, for software systems, based on natural numbers

separated by a dot. When a new version is released, it should be the largest number of all preceding

versions.

The HTTP protocol should be used on a correct way in their methods (GET, POST, PUT,

DELETE, OPTIONS, PATCH, HEAD).

The order headers should be properly defined as well as the correct coding of the responses, taking

advantage of the standard meanings of different response codes.

Resource names, URIs, must be correctly defined. All operations on the same resource must use

the same name and must be identified by the URL.

41

Data must be in JSON and XML formats. By default, the first one must be used. If the costs of

implementing two serializers are not increased, the possibility of representation in the XML format

should also be offered, increasing interoperability with other systems.

Provide all CRUD (Create Remove Update Delete) operations, starting from the same for the

construction of more elaborate resources, adding other ones as a way of reducing the amount of

communications.

In order to maintain compatibility with existing clients, changes to the service should lead to the

creation of new versions, allowing customers to continue to use the services until they upgrade to

the new version.

Develop and maintain of service documentation, preferably with examples of use in various

programming languages, so that customer service learning is as simple as possible.

Define the type of license that should be applied to the project.

Create of a README.txt file with the project's actual information.

4.2. Architecture

In planning for the development of the project it was opted to use the Django REST Framework to

carry it out it, because it is an open, mature, well-supported library, which points to the creation of

sophisticated web APIs. Through flexible and complete tools, with a modular and customizable

architecture, it allows both the development of simple and ready-to-use APIs as well as

complicated REST constructs. Django's REST structure contains a large set of ready-made

features, but the main view class is very simple and the overall structure is easy to use.

4.2.1. Architectural Patterns

The architectural pattern used by Django REST Framework technology are the Model-View-

Template (MVT) and the Object Relational Mapping (ORM). Through these patterns it was

possible to structure the REST API architecture developed.

42

4.2.2. MVT Pattern

To begin implementing the REST API, it is necessary to understand the architecture of the Django

framework. According to the Django Book (The Model-View-Controller Design Pattern, n.d.)

[49], it is considered a Model-View-Controller (MVC) framework, however it follows its own

architecture pattern, Model-View-Template (MVT), in which considers the Controller as View and

View as " Template ".

Figure 7 – Model-View-Template Architecture

Model

The Model layer (database access layer) consists of several classes associated with the tables in

the database. This layer does not contain the data but rather an interface for the data, which includes

all information that is related to the database including its structure, access, validation and behavior

of the data and relations between them. The Django framework makes it easy to interface with the

database allowing the user not to worry about the connection between the domain classes and the

database. For this, it uses the technique called ORM.

43

View

The View layer defines what data is presented to the client being responsible for the logical

processing of the data. It is the View layer that communicates with the Model and Template. Each

"View" is a return function for a specific URL. This function returns to the client the information

in the defined format (XML, HTML, JSON, among others) or the errors found. Comparing with

the MVC model, this layer corresponds to the Controller. In this architectural pattern, the controller

is responsible for controlling the information exchange between the model and the view, decide

what information to obtain in the database through the model and which information will be sent

to the visualization.

Template

The Template layer describes the visual form in which the data is presented to the user. This

layer is composed of HTML, CSS, JavaScript, among others. In the MVC model, this layer

corresponds to the View layer.

4.2.3. Default ORM

ORM is a technique that allows one to manipulate and to query data from a database through an

object-oriented perspective adapted to the programming language being used instead of using SQL

statements. It serves as a bridge between the relational model (database) and the object-oriented

world (classes and methods) by mapping the tables that constitute the relational database for the

data structures. It is in the Model entity that this mapping is done. It is important to note that the

mapping is done only for the database, not for the records. The records of each table are represented

by instances of corresponding classes. Thanks to ORM, there is an independence of the models

from the database, a direct access to the different components in the database (related objects), an

easy and flexible implementation of the CRUD operations and a validation of the fields. Through

ORM it is possible to manipulate and to understand the data, in an easy and intuitive way. However,

the ORM is a procedure that can potentially reduce performance.

44

4.3. API Creation Phases

The development structure of this API proceeded in eight phases: Know Customer Needs, Define

Project Requirements, Choosing Technologies, Assess Project Viability, Document All

Procedures, Choosing the Development Methodology, Test Created Features and Choose License.

1.1.Before starting the application framework, it was necessary to know the needs for

project implementation. An initial meeting, general discussions were held about

what was needed, what needed to be done and what it would be like.

1.2.A list of priorities was made after the requirements analysis, which defined what

the software needed to have, what might limit each function and how long it could

take in theory.

