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ON UNIQUENESS OF STATIONARY VACUUM BLACK

HOLES

by

Piotr T. Chruściel & João Lopes Costa

It is a pleasure to dedicate this work to J.-P. Bourguignon on the occasion of his 60th birthday.

Abstract. — We prove uniqueness of the Kerr black holes within the connected,

non-degenerate, analytic class of regular vacuum black holes.

Résumé (Sur l’unicité de trous noirs stationnaires dans le vide). — On démontre
l’unicité de trous noirs de Kerr dans la classe de trous noirs connexes, analytiques,
réguliers, non-dégénérés, solutions des équations d’Einstein du vide.
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1. Introduction

It is widely expected that the Kerr metrics provide the only stationary, asymp-

totically flat, sufficiently well-behaved, vacuum, four-dimensional black holes. Ar-

guments to this effect have been given in the literature [12,84] (see also [51,77,91]),

with the hypotheses needed not always spelled out, and with some notable techni-

cal gaps. The aim of this work is to prove a precise version of one such uniqueness

result for analytic space-times, with detailed filling of the gaps alluded to above.

The results presented here can be used to obtain a similar result for electro-

vacuum black holes (compare [13,71]), or for five-dimensional black holes with three

commuting Killing vectors (see also [56, 57]); this will be discussed elsewhere [31].

We start with some terminology. The reader is referred to Section 2.1 for a

precise definition of asymptotic flatness, to Section 2.2 for that of a domain of

outer communications 〈〈Mext〉〉, and to Section 3 for the definition of mean-non-

degenerate horizons. A Killing vector K is said to be complete if its orbits are

complete, i.e., for every p ∈ M the orbit φt[K](p) of K is defined for all t ∈ R; in an

asymptotically flat context, K is called stationary if it is timelike at large distances.

A key definition for our work is the following:

Definition 1.1. — Let (M , g) be a space-time containing an asymptotically flat

end Sext, and let K be stationary Killing vector field on M . We will say that

(M , g,K) is I+–regular if K is complete, if the domain of outer communications

〈〈Mext〉〉 is globally hyperbolic, and if 〈〈Mext〉〉 contains a spacelike, connected,

acausal hypersurface S ⊃ Sext, the closure S of which is a topological mani-

fold with boundary, consisting of the union of a compact set and of a finite number

of asymptotic ends, such that the boundary ∂S := S \S is a topological manifold

satisfying

(1.1) ∂S ⊂ E
+ := ∂〈〈Mext〉〉 ∩ I+(Mext) ,

with ∂S meeting every generator of E + precisely once. (See Figure 1.1.)

In Definition 1.1, the hypothesis of asymptotic flatness is made for definiteness,

and is not needed for several of the results presented below. Thus, this definition

appears to be convenient in a wider context, e.g. if asymptotic flatness is replaced

by Kaluza-Klein asymptotics, as in [20, 23].

Some comments about the definition are in order. First we require complete-

ness of the orbits of the stationary Killing vector because we need an action of

R on M by isometries. Next, we require global hyperbolicity of the domain of

outer communications to guarantee its simple connectedness, to make sure that the
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Mext∂S

S〈〈Mext〉〉

E +

Figure 1.1. The hypersurface S from the definition of I
+–regularity.

area theorem holds, and to avoid causality violations as well as certain kinds of

naked singularities in 〈〈Mext〉〉. Further, the existence of a well-behaved spacelike

hypersurface gives us reasonable control of the geometry of 〈〈Mext〉〉, and is a pre-

requisite to any elliptic PDEs analysis, as is extensively needed for the problem at

hand. The existence of compact cross-sections of the future event horizon prevents

singularities on the future part of the boundary of the domain of outer communi-

cations, and eventually guarantees the smoothness of that boundary. (Obviously

I+ could have been replaced by I− throughout the definition, whence E + would

have become E −.) We find the requirement (1.1) somewhat unnatural, as there are

perfectly well-behaved hypersurfaces in, e.g., the Schwarzschild space-time which do

not satisfy this condition, but we have not been able to develop a coherent theory

without assuming some version of (1.1). Its main point is to avoid certain zeros

of the stationary Killing vector K at the boundary of S , which otherwise create

various difficulties; e.g., it is not clear how to guarantee then smoothness of E +, or

the static-or-axisymmetric alternative.(1) Needless to say, all those conditions are

satisfied by the Schwarzschild, Kerr, or Majumdar-Papapetrou solutions.

We have the following, long-standing conjecture, it being understood that both

the Minkowski and the Schwarzschild space-times are members of the Kerr family:

Conjecture 1.2. — Let (M , g) be a stationary, vacuum, four-dimensional space-

time containing a spacelike, connected, acausal hypersurface S , such that S is a

topological manifold with boundary, consisting of the union of a compact set and

of a finite number of asymptotically flat ends. Suppose that there exists on M

a complete stationary Killing vector K, that 〈〈Mext〉〉 is globally hyperbolic, and

that ∂S ⊂ M \ 〈〈Mext〉〉. Then 〈〈Mext〉〉 is isometric to the domain of outer

communications of a Kerr space-time.

In this work we establish the following special case thereof:

Theorem 1.3. — Let (M , g) be a stationary, asymptotically flat, I+–regular, vac-

uum, four-dimensional analytic space-time. If each component of the event horizon

is mean non-degenerate, then 〈〈Mext〉〉 is isometric to the domain of outer commu-

nications of one of the Weinstein solutions of Section 6.7. In particular, if E + is

(1)In fact, this condition is not needed for static metric if, e.g., one assumes at the outset that all

horizons are non-degenerate, as we do in Theorem 1.3 below, see the discussion in the Corrigendum

to [18].
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connected and mean non-degenerate, then 〈〈Mext〉〉 is isometric to the domain of

outer communications of a Kerr space-time.

In addition to the references already cited, some key steps of the proof are due to

Hawking [48], and to Sudarsky and Wald [89], with the construction of the candidate

solutions with several non-degenerate horizons due to Weinstein [93, 94]. It should

be emphasized that the hypotheses of analyticity and non-degeneracy are highly

unsatisfactory, and one believes that they are not needed for the conclusion.

One also believes that no candidate solutions with more than one component of

E + are singularity-free, but no proof is available except for some special cases [69,

92].

A few words comparing our work with the existing literature are in order. First,

the event horizon in a smooth or analytic black hole space-time is a priori only a

Lipschitz surface, which is way insufficient to prove the usual static-or-axisymmetric

alternative. Here we use the results of [22] to show that event horizons in regular

stationary black hole space-times are as differentiable as the differentiability of the

metric allows. Next, no paper that we are aware of adequately shows that the

“area function” is non-negative within the domain of outer communications; this

is due both to a potential lack of regularity of the intersection of the rotation

axis with the zero-level-set of the area function, and to the fact that the gradient

of the area function could vanish on its zero level set regardless of whether or

not the event horizon itself is degenerate. The second new result of this paper

is Theorem 5.4, which proves this result. The difficulty here is to exclude non-

embedded Killing prehorizons (for terminology, see below), and we have not been

able to do it without assuming analyticity or axisymmetry, even for static solutions.

Finally, no previous work known to us establishes the behavior, as needed for the

proof of uniqueness, of the relevant harmonic map at points where the horizon

meets the rotation axis. The third new result of this paper is Theorem 6.1, settling

this question for non-degenerate black-holes. (This last result requires, in turn, the

Structure Theorem 4.5 and the Ergoset Theorem 5.24, and relies heavily on the

analysis in [19].) Last but not least, we provide a coherent set of conditions under

which all pieces of the proof can be combined to obtain the uniqueness result.

We note that various intermediate results are established under conditions weaker

than previously cited, or are generalized to higher dimensions; this is of potential

interest for further work on the subject.

1.1. Static case. — Assuming staticity, i.e., stationarity and hypersurface-

orthogonality of the stationary Killing vector, a more satisfactory result is available

in space dimensions less than or equal to seven, and in higher dimensions on mani-

folds on which the Riemannian rigid positive energy theorem holds: non-connected

configurations are excluded, without any a priori restrictions on the gradient

∇(g(K,K)) at event horizons.

More precisely, we shall say that a manifold Ŝ is of positive energy type if there

are no asymptotically flat complete Riemannian metrics on Ŝ with positive scalar

curvature and vanishing mass except perhaps for a flat one. This property has

been proved so far for all n–dimensional manifolds Ŝ obtained by removing a finite

number of points from a compact manifold of dimension 3 ≤ n ≤ 7 [86], or under

the hypothesis that Ŝ is a spin manifold of any dimension n ≥ 3, and is expected

to be true in general [14, 70].
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We have the following result, which finds its roots in the work of Israel [61], with

further simplifications by Robinson [85], and with a significant strengthening by

Bunting and Masood-ul-Alam [10]:

Theorem 1.4. — Under the hypotheses of Conjecture 1.2, suppose moreover that

(〈〈Mext〉〉, g) is analytic and K is hypersurface-orthogonal. Let Ŝ denote the man-

ifold obtained by doubling S across the non-degenerate components of its boundary

and compactifying, in the doubled manifold, all asymptotically flat regions but one

to a point. If Ŝ is of positive energy type, then 〈〈Mext〉〉 is isometric to the domain

of outer communications of a Schwarzschild space-time.

Remark 1.5. — As a corollary of Theorem 1.4 one obtains non-existence of black

holes as above with some components of the horizon degenerate. In space-time

dimension four an elementary proof of this fact has been given in [26], but the

simple argument there does not seem to generalize to higher dimensions in any

obvious way.

Remark 1.6. — Analyticity is only needed to exclude non-embedded degenerate

prehorizons within 〈〈Mext〉〉. In space-time dimension four it can be replaced by

the condition of axisymmetry and I+–regularity, compare Theorem 5.2.

Proof. — We want to invoke [18], where n = 3 has been assumed; the argument

given there generalizes immediately to those higher dimensional manifolds on which

the positive energy theorem holds. However, the proof in [18] contains one mistake,

and one gap, both of which need to be addressed.

First, in the case of degenerate horizons H , the analysis of [18] assumes that the

static Killing vector has no zeros on H ; this is used in the key Proposition 3.2 there,

which could be wrong without this assumption. The non-vanishing of the static

Killing vector is justified in [18] by an incorrectly quoted version of Boyer’s theo-

rem [8], see [18, Theorem 3.1]. Under a supplementary assumption of I+–regularity,

the zeros of a Killing vector which could arise in the closure of a degenerate Killing

horizon can be excluded using Corollary 3.3. In general, the problem is dealt with

in the addendum to the arXiv versions vN , N ≥ 3, of [18] in space-dimension three,

and in [20] in higher dimensions.

Next, neither the original proof, nor that given in [18], of the Vishveshwara-

Carter Lemma, takes properly into account the possibility that the hypersurface N

of [18, Lemma 4.1] could fail to be embedded.(2) This problem is taken care of by

Theorem 5.4 below with s = 1, which shows that 〈〈Mext〉〉 cannot intersect the set

where W := −g(K,K) vanishes. This implies that K is timelike on 〈〈Mext〉〉 ⊃ S ,

and null on ∂S . The remaining details are as in [18].

