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Abstract: The problem of energy consumption and the importance of improving existing buildings’
energy performance are notorious. This work aims to contribute to this improvement by identifying
the latest and most appropriate machine learning or statistical techniques, which analyze this problem
by looking at large quantities of building energy performance certification data and other data sources.
PRISMA, a well-established systematic literature review and meta-analysis method, was used to
detect specific factors that influence the energy performance of buildings, resulting in an analysis of
35 papers published between 2016 and April 2021, creating a baseline for further inquiry. Through this
systematic literature review and bibliometric analysis, machine learning and statistical approaches
primarily based on building energy certification data were identified and analyzed in two groups:
(1) automatic evaluation of buildings” energy performance and, (2) prediction of energy-efficient
retrofit measures. The main contribution of our study is a conceptual and theoretical framework
applicable in the analysis of the energy performance of buildings with intelligent computational
methods. With our framework, the reader can understand which approaches are most used and
more appropriate for analyzing the energy performance of different types of buildings, discussing
the dimensions that are better used in such approaches.

Keywords: energy performance certificate (EPC); machine learning (ML); energy-efficient retrofitting
measures (EERM); energy performance of buildings (EPB); energy efficiency (EE)

1. Introduction

Considering that buildings account for 40% of the primary energy consumption (EC) in
the European Union [1], reducing the EC of buildings has become a necessity. The European
Union, considering the increasing urbanization and climate change trends, defined the
objective to reduce EC by 32.5% until 2030, from the baseline year of 2007, as a key priority
in the EU’s strategy and Green deal [2] to increase EE and decrease the energy performance
(EP) of existing buildings [2—4]. This goal is aligned with the United Nations’ seventh
Sustainable Development Goal (SDG): “Ensure access to affordable, reliable, sustainable
and modern energy for all” [5].

Buildings are responsible for the second largest portion of the final EC in the European
Union [1,6,7], with households on 26.3% and public buildings on 28.8%, just after the
transport sector (with 30.9%). Their refurbishment and energy-efficient retrofitting is a
priority for many countries to reduce EC and decrease the EP of existing buildings as
part of the EU Green deal [2,8]. In the current state of the art, data science and machine
learning are available to analyze, predict and improve energy efficiency (EE) in buildings in
meaningful ways. Such computer science approaches can be used to forecast and minimize
energy consumption, design energy-efficient buildings, define strategies for mitigating
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impacts on the environment and climate, and predict and propose useful and cost-effective
retrofit measures to increase the EE of buildings to provide a comfortable indoor living
environment [9,10]. By measuring, monitoring, and improving the EE in buildings, we
can reduce the amount of energy consumed while maintaining or even enhancing the
quality of services provided by those buildings, a “double the global rate of improvement
in EE’—SDG7.8 [5,11].

This paper proposes a conceptual and theoretical framework applicable in the analysis
of literature papers that tackle the problem of the EPB with machine learning or statistical
methods. In more detail, this work aims to add to the improvement of the EP of existing
buildings, one of the core goals of the EU Green deal [2], by identifying and analyzing the
latest and most appropriate machine learning or statistical techniques, as a baseline for
future research by building a conceptual and theoretical framework based on a systematic
literature review using PRISMA guidelines. Our approach helps the researcher find which
methods are most used and more appropriate for analyzing the EP of different types
of buildings.

Moreover, our framework addresses the dimensions and factors extracted from avail-
able data sources such as building energy certification data, EC data, wheatear and climate
data, and others. Our proposal will help the community foster innovation on enhanced
buildings’ energy performance (EP) and predict energy-efficient retrofit measures (EERM).

In this context, our study adopts a well-established systematic literature review
(SLR) method, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA [12]), to identify the most relevant literature contributions to the energy perfor-
mance of buildings (EPB) and the prediction of EERM, using machine learning (ML) or
statistical methods. Furthermore, we used a visualization bibliometric tool, VOSviewer [13],
to find the most used terms in the literature related to the EPB with machine learning or
statistical methods.

Some literature review papers tackle similar problems, mostly related to EC [14-18].
The main innovation and novelty of the study is how we present and group the data,
focusing on the building types and addressing the dimensions and methods for each type.
We believe that our study will help the community foster innovation on the enhanced
EPB and predict energy-efficient retrofit measures. We present and visualize our results
using the bibliometric network software tool VOSviewer. This tool allows creating and
visualizing bibliometric networks based on text data and keyword co-occurrence, and
authors’ co-authorship networks of terms. This allows us to visualize and identify the most
important terms and authors co-authorship respective relations for quantitative analysis.

Considering the stated intentions of this paper, we raised the following research
questions:

e RQ1: What are the most relevant machine learning or statistical approaches that
automatically evaluate buildings” EP using EPC data?

e  RQ2: What are the most relevant machine learning or statistical approaches for pre-
dicting energy-efficient retrofit measures to improve buildings” EP?

The research questions focus on two objectives (1) automatic clustering—classification
of the EPC of a building, and (2) prediction of energy-efficient retrofit measures, using ML
and EPC data. Additionally, as mentioned, our approach brings a clear contribution to the
EU Green deal and SDG? of the United Nations [5].

Our paper is organized as follows. Section 2 presents the adopted systematic literature
review technique (PRISMA) and our overall methodology. Section 3 describes the applica-
tion of PRISMA and details the collected data from the survey, whereas in Section 4, we
present and analyze such results using the visualization and bibliometric tool. Section 5
discusses our findings, aligned with our research questions, while in Section 6, we present
our conclusions.
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2. Methodology

The SLR analysis was performed by adopting a well-established systematic litera-
ture review and meta-analysis method (PRISMA). In our methodology, we combined this
method with data visualization techniques, ending up with 4 main phases: (1) data se-
lection, (2) results and analysis: survey results, categorization and dimensions analysis,
visualization and bibliometric analysis, (3) discussion, (4) conclusions [19], as depicted in
Figure 1.

Phase 1- Data Selection

-,

\
\

Phase 2 — Results and Analysis
e Main journal and conference analysis
e Keyword co-occurrence analysis
e Authors co-authorship analysis
e Dimensions, Methods and Type of B
Buildings Analysis \

Phase 3 — Discussion

Phase 4 — Conclusions

Figure 1. Methodology.