1.3. In the first stage of development, an application for classifying images was created.

The programming language used was PHP's interface to the MySQL database due

to its open source feature, working well with each other and availability to run on

Linux and Windows servers. Then a Rest API was made with the Django

Framework that can use various algorithms for face recognition.

1.4. Then we analyzed the types of algorithms that could be used and the way of storing

the images and their classifications.

1.5. This was followed by the creation of a Django Rest Framework API with the

administrative functionality provided by it, the classification of images through

some implemented algorithms and its storage in a MySQL database.

1.6. Throughout the project, all procedures were documented. This action is necessary

due to incremental changes that may exist. A list of what should be developed and

what should be done was made. Also, how the process will have to happen.

1.7. After the work was completed some tests were developed and performed.

1.8.Finally, the license was chosen to make the software available for its intended

purpose.

4.4. Specification Of Operation Mode

To specify how the API operates, we have to distinguish between two types of users with

different functionality: the regular user and the Administrator.

45

4.4.1. Regular User

A regular user can upload photos and rate photos by different criteria, as well as observe how

photos are being evaluated. It allows to sort images in isolation by entering the URL of the image

or multiple images contained in a directory, indicating the path to that directory. The past address

will consist of the function we want to apply and the image or images we want to evaluate. The

output of this classification is transmitted in JSON format. In Figure 8 we can see the

representation of this whole procedure.

46

Figure 8 – Regular User Use Case Diagram

47

4.4.2. Administrator User

To use this API as an administrator role, is needed to authenticate first, provide username and

password. After that, its available to perform three types of actions: manually inserting a photo by

specifying its URL and entering its rating; change a rating, select a photo to correct the rating, and

delete a photo if it is not necessary anymore in the database. After completing the desired actions,

the administrator user should log out. In Figure 9 we can represent the flow of all these tasks.

48

Figure 9 – Activity Administrator User Diagram

49

4.4.3. Choose the License

The last part about development is the choice of license to use. A software license is a legal

instrument, usually by way of contract law, with or without printed material governing the use or

redistribution of software.

Given the purpose of this project, the MIT license was chosen because it has no restrictions on the

level of code handling. It is allowed to copy, modify, distribute and sell copies of the software,

provided that only have the copyright notice and one copy of the license on all copies of the

software.

50

5. Implementation and Deployment

To demonstrate the proposed architecture an API in Django Rest Framework was implemented,

which allows to recognize and classify faces through algorithms and developed in different

languages. To demonstrate this, it used languages like Python and C++, using OpenCV face

recognition libraries. These languages are treated differently as regards their use. However,

because Python is Django's implementation language, it is feasible to use and compile its

algorithms directly in the application, but in the case of C++ it is necessary to use a subprocess

module that allows one to execute additional processes (‘Subprocess Python’, n.d.) [47].

After performing a photo classification process, it is stored in the photo database with its

classification. This produces as output a response in JSON format and/or its image where the rating

is indicated. If the user has an administrator profile, and it can change a photo rating, remove the

photo, and manually insert a photo and its respective rating.

5.1. Django Rest Framework Implementation

The framework used to create this solution enables a fast development of Web APIs. An MVT

(Model View Template) pattern is used which interacts by requesting a particular task from the

user, which is mapped via a URL.

Figure 10 – API Implementation

51

This API incorporates functions that allow recognition of faces and classify their characteristics

with respect to eyes, mouth, age and gender. These are stored in a database, for this purpose a

model was built that defines an object that saves its classification and indicates where the image

will be saved:

class Image(models.Model):

descriptions = models.CharField(max_length=50)

image = models.ImageField(upload_to='./pictures/%Y/%m/%d/',

max_length=255, blank=True)

Once the template is created, it is necessary to implement a ModelSerializer to serialize and

deserialize the data. For this a file 'serializers.py' has been created a class ImageSerializer, where

are the fields passed which will be performed to generate the objects:

class ImageSerializer(serializers.ModelSerializer):

class Meta:

model = Image

fields = ('id', 'descriptions','image')

Now that we have the Model and the Serializer created, it is time to create the Views. In a file

called views.py we place the functions that receive web requests and return web responses. There

we have a get method for all images, a post method to insert new images and where we can

implement algorithms to classify images:

#Number of faces in the image

def getFacesUrl(request, path="/home"):

queryset = Image.objects.all()

serializers_class = ImageSerializer

path = '/' + path.replace('-', '/')

image = face_recognition.load_image_file(path)

face_locations = face_recognition.face_locations(image)