2. Preliminaries

2.1. Asymptotically flat stationary metrics. — A space-time (M , g) will be

said to possess an asymptotically flat end if M contains a spacelike hypersurface

Sext diffeomorphic to R
n \B(R), where B(R) is an open coordinate ball of radius

R, with the following properties: there exists a constant α > 0 such that, in local

(2)This problem affects points 4c,d,e and f of [18, Theorem 1.3], which require the supplementary

hypothesis of existence of an embedded closed hypersurface within N ; the remaining claims

of [18, Theorem 1.3] are justified by the arguments described here.
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coordinates on Sext obtained from R
n \ B(R), the metric γ induced by g on Sext,

and the extrinsic curvature tensor Kij of Sext, satisfy the fall-off conditions

γij − δij = Ok(r−α) , Kij = Ok−1(r
−1−α) ,(2.1)

for some k > 1, where we write f = Ok(rα) if f satisfies

(2.2) ∂k1 . . . ∂kℓ
f = O(rα−ℓ) , 0 ≤ ℓ ≤ k .

For simplicity we assume that the space-time is vacuum, though similar results hold

in general under appropriate conditions on matter fields, see [4, 25] and references

therein. Along any spacelike hypersurface S , a Killing vector field X of (M , g) can

be decomposed as

X = Nn+ Y ,

where Y is tangent to S , and n is the unit future-directed normal to Sext. The

vacuum field equations, together with the Killing equations imply the following set

of equations on S , where Rij(γ) is the Ricci tensor of γ:

DiYj +DjYi = 2NKij ,(2.3)

Rij(γ) +Kk
kKij − 2KikK

k
j −N−1(LYKij +DiDjN) = 0 .(2.4)

Under the boundary conditions (2.1) with k ≥ 2, an analysis of (2.3)-(2.4) pro-

vides detailed information about the asymptotic behavior of (N,Y ). In particular,

one can prove that if the asymptotic region Sext is contained in a hypersurface

S satisfying the requirements of the positive energy theorem, and if X is timelike

along Sext, then (N,Y i) →r→∞ (A0, Ai), where the Aµ’s are constants satisfying

(A0)2 >
∑

i(A
i)2. One can then choose adapted coordinates so that the metric can,

locally, be written as

g = −V 2(dt+ θidx
i

︸ ︷︷ ︸
=θ

)2 + γijdx
idxj

︸ ︷︷ ︸
=γ

,(2.5)

with

∂tV = ∂tθ = ∂tγ = 0(2.6)

γij − δij = Ok(r−α) , θi = Ok(r−α) , V − 1 = Ok(r−α) ,(2.7)

for any k ∈ N. As discussed in more detail in [7], in γ-harmonic coordinates, and in

e.g. a maximal time-slicing, the vacuum equations for g form a quasi-linear elliptic

system with diagonal principal part, with principal symbol identical to that of the

scalar Laplace operator. Methods known in principle show that, in this “gauge”,

all metric functions have a full asymptotic expansion(3) in terms of powers of ln r

and inverse powers of r. In the new coordinates we can in fact take

(2.8) α = n− 2 .

By inspection of the equations one can further infer that the leading order correc-

tions in the metric can be written in a Schwarzschild form, which in “isotropic”

coordinates reads

gm = −
(

1 − m
2|x|n−2

1 + m
2|x|n−2

)2

dt2 +

(
1 +

m

2|x|n−2

) 4
n−2

(
n∑

i=1

dx2
i

)
,

where m ∈ R.

(3)One can use the results in, e.g., [15] together with a simple iterative argument to obtain the

expansion. This analysis holds in any dimension.
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Figure 2.1. Sext, Mext, together with the future and the past of Mext.

One has Mext ⊂ I
±(Mext), even though this is not immediately ap-

parent from the figure. The domain of outer communications is the

intersection I
+(Mext) ∩ I

−(Mext), compare Figure 1.1.

2.2. Domains of outer communications, event horizons. — A key notion

in the theory of black holes is that of the domain of outer communications: A

space-time (M , g) will be called stationary if there exists on M a complete Killing

vector field K which is timelike in the asymptotically flat region Sext.
(4) For t ∈ R

let φt[K] : M → M denote the one-parameter group of diffeomorphisms generated

by K; we will write φt for φt[K] whenever ambiguities are unlikely to occur. The

exterior region Mext and the domain of outer communications 〈〈Mext〉〉 are then

defined as(5) (compare Figure 2.1)

(2.9) 〈〈Mext〉〉 = I+(∪tφt(Sext)︸ ︷︷ ︸
=:Mext

) ∩ I−(∪tφt(Sext)) .

The black hole region B and the black hole event horizon H + are defined as

B = M \ I−(Mext) , H
+ = ∂B .

The white hole region W and the white hole event horizon H − are defined as above

after changing time orientation:

W = M \ I+(Mext) , H
− = ∂W , H = H

+ ∪ H
− .

It follows that the boundaries of 〈〈Mext〉〉 are included in the event horizons. We

set

(2.10) E
± = ∂〈〈Mext〉〉 ∩ I±(Mext) , E = E

+ ∪ E
− .

There is considerable freedom in choosing the asymptotic region Sext. How-

ever, it is not too difficult to show, using Lemma 3.6 below, that I±(Mext), and

hence 〈〈Mext〉〉, H ± and E ±, are independent of the choice of Sext whenever the

associated Mext’s overlap.

Several results below hold without assuming asymptotic flatness: for example,

one could assume that we have a region Sext on which K is timelike, and carry on

(4)In fact, in the literature it is always implicitly assumed that K is uniformly timelike in the

asymptotic region Sext, by this we mean that g(K, K) < −ǫ < 0 for some ǫ and for all r large

enough. This uniformity condition excludes the possibility of a timelike vector which asymptotes

to a null one. This involves no loss of generality in well-behaved space-times: indeed, uniformity

always holds for Killing vectors which are timelike for all large distances if the conditions of the

positive energy theorem are met [5, 25].
(5)Recall that I−(Ω), respectively J−(Ω), is the set covered by past-directed timelike, respectively

causal, curves originating from Ω, while İ− denotes the boundary of I−, etc. The sets I+, etc.,

are defined as I−, etc., after changing time-orientation.
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with the definitions above. An example of interest is provided by Kaluza-Klein met-

rics with an asymptotic region of the form (Rn \B(R))×T
p, with the space metric

asymptotic to a flat metric there. However, for definiteness, and to avoid unneces-

sary discussions, we have chosen to assume asymptotic flatness in the definition of

I+–regularity.

2.3. Killing horizons, bifurcate horizons. — A null hypersurface, invariant

under the flow of a Killing vector K, which coincides with a connected component

of the set

N (K) := {g(K,K) = 0 , K 6= 0} ,
is called a Killing horizon associated to K.

A set will be called a bifurcate Killing horizon if it is the union of four Killing

horizons, the intersection of the closure of which forms a smooth submanifold S of

co-dimension two, called the bifurcation surface. The four Killing horizons consist

then of the four null hypersurfaces obtained by shooting null geodesics in the four

distinct null directions normal to S. For example, the Killing vector x∂t + t∂x in

Minkowski space-time has a bifurcate Killing horizon, with the bifurcation surface

{t = x = 0}.
The surface gravity κ of a Killing horizon N is defined by the formula

(2.11) d (g(K,K)) |N = −2κK♭ ,

where K♭ = gµν K
νdxµ. A fundamental property is that the surface gravity κ is

constant over each horizon in vacuum, or in electro-vacuum, see e.g. [51, Theo-

rem 7.1]. The proof given in [90] generalizes to all space-time dimensions n+1 ≥ 4;

the result also follows in all dimensions from the analysis in [55] when the horizon

has compact spacelike sections. (The constancy of κ can also be established without

assuming any field equations in some cases, see [62,82].) A Killing horizon is called

degenerate if κ vanishes, and non-degenerate otherwise.

2.3.1. Near-horizon geometry. — Following [74], near a smooth event horizon one

can introduce Gaussian null coordinates, in which the metric takes the form

(2.12) g = rϕdv2 + 2dvdr + 2rhadx
adv + habdx

adxb .

(These coordinates can be introduced for any null hypersurface, not necessarily an

event horizon, in any number of dimensions). The horizon is given by the equation

{r = 0}, replacing r by −r if necessary we can without loss of generality assume that

r > 0 in the domain of outer communications. Assuming that the horizon admits a

smooth compact cross-section S, the average surface gravity 〈κ〉S is defined as

(2.13) 〈κ〉S = − 1

|S|

∫

S

ϕdµh ,

where dµh is the measure induced by the metric h on S, and |S| is the volume of S.

We emphasize that this is defined regardless of whether or not some Killing vector

K is tangent to the horizon generators; but if K is, and if the surface gravity κ of

K is constant on S, then 〈κ〉S equals κ.

On a degenerate Killing horizon the surface gravity vanishes by definition, so

that the function ϕ in (2.12) can itself be written as rA, for some smooth function

A. The vacuum Einstein equations imply (see [74, eq. (2.9)] in dimension four

and [67, eq. (5.9)] in higher dimensions)

(2.14) R̊ab =
1

2
h̊åhb − D̊(åhb) ,
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where R̊ab is the Ricci tensor of h̊ab := hab|r=0, and D̊ is the covariant derivative

thereof, while h̊a := ha|r=0. The Einstein equations also determine Å := A|r=0

uniquely in terms of h̊a and h̊ab:

(2.15) Å =
1

2
h̊ab
(
h̊ah̊b − D̊åhb

)

(this equation follows again e.g. from [74, eq. (2.9)] in dimension four, and can be

checked by a calculation in all higher dimensions). We have the following:(6)

Theorem 2.1 ( [26]). — Let the space-time dimension be n + 1, n ≥ 3, suppose

that a degenerate Killing horizon N has a compact cross-section, and that h̊a = ∂aλ

for some function λ (which is necessarily the case in vacuum static space-times).

Then (2.14) implies h̊a ≡ 0, so that h̊ab is Ricci-flat.

Theorem 2.2 ( [46, 67]). — In space-time dimension four and in vacuum, sup-

pose that a degenerate Killing horizon N has a spherical cross-section, and that

(M , g) admits a second Killing vector field with periodic orbits. For every con-

nected component N0 of N there exists an embedding of N0 into a Kerr space-time

which preserves h̊a, h̊ab and Å.

It would be of interest to understand fully (2.14), in all dimensions, without

restrictive conditions.

In the four-dimensional static case, Theorem 2.1 enforces toroidal topology of

cross-sections of N , with a flat h̊ab. On the other hand, in the four-dimensional

axisymmetric case, Theorem 2.2 guarantees that the geometry tends to a Kerr

one, up to errors made clear in the statement of the theorem, when the horizon

is approached. (Somewhat more detailed information can be found in [46].) So,

in the degenerate case, the vacuum equations impose strong restrictions on the

near-horizon geometry.