Phase 1—Data Collection: Following PRISMA guidelines [12], we conducted an
evidence-based systematic review to select the best basis for reporting systematic reviews.
Our adoption of PRISMA follows the literature trend of using such a method as a basis for
reporting systematic reviews, especially evaluations of interventions [12]. The PRISMA
guidelines consist of a flow diagram and a checklist. The flow diagram of conducting a
PRISMA survey has four phases: identification, screening, eligibility, and inclusion, as
depicted in Figure 2. The checklist proposes a pre-defined structure for a survey with
different sections. In addition, there are precise guidelines to be followed and described in
more detail in Section 3 [12]. As mentioned, we focused our analysis on ML or statistical
approaches using the public build, residential, and office buildings.

Phase 2—Results and Analysis: In this phase, we present the analysis of our PRISMA
results. We analyze the main journals and conferences, the keyword co-occurrence, and the
authors’ co-authorship. We present and visualize our results using the bibliometric network
software tool VOSviewer. This tool allows creating and visualizing bibliometric networks
based on text data, particularly keyword co-occurrence and authors’ co-authorship net-
works of terms. This analysis illustrates the relationships and connections between the
network’s elements (nodes), corresponding to the most used terms, allowing the identifica-
tion of networks characteristics, such as node and cluster centrality. VOSviewer calculates
the node links and weight, demonstrating each node’s importance in the network. This
allows us to visualize and detect the most important terms and authors’ co-authorship
individual relations for quantitative analysis. The size of nodes presents the degree of
centrality: the larger the node, the more times it is reported in the text data. The thickness
of edges presents the number of times two linked nodes are reported, showing their signifi-
cance; by default, the networks are allocated from the largest to the smallest [13]. With this
approach, we could summarize and critically analyze the most used dimensions, clustering
and classification techniques, EP retrofitting prediction techniques, and the most used
building types in each study. This method allowed us to find, accurately and efficiently, the
best literature modeling practices and techniques for achieving enhanced EP.
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Phase 3—Discussion: In this phase, we discuss the previous phases’ findings by
following the research questions. We specifically address the identified knowledge gaps
and our study limitations.

Phase 4—Conclusion: We sum up and present the conclusion of our study.

EE—
Records identified through
database searching (n = 1252)
Web of Science (374)
Science Direct (338)
Scopus (580)
Records after removed
duplicates & without abstract
[n=877)
e
P
Title screening — step 1: excluded articles (e = 503)
Abstract screening — step 2: excluded articles (e = 162)
Exclusion Criteriz screening — step 3: excluded articles |2 = 14E)
e
e
y
Full -Text Papers asseszed by eligibility — step 4 [n = 66)
e
F——
Excluded Papers based on the full text screening - step 5: (e = 31)
Y
S—
y
Number of retained papers (n = 35)
P

“n* stands for the total Numbers of papers retained after each step.
“g* stands for the number of papers excluded.

Figure 2. PRISMA Flowchart.

3. Data Collection
3.1. PRISMA Method

By adopting the PRISMA guidelines, the SLR was performed as follows. First, a search
process was conducted to detect publications that have in their titles, abstract or keywords
the following Boolean expressions:

(“energy retrofit*” OR “energy performance” OR “energy analysis” AND (“artificial
intelligence” OR “artificial neural networks” OR “machine learning” OR “genetic algo-
rithms” OR “classification” OR “clustering analysis”) OR “certificat*” OR “hypercube”
OR “k-means”)

The literature search was performed in April 2021 using the following data repositories:
Science Direct, Web of Science, and Scopus. Using ‘OR,” and "AND’ statements, we in-
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clude all papers published between the periods 1st January 2016-27th of April 2021. The
analyzed topics were integrative, including computer science, mathematics, engineering,
environmental, and data science. While all sources were used, the analysis indicated that
most of the publications from Science Direct were also in Web of Science and Scopus.

The final set of SLR papers for qualitative and quantitative analysis was organized
using the Mendeley references manager open-source tool [20]. This step permitted us to
extract metadata, remove duplicates, and obtain precise figures on the relative importance
of the author of a particular keyword. The obtained metadata were: authors, publication
metadata, references, and citations.

3.2. PRISMA Results

The following PRISMA flow diagram presents the SLR data collection process for our
quantitative and qualitative analyses (Figure 2). The initial step in this approach identified
published papers through a database search, resulting in 1292 publications (Web of Science
374; Science Direct 338; Scopus 580). The inclusion criteria were original research papers
written in English and published in Q1-Q2 peer-reviewed journals (based on scimago
rank) and related conferences in the said period. We focused only on papers with studies
within the EU, given the applicability of EU directives and regulations and building energy
certification, which differs for countries outside the EU. Moreover, even within the EU,
there is variation in the methods used to identify and assess EC and building energy
certification [21]. Additionally, review, position, and reports papers were excluded.

Subsequently, we removed duplicates (e = 415). Then, we performed title and abstract
screening. Step 1 excluded all the papers whose title was not relevant to the scope and
objectives of this study (e = 503). Step 2 excluded all the papers without an abstract or whose
abstract was not relevant to the scope and objectives of this study (e = 162). Finally, step 3
excluded all the papers according to the outlined inclusion and exclusion criteria (e = 146)
as mentioned in the previous paragraph. Next, the full texts of the remaining 66 papers
were read, assessed, and fitted on the scope of the research. Thirty-one papers were
excluded, given that they did not use ML or statistical techniques. Finally, the remaining
35 papers were considered eligible for further analysis. Thirty-three were published in
scientific journals, whereas two were published in conference proceedings.

4. Results and Analysis
4.1. Journals and Conferences Analysis

In the study of a total of 33 literature papers, we analyzed 13 journal papers, in-
cluding from Applied Energy (9), Energy & Buildings (7), Sustainable Cities & Soci-
ety (4), Energies (3), Energy (2), Sustainability (1), IEEE Transactions on Automation
Science & Engineering (1), Renewable & Sustainable Energy Reviews (1), Measurement (1),
Croatian Review of Economic, Business & Social Statistics (1), Journal Electronics (1), En-
ergy Policy (1) and Neural Computing & Applications (1). Table 1 shows the summary of
the journals with their information, that most journals are Q1-quartile ranked (9), repre-
senting 90%, (2) are Q2-quartile-ranked, and the remaining (1) is not yet classified by the
quartile-ranked [22], although the quartile rank can change over time.