52

face_landmarks_list = face_recognition.face_landmarks(image)

list_of_face_encodings = face_recognition.face_encodings(image)

responseData = {

'Faces': len(face_locations),

}

return JsonResponse(responseData)

Here it is possible, due to open source features and the Python language capability, to add new

algorithms from different languages to add new classifications to images. Through subprocesses

we can generate new processes and invoke external algorithms to get or get their return code.

import subprocess

from subprocess import Popen, PIPE

proc = subprocess.Popen("/home/diogo/django/drf/01/a.out", shell=True)

Finally, it is necessary to create the URLs to access the views, in order to classify the

images and to manage the API.

router = routers.DefaultRouter()

router.register(r'images',ImageViewSet)

urlpatterns = [

path('', include(router.urls)),

path('admin/', admin.site.urls),

path('getfacesurl/<path>/',views.getFacesUrl),

path('getfacesurlfolder/<path>/', views.getFacesUrlFolder),

...

This way we can have access to the admin interface provided by Dango REST Framework and to

the image classification algorithms with just a few lines of code.

53

The following session presents screen shots of the developed prototype API.

Figure 11 – Administrator Login

Figure 11 shows the Administrator login interface.

54

After of the administration login we can watch the list of images and manipulate them, in Figure

12.

Figure 12 – Image List

With the Django-admin panel it is possible to manipulate the data easily.

Figure 13 – Image Insert

55

The Regular User can recognize faces and classify some features, shown in Figure 14.

Figure 14 – Recognise Face and Eyes

The response will be given in JSON format.

Figure 15 – Landmarks Response

56

Smile is one of the features which its able to analyze. In this API it is possible to preview the

analysis (in Figure 16) before the JSON response or ask just for the JSON response.

Figure 16 – Smile Analisys

The generated response is: {“smile”: true}

57

Figure 17 shows other classification of the smile feature.

Figure 17 – Smile Analysis(2)

The generated response is: {“smile”: false}

58

5.2. Technologies Used

Django

It is a free framework and open source written in Python and provides a ready-to-use

management dashboard. It allows quick development uses the DRY principle and defines

an ORM data modeling, with it allows spread sheet to be generated in the database without

manipulating them through SQL. Published in 2005 with a BSD license, it allows its

unrestricted use and incorporation into other products, whether they are open source or

proprietary code.

Python

It is a high-level / object-oriented language, with simple and easily readable syntax. Uses

a dynamic data type and resource for multiple library calls. In this project, more emphasis

was placed on libraries that cover classes that allow data processing for facial analysis such

as OpenCV (Maureira, n.d.) [31].

C++

It is a programming language that adds object-oriented features to its predecessor C. In the

context of this project I was used to demonstrate the API's ability to work with different

language algorithms from Django's native language.

JSON

It is a light format, simple and easy to read. Based on the JavaScript language, it is used for

exchanging information between systems.

59

MySQL

It is the world's most popular Open Source relational database management system. Due

to its greater realability and ease of use when compared to Sqlite which is the native

django system, it was chosen to implement it in this project.

To enable the use of a MySQL Database in a Django application is one to uses the

following settings in the Database dictionary:

DataBases = {

‘default’ : {

‘ENGINE’ : ‘django.db.backends.mysql’,

‘NAME’ : ‘DB_NAME’,

‘USER’: ‘DB_USER’,

‘PASSWORD’: ‘DB_PASSWORD’,

‘HOST’: ‘localhost’,

‘PORT’: ‘3306’,

}

}

Similarly, it is also necessary to create the file ‘/path/to/my.cnf’ with the following

settings:

[client]

database = DB_NAME

host = localhost

user = DB_USER

password = DB_PASSWORD

default-character-set = utf8

60

5.3. Functionalities

To show the features available to users of this API, the following two figures to illustrate two

common users: regular user and an Administrator.

A regular user using this API has the ability to perform diverse analysis regarding facial recognition

and classification. Each of the existing features that can be performed by an individual image or by

a set of images. Tasks that are performed will be saved in the Database.

Figure 18 – Regular User Use Case Diagram

61

In case of a user that has the administrator profile to access the management interface, a login is

required. After the account has been validated a permission is granted to perform administrative

tasks and the ability to change data generated by previously performed tasks.

Figure 19 – Administrator Use Case Diagram

62

6. Conclusion

The solution presented for the elaboration of this work was carried out in parallel with a Web API

that was being built, aiming at the study and development of an Open Source API, which

incorporates several algorithms, enabling recognition and classification of faces. It uses the Django

Rest Framework Simplified Development to have the REST architecture implemented natively.