It seems that this is not the case any more for non-degenerate horizons, at least

in the analytic setting. Indeed, we claim that for any triple (N, h̊a, h̊ab), where N is

a two-dimensional analytic manifold (compact or not), h̊a is an analytic one-form

on N , and h̊ab is an analytic Riemannian metric on N , there exists a vacuum space-

time (M , g) with a bifurcate (and thus non-degenerate) Killing horizon, so that the

metric g takes the form (2.12) near each Killing horizon branching out of the bifur-

cation surface S ≈ N , with h̊ab = hab|r=0 and h̊a = ha|r=0; in fact h̊ab is the metric

induced by g on S. When N is the two-dimensional torus T
2 this can be inferred

from [73] as follows: using [73, Theorem (2)] with (φ, βa, gab)|t=0 = (0, 2̊ha, h̊ab) one

obtains a vacuum space-time (M ′ = S1 × T
2 × (−ǫ, ǫ), g′) with a compact Cauchy

horizon S1 × T
2 and Killing vector K tangent to the S1 factor of M ′. One can

then pass to a covering space where S1 is replaced by R, and use a construction of

Rácz and Wald [82, Theorem 4.2] to obtain the desired M containing the bifurcate

horizon. This argument generalizes to any analytic (N, h̊a, h̊ab) without difficulties.

2.4. Globally hyperbolic asymptotically flat domains of outer commu-

nications are simply connected. — Simple connectedness of the domain of

outer communication is an essential ingredient in several steps of the uniqueness

argument below. It was first noted in [28] that this stringent topological restric-

tion is a consequence of the “topological censorship theorem” of Friedman, Schleich

(6)Some partial results with a non-zero cosmological constant have also been proved in [26].
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and Witt [37] for asymptotically flat, stationary and globally hyperbolic domains

of outer communications satisfying the null energy condition:

(2.16) RµνY
µY ν ≥ 0 for null Y µ .

In fact, stationarity is not needed. To make things precise, consider a space-time

(M , g) with several asymptotically flat regions M i
ext, i = 1, . . . , N , each generating

its own domain of outer communications. It turns out [41] (compare [42]) that the

null energy condition prohibits causal interactions between distinct such ends:

Theorem 2.3. — If (M , g) is a globally hyperbolic and asymptotically flat space-

time satisfying the null energy condition (2.16), then

(2.17) 〈〈M i
ext〉〉 ∩ J±(〈〈M j

ext〉〉) = ∅ for i 6= j .

A clever covering/connectedness argument(7) [41] shows then:(8)

Corollary2.4. — A globally hyperbolic and asymptotically flat domain of outer

communications satisfying the null energy condition is simply connected.

In space-time dimension four this, together with standard topological results [76],

leads to a spherical topology of horizons (see [28] together with Proposition 4.4

below):

Corollary2.5. — In I+–regular, stationary, asymptotically flat space-times sat-

isfying the null energy condition, cross-sections of E + have spherical topology.

3. Zeros of Killing vectors

Let S be a spacelike hypersurface in 〈〈Mext〉〉; in the proof of Theorem 1.3 it will

be essential to have no zeros of the stationary Killing vector K on S . Furthermore,

in the axisymmetric scenario, we need to exclude zeros of Killing vectors of the

form K(0) +αK(1) on 〈〈Mext〉〉, where K(0) = K and K(1) is a generator of the axial

symmetry. The aim of this section is to present conditions which guarantee that;

for future reference, this is done in arbitrary space-time dimension.

We start with the following:

Lemma3.1. — Let Sext ⊂ S ⊂ 〈〈Mext〉〉, and suppose that S is achronal in

〈〈Mext〉〉. Then for any p ∈ Mext there exists t0 ∈ R such that

S ∩ I+(φt0(p)) = ∅ .

Proof. — Let p ∈ Mext. There exists t0 such that r := φt0(p) ∈ Sext. Suppose

that S ∩ I+(φt0(p)) 6= ∅. Then there exists a timelike future directed curve γ from

r to q ∈ S . Let qi ∈ S converge to q; then qi ∈ I+(r) for i large enough, which

contradicts achronality of S within 〈〈Mext〉〉.

Lemma3.2. — Let S ⊂ I+(Mext) be compact.

1. There exists p ∈ Mext such that S is contained in I+(p).

(7)Under more general asymptotic conditions it was proved in [44] that inclusion induces a sur-

jective homeomorphism between the fundamental groups of the exterior region and the domain of

outer communications. In particular, π1(Mext) = 0 ⇒ π1(〈〈Mext〉〉) = 0 .
(8)Strictly speaking, our applications below of [41] require checking that the conditions of asymp-

totic flatness in [41] coincide with ours; this, however, can be avoided by invoking directly [28].
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2. If S ⊂ ∂〈〈Mext〉〉 ∩ I+(Mext) and if (〈〈Mext〉〉, g) is strongly causal at S,(9)

then for any p ∈ Mext there exists t0 ∈ R such that S ∩ I+(φt0 (p)) = ∅.
Proof. — 1: Let q ∈ S; there exists pq ∈ Mext such that q ∈ I+(pq), and since

I+(pq) is open there exists an open neighborhood Oq ⊂ S of q such that Oq ⊂
I+(pq). By compactness there exists a finite collection Oqi , i = 1, . . . , I, covering

S, thus S ⊂ ∪iI
+(pqi). Letting p ∈ Mext be any point such that pqi ∈ I+(p) for

i = 1, . . . , I, the result follows.

2: Suppose not. Then φi(p) ∈ I−(S) for all i ∈ N, hence there exists qi ∈ S

such that qi ∈ I+(φi(p)). By compactness there exits q ∈ S such that qi → q. Let

O be an arbitrary neighborhood of q; since q ∈ E +; there exists r ∈ O ∩ 〈〈Mext〉〉,
p+ ∈ Mext, and a future directed causal curve γ from r to p+. For all i large, this

can be continued by a future directed causal curve from p+ to φi(p), which can

then be continued by a future directed causal curve to qi. But qi ∈ O for i large

enough. This implies that every small neighborhood of q meets a future directed

causal curve entirely contained within 〈〈Mext〉〉 which leaves the neighborhood and

returns, contradicting strong causality of 〈〈Mext〉〉.
It follows from Lemma 3.1, together with point 1 of Lemma 3.2 with S = {r},

that

Corollary3.3. — If r ∈ S ∩ I+(Mext), then the stationary Killing vector K

does not vanish at r. In particular if (M , g) is I+–regular, then K has no zeros on

S .

To continue, we assume the existence of a commutative group of isometries R ×
T

s−1, s ≥ 1. We denote by K(0) the Killing vector tangent to the orbits R factor,

and we assume that K(0) is timelike in Mext. We denote by K(i), i = 1, . . . , s−1 the

Killing vector tangent to the orbits of the i’th S1 factor of T
s−1. We assume that

each K(i) is spacelike in 〈〈Mext〉〉 wherever non-vanishing, which will necessarily

be the case if 〈〈Mext〉〉 is chronological. Note that asymptotic flatness imposes

s − 1 ≤ n/2, though most of the results of this section remain true without this

hypothesis, when properly formulated.

We say that a Killing orbit γ : R → M is future-oriented if there exist numbers

τ1 > τ0 such that γ(τ1) ∈ I+(γ(τ0)). Clearly all orbits of a Killing vector K

are future-oriented in the region where K is timelike. A less-trivial example is

given by orbits of the Killing vector ∂t + Ω∂ϕ in Minkowski space-time. Similarly,

in stationary axisymmetric space-times, those orbits of this last Killing vector on

which ∂t is timelike are future-oriented (let τ0 = 0 and τ1 = 2π/Ω).

We have:

Lemma3.4. — Orbits through Mext of Killing vector fields K of the form K(0) +∑
α(i)K(i) are future-oriented.

Proof. — Recall that for any Killing vector field Z we denote by φt[Z] the flow of

Z. Let

Y :=
∑

α(i)K(i) .

Suppose, first, that there exists τ > 0 such that φτ [Y ] is the identity. Since K(0)

and Y commute we have

φτ [K] = φτ [K(0) + Y ] = φτ [K(0)] ◦ φτ [Y ] = φτ [K(0)] .

(9)In a sense made clear in the last sentence of the proof below.
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Setting τ0 = 0 and τ1 = τ , the result follows.

Otherwise, there exists a sequence ti → ∞ such that φti [Y ](p) converges to p.

Since I+(p) is open there exists a neighborhood U + ⊂ I+(p) of φ1[K(0)](p). Let

V + = φ−1[K(0)](U
+), then every point in U + lies on a future directed timelike

path starting in V +, namely an integral curve of K(0). There exists i0 ≥ 1 so that

ti ≥ 1 and φti [Y ](p) ∈ V + for i ≥ i0. We then have

φti [K](p) = φti [K(0) + Y ](p) = φti−1[K(0)]
(
φ1(φti [Y ](p)︸ ︷︷ ︸

∈V +

)

︸ ︷︷ ︸
∈U +⊂I+(p)

)
∈ I+(p) .

The numbers τ0 = 0 and τ1 = ti0 satisfy then the requirements of the definition.

For future reference we note the following:

Lemma3.5. — The orbits through 〈〈Mext〉〉 of any Killing vector K of the form

K(0) +
∑
α(i)K(i) are future-oriented.

Proof. — Let p ∈ 〈〈Mext〉〉, thus there exist points p± ∈ Mext such that p± ∈ I±(p),

with associated future directed timelike curves γ±. It follows from Lemma 3.4

together with asymptotic flatness that there exists τ such that φτ [K](p−) ∈ I+(p+)

for some τ , as well as an associated future directed curve γ from p+ to φτ [K](p−).

Then the curve γ+ · γ · φτ [K](γ−), where · denotes concatenation of curves, is a

timelike curve from p to φτ (p).

The following result, essentially due to [27], turns out to be very useful:

Lemma3.6. — Let αi ∈ R. For any set C invariant under the flow of K = K(0) +∑
i αiKi, the set I±(C) ∩ Mext coincides with Mext, if non-empty.

Proof. — The null achronal boundaries İ∓(C) ∩Mext are invariant under the flow

of K. This is compatible with Lemma 3.4 if and only if İ∓(C) ∩ Mext = ∅. If C

intersects I+(Mext) then I−(C) ∩ Mext is non-empty, hence I−(C) ⊃ Mext since

Mext is connected. A similar argument applies if C intersects I−(Mext).

We have the following strengthening of Lemma 3.2:

Lemma3.7. — Let αi ∈ R. If (〈〈Mext〉〉, g) is chronological, then there exists no

nonempty set N which is invariant under the flow of K(0) +
∑

i αiKi and which is

included in a compact set C ⊂ 〈〈Mext〉〉.

Proof. — Assume that N ⊂ 〈〈Mext〉〉 is not empty. From Lemma 3.6 we obtain

Mext ⊂ I+(N), hence I+(Mext) ⊂ I+(N). Arguing similarly with I− we infer that

〈〈Mext〉〉 ⊂ I+(N) ∩ I−(N) .

Hence every point q in 〈〈Mext〉〉 is in I+(p) for some p ∈ N . We conclude that

{I+(p)∩C}p∈N is an open cover of C. Assuming compactness, we may then choose

a finite subcover {I+(pi) ∩ C}I
i=1. This implies that each pi must be in the future

of at least one pj , and since there is a finite number of them one eventually gets a

closed timelike curve, which is not possible in chronological space-times.