The five major research areas found in the analysis were energy, engineering, envi-
ronmental science, mathematics, and social sciences. The 33 selected papers’ publishers
originate from five countries, with most of them from the United Kingdom (6) and The
Netherlands (2), followed by Switzerland (2), the United States of America (1), Croatia (1),
and China (1). The top publishers found are Elsevier BV (5), Elsevier Ltd. (4), Taylor and
Francis Ltd. (2), MDPI Multidisciplinary Digital Publishing Institute (1), MDPI AG (1),
Institute of Electrical and Electronics Engineers Inc (1), Croatian Statistical Association (1),
Science Press (1) and Springer London (1).
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Table 1. Journals details.

Journals No. Publisher Country Field Publisher
. . . . Energy, Engineering,
Applied Energy 9 Elsevier BV United Kingdom Environmental Science
Energy and Buildings 7 Elsevier BV Netherlands Engineering
Sustainable Cities & Society 4 Elsevier BV Netherlands Energ}'f, Engmeermg,
Social Sciences
. MDPI Multidisciplinary . Energy, Engineering,
Energies 3 Digital Publishing Institute Switzerland Mathematics
Energy, Engineering,
Energy 2 Elsevier Ltd. United Kingdom Environmental Science,
Mathematics
S . Energy, Environmental Science,
Sustainability 1 MDPI AG Switzerland . .
Social Sciences
IEEE Transactions on Automation Institute of Electrical & . . .
. . . 1 : . United States Engineering
Science and Engineering Electronics Engineers Inc.
Renewable & Su.stamable Energy 1 Elsevier Ltd. United Kingdom Energy
Reviews
Measurement 1 Taylor & Francis Ltd. United Kingdom Mathematics, Social Sciences
Croatian Review of Economic, 1 Croatian Statistical Croatian Statistics
Business & Social Statistics Association
Journal Electronics 1 Science Press China Engineering
Energy Policy 1 Elsevier BV United Kingdom  Energy, Environmental Science
Neural Computing & Applications 1 Springer London United Kingdom Computer Science

The conferences found in this study were IEEE International Conference on Internet

of Things and Green Computing & Communications and Cyber, Physical & Social Com-
puting and Smart Data (2017), and IOP Conference Series: Earth & Environmental Science
(2019). Table 2 presents that the major research areas of the conference are computer and
environmental science in the United Kingdom and Indonesia.

Table 2. Conferences details.

Conference No. Publisher Country Field
IEEE International Conference on Internet of Things and Green
Computing and Communications & Cyber, Physical and Social 1 United Kingdom Computer Science
Computing and Smart Data (2017)
IOP Conference Series: Earth and Environmental Science (2019) 1 Indonesia Environmental Science

4.2. Keyword Co-Occurrence Analysis

Term co-occurrence analysis was conducted utilizing the mentioned text mining tool

for network analysis, VOSviewer. The analysis was conducted utilizing a full count-
ing method, encompassing 143 screened terms, with a minimum threshold of two co-
occurrences. Of the total 143, only 21 terms were chosen for the analysis (Table 3).
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Table 3. Keywords co-occurrence ranked by the link strength.

Keywords Occurrence Total Link Strength

Energy Efficiency 7 10

Building Energy Retrofit

Machine Learning

Office Buildings

Building Energy Performance

Energy Performance Certificate

Energyplus

Multi-Objective Optimization

Genetic Algorithm

Sensitivity Analysis

Artificial Neural Networks

Building Retrofit

Cluster Analysis

Energy Simulation

Energy Retrofitting

Energy Savings

Genetic Algorithm (Nsga-Ii)

Reference Buildings

Dell’olmo, Jacopo

Piscitelli, Marco Savino

Salata, Ferdinando

Energy Performance Certificates

Building Sampling

Fernandez Bandera, C

Ramos Ruiz, G

NN INNININNINIDNIDNINNNMDNDND RN QNN Q||| Q&
R INININ @ BR[O O] || N(N|N| | © ||

Data Exploration

Most of the analyzed keywords were related to energy efficiency (EE), building energy
retrofit, ML, and building energy performance. The top five found keywords were EE
(7 occurrences, 10 total link strength), building energy retrofit (4 occurrences, 8 total link
strength), ML (4 occurrences, 8 total link strength), office buildings (3 occurrences, 8 total
link strength) and building EP (5 occurrences, 7 total link strength).

In keywords of co-occurrence analysis, four clusters (Figure 3) were found with
21 keywords and 50 links. The biggest nodes of each cluster were identified as EE (blue),
building EP and EPC (red), office buildings (green), and energy simulation (yellow).

Focusing on the interrelated network of Figure 3 (21 items, 4 clusters, and 50 links),
the energy simulation term (yellow cluster) has a connection only with the term energy
efficiency (EE) (blue cluster). The building energy performance term (red cluster) has a
connection only with the term EE (blue cluster), and the energy performance certificate
(EPC) term (red cluster) has a connection with the terms building retrofit (blue cluster) and
energy retrofitting (green cluster). The office buildings term (green cluster) relates to all
the clusters, namely with the term’s sensitivity analysis (yellow cluster), building energy
retrofit and artificial neural networks (ANN) (red cluster), EE, and building retrofit (blue
cluster). Finally, the EE term (blue cluster) relates to all the clusters too, namely with the
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term’s energy simulation (yellow cluster), ANN, building energy performance and ML (red

cluster), office buildings, and clustering analysis (green cluster).

building energyperformance

energy%rfor‘nce certificate

energy rgtrofitting
building edggy retrafit

energy simulation g office Ruildings

enerW’ icien
energy savings <
buildingretrofit cluster@nalysis

tigoptimizati
energyplus

referenc@buildings

d;a exploration

Figure 3. Keyword occurrence network visualization.

An extensive, connected network of keywords and groups of keywords occurs in
individual articles, mostly between 2018 and 2020 (Figure 4). The keyword analysis
indicated research fields emphasizing ML and EE and found ML techniques, such as

clustering analysis, energy simulation, and ANN.

bullding energy performance

energy performance certificate

energy retrofitting

building engrgy retraiit
e b
eRerey signulation office Bwildings
energyigfficiency

energy#avings
buildingretrofit cluster@nalysis

energyplus

2017 2018

reference buildings

data exploration

I

2019 2020

Figure 4. Keyword co-occurrence by year overlay visualization.
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4.3. Authors’ Co-Authorship Analysis

An authors” occurrence analysis was conducted using the reported text mining tool
for network and bibliometric analysis, VOSviewer. The analysis was conducted applying
the full count method, choosing 15 maximum number of authors per document and a
minimum threshold of 2, resulting in a total of 154 authors meeting this threshold, of which
28 authors were analyzed (Figure 5).

fan, pling o'donn@lh James

piscitelli, marco savino

casalsgmiquel
-
capozzali, alfonso
de stasigy claudio
stasio, gdudio de
maur&geardo maria
asélic)]ne‘;abrizio fernandezbandera, c

salata, fepdinando

ciancigyvirgilio

ali, usman
@ mangige. eleni

hoaragathal =&
shamsi, molggmmad haris

gangolells, marta
&

Figure 5. Authors’ co-authorship network visualization analysis.