Python is the implementation language, having a simple and object oriented syntax, which provides

an easy readability, and also contains the ability to use algorithms compiled in other programming

languages via sub processes, thus enabling the API with this flexibility.

Regarding the difficulties encountered during the preparation to decide the best way to do realize

this task, we relate the learning of technologies for this realization. Another conditioning factor

was the requirements having undergone some changes, due to the development options made

throughout the project.

For future work it is suggested to use this API in other systems or applications, the development

of new features and the optimization of existing ones, to correspond to user's needs. This API can

be useful for professional, academic or personal issues. It allows to be integrated in Open Source

or Proprietary Applications to enrich their functionalities. To consult and use this API one may

access the repository at https://github.com/DiogoNeto/ImageClassificationAPI.git.

63

References

[1] Ahonen, T., Hadid, A., & Pietikäinen, M. (2006). Face description with local binary patterns:

Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell, 28(12), 2037– 2041.

[2] Amazon AWS Rekognitions. (n.d.). Retrieved 10 July 2019, from

https://aws.amazon.com/pt/rekognition/

[3] Animetrics Face API. (n.d.). Retrieved 10 July 2019, from http://animetrics.com/

[4] Bartlett, M. S., Movellan, J. R., & Sejnowski, T. J. (2002). Face recognition by independent component

analysis. IEEE Trans. Neural Netw, 13(6), 1450–1464.

[5] Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: Recognition

Using Class Specific Linear Projection. 19(7), 711–720.

[6] BetaFace API. (n.d.). Retrieved from https://www.betafaceapi.com/wpa/

[7] Bolzmann Machine. (n.d.). Retrieved 11 May 2019, from

http://proceedings.mlr.press/v5/salakhutdinov09a/salakhutdinov09a.pdf

[8] C. Ding, & D. Tao. (2016). A comprehensive survey on pose-invariant face recognition. ACM

Transactions on Intelligent Systems and Technology (TIST), 7(3), 37.

[9] Caffe. (n.d.). Retrieved 28 April 2019, from https://caffe.berkeleyvision.org/

[10] Chi-Fa, C., Yu-Shan, T., & Chia-Yen, C. (2013). Combination of PCA and Wavelet Transforms for

Face Recognition on 2.5D Images. Department of Electrical Engineering, I-Shou Univeristy,

Kaohsiung, Taiwan cfchen@isu.edu.tw 2CITR, Tamaki Campus, The University of Auckland,

Auckland, New Zealand.

[11] Computer Vision and Image Understanding (Statistics Department, University of Nebraska–Lincoln,

NE 68583-0712, USA). (2015). Retrieved from

https://www.sciencedirect.com/science/article/pii/S1077314205001761

[12] CUDA. (n.d.). Retrieved 3 April 2019, from https://developer.nvidia.com/cuda-zone

64

[13] DBN. (n.d.). Retrieved 3 April 2019, from http://www.cs.utoronto.ca/~gdahl/papers/dbnPhoneRec.pdf

[14] Deep Learning: The Confluence of Big Data, Big Models, Big Compute. (n.d.). Retrieved 27 August

2019, from https://www.datanami.com/2019/01/10/deep-learning-the-confluence-of-big-data-big-

models- big-compute

[15] Deeplearning4J. (n.d.). Retrieved 9 April 2019, from https://deeplearning4j.org/

[16] Face ++. (n.d.). Retrieved 10 July 2019, from https://www.faceplusplus.com/

[17] Face Recognition Using Evolutionary Pursuit. (n.d.). Retrieved 7 August 2019, from

http://www.face rec.org/algorithms/EP/liu98face.pdf

[18] Gates, B. (1976). An Open Letter To Hobbyists. Retrieved from Homebrew Computer Club

Newsletter. (Mountain View, CA)

[19] General Public License—GPL. (1989). Retrieved from https://www.gnu.org/licenses/old-licenses/gpl-

1.0.html

[20] Google Cloud Platform. (n.d.). Retrieved 10 July 2019, from https://cloud.google.com/vision/

[21] Google TPU - https://cloud.google.com/tpu/. (n.d.). Retrieved from https://cloud.google.com/tpu/

[22] He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. ‐J. (2005). Face recognition using Laplacian faces.

IEEE Trans. Pattern Anal. Mach. Intell., 27(3), 328–340.