Since each zero of a Killing vector provides a compact invariant set, from

Lemma 3.7 we conclude

Corollary3.8. — Let αi ∈ R. If (〈〈Mext〉〉, g) is chronological, then Killing vec-

tors of the form K(0) +
∑

i αiKi have no zeros in 〈〈Mext〉〉
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4. Horizons and domains of outer communications in regular

space-times

In this section we analyze the structure of a class of horizons, and of domains of

outer communications.

4.1. Sections of horizons. — The aim of this section is to establish the existence

of cross-sections of the event horizon with good properties.

By standard causality theory the future event horizon H + = İ−(Mext) (recall

that İ± denotes the boundary of I±) is the union of Lipschitz topological hyper-

surfaces. Furthermore, through every point p ∈ H + there is a future inextendible

null geodesic entirely contained in H + (though it may leave H + when followed to

the past of p). Such geodesics are called generators. A topological submanifold S

of H + will be called a local section, or simply section, if S meets the generators

of H + transversally; it will be called a cross-section if it meets all the generators

precisely once. Similar definitions apply to any null achronal hypersurfaces, such as

H − or E ±.

We start with the proof of existence of sections of the event horizon which are

moved to their future by the isometry group. The existence of such sections has

been claimed in Lemma 5.2 of [16]; here we give the proof of a somewhat more

general result:

Proposition 4.1. — Let H0 ⊂ H := H + ∪ H − ≡ İ−(Mext) ∪ İ+(Mext) be a

connected component of the event horizon H in a space-time (M , g) with stationary

Killing vector K(0), and suppose that there exists a compact cross-section S of H0

satisfying

S ⊂ E0 := H0 ∩ I+(Mext) .

Assume that

1. either

〈〈Mext〉〉 ∩ I+(Mext) is strongly causal,

2. or there exists in 〈〈Mext〉〉 a spacelike hypersurface S ⊃ Sext, achronal in

〈〈Mext〉〉, so that S above coincides with the boundary of S :

S = ∂S ⊂ E
+ .

Then there exists a compact Lipschitz hypersurface S0 of E0 which is transverse to

both the stationary Killing vector field K(0) and to the generators of E0, and which

meets every generator of E0 precisely once; in particular

E0 = ∪tφt(S0) .

Proof. — Changing time orientation if necessary, and replacing M by I+(Mext) \
(H \H0), we can without loss of generality assume that E = E0 = H0 = H = H +.

Choose a point p ∈ Mext, where the Killing vector K(0) is timelike, and let

γp = ∪t∈Rφt(p)

be the orbit of K(0) through p. Then I−(S) must intersect γp (since E0 is contained

in the future of Mext). Further, I−(S) cannot contain all of γp, by Lemma 3.1 or

by part 2 of Lemma 3.2. Let q ∈ γp lie on the boundary of I−(S), then I+(q)

cannot contain any point of S, so it does not contain any complete null generator

of E0. On the other hand, if I+(q) failed to intersect some generator of E0, then (by

invariance under the flow of K(0)) each point of γp would also fail to intersect some

generator. By considering a sequence, {qn = φtn(q)}, along γp with tn → −∞, one
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would obtain a corresponding sequence of horizon generators lying entirely outside

the future of {qn}. Using compactness, one would get an “accumulation generator”

that lies outside the future of all {qn} and thus lies outside of I+(γp) = I+(Mext),

contradicting the fact that S lies to the future of Mext.

Set

S0 := İ+(q) ∩ E0 ,

and we have just proved that every generator of E0 intersects S0 at least once.

The fact that the only null geodesics tangent to E0 are the generators of E0

shows that the generators of İ+(q) intersect E0 transversally. (Otherwise a genera-

tor of İ+(q) would become a generator, say Γ, of E0. Thus Γ would leave E0 when

followed to the past at the intersection point of İ+(q) and E0, reaching q, which

contradicts the fact that E0 lies at the boundary of I−(Mext).) As in [22], Clarke’s

Lipschitz implicit function theorem [29] shows now that S0 is a Lipschitz submani-

fold intersecting each horizon generator; while the argument just given shows that

it intersects each generator at most one point. Thus, S0 is a cross-section with

respect to the null generators. However, S0 also is a cross-section with respect to

the flow of K(0), because for all t we have

φt(S0) = İ+(φt(q)) ∩ E ,

and for t > 0 the boundary of I+(φt(q)) is contained within I+(q). In other words,

φt(S0) cannot intersect S0, which is equivalent to saying that each orbit of the flow

of K(0) on the horizon cannot intersect S0 at more than one point. On the other

hand, each orbit must intersect S0 at least once by the type of argument already

given — one will run into a contradiction if complete Killing orbits on the horizon

are either contained within I+(q) or lie entirely outside of I+(q).

Now, both S and S0 are compact cross-sections of E0. Flowing along the gener-

ators of the horizon, one obtains:

Proposition 4.2. — S is homeomorphic to S0.

We note that so far we only have a C0,1 cross-section of the horizon, and in fact

this is the best one can get at this stage, since this is the natural differentiability of

E0. However, if E0 is smooth, we claim:

Proposition 4.3. — Under the hypotheses of Proposition 4.1, assume moreover

that E0 is smooth, and that 〈〈Mext〉〉 is globally hyperbolic. Then S0 can be chosen

to be smooth.

Proof. — The result is obtained with the following regularization argument: Choose

a point p ∈ Mext, such that the section S of Proposition 4.1 does not intersect the

future of p. Let the function u be the retarded time associated with the orbit γp

through p parameterized by the Killing time from p; this is defined as follows: For

any q ∈ M we consider the intersection J−(q) ∩ γp. If that intersection is empty

we set u(q) = ∞. If J−(q) contains γp we set u(q) = −∞. Otherwise, as J̇−(q) is

achronal, the set J̇−(q)∩γp contains precisely one point φτ (p) for some τ . We then

set u(q) = τ . Note that, with appropriate conventions, this is the same as setting

(4.1) u(q) = inf{t : φt(p) ∈ J−(q)} .
It follows from the definition of u that we have, for all r,

(4.2) u(φt(r)) = u(r) + t .
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In particular, u is differentiable in the direction tangent to the orbits of K(0), with

(4.3) K(0)(u) = g(K(0),∇u) = 1 ,

everywhere.

The proof of Proposition 4.1 shows that u is finite in a neighborhood of E0; let

S0 = u−1(0) ∩ E0 ,

and let O denote a conditionally compact neighborhood of S0 on which u is finite;

note that S0 here is a φt[K(0)]–translate of the section S0 of Proposition 4.1.

Let n be the field of future directed tangents to the generators of E0, normalized

to unit length with some auxiliary smooth Riemannian metric on M . For q ∈ S0

let Nq ⊂ TqM denote the collection of all similarly normalized null vectors that

are tangent to an achronal past directed null geodesic γ from q to φu(q)(p), with γ

contained in 〈〈Mext〉〉 except for its initial point. (If u is differentiable at q then

Nq contains one single element, proportional to ∇u, but Nq can contain more than

one null vector in general.) We claim that there exists c > 0 such that

(4.4) inf
q∈S0,lq∈Nq

g(lq, nq) ≥ c > 0 .

Indeed, suppose that this is not the case; then there exists a sequence qi ∈ S0 and

a sequence of past directed null achronal geodesic segments γi from qi to p, with

tangents li at qi, such that g(li, n) → 0. Compactness of S0 implies that there exists

q ∈ S0 such that qi → q.

Let γ be an accumulation curve of the γi’s passing through q. By hypothesis, E0

is a smooth null hypersurface contained in the boundary of 〈〈Mext〉〉, with q ∈ E0.

This implies that either γ immediately enters 〈〈Mext〉〉, or γ is a subsegment of a

generator of E0 through q. In the latter case γ intersects S when followed from q

towards the past, and therefore the γi’s intersect J̇−(S) ∩ 〈〈Mext〉〉 for all i large

enough. But this is not possible since S ∩ J+(p) = ∅. We conclude that there

exists s0 > 0 such that γ(s0) ∈ 〈〈Mext〉〉. Thus a subsequence, still denoted by

γi(s0), converges to γ(s0), and global hyperbolicity of 〈〈Mext〉〉 implies that the γi’s

converge to an achronal null geodesic segment γ through p, with tangent l at S0

satisfying g(l, n) = 0. Since both l and n are null we conclude that l is proportional

to n, which is not possible as the intersection must be transverse, providing a

contradiction, and establishing (4.4).

Let Oi, i = 1, . . . , N , be a family of coordinate balls of radii 3ri such that the balls

of radius ri cover O, and let ϕi be an associated partition of unity; by this we mean

that the ϕi’s are supported in Oi, and they sum to one on O. For ǫ ≤ r := min ri
let ϕǫ(x) = ǫ−n−1ϕ(x/ǫ) (recall that the dimension of M is n + 1), where ϕ is a

positive smooth function supported in the ball of radius one, with integral one. Set

(4.5) uǫ :=

N∑

i=1

ϕi ϕǫ ∗ u ,

where ∗ denotes a convolution in local coordinates. Strictly speaking, ϕǫ should be

denoted by ϕǫ,i, as it depends explicitly on the local coordinates on Oi, but we will

not overburden the notation with yet another index.(10) Then uǫ tends uniformly

(10)This is admittedly somewhat confusing since, e.g.,
PN

i=1 ϕi ϕǫ ∗ u 6= (
PN

i=1 ϕi) ϕǫ ∗ u.
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to u. Further, using the Stokes theorem for Lipschitz functions [75],

duǫ =

N∑

i=1

{
ϕǫ ∗ u dϕi + ϕi ϕǫ ∗ du

}
(4.6)

=

N∑

i=1

{
(ϕǫ ∗ u− u)︸ ︷︷ ︸

I

dϕi + ϕi ϕǫ ∗ du︸ ︷︷ ︸
II

}
,

where we have also used
∑

i dϕi = d
∑

i ϕi = d1 = 0. It immediately follows that

the term I uniformly tends to zero as ǫ goes to zero. Now, the term II, when

contracted with K(0), gives a contribution

iK(0)
(ϕǫ ∗ du)(x) =

∫

|y−x|≤ǫ

Ki
(0)(x) ∂iu(y)ϕǫ(x− y)dn+1y(4.7)

=

∫

|y−x|≤ǫ

[
(Ki

(0)(x) −Ki
(0)(y))︸ ︷︷ ︸

=O(ǫ)

∂iu(y)

+Ki
(0)(y)∂iu(y)

︸ ︷︷ ︸
=1 by (4.3)

]
ϕǫ(x − y)dn+1y

= 1 +O(ǫ) .

It follows that, for all ǫ small enough, the differential duǫ is nowhere vanishing, and

that K(0) is transverse to the level sets of uǫ.