The top 10 found authors were Ascione Fabrizio with a link strength of 21 [23-27],
Bianco Nicola with a link strength of 21 [23-27], Mauro Gerardo Maria with a link strength
of 21 [23-27], Vanoli Giuseppe Peter with a link strength of 21 [23-27], Ali Usman with
a link strength of 16 [28-30], Hoare Cathal with a link strength of 16 [28-30], Mangina
Eleni with a link strength of 16 [28-30], O’'Donnell James with a link strength of 16 [28-30],
Shamsi Mohammad Haris with a link strength of 16 [28-30], and Bohacek Mark with a link
strength of 12 [28,29].

In the authors’ co-authorship analysis, seven clusters were found with 28 items and
54 links. Cluster 1 (green) relates to the top four author co-authorships ranked by link
strength. For De Stasio Claudio with a link strength of 9 [23-25] and De Masi Rosa Francesca
with a link strength of 8 [26,27] (Table 4), Cluster 2 (red) has seven items and found Ali
Usman and Bohacek Mark. For Hoare Cathal, Mangina Eleni, O’'Donnell James, Purcell
Karl, Shamsi Mohammad Haris [28-30], Cluster 3 (yellow) has four items and found Casals
Miquel, Ferré-Bigorra Jaume, Gangolells Marta, and Macarulla Marcel [31,32]. Cluster 4
(blue) has three items and found Capozzoli Alfonso, Cerquitelli Tania and Piscitelli Marco
Savino [33-35], and Cluster 5 (cyan) has three items and found Ciancio Virgilio, Dell’olmo
Jacopo and Salata Ferdinando [36,37]. Cluster 6 (purple) has two items: Fernandez Bandera
C and Ramos Ruiz G [38].



Buildings 2022, 12, 28 10 of 27

Table 4. Authors’ co-authorship ranked by link strength.

Authors Documents Total Link Strength

Ascione, Fabrizio 5 21
Bianco, Nicola 5 21
Mauro, Gerardo Maria 5 21
Vanoli, Giuseppe Peter 5 21
Ali, Usman 3 16
Hoare, Cathal 3 16
Mangina, Eleni 3 16
O’Donnell, James 3 16
Shamsi, Mohammad Haris 3 16
Bohacek, Mark 2 12
Purcell, Karl 2 12

De Stasio, Claudio 3 9
De Masi, Rosa Francesca 2 8
Casals, Miquel 2 6
Ferré-Bigorra, Jaume 2 6
Gangolells, Marta 2 6
Macarulla, Marcel 2 6
Capozzoli, Alfonso 3 5
Cerquitelli, Tania 3 5
Ciancio, Virgilio 2 4
Dell’olmo, Jacopo 2 4
Piscitelli, Marco Savino 2 4
Salata, Ferdinando 2 4
Fernandez Bandera, C 2 2
Ramos Ruiz, G 2 2

Clusters 2, 3, and 5 relate to authors’ published articles in 2020-2021. Cluster 4
relates to authors with publications in 2019, and cluster 7 corresponds to authors with
publications in 2018; for the remaining authors, articles were published in 2017. Figure 6
indicates that the top 10 author co-authorships were published in 2017, demonstrating
that the academic community had a strong connection in 2017. Finally, the most relevant
papers were published from 2017 to 2020, demonstrating that the academic community
has increased.



Buildings 2022, 12, 28

11 of 27

-
fan, guling

capozzaliyalfonso

piscitelli, m@rco savino

salata, ferdinando

ciancio, v:rglho

ali, usman
mangina, eleni
o'donnell, james
hoare, cathajurcell
shamsi, mohammad haris

gangolells, marta

casals, miquel

de stasi@ claudio
stasio, ¢pudio de

maug@yeagd do maria

ascionggabrizio farnindadiSndars -
=

Figure 6. Authors’ co-authorship visualization by year.

4.4. Most Cited Publications

Analysis of the most-cited publications helped us to detect the important research
topics in the literature. The most cited and chosen publications were searched using Science
Direct, Scopus and Web of Science datasets. The study detected publications that have been
cited between 84 times and 0 times. Table 5 shows this process’s resulting conceptual and
theoretical framework with each paper’s dimensions, intelligent computing methods, and
type of buildings.

The top five found publications are from the following authors: Ascione, Bianco,
Stasio et al. [23] with 84 citations (the most cited), followed by Ramos Ruiz et al. [38] with
44 citations, Ascione, Bianco, De Masi et al. [27] with 44 citations, Niemeld, Kosonen, and
Jokisalo [39] with 39 citations and Beccali et al. [40] with 37 citations. These results (Table 5)
are coherent with previous analyses described above. These papers are the most cited and
present the central concepts in the field.

The top five cited papers present in Table 5 were published in Q1-ranked journals and
mostly in Energy and Buildings and Applied Energy journals. Furthermore, and coherent
to the analysis, the most cited article is also emphasized in the authors” co-authorship
analysis (Section 4.3). Cluster 1 (green) in Figure 5 groups the most cited author co-
authorship Ascione, Bianco, Stasio et al. [23] and cluster 6 (purple) groups most of the
author co-authorships of the second most-cited article Ramos Ruiz et al. [38]. In keyword
co-occurrence analysis (Section 4.3), the term ANN was outstanding and is one of the
techniques used by the most cited publication of Beccali et al. [40].
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Table 5. Publications ranked by the number of citations.