[23] HTTP Methods. (n.d.). Retrieved 29 June 2019, from https://restfulapi.net/http-methods/

[24] IBM Model Asset Exchange (Max). (n.d.). Retrieved 21 April 2019, from

https://developer.ibm.com/exchanges/models/all/max- image-segmenter/

[25] IBM Watson Face. (n.d.). Retrieved from https://www.ibm.com/cloud/watson-visual-recognition

[26] Intel Porcessing Graphics. (n.d.). Retrieved 8 July 2019, from https://software.intel.com/en-

us/articles/intel-graphics- developers-guides

[27] Kairos API. (n.d.). Retrieved from https://www.kairos.com/docs/

[28] Keras. (n.d.). Retrieved 9 July 2019, from https://keras.io/

65

[29] Liu, D. H., Lam, K. M., & Shen, L. S. (2005). Illumination invariant face recognition. Pattern

Recognition, 38(10), 1705–1716.

[30] Lu, J., Plataniotis, K. N., & Venetsanopoulos, A. N. (2003). Face recognition using kernel direct

discriminant analysis algorithms. , IEEE Trans. Neural Netw, 14(1), 117–126.

[31] Maureira, C. (n.d.). Euro Python Talk 2019. Retrieved from https://github.com/cmaureir/unleash_cpp -

Euro Python Talk 2019

[32] Meerkat FR. (n.d.). Retrieved 10 July 2019, from https://www.meerkat.com/

[33] Microsoft Cognitive Face API. (n.d.). Retrieved 10 July 2019, from Microsoft Cognitive Face API -

https://azure.microsoft.com/pt-pt/services/cognitive- services/face/

[34] Naseem, I., Togneri, R., & Bennamoun, M. (2010). Linear regression for face recognition. IEEE Trans.

Pattern Anal. Mach. Intell, 32(11), 2106–2112.

[35] Nvidia AI Computing. (n.d.). Retrieved 13 March 2019, from https://www.nvidia.com/en-us/about-

nvidia/ai-computing/

[36] Open Source Initiative. (n.d.). Retrieved 6 August 2019, from https://opensource.org/licenses

[37] OpenCL. (n.d.). Retrieved 23 July 2019, from https://opencv.org/opencl/

[38] OpenCV. (n.d.). Retrieved 20 December 2018, from https://opencv.org/about/

[39] OpenMP. (n.d.). Retrieved 25 June 2019, from https://www.openmp.org/

[40] Protobuf. (n.d.). Retrieved 27 September 2019, from https://github.com/protocolbuffers/protobuf

[41] Pytorch. (n.d.). Retrieved 9 May 2019, from https://pytorch.org/

[42] RBM. (n.d.). Retrieved 3 April 2019, from

http://proceedings.mlr.press/v15/courville11a/courville11a.pdf

[43] Red Hat: What is an API? (n.d.). Retrieved 19 August 2019, from

https://www.redhat.com/en/topics/api/what-are-application- programming-interfaces

[44] Stallman, R. (1983). New UNIX implementation. net.usoft. (Newsgroups: net.unix- wizards).

66

[45] Stallman, R. (2013, June 18). What is free software? Retrieved from Gnu.org

[46] Stallman, R. (n.d.). GNU Manifesto. Retrieved from https://www.gnu.org/gnu/manifesto.html

[47] Subprocess Python. (n.d.). Retrieved 17 July 2019, from

https://docs.python.org/3/library/subprocess.html

[48] Tensorflow. (n.d.). Retrieved 9 April 2019, from https://www.tensorflow.org/

[49] The Model-View-Controller Design Pattern. (n.d.). Retrieved from https://djangobook.com/mdj2-

django-structure/

[50] Turk, M., Pentland, A., & J. Cogn, N. (1991). Eigenfaces for recognition. pp. 71– 86.

[51] U. Park, Y. T., & A. K. Jain. (2010). Age-invariant face recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 32(5), 947–954.

[52] Xiaofei, H., & Partha, N. (2003). Locality preserving projections. Int. Conf. on Advances in Neural

Information Processing Systems (NIPS’03), 153–161.

[53] Yang, B., & Chen, S. (2013). A comparative study on local binary pattern (LBP) based face

recognition: LBP histogram versus LBP image. Neurocomputing, 22, 620– 627.

[54] Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern:

Face recognition with high‐order local pattern descriptor. IEEE Trans. Image Process, 19(2), 533–

544.

[55] Zhang, B., Shan, S., Chen, X., & Gao, W. (2007). Histogram of Gabor phase patterns (HGPP): A novel

object representation approach for face recognition. IEEE Trans. Image Process, 16(1), 57–68.