To conclude, let n denote any future directed causal smooth vector field on O

which coincides with the field of tangents to the null generators of E0 as defined

above. By (4.4) the terms II in the formula for duǫ, when contracted with n, will

give a contribution

(4.8)

in(ϕǫ ∗ du)(x) =

∫

|y−x|≤ǫ

[(ni(x) − ni(y))︸ ︷︷ ︸
=O(ǫ)

∂iu(y) + ni(y)∂iu(y)︸ ︷︷ ︸
≥c

]ϕǫ(x− y)dn+1y

≥ c+O(ǫ) ,

and transversality of the generators of E0 to the level sets of uǫ, for ǫ small enough,

follows.

4.2. The structure of the domain of outer communications. — The aim

of this section is to establish the product structure of I+–regular domains of outer

communication, Theorem 4.5 below. The analysis here is closely related to that

of [27].

As in Section 3, we assume the existence of a commutative group of isometries

R × T
s−1 with s ≥ 1. We use the notation there, with K(0) timelike in Mext, and

each K(i) spacelike in 〈〈Mext〉〉.
Let r =

√∑
i(x

i)2 be the radius function in Mext. By the asymptotic analysis

of [25] there exists R so that for r ≥ R the orbits of the K(i)’s are entirely contained

in Mext, so that the function

r̂(p) =

∫

g∈Ts−1

r(g(p))dµg ,

is well defined, and invariant under T
s−1. Here dµg is the translation invariant

measure on T
s−1 normalized to total volume one, and g(p) denotes the action
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on M of the isometry group generated by the K(i)’s. Similarly, let t be any time

function on 〈〈Mext〉〉, the level sets of which are asymptotically flat Cauchy surfaces.

Averaging over T
s−1 as above, we obtain a new time function t̂, with asymptotically

flat level sets, which is invariant under T
s−1. (The interesting question, whether or

not the level sets of t̂ are Cauchy, is irrelevant for our further considerations here.)

It is then easily seen that, for σ large enough, the level sets

Ŝτ,σ := {t̂ = τ, r̂ = σ}
are smooth embedded spheres included in Mext.

Throughout this section we assume that (M , g) is I+–regular. Let S be as in

the definition of regularity, thus S is an asymptotically flat spacelike acausal hy-

persurface in 〈〈Mext〉〉 with compact boundary, the latter coinciding with a compact

cross-section of E +. Deforming S if necessary, without loss of generality we may

assume that S ∩Mext is a level set of t̂. We choose R large enough so that Ŝ0,R is

a smooth sphere, and so that the slopes of light cones on the Ŝτ,σ’s, for σ ≥ R, are

bounded from above by two, and from below by one half, and redefine Sext so that

∂Sext = Ŝ0,R.

Consider

C
+ := (J̇+(Ŝ0,R) \ Mext) ∩ 〈〈Mext〉〉 .

Then C + is a null, achronal, Lipschitz hypersurface generated by null geodesics

initially orthogonal to Ŝ0,R. Let us write φt for φt[K(0)], and set

C
+
t := φt(C

+) ;

we then have

C
+
t := (J̇+(Ŝt,R) \ Mext) ∩ 〈〈Mext〉〉 ,

(recall that the flow of K(0) consists of translations in t in Mext) which implies that

every orbit of K(0) intersects C + at most once.

Since S is achronal it partitions 〈〈Mext〉〉 as

(4.9) 〈〈Mext〉〉 = S ∪ I+(S ; 〈〈Mext〉〉) ∪ I−(S ; 〈〈Mext〉〉) (disjoint union) .

Indeed, as 〈〈Mext〉〉 is globally hyperbolic, the boundaries (İ±(S ) \ S ) ∩ 〈〈Mext〉〉
are generated by null geodesics with end points on edge(S )∩〈〈Mext〉〉 = ∅.

We claim that every orbit of K(0) intersects S . For this, recall that for any q in

〈〈Mext〉〉 there exist points p± ∈ Mext such that q ∈ I∓(p±). Since the flow of K(0)

in Mext is by time translations there exist t± ∈ R so that φt±(p±) ∈ Sext. Hence

φt±(q) ∈ I∓(Sext), which shows that every orbit of K(0) meets both the future and

the past of S . By continuity and (4.9) every orbit meets S (perhaps more than

once). Hence

(4.10) 〈〈Mext〉〉 = ∪tφt(S ) , 〈〈Mext〉〉 ∩ I+(Mext) = ∪tφt(S )

(for the second equality Proposition 4.1 has been used). Setting Mint = 〈〈Mext〉〉 \
Mext, one similarly obtains

Mint = C + ∪ I+(C +; Mint) ∪ I−(C +; Mint) (disjoint union) ,(4.11)

Mint = ∪tφt(C
+) .(4.12)

By hypothesis S \ Sext is compact and so, by the first part of Lemma 3.2, there

exists p− ∈ Mext such that

(4.13) S \ Sext ⊂ I+(p−) .
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Choose t− < 0 so that p− ∈ I+(Ŝt−,R); we obtain that S \ Sext ⊂ I+(Ŝt−,R),

hence

S \ Sext ⊂ I+(C +
t−) .

Since Ŝ0,R ⊂ S we have C + ⊂ I+(S ). By acausality of S and (4.9) we infer

that S \ Sext ⊂ I−(C +), and hence φt−(S \ Sext) ⊂ I−(C +
t−).

So, for p ∈ S \ Sext the orbit segment

[t−, 0] ∋ t 7→ φt(p)

starts in the past of C
+
t− and finishes to its future. From (4.10) we conclude that

(4.14) C
+
t− ⊂ ∪t∈[t−,0]φt(S \ Sext) ;

equivalently,

C + ⊂ ∪t∈[0,−t−]φt(S \ Sext) .

As the set at the right-hand-side is compact, we have established:

Proposition 4.4. — Suppose that (M , g) is I+–regular, then C + is compact.

We are ready to prove now the following version of point 2 of Lemma 5.1 of [16]:

Theorem 4.5 (Structure theorem). — Suppose that (M , g) is an I+–regular

stationary space-time invariant under a commutative group of isometries R×T
s−1,

s ≥ 1, with the stationary Killing vector K(0) tangent to the orbits of the R factor.

There exists on 〈〈Mext〉〉 a smooth time function t, invariant under T
s−1, which

together with the flow of K(0) induces the diffeomorphisms

(4.15) 〈〈Mext〉〉 ≈ R × S̊ , 〈〈Mext〉〉∩I+(Mext) ≈ R × S̊ ,

where S̊ := t−1(0) is asymptotically flat, (invariant under T
s−1), with the boundary

∂S̊ being a compact cross-section of E +. The smooth hypersurface with boundary

S̊ is acausal, spacelike up-to-boundary, and the flow of K(0) is a translation along

the R factor in (4.15).

Proof. — From what has been said, every orbit of K(0) through 〈〈Mext〉〉 \ Mext

intersects C + precisely once. For p ∈ 〈〈Mext〉〉 \ Mext we let u(p) be the unique

real number such that φu(p)(p) ∈ C +, while for p ∈ Mext we let u(p) be the unique

real number such that φu(p)(p) ∈ Sext. The function u : 〈〈Mext〉〉 → R is Lipschitz,

smooth in Mext, with achronal level sets transverse to the flow of K(0), and provides

a homeomorphism

〈〈Mext〉〉 \ Mext ≈ R × C
+ , 〈〈Mext〉〉 ≈ R × (C + ∪ Sext) .

The desired hypersurface S̊ will be a small spacelike smoothing of u−1(0), obtained

by first deforming the metric g to a metric gǫ, the null vectors of which are spacelike

for g. The associated corresponding function uǫ will have Lipschitz level sets which

are uniformly spacelike for g. A smoothing of uǫ will provide the desired function

t. The details are as follows:

We start by finding a smooth hypersurface, not necessarily spacelike, transverse

to the flow of K. We shall use the following general result, pointed out to us by

R. Wald (private communication):

Proposition 4.6. — Let S0 be a two-sided, smooth, hypersurface in a manifold

M with an open neighborhood O such that M \ O consists of two disconnected

components M− and M+. Let X be a complete vector field on M and suppose that

there exists T > 0 such that for every orbit φt(p) of X, t ∈ R, p ∈ M , there is an
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interval [t0, t1] with (t1−t0) < T such that φt(p) lies in M− for all t < t0, and φt(p)

lies in M+ for all t > t1. If M has a boundary, assume moreover that ∂S0 ⊂ ∂M ,

and that X is tangent to ∂M . Then there exists a smooth hypersurface S1 ⊂ M

such that every orbit of X intersects S1 once and only once.

Proof. — Let f be a smooth function with the property that f = 0 in M−, 0 ≤
f ≤ 1 in O, and f = 1 in M+; such a function is easily constructed by introducing

Gauss coordinates, with respect to some auxiliary Riemannian metric, near S0. For

t ∈ R and p ∈M let φt(p) denote the flow generated by X . Define F : M → R by

F (p) =

∫ 0

−∞

f ◦ φs(p)ds .

Then F is a smooth function on M increasing monotonically from zero to infinity

along every orbit of X . Furthermore F is strictly increasing along the orbits at

points at which F ≥ T (since such points must lie in M+, where f = 1). In

particular, the gradient of F is non-vanishing at all points where F ≥ T . Setting

S1 = {F = T }, the result follows.

Returning to the proof of Theorem 4.5, we use Proposition 4.6 with X = K(0),

M = 〈〈Mext〉〉∩I+(Mext) \ Mext ,

and S0 = S ∩M . Letting t− be as in (4.14) we set

O := ∪t∈(t−,−t−)φt(S ) ;

by what has been said, O is an open neighborhood of S . Finally

M− := ∪t∈(−∞,t−]φt(S ) , M+ := ∪t∈[−t−,∞)φt(S ) .

It follows now from Proposition 4.6 that there exists a hypersurface S1 ⊂M which

is transverse to the flow of K(0).

Let T̂ be any smooth, timelike vector field defined along S1, and define the

smooth timelike vector field T on M as the unique solution of the Cauchy problem

(4.16) LK(0)
T = 0 , T = T̂ on S1 .

Since the flow of K(0) acts by time translations on Mext, it is straightforward to

extend T to a smooth vector field defined on M , timelike wherever non vanishing,

still denoted by T , which is invariant under the flow of K(0), the support of which

on S is compact. Replacing T by its average over T
s−1, we can assume that T is

invariant under the action of T
s−1.

For all ǫ ≥ 0 sufficiently small, the formula

(4.17) gǫ(Z1, Z2) = g(Z1, Z2) − ǫg(T, Z1)g(T, Z2) .

defines a Lorentzian, R × T
s−1 invariant metric on the manifold with (gǫ–timelike)

boundary 〈〈Mext〉〉∩I+(Mext). By definition of gǫ, vectors which are causal for g

are timelike for gǫ. Wherever T 6= 0 the light cones of gǫ are spacelike for g, provided

ǫ 6= 0.

Since g-causal curves are also gǫ-causal, (〈〈Mext〉〉, gǫ) is also a domain of outer

communications with respect to gǫ.

Set

C
+
ǫ = (J̇+

ǫ (Ŝ0,R) \ Mext) ∩ 〈〈Mext〉〉 ,
where we denote by J+

ǫ (Ω) the future of a set Ω with respect to the metric gǫ.