. L. . . 1 g No. of
N Ref. Publication Dimension Category Methods Building Type Citations
—Thermo-Physmal characteristics _Simulation
-Building envelope -Latin hypercube samplin;
1 [16] Applied Energy -HVAC systems ypercatt ping Hospital 84
-Pareto—sensitive Analysis
-Weather . .
-Genetic Algorithm
-Energy use
-Climatic location -Genetic Algorithm NSGA-II
-Geometry -Simulation
2 [31] Applied Energy -Construction elements -Parametric analysis University 44
-Building properties -Sensitivity analysis
-Internal temperature measures -Uncertainty analysis: fi, CV(RMSE)
-Building envelope
g -Building operation -Genetic algorithms . .
3 (201 Energy & Buildings -HVAC systems -Transient energy simulations University 44
-Financial attributes
-Building Envelope
-HVAC systems . . o
. : -Simulation-based Optimisation methods . .
4 [32] Energy & Buildings -Internal heat gains “Pareto-Archive NSGA-II Genetic algorithm Residential 39
-Weather
-Cost of different renovation measures
-Thermophysical parameters
-HVAC plants
-Typology
5 [33] Energy -Building characteristics -Artificial neural networks (ANN) School 37
-Climate
-Geometry
-Energy consumption
-Climatic location -Life-Cycle Cost method
6 [34] Energy -Building materials -Monte Carlo simulation Residential 35
-Financial attributes -Discount rate
-Design variables -Pareto front
7 [35] Energy & Buildings -Climate (Thermal zone) -Simulation Residential 30

-Cooling and heating -Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
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Table 5. Cont.
N Ref Publication Dimension Catego Methods Building Type No. of
. gory & yp Citations
“Geometry -Energy Simulation
8 [36] Applied Energy —Wgather . _Residual network model Residential 27
-Construction materials
-Climate
-Building location
-Energy sources (gas and electricity) -Simulations
. -Building characteristics -Active Archive Non-Dominated Sorting Genetic Algorithm . .
? (301 Applied Energy -Installation systems (aNSGA-II type). Residential 22
-Photovoltaic -Pareto frontier
-Thermal solar panels
-Building geometry
-Weather . .
s -Latin-hypercube sampling . .
. -Building Envelope . . . .9 Residential and
10 [37] Applied Energy "HVAC systems -Joint mutual mformatlpn maximization offices 21
-Energy conservation measure
-Energy use
-Building envelope S R .
Orientation -Estimation Maximization algorithm
11 [38] Measurement —Heafin; lc())a d -Adaptive Neuro-Fuzzy Inference System method Residential 14
-Cooling load -Principal Component Analysis
-Crude statistical analysis
Buildine seometr -Visual analysis of statistical representation (Box plots)
58 Y -Local Outlier Factor (LOF) algorithms
-Energy performance index .
o1 -Deep Learning
-Building shape .
Dwelling type -Rule Induction
. s -Neural Network . .
12 [22] Applied Energy -Building envelope ‘Naive Bayes Residential 14

-Number of floors; walls, and windows
-Envelope U-values
-Construction assemblies
-HVAC systems

-Decision Tree
-Random Forest
-Gradient Boosted Trees
-Learning Vector Quantization (LVQ)
-9 k-Nearest Neighbors (kNN).
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Table 5. Cont.
N Ref Publication Dimension Catego Methods Building Type No. of
’ gory 8 yp Citations
-Geometry
-Envelope
-Useful floor area (m?)
-Building shape -Sorting genetic algorithm (aNSGA-II)
s -Climate zone Window -Optimal solution in the R 4 space . .
13 [29] Energy & Buildings Glazing type Pareto frontier Residential 14
-Wall insulation -Simulation
-Heating system Heating
-Energy source
-Cooling system Cooling
Sustainable Cities & _l-gﬁteljtlirrllg En:til;};e “REVIT
14 [39] : & 5y -Simulation Residential 13
Society -HVAC systems . .
. . -Genetic algorithm
-Electricity consumption
-Geometry
-Building envelope -Latin hypercube sampling technique Residential,
15 [18] Sustainability -Building operation -Simulation-based large-scale uncertainty/sensitivity Analysis Offices and 12
-HVAC systems of Building EP Schools
-Climate
-Weather
-Building age -Group by building age
16 [40] Energies -Construction year -Simulation Monte Carlo Residential 12
-Building envelope -Genetic Algorithm NSGA-II
-Heating/ Cooling systems
Journal IEEE e e . -Artificial neural network
. -Building intrinsic properties . .
Transactions on -Genetic algorithm
17 [41] . ) -Occupancy patterns . : . Care home 9
Automation Science & . o -Multi regression analysis
. . -Environmental conditions o .
Engineering -Principal component analysis
“Geometry -Artificial Neural Network
-Envelope -Support Vector Machine
18 [28] Energies -Construction year PP Residential 8

-Average global efficiency for space
heating

-Reduced Error Pruning Tree
-Random Forests
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Table 5. Cont.
N Ref Publication Dimension Catego Methods Building Type No. of
. gory & 1yp Citations
_Buildine envelope -Manual grouping method and ‘notch test” data
19 [42] Applied Energy g envewop -Generic Algorithm Offices 7
-Indoor facilities .
-Mathematics
Renewable & Thermonhvsical properties -Artificial neural network (ANN)
20 [43] Sustainable Energy -BuilI:iir}ll envzlope -K-means clustering School 7
Reviews & P -Geographic information systems (GIS)
-Hot water
-Internal heat gain and lighting . - 1
“Wall o floor and window -Simplified Bulldmg.El.nergy Mo<.iel (SBEM) tool
-Standard Emission Rate -Sensitivity analysis
. R . -Gradient boosted regression trees (GBRT) Commercial,
21 [44] Applied Energy -Air infiltration rate D 7
Terminal unit ener -Cross-validation School
Demand and cooling sterﬁ}; fficienc -Standard statistical re-sampling method,
& SYS! Y- -Sequential Model-based Algorithm Configuration (SMAC)
-Roof wall ratio
-Solar radiation on the roof
—GeosPatlal -Artificial neural network (ANN)
-Construction shape K-means clusterin
Croatian Review of -Heating characteristics Correlation Anal sgi;s Residential,
22 [45] Economic, Business & -Cooling characteristics . y Offices and 6
. - . L -Chi-square tests
Social Statistics -Meteorological characteristics . Schools
. . -Symmetric mean average percentage error
-Occupational characteristics .
. - -DBSCAN algorithm
-Energetic characteristics
-GIS
-Geometric data: building shape, -Dec151_(;:r:1ZAZnal}tI;11i (ﬁcgﬁzlrﬁproach
building type, building fabric, number Y J gr &
of floors, window-wall ratios a .0
. o1 -Jaro-Winkler
-Non-geometric building: envelope htei
U-values, construction assemblies -Levenshtein
23 [21] Applied Energy g ’ -JaccnaiveNaive Bayes Generalized Linear Model Residential 6

Heating Ventilation, Air Conditioning
(HVAC) systems properties
-EPC data
-Building footprint
-Building height data

-Logistic Regression
-Deep Learning
-Decision Trees
-Random Forest

-Gradient Boosted Trees
-Support Vector Machine




Buildings 2022, 12, 28

16 of 27
Table 5. Cont.
.. . . 1 s No. of
N Ref. Publication Dimension Category Methods Building Type Citations
Sustainable Cities & -Geometrical -Wrapper Feature Selection
24 [46] Socie Th hvsical f -Random Forests Schools 5
ty ermophysical features -K-means Clustering
-Building norm
-Window glazing
) é?;ﬁ:tesz;rgn -K-means Clustering
Useful fgloglr area -Correlation analysis Offices
25 [25] Energy & Buildings —Shape factor -Stepwise regression analysis industrial— 5
. P -Root-mean-square standard deviation residential
-Domestic hot water energy source “Elbow method
-Heating energy source
-Existence of thermal insulation in
building envelopes
-Climate zone
-Building layout
-Seasonal efficiency Heat delivery
-Average wateififrllcl:eir;ﬁ erature Hot ~Dynamic simulation tool
Sustainable Cities & & P -IES Virtual Environment (VE) . .
26 [47] Society water supply temperature _Combination packages Residential 4
-Mechanical ventilation Infiltration o .
. . -Energy Limiting Difference (ELD) assessment factor
-Maximum power consumption
-Luminous energy conversion efficiency
Schedule
-Occupants Lighting
-Construction age
-Building size
-Heating and hot water systems Statistical approach
27 [48] Energy & Buildings -Heat loss through the building fabric Synthetical Average Building (SyAv) approach identifies Residential 4

-Climatic location
-Operation & occupancy pattern
-Heating demand
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Table 5. Cont.
N Ref Publication Dimension Catego Methods Building Type No. of
: gory & 1yp Citations
-Local Outlier Factor algorithm
-Geometric data -K-means clustering
-Envelope U-values -Weighting coefficients
28 [23] Energy & Buildings -HVAC systems -Building national statistics Residential 2
-Construction year -Building EP Simulation
-Climate zone -Geographical Information System (GIS)
visualization maps
EEE rmatona e comeation e
Conference on Internet -Buildings Characteristics P P anaty
. . -K-means clustering
of Things and Green -Efficiency of the subsystems for e . .
Computing & space heating -Classification and Regression Tree algorithm
29 [26] . .. -Silhouette based indices Residential 2
Communications & -System efficiency Sineular value decomposition
Cyber, Physical & Social =~ -EP (Normalized primary energy demand & .. P
C . . 3 -Statistics
omputing & Smart for space heating [kWh/m~], etc.) R
-Boxplot distributions
Data (2017) . L
-Generalized association rule
-Dwelling type
-Year of construction
-Dwelling size
-Occupancy status -Statistical approach
-Energy class Cost—benefi lvsi
-Surface coefficient of heat exchange “-ost-benefit analysis.
30 [49] Energy Policy . -Monte Carlo simulation Residential 2
-Real energy consumption e .
-Systematic energy source -Sensitivity analysis
Y . -Hierarchical Classification (Ward’s criterion)
-Heating system type
-Region Climatic zone
-Urban size
-Renovation changes
IOP Conference Series: .
31 150] Farth & Environmental -HVAC systems -ENERFUND tool Commercial and

Science

-Envelope U-values

-Geographical Information System (GIS) visualization

Residential
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Table 5. Cont.
N Ref Publication Dimension Catego Methods Building Type No. of
’ gory 8 yp Citations
-Aspect ratio -Density-based spatial clustering of application with noise
-Surface area algorithm (dbscan)
-Floor area -Pearson correlation
30 [27] Electronics -Average u-value of the vertical opaque -Max-min binormalization Residential 1
envelope -Elbow method
-Average u-value of the windows -K-means
-Heating system global efficiency -Spatial constrained k-nn
-Construction year -Geospatial maps
-Building type -Google Street View
-Number of stories -ANN
33 [51] Energies -Construction year —Image.z recog111t19n Residential 1
-Heated space per story -Stepwise regression
-Area code -Logistic regression (LR)
-Number of stairwells per Apartment -Support vector machines (SVM)
-Useful floor area (m?)
-Building shape
-Climate zone Window -Statistical approach
Sustainable Cities & -Glazing type -Life-cycle energy impact: Calculate the global energy savings .
34 [24] . . 3 . .. Offices 1
Society -Wall insulation -Life-cycle economic impact
-Heating system Heating -Calculate life environmental impact
-Energy source
-Cooling system Cooling
B 2
Useful surface (m”) -Statistical approach
-Thermal power (kW) B . . . PR
Neural Computing & -CO? emissions -Bayesian Gaussian process regression (GPR)
35 [52] o . . -Genetic algorithms (GAs) Residential 0
Applications -Primary energy consumption

-Opaque enclosures
-Holes and skylights

-Limited-memory Broyden-Fletcher-Goldfarb— Shanno
(L-BFGS) optimizers
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Likewise, several ML and statistical methods were used for energy applications on
SLR papers. The 10 top most-cited papers used a combination of methods, namely simu-
lation techniques, Pareto front, genetic algorithm NSGA-II, and ANN (Table 5). As input
in those methods, these top 10 papers used the following dimensions extracted from the
data: climate and weather, building thermo-physical characteristics, building envelope,
building geometry, HVAC systems, EC, and building typology. In the case studies, most of
them used residential buildings (6), offices (1), universities (2), schools (1), and hospitals (1),
refs. [23,27,37-44]. The remaining SLR papers used similar dimensions: building geom-
etry, building envelope, other building properties, climate and weather, HVAC systems,
and energy consumption (EC) [16,18,20,21,28-48]. A total of 19 out of 35 papers used a
residential building as the case study [28-30,33-37,39,41-43,45-47,53-57]. Some of them
combine different types of buildings. Five papers combined residential and commercial
buildings—offices and schools [25,32,44,52,58], two papers addressed offices [31,49] and six
analyzed schools and universities [27,38,40,50,51,59]. Only one addressed a hospital [23]
and one a care home [48].