Then the C +
ǫ ’s are Lipschitz, g-spacelike wherever differentiable, T

s−1 invariant,
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hypersurfaces. Continuous dependence of geodesics upon the metric together with

Proposition 4.4 shows that the C +
ǫ ’s accumulate at C + as ǫ tends to zero.

Let uǫ : M → R be defined as in (4.1) using the metric gǫ instead of g. As before

we have

(4.18) uǫ(φt(p)) = uǫ(p) + t , so that K(0)(uǫ) = 1 .

We perform a smoothing procedure as in the proof of Proposition 4.3, with O there

replaced by a conditionally compact neighborhood of C +. The vector field T̂ in

(4.16) is chosen to be timelike on O; the same will then be true of T . Analogously

to (4.5) we set

(4.19) uǫ,η :=

N∑

i=1

ϕi ϕη ∗ uǫ ,

so that the uǫ,η’s converge uniformly on O to uǫ as η tends to zero. The calculation

in (4.7) shows that

K(0)(uǫ,η) ≥
1

2

for η small enough, so that the level sets of uǫ,η near C + are transverse to the flow

of K(0).

It remains to show that the level sets of uǫ,η are spacelike. For this we start with

some lemmata:

Lemma4.7. — Let g be a Lipschitz-continuous metric on a coordinate ball

B(p, 3ri) ≡ Oi of coordinate radius 3ri. There exists a constant C such that for any

q ∈ B(p, ri) and for any timelike, respectively causal, vector Nq = Nµ
q ∂µ ∈ TqM

satisfying

(4.20)
∑

µ

(Nµ
q )2 = 1

there exists a timelike, respectively causal, vector field N = Nµ∂µ on B(p, 2ri) such

that for all points y, z ∈ B(p, 2ri) we have

(4.21) |Nµ
y −Nµ

z | ≤ C|y − z| , C−1 ≤
∑

µ

(Nµ
y )2 ≤ C .

Proof. — We will write both Nµ
q and Nµ(q) for the coordinate components of a

vector field at q. For ν = 0, . . . , n, let e(ν) = eµ
(ν)∂µ be any Lipschitz-continuous

ON basis for g on Oi. there exists a constant c such that on B(p, 2ri) we have

|eµ
(ν)(y) − eµ

(ν)(z)| ≤ c|y − z| .

Decompose Nq as Nq = N
(ν)
q e(ν)(q), and for y ∈ Oi set Ny = N

(ν)
q e(ν)(y); (4.21)

easily follows.

Lemma4.8. — Under the hypotheses of Lemma 4.7, let f be differentiable on Oi.

Then ∇f is timelike past directed on B(p, 2ri) if and only if Nµ∂µf < 0 on Oi for

all causal past directed vector fields satisfying (4.20) and (4.21).

Proof. — The condition is clearly necessary. For sufficiency, suppose that there

exists q ∈ B(p, 2ri) such that ∇f is null, let Nq = λ∇f(q), where λ is chosen so

that (4.20) holds, and let N be as in Lemma 4.7; then Nµ∂µf vanishes at q. If ∇f
is spacelike at q the argument is similar, with Nq chosen to be any timelike vector

orthogonal to ∇f(q) satisfying (4.20).
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Let N be any g–timelike past directed vector field satisfying (4.20) and (4.21).

Returning to (4.6) we find,

iNduǫ,η =

N∑

i=1

{
(ϕη ∗ uǫ − uǫ)︸ ︷︷ ︸

I

iNdϕi + ϕi iN (ϕη ∗ duǫ)︸ ︷︷ ︸
II

}
.(4.22)

For any fixed ǫ, and for any δ > 0 we can choose ηδ so that the term I is smaller

than δ for all 0 < η < ηδ.

To obtain control of II, we need uniform spacelikeness of duǫ:

Lemma4.9. — There exists a constant c such that, for N as in Lemma 4.7,

(4.23) Nµ∂µuǫ < −cǫ
almost everywhere, for all ǫ > 0 sufficiently small.

Proof. — Let {e(ν)} be an g–ON frame in which the vector field T of (4.17) equals

T (0)e(0). Let α(ν) denote the components of duǫ in a frame dual to {e(ν)}. In this

frame we have

g = diag(−1, 1, . . . , 1) , gǫ = diag(−(1 + (T (0))2ǫ), 1, . . . , 1) .

Since duǫ is gǫ–null and past pointing we have

α(0) =
√

1 + (T (0))2ǫ
√∑

α2
(i) .

The last part of (4.18) reads

K
(0)
(0)α(0) +K

(i)
(0)α(i) = 1 .

It is straightforward to show from these two equations that there exists a constant

c1 such that, for all ǫ sufficiently small,

α(0) > c−1
1 ,

√∑
α2

(i) > c−1
1 ,

∑
|α(µ)| ≤ c1 .

Since N is gǫ causal past directed, (4.20) and (4.21) together with the construction

of N show that there exists a constant c2 such that

N (0) < −c2 .
We then have

Nµ∂µuǫ = N (0)α(0) +N (i)α(i)

= N (0)
√

1 + (T (0))2ǫ
√∑

α2
(i) +N (i)α(i)

= N (0)(
√

1 + (T (0))2ǫ− 1)
√∑

α2
(i) + N (0)

√∑
α2

(i) +N (i)α(i)
︸ ︷︷ ︸

<0 by Cauchy-Schwarz, as N is g–timelike

< − c2
4c1

inf
O

(T (0))2 ǫ =: −cǫ ,

for ǫ small enough.

Now, calculating as in (4.8), using (4.23),

iN (ϕη ∗ duǫ)(x) =

∫

|y−x|≤η

[(Nµ(x) −Nµ(y))︸ ︷︷ ︸
≤Cη

∂µuǫ(y) +Nµ(y)∂µuǫ(y)︸ ︷︷ ︸
≤−cǫ

]ϕη(x− y)dn+1y

≤ −cǫ+O(η) ,

so that for η small enough each such term will give a contribution to (4.22) smaller

than −cǫ/2. Timelikeness of ∇uǫ,η on O follows now from Lemma 4.8.
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Summarizing, we have shown that we can choose ǫ and η small enough so that

the function uǫ,η : M → R is a time function near its zero level set. It is rather

straightforward to extend uǫ,η to a function on 〈〈Mext〉〉 → R, with smooth spacelike

zero-level-set, which coincides with S at large distances. Letting S̊ be this zero

level set, the function t(p) is defined now as the unique value of parameter t so that

φt(p) ∈ S̊ ; since the level sets of t are smooth spacelike hypersurface, t is a smooth

time function. This completes the proof of Theorem 4.5.

4.3. Smoothness of event horizons. — The starting point to any study of

event horizons in stationary space-times is a corollary to the area theorem, es-

sentially due to [22], which shows that event horizons in well-behaved stationary

space-times are as smooth as the metric allows. In order to proceed, some termi-

nology from that last reference is needed; we restrict ourselves to asymptotically

flat space-times; the reader is referred to [22, Section 4] for the general case. Let

(M̃ , g̃) be a C3 completion of (M , g) obtained by adding a null conformal boundary

at infinity, denoted by I +, to M , such that g = Ω−2
g̃ for a non-negative function

Ω defined on M̃ , vanishing precisely on I +, and dΩ without zeros on I +. Let

E + be the future event horizon in M . We say that (M̃ , g̃) is E +–regular if there

exists a neighborhood O of E + such that for every compact set C ⊂ O for which

I+(C; M̃ ) 6= ∅ there exists a generator of I + intersecting I+(C; M̃ ) which leaves

this last set when followed to the past. (Compare Remark 4.4 and Definition 4.3

in [22]).

We note the following:

Proposition 4.10. — Consider an asymptotically flat stationary space-time which

is vacuum at large distances, recall that E + = İ−(Mext)∩ I+(Mext). If 〈〈Mext〉〉 is

globally hyperbolic, then (M , g) admits an E +–regular conformal completion.

Proof. — Let M̃ be obtained by adding to Mext the surface r̃ = 0 in the coordinate

system (u, r̃, θ, ϕ) of [34, Appendix A] (see also [32], where the construction of [34]

is corrected; those results generalize without difficulty to higher dimensions). Let t

be any time function on 〈〈Mext〉〉 which tends to infinity when E + is approached,

which tends to −∞ when İ+(Mext) is approached, and which coincides with the

coordinate t in Mext as in [34, Appendix A]. Let

O = {p | t(p) > 0} ∪ I+(E +) ∪ E
+ ;

then O forms an open neighborhood of E +. Let C be any compact subset of O such

that I+(C; M̃ ) ∩ I + 6= ∅; then ∅ 6= C ∩ 〈〈Mext〉〉 ⊂ {t > 0}. Let γ be any future

directed causal curve from C to I +, then γ is entirely contained in 〈〈Mext〉〉, with

t ◦ γ > 0. In particular any intersection of γ with ∂Mext belongs to the set {t > 0},
so that at each intersection point

u ◦ γ > inf u|{t=0}∩∂Mext
=: c > −∞ .

The coordinate u of [34, Appendix A] is null, hence non-increasing along causal

curves, so u ◦ γ > c, which implies the regularity condition.

We are ready to prove now:

Theorem 4.11. — Let (M , g) be a smooth, asymptotically flat, (n+1)–dimensional

space-time with stationary Killing vector K(0), the orbits of which are complete.
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Suppose that 〈〈Mext〉〉 is globally hyperbolic, vacuum at large distances in the asymp-

totic region, and assume that the null energy condition (2.16) holds. Assume that

a connected component H0 of

H := H
− ∪ H

+

admits a compact cross-section satisfying S ⊂ I+(Mext). If

1. either

〈〈Mext〉〉 ∩ I+(Mext) is strongly causal,

2. or there exists in 〈〈Mext〉〉 a spacelike hypersurface S ⊃ Sext, achronal in

〈〈Mext〉〉, so that S as above coincides with the boundary of S :

S = ∂S ⊂ E
+ ,

then

∪tφt[K(0)](S) ⊂ H0

is a smooth null hypersurface, which is analytic if the metric is.

Remark 4.12. — The condition that the space-time is vacuum at large distances

can be replaced by the requirement of existence of an E +–regular conformal com-

pletion at null infinity.

Proof. — Let Σ be a Cauchy surface for 〈〈Mext〉〉, and let M̃ be the conformal com-

pletion of M provided by Proposition 4.10. By [22, Proposition 4.8] the hypotheses

of [22, Proposition 4.1] are satisfied, so that the Aleksandrov divergence θA l of E +,

as defined in [22], is nonnegative. Let S1 be given by Proposition 4.1. Since isome-

tries preserve area we have θA l = 0 almost everywhere on ∪tφt(S1) = ∪tφt(S). The

result follows now from [22, Theorem 6.18].

4.4. Event horizons vs Killing horizons in analytic vacuum space-times.

— We have the following result, first proved by Hawking for n = 3 [49] (com-

pare [38] or [16, Theorem 5.1]), while the result for n ≥ 4 in the mean-non-

degenerate case is due to Hollands, Ishibashi and Wald [55], see also [54, 60, 68]:

Theorem 4.13. — Let (M , g) be an analytic, (n+1)–dimensional, vacuum space-

time with complete Killing vector K(0). Assume that M contains an analytic null

hypersurface E with a compact cross-section S transverse both to K(0) and to the

generators of E . Suppose that

1. either 〈κ〉S 6= 0, where 〈κ〉S is defined in (2.13),

2. or n = 3.

Then there exists a neighborhood U of E and a Killing vector defined on U which

is null on E .

In fact, if K(0) is not tangent to the generators of E , then there exist, near

E , N commuting linearly independent Killing vector fields K(1), . . . ,K(N), N ≥
1, (not necessarily complete but) with 2π–periodic orbits near E , and numbers

Ω(1), . . . ,Ω(N), such that

K(0) + Ω(1)K(1) + . . .+ Ω(N)K(N)

is null on E .

In the black hole context, Theorem 4.13 implies:
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Theorem 4.14. — Let (M , g) be an analytic, asymptotically flat, strongly causal,

vacuum, (n + 1)–dimensional space-time with stationary Killing vector K(0), the

orbits of which are complete. Assume that 〈〈Mext〉〉 is globally hyperbolic, that a

connected component H
+

0 of H + contains a compact cross-section S satisfying

S ⊂ I+(Mext) ,

and that

1. either 〈κ〉S 6= 0,

2. or the flow defined by K(0) on the space of the generators of H
+

0 is periodic.

Suppose moreover that

a) either

〈〈Mext〉〉 ∩ I+(Mext) is strongly causal,

b) or there exists in 〈〈Mext〉〉 an asymptotically flat spacelike hypersurface S ,

achronal in 〈〈Mext〉〉, so that S as above coincides with the boundary of S :

S = ∂S ⊂ E
+ .

If K(0) is not tangent to the generators of H , then there exist, on 〈〈Mext〉〉 ∪H
+

0 ,

N complete, commuting, linearly independent Killing vector fields K(1), . . . ,K(N),

N ≥ 1, with 2π–periodic orbits, and numbers Ω(1), . . . ,Ω(N), such that the Killing

vector field

K(0) + Ω(1)K(1) + . . .+ Ω(N)K(N)

is null on H0.

Remark 4.15. — For I+–regular four-dimensional black holes S is a two-

dimensional sphere (see Corollary 2.5), and then every Killing vector field acts

periodically on the generators of H
+

0 .

Proof. — Theorem 4.11 shows that E
+
0 := ∪tφt[K(0)](S) is an analytic null hyper-

surface. By Proposition 4.3 there exists a smooth compact section of E
+
0 which

is transverse both to its generators and to the stationary Killing vector.(11) We

can thus invoke Theorem 4.13 to conclude existence of Killing vector fields K(i),

i = 1, . . . , N , defined near E
+
0 . By Corollary 2.4 and a theorem of Nomizu [78]

we infer that the K(i)’s extend globally to 〈〈Mext〉〉. It remains to prove that the

orbits of all Killing vector fields are complete. In order to see that, we note that

by the asymptotic analysis of Killing vectors of [5, 25] there exists R large enough

so that the flows of all K(i)’s through points in the asymptotically flat region with

r ≥ R are defined for all parameter values t ∈ [0, 2π]. The arguments in the proof

of Theorem 1.2 of [17] then show that the flows φt[K(i)]’s are defined for t ∈ [0, 2π]

throughout 〈〈Mext〉〉. But φ2π [K(i)] is an isometry which is the identity on an open

set near E
+
0 , hence everywhere, and completeness of the orbits follows.

5. Stationary axisymmetric black hole space-times: the area function

As will be explained in detail below, it follows from Theorem 4.14 together with

the results on Killing vectors in [6,17], that I+–regular, 3 + 1 dimensional, asymp-

totically flat, rotating black holes have to be axisymmetric. The next step of the

(11)The hypothesis of existence of such a section needs to be added to those of [55, Theorem 2.1].
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analysis of such space-times is the study of the area function

(5.1) W := − det
(
g(K(µ),K(ν))

)

µ,ν=0,1
,

with K(0) being the asymptotically timelike Killing vector, and K(1) the axial one.

Whenever
√
W can be used as a coordinate, one obtains a dramatic simplification

of the field equations, whence the interest thereof.

The function W is clearly positive in a region where K(0) is timelike and K(1) is

spacelike, in particular it is non-negative on Mext. As a starting point for further

considerations, one then wants to show that W is non-negative on 〈〈Mext〉〉:

Theorem 5.1. — Let (M , g) be a four-dimensional, analytic, asymptotically flat,

vacuum space-time with stationary Killing vector K(0) and periodic Killing vector

K(1), jointly generating an R × U(1) subgroup of the isometry group of (M , g).

If 〈〈Mext〉〉 is globally hyperbolic, then the area function (5.1) is non-negative on

〈〈Mext〉〉, vanishing precisely on the union of its boundary with the (non-empty) set

{g(K(1),K(1)) = 0}.

We also have a version of Theorem 5.1, where the hypothesis of analyticity is

replaced by that of I+–regularity:

Theorem 5.2. — Under the remaining hypotheses of Theorem 5.1, instead of an-

alyticity assume that (M , g) is I+–regular. Then the conclusion of Theorem 5.1

holds.

Keeping in mind our discussion above, Theorem 5.1 follows from Proposition 5.3

and Theorem 5.4 below. Similarly, Theorem 5.2 is a corollary of Theorem 5.6.

5.1. Integrability. — The first key fact underlying the analysis of the area func-

tion W is the following purely local fact, observed independently by Kundt and

Trümper [65] and by Papapetrou [80] in dimension four (for a modern derivation

see [51, 95]). The result, which does neither require K(0) to be stationary, nor the

K(i)’s to generate S1 actions, generalizes to higher dimensions as follows (com-

pare [11, 35]):

Proposition 5.3. — Let (M , g) be a vacuum, possibly with a cosmological con-

stant, (n + 1)–dimensional pseudo-Riemannian manifold with n − 1 linearly inde-

pendent commuting Killing vector fields K(µ), µ = 0, . . . , n− 2. If

(5.2) Zdgt := {p ∈ M | K(0) ∧ ... ∧K(n−2)|p = 0} 6= ∅ ,
then (12)

(5.3) dK(µ) ∧K(0) ∧ . . . ∧K(n−2) = 0 .

Proof. — To fix conventions, we use a Hodge star defined through the formula

α ∧ β = ±〈∗α, β〉Vol ,

where the plus sign is taken in the Riemannian case, minus in our Lorentzian one,

while Vol is the volume form. The following (well known) identities are useful [51];

(5.4) ∗ ∗θ = (−1)s(n+1−s)−1θ , ∀θ ∈ Λs ,

(5.5) iK ∗ θ = ∗(θ ∧K) , ∀θ ∈ Λs , K ∈ Λ1 .

(12)By an abuse of notation, we use the same symbols for vector fields and for the associated

1-forms.
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Further, for any Killing vector K,

(5.6) [LK , ∗] = 0 .

The Leibniz rule for the divergence δ := ∗d∗ reads, for θ ∈ Λs,

δ(θ ∧K) = ∗d ∗ (θ ∧K)
(5.5)
= ∗ d(iK ∗ θ) = ∗(LK ∗ θ − iKd ∗ θ)

(5.4),(5.6)
= ∗ ∗LKθ − ∗iK(−1)(n+1−s+1)(n+1−(n+1−s+1))−1 ∗ ∗d ∗ θ

= (−1)s(n+1−s)−1
LKθ − (−1)s(n+1−s)−n+1 ∗ ∗(δθ ∧K)

= (−1)s(n+1−s)−1
LKθ + (−1)n+1δθ ∧K .

Applying this to θ = dK one obtains

∗d ∗ (dK ∧K) = −LKdK + (−1)n+1δdK ∧K
= (−1)n+1δdK ∧K .

As any Killing vector is divergence free, we see that

δdK = (−1)n∆K = (−1)n+1iK Ric .

Assuming that the Ricci tensor is proportional to the metric, Ric = λg, we conclude

that

∗d ∗ (dK ∧K) = (iK λg) ∧K = 0 .

Let ω(µ) be the µ’th twist form,

ω(µ) := ∗(dK(µ) ∧K(µ)) .

The identity

LK(µ)
ω(ν) = LK(µ)

∗ (dK(µ) ∧K(ν))

= ∗(LK(µ)
dK(ν) + dK(ν) ∧ LK(µ)

K(ν)) = 0 ,

together with

LK(µ1)
(iK(µ2)

. . . iK(µℓ)
ω(µℓ+1)) = iK(µ2)

. . . iK(µn−1)
LK(µℓ)

ω(µℓ+1) = 0 ,

and with Cartan’s formula for the Lie derivative, gives

(5.7) d(iK(µ1)
. . . iK(µℓ)

ω(µℓ+1)) = (−1)ℓiK(µ1)
. . . iK(µn−1)

dω(µℓ+1) .

We thus have

d ∗ (dK(µ1) ∧K(µ1) ∧ . . . ∧K(µn−1)) = d(iK(µn−1)
. . . iK(µ2)

∗ (dK(µ1) ∧K(µ1)))

= (−1)n−2iK(µn−1)
. . . iK(µ2)

dω(µ1) = 0 .

So the function ∗(dK(µ1) ∧K(µ1) ∧K(µ2) ∧ . . .∧K(µn−1)) is constant, and the result

follows from (5.2).

5.2. The area function for a class of space-times with a commutative

group of isometries. — The simplest non-trivial reduction of the Einstein equa-

tions by isometries, which does not reduce the equations to ODEs, arises when

orbits have co-dimension two, and the isometry group is abelian. It is useful to

formulate the problem in a general setting, with 1 ≤ s ≤ n− 1 commuting Killing

vector fields K(µ), µ = 0, . . . , s− 1, satisfying the following orthogonal integrability

condition:

(5.8) ∀µ = 0, . . . , s− 1 dK(µ) ∧K(0) ∧ . . . ∧K(s−1) = 0 .

For the problem at hand, (5.8) will hold when s = n− 1 by Proposition 5.3. Note

further that (5.8) with s = 1 is the definition of staticity. So, the analysis that
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follows covers simultaneously static analytic domains of dependence in all dimen-

sions n ≥ 3 (filling a gap in previous proofs), or stationary axisymmetric analytic

four-dimensional space-times, or five dimensional stationary analytic space-times

with two further periodic Killing vectors as in [56]. It further covers stationary

axisymmetric I+–regular black holes in n = 3, in which case analyticity is not

needed.

Similarly to (5.2) we set

(5.9) Zdgt := {K(0) ∧ ... ∧K(s−1) = 0} ,

(5.10) Z̃ := {p ∈ M : det
(
g(K(i),K(j))

)

i,j=1,...s−1
= 0}.