Furthermore, only the most recent papers utilized building EPC data for their anal-
ysis [28,29,31,34,50-54,56,57,60,61]. This aspect is surprising since the first directive on
building energy performance, “the Energy Performance of Building Directive (EPBD),” was
introduced by the European Parliament in 2002. Additionally, improvements to the EPBD
were performed in 2010 [60,61]. The remaining papers use energy building audits analysis
and reference buildings for their research.

The most-used techniques for predicting EP and retrofitting were energy performance
simulation techniques, statistical-based approaches, genetic algorithms, and ANN. Few
studies use only ML methods, namely (13) studies [28,29,31,33-35,40,45,48,50,52,56,59].
The most common clustering and classification techniques were K-means (7), statistical
methods (6), Latin hypercube sampling (2), other manual groupings (2), decision tree (2),
and probability density function (1) [23,25,28-34,47,50-52,54,55,57,59].

4.5. Type of Buildings, Dimensions, and Methods Analysis

A conceptual and theoretical framework was built to evaluate this survey’s building
types, dimensions, and computational intelligence methods in more detail; see Tables 6 and 7.
This framework seeks to understand the most-used ML and statistical approach according
to each SLP study’s dimensions and building types resulting from the previous analysis
(Table 5). It focuses on research inputs, goals, and outcomes to create the basis for our
research evaluation criteria.

Table 6. Analysis of the used Dimensions by Type of Buildings.

Building Type

Dimension Category Reference

Hospital

-Thermo-physical characteristics
-Building envelope
-HVAC systems [16]
-Weather
-Energy use

-Building envelope
-Building operation
-HVAC systems
-Financial attributes
-Thermophysical parameters
-Typology
-Climate
-Geometry

3 University /School -Energy consumption [20,31,33,43,44,46]

-Hot water
-Internal heat gain and lighting
-Standard Emission Rate
-Air infiltration rate
-Terminal unit energy
-Demand and cooling system efficiency.
-Roof wall ratio
-Solar radiation on the roof
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Table 6.

Cont.

Building Type

Dimension Category

Reference

Residential

-EP (Normalized primary energy demand for space heating [kWh/m?],

-Building Envelope
-Geometry
-HVAC systems
-Internal heat gains
-Weather
-Building materials
-Financial attributes
-Cost data of different renovation measures
-Building-location—orientation
-Photovoltaic
-Energy performance index
-Envelope U-values
-Construction assemblies
-Thermal solar panels
-Electricity consumption
-Building age
-Construction year
-Average global efficiency for space heating
-EPC

-Construction age

etc.)

-Occupancy status
-Energy class
-Renovation changes
-CO, emissions
-Primary energy consumption

[21-23,26-30,32,34—
36,38-40,47-49,51,52]

Residential and offices

-Weather
-Building Envelope
-HVAC systems
-Energy use
-Envelope U-values

[37,50]

Residential, Offices and
Schools

-Geometry
—Buildincg envelope
-HVAC systems
-Climate
-Geospatial
-Construction shape
-Occupational characteristics
-Energetic characteristics
-Building Insulation

[18,25,45]

Care homes

-Building intrinsic properties
-Occupancy patterns
-Environmental conditions

[41]

Offices

-Building envelope
-Indoor facilities
-Useful floor area (m2)
-Building shape
-Climate
-Glazing type
-Wall insulation
-Heating system
-Energy source
-Cooling system

[24,42]

Table 4 presents our findings on dimensions by building types to implicate new
knowledge, which helps energy experts to learn and use the most critical dimensions for
particular building types in their modeling and research work.

The SLR analysis suggests that the dimensions extracted from the data sources, can be

grouped in the following way:

o  Climate: location, weather, building orientation.

e  Building geometry: building shape, building type, building fabric, number of floors,
window-wall ratios.

e  Non-geometric building data: envelope U-values, construction assemblies, heating
ventilation, air conditioning (HVAC) systems properties, building age.

e  Energy consumption: electricity consumption, energy use, average global efficiency
for space heating, HVAC systems, internal heat gain, and lighting.
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e  Energy performance: standard emission rate, CO, emissions, terminal unit energy,
energy performance index, the efficiency of the subsystems for space heating.
Financial attributes: cost data of different renovation measures
Occupational characteristics.

Table 7 presents our inference which may help data scientists understand the right
method to employ for further research.

Table 7. Methods by Dimensional Analysis.

No. Computational Intelligence Method Dimension Category Reference
-Climate
-Building geometry
1 Simulation -Non-geometric building data [16,18,20,23,29-32,34,37,39,40,47 ,49]

-Energy consumption
-Energy performance

-Climate
-Geometric building
-Non-geometric building data
-Energy consumption
-Energy performance
-Financial attributes

2 Genetic Algorithm [16,20,29-32,35,39-42,52]

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Financial attributes

3 Sensitivity analysis [31,44,49]

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Occupational characteristics

4 Artificial neural networks (ANN) [28,33,41,43,45,51]

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Occupational characteristics

5 K-means clustering [23,25-27,43,45,46]

-Climate
-Building geometry
6 Geographic information systems (GIS)  -Non-geometric building data [21,23,27,43,50,51]
-Energy consumption
-Energy performance

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Occupational characteristics

7 DBSCAN algorithm [27,45]

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Occupational characteristics

8 Correlation analysis [23,25-27,45]
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Table 7. Cont.

No. Computational Intelligence Method Dimension Category Reference

-Climate data
-Building geometry

Statistical approach -Non-geometric building data [22-26,29,30,35,41,42,44,48,49,51,52]

-Energy consumption
-Energy performance

10

Cost-Benefit analysis

-Climate data
-Building geometry
-Non-geometric building data
-Energy consumption
-Energy performance
-Financial attributes

[24,34,49]

11

Principal Component Analysis

-Climate
-Building geometry
-Non-geometric building data
-Energy consumption

[38,41]

The above analysis allows us to use the most common dimension categories of build-
ing to find an adequate method to evaluate the energy performance according to the
building type we are interested in. As the results demonstrated, most studies have common
dimensions no matter the building type and methods.

5. Discussion

Our research aimed to highlight and detect the literature on machine learning (ML)
and statistical techniques that tackle the EPB and create a systematic, organized view of
those literature studies.

Following, we discuss how our study answers the posed research questions, namely:

e RQ1: What are the most relevant machine learning or statistical approaches that
automatically evaluate buildings’ energy performance using EPC data?

e  RQ2: What are the most relevant ML or statistical approaches for predicting energy-
efficient retrofit measures to improve buildings’ energy performance?

5.1. Research Questions Discussion

Our analysis indicates that the two problems discussed by the proposed machine
learning or statistical approaches are clustering (classification) and prediction in the energy
performance of buildings.

Regarding the first question (RQ1), 13 studies used the EPC dataset [30,32-35,52,58]
as explained in Sections 4.4 and 4.5. This kind of data is multi-dimensional, given that
each energy certificate has many attributes. The exploitation of a given data mining
algorithm on such data (such as cluster analysis) is challenging due to the high variability
and dimensionality of the data [33]. As for data classification and clustering techniques,
most studies applied the K-means clustering algorithm to characterize the cluster sets
with given energy performance, as explained in Sections 4.4 and 4.5. Some studies used a
density-based spatial clustering of application with noise algorithm (DBSCAN) to handle
outliers and correlation analysis to identify the best input demission for their clustering
analysis [32-34,52]. A few studies referring to RQ1 used GIS and geospatial maps to
visualize their clustering results [30,58]. Finally, (5) papers of similar studies answered RQ1,
namely [30,33-35,58].

Regarding RQ2, most approaches to predicting energy-efficient retrofit measures used
simulation tools such as EnergyPlus [62] or TRNSYS [63] to model the energy consumption
(EC) of a 3D model of the building. They understudy and then use GA to perform multi-
objective optimization, obtaining a good solution for the different criteria defined as
important in their studies [46]. The strategy of using precomputed 3D models requires a
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large database of models and the accuracy depends on how close those models match real-
world buildings. Although the most common algorithm for multi-objective optimization
is the non-dominated sorting GA II (NSGA-II), it is possible to improve the algorithm by
customizing it for energy retrofitting scenarios [64]. NSGA-Il is a GA and customizing it for
the specific field of energy retrofit would yield more efficient computations. Additionally,
the more recent NSGA-IIL is not used by researchers [65]. The improved version will be more
efficient computationally when finding optimal solutions. The simulation’s quality depends
on having a good model representation of the building and using other environmental
factors such as weather data and orientation of the building/solar exposition [44].

The environmental characteristics that impact the building EP are also important
criteria to determine what retrofitting measures are cost-effective. It is also essential to
describe the building materials in terms of their heat loss/gain rating by the thicknesses (U-
value) of features, namely roof, wall, floor, ceiling, and window, as well as identify the type
of heating and cooling systems, renewable energy systems being used, occupation density,
and others that might affect the building’s energy consumption. It can be considered that
the more extreme the weather conditions are in the region of the building, the more critical
it is to include it in the modeling of EP [44].

Moreover, referring to the RQ2, several authors used GA (7) [23,27,38,39,42,48] to
predict cost-optimal energy retrofit solutions. Some approaches used artificial neural
networks (ANN) [35,40,48,50,52,56]. Most papers in this category are case studies using a
single building or a representative building sample to collect the necessary data to serve their
experiments. No study referring to RQ2 used GIS and geospatial maps to visualize. Finally,
(15) papers of similar studies answered the RQ2, namely [23,25,27,29,36-39,41,42,44,46,48,55].

Some studies (8) answer both research questions; two such approaches are an excellent
example of using K-means clustering and ANN with public EPC databases to predict
EERM [50,52]. Other approaches focusing only on predicting energy consumption (EC)
show that it is possible to use a data-driven urban energy simulation to predict the hourly,
daily, and monthly energy consumption. In addition, models are used as a baseline for EC
and then apply a residual network ML model to predict the EC on the various scales [43].

The primary objectives of the studies in this category (8 studies) are the prediction of EP,
potential for energy savings, and cost-optimal retrofitting solutions [40,43,45,47,49,50,52,59].
As data classification and clustering techniques, some studies (6) adopted K-
means [28,32,50,52,57,59]. Ultimately, some (2) applied manual classification [47,49]. As a
prediction of EP and cost-optimal retrofit solutions techniques, some approaches (7) em-
ployed ANN and GA [40,47,49,50,52,56,57]. Others implemented different ML algorithms,
such as random forest (RF) [59]. Lastly, some of the approaches executed simulations
and mathematical techniques, such as a multiple linear regression, Pearson’s correlation,
principal component analysis, Monte Carlo, Gaussian process regression model, Gaussian
mixture regression model, and deep learning algorithms [28,49,56]. Finally, some studies
(3) use geographical information systems (GIS) and geospatial maps to visualize their
results [28,50,56].

5.2. Knowledge Gap

Our analysis concluded that the research gap is related to identifying and testing ML
approaches that are best fitted and have better performance in targeting automatic evaluation
of buildings’” energy performance using EPC data. Moreover, most of the studies use statistical
and audit approaches at a multilevel scope [15,17,19,22,24,25,27-41,45,48,49]. However, some
studies (13) use the EPC dataset for their analysis [28,29,31,34,50-54,56,57,60,61]. Furthermore,
most studies apply simulation techniques and GA for prediction, targeting multi-objective
cost-optimal solutions, a promising approach.

We conclude that more research is needed to validate and improve future modeling
strategies using EPC datasets and different features. These gaps have shown an opportunity
for future research.
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5.3. Study Limitations

Although we tried to guarantee the quality of this review and, particularly, the data
selection, this study has limitations. Specifically, we would like to highlight the dependency
on the keywords and the selected data repositories, since additional data repositories could
be used and only English papers were included, neglecting publications written in other
languages. Finally, another important limitation of this study is the time frame, given that
we focused on papers published in the last five years, between early 2016 and April 2021.

6. Conclusions

The PRISMA methodology summarized the SLR analysis and generated a systematic
view of ML and statistical approaches applied in improving the EPB which can be used for
future research. This study showed that after 2019, most studies used, processed, and ana-
lyzed EPC datasets, adopting ML or statistical approaches. Clustering analysis is applied to
find similar patterns in buildings” EPC data. Simulation techniques and K-means clustering
are the most used approaches to group buildings with similar characteristics. Box plot
statistical analysis and dbscan are robust techniques used to eliminate outliers and noise
due to their ability to deal with complex and high-dimensional data. Correlation analysis
showed that the best approach is to estimate the importance of each analyzed input dimen-
sion. Additionally, the literature indicated that the best and most used evaluation method
of the performance of the proposed algorithm was the accuracy of the ML-based solution.

Our research findings aim to fulfill identified knowledge gaps and open a methodolog-
ical agenda that will help the reader identify effective combinations of ML and statistical
approaches, addressing EPB and EERM in the future, providing a good starting point for
further research.
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