In the following result, the proof of which builds on key ideas of Carter [11, 12],

we let K(0) denote the Killing vector associated to the R factor of R×T
s−1, and we

let K(i) denote the Killing vector field associated with the i− th S1 factor of T
s−1:

Theorem 5.4. — Let (M , g) be an (n + 1)–dimensional, asymptotically flat, an-

alytic space-time with a metric invariant under an action of the abelian group

G = R × T
s−1 with s–dimensional principal orbits, 1 ≤ s ≤ n − 1, and assume

that (5.8) holds. If 〈〈Mext〉〉 is globally hyperbolic, then the function

(5.11) W := − det
(
g(K(µ),K(ν))

)

µ,ν=0,...,s−1

is non-negative on 〈〈Mext〉〉, vanishing on ∂〈〈Mext〉〉 ∪ Z̃ .

Remark 5.5. — Here analyticity could be avoided if, in the proof below, one could

show that one can extract out of the degenerate Ŝp’s (if any) a closed embedded

hypersurface. Alternatively, the hypothesis of analyticity can be replaced by that of

non-existence of non-embedded degenerate prehorizons within 〈〈Mext〉〉. Moreover,

one also has:

Theorem 5.6. — Let n = 3, s = 2 and, under the remaining conditions of Theo-

rem 5.4, instead of analyticity assume that (M , g) is I+–regular. Then the conclu-

sion of Theorem 5.4 holds.

Before passing to the proof, some preliminary remarks are in order. The fact

that M \Zdgt is open, where Zdgt is as in (5.9), together with (5.8), establishes the

conditions of the Frobenius theorem (see, e.g., [52]). Therefore, for every p /∈ Zdgt

there exists a unique, maximal submanifold (not necessarily embedded), passing

through p and orthogonal to Span{K(0), ...,K(s−1)}, that we denote by Op. Carter

builds his further analysis of stationary axisymmetric black holes on the sets Op.

This leads to severe difficulties at the set Z̃ of (5.10), which we were not able

to resolve using neither Carter’s ideas, nor those in [91]. There is, fortunately,

an alternative which we provide below. In order to continue, some terminology is

needed:

Definition 5.7. — Let K be a Killing vector and set

(5.12) N [K] := {g(K,K) = 0 , K 6= 0} .

Every connected, not necessarily embedded, null hypersurface N0 ⊂ N [K] to which

K is tangent will be called a Killing prehorizon.
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In this terminology, a Killing horizon is a Killing prehorizon which forms an

embedded hypersurface which coincides with a connected component of N [K].

The Minkowskian Killing vector ∂t − ∂x provides an example where N is not

a hypersurface, with every hyperplane t + x = const being a prehorizon. The

Killing vector K = ∂t + Y on R × T
n, equipped with the flat metric, where T

n

is an n-dimensional torus, and where Y is a unit Killing vector on T
n with dense

orbits, admits prehorizons which are not embedded. This last example is globally

hyperbolic, which shows that causality conditions are not sufficient to eliminate this

kind of behavior.

Our first step towards the proof of Theorem 5.4 will be Theorem 5.8, inspired

again by some key ideas of Carter, together with their variations by Heusler. We

will assume that the K(i)’s, i = 1, . . . , s − 1, are spacelike (by this we mean that

they are spacelike away from their zero sets), but no periodicity or completeness

assumptions are made concerning their orbits. This can always be arranged locally,

and therefore does not involve any loss of generality for the local aspects of our

claim; but we emphasize that our claims are global when the K(i)’s are spacelike

everywhere.

In our analysis below we will be mainly interested in what happens in 〈〈Mext〉〉
where, by Corollary 3.8, we have

Z̃ ∩ 〈〈Mext〉〉 = Zdgt ∩ 〈〈Mext〉〉 ,
in a chronological domain of outer communications.

We note that Zdgt ⊂ {W = 0}, but equality does not need to hold for Lorentzian

metrics. For example, consider in R
1,2, K(0) = ∂x + ∂t and K(1) = ∂y; then

K(0) ∧ K(1) = dx ∧ dy − dt ∧ dy 6≡ 0 and W ≡ 0.

If the K(i)’s generate a torus action on a stably causal manifold,(13) it is well

known that Z̃ is a closed, totally geodesic, timelike, stratified, embedded subman-

ifold of M with codimension of each stratum at least two (this follows from [63]

or [2, Appendix C]). So, under those hypotheses, within 〈〈Mext〉〉, we will have

the intersection of Zdgt with any null hypersurface N is a(5.13)

stratified submanifold of N , with N –codimension at least two.

This condition will be used in our subsequent analysis. We expect this property not

to be needed, but we have not investigated this question any further.

Theorem 5.8. — Let (M , g) be an (n+ 1)–dimensional Lorentzian manifold with

s ≥ 1 linearly independent commuting Killing vectors K(µ), µ = 0, . . . , s − 1, sat-

isfying the integrability conditions (5.8), as well as (5.13), with the K(i)’s, i =

1, . . . , s − 1, spacelike. Suppose that {W = 0} \ Zdgt is not empty, and for each p

in this set consider the Killing vector field lp defined as(14)

(5.14) lp = K(0) − (h(i)(j)
g(K(0),K(i)))|pK(j) ,

where h(i)(j) is the matrix inverse to

(5.15) h(i)(j) := g(K(i),K(j)) , i, j ∈ {1, ..., s− 1} .

(13)Let t be a time-function on (M , g); averaging t over the orbits of the torus generated by the

K(i)’s we obtain a new time function such that the K(i)’s are tangent to its level sets. This reduces

the problem to the analysis of zeros of Riemannian Killing vectors.
(14)If s = 1 then eZ = ∅ and lp = K(0).
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Then the distribution l⊥p ⊂ TM of vectors orthogonal to lp is integrable over the

non-empty set

(5.16) {q ∈ M \ Zdgt | g(lp, lp)|q = 0 , W (q) = 0} \ {q ∈ M | lp(q) = 0} .

If we define Ŝp to be the maximally extended over {W = 0}, connected, integral

leaf of this distribution(15) passing through p, then all Ŝp’s are Killing prehorizons,

totally geodesic in M \ {lp = 0}.

In several situations of interest the Ŝp’s form embedded hypersurfaces which

coincide with connected components of the set defined in (5.16), but this is certainly

not known at this stage of the argument:

Remark 5.9. — Null translations in Minkowski space-time, or in pp-wave space-

times, show that the Ŝp’s might be different from connected components of N [lp].

Remark 5.10. — It follows from our analysis here that for q ∈ Ŝp \ Zdgt we have

lq = lp. For q ∈ Ŝp ∩Zdgt we can define lq by setting lq := lp. We then have lp = lq
for all q ∈ Ŝp.

Proof. — Let

(5.17) w := K(0) ∧ . . . ∧K(s−1) .

We need an equation of Carter [11]:

Lemma5.11 ( [11]). — We have

(5.18) w ∧ dW = (−1)sWdw .

Proof. — Let F = {W = 0}. The result is trivial on the interior F̊ of F , if non-

empty. By continuity, it then suffices to prove (5.18) on M \F . Let O be the set of

points in M \F at which the Killing vectors are linearly independent. Consider any

point p ∈ O, and let (xa, xA), a = 0, . . . , s− 1, be local coordinates near p chosen

so that K(a) = ∂a and Span{∂a} ⊥ Span{∂A}; this is possible by (5.8). Then

w = −Wdx0 ∧ . . . ∧ dxs−1 ,

and (5.18) follows near p. Since O is open and dense, the lemma is proved.

Returning to the proof of Theorem 5.8, as already said, (5.8) implies that

for every p /∈ Zdgt there exists a unique, maximal, (n + 1 − s)–dimensional

submanifold (not necessarily embedded), passing through p and orthogonal to

Span{K(0), . . . ,K(s−1)}, that we denote by Op. By definition,

(5.19) Op ∩ Zdgt = ∅ ,
and clearly

(5.20) Op ∩ Oq 6= ∅ ⇐⇒ Op = Oq .

Recall that p ∈ {W = 0} \ Zdgt; then K(0) ∧ . . . ∧K(s−1) 6= 0 in Op and we may

choose vector fields u(µ) ∈ TM , µ = 0, . . . , s− 1, such that

K(0) ∧ . . . ∧K(s−1)(u(0), . . . , u(s−1)) = 1

(15)To avoid ambiguities, we emphasize that points at which lp vanishes do not belong to Ŝp.
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in some neighborhood of p. Let γ be a Ck curve, k ≥ 1, passing through p and

contained in Op. Since γ̇(s) ∈ Tγ(s)Op = Span{K(0), . . . ,K(s−1)}⊥|γ(s), after con-

tracting (5.18) with (u0, . . . , us−1, γ̇) we obtain the following Cauchy problem

(5.21)

{
d
ds(W ◦ γ)(s) ∼W ◦ γ(s) ,

W |p = 0 .

Uniqueness of solutions of this problem guarantees that W ◦ γ(s) ≡ 0 and therefore

W vanishes along the (n + 1 − s)-dimensional submanifold Op. Since G preserves

W , W must vanish on the sets

(5.22) Sp := Gs · Op .

Here Gs· denotes the motion of a set using the group generated by the K(i)’s,

i = 1, . . . , s − 1; if the orbits of some of the K(i)’s are not complete, by this we

mean “the motion along the orbits of all linear combinations of the K(i)’s starting

in the given set, as far as those orbits exist”. Since TqOp is orthogonal to all Killing

vectors by definition, and the K(i)’s are spacelike, the K(i)’s are transverse to Op, so

that the Sp’s are smooth (not necessarily embedded) submanifolds of codimension

one.

On {W = 0} \ Zdgt the metric g restricted to Span{K(0), . . . ,K(s−1)} is degen-

erate, so that Span{K(0), . . . ,K(s−1)} is a null subspace of TM . It follows that

for q ∈ {W = 0} \ Zdgt some linear combination of Killing vectors is null and or-

thogonal to Span{K(0), . . . ,K(s−1)}, thus in TqOp. So for q ∈ {W = 0} \ Zdgt the

tangent spaces TqSp are orthogonal sums of the null spaces TqOp and the spacelike

ones Span{K(1), . . . ,K(s−1)}. We conclude that the Sp’s form smooth, null, not

necessarily embedded, hypersurfaces, with

(5.23) Sp = G · Op ⊂ {W = 0} \ Zdgt ,

where the action of G is understood as explained after (5.22).

Let the vector ℓ = Ω(µ)K(µ), Ω(µ) ∈ R be tangent to the null generators of Sp,

thus

(5.24) Ω(µ)
g(K(µ),K(ν))Ω

(ν) = 0 .

Since det(g(K(µ),K(ν))) = 0 with one-dimensional null space on {W = 0} \ Zdgt,

(5.24) is equivalent there to

(5.25) g(K(µ),K(ν))Ω
(ν) = 0 .

Since the K(i)’s are spacelike we must have Ω(0) 6= 0, and it is convenient to nor-

malize ℓ so that Ω(0) = 1. Assuming p 6∈ Z̃ , from (5.25) one then immediately

finds

(5.26) ℓ = K(0) + Ω(i)K(i) = K(0) − h(i)(j)
g(K(0),K(j))K(i) ,

where h(i)(j) is the matrix inverse to

(5.27) h(i)(j) = g(K(i),K(j)) , i, j ∈ {1, . . . , s− 1} .
To continue, we show that:

Proposition 5.12. — For each j = 1, . . . , n, the function

Sp ∋ q 7→ Ω(j)(q) := −h(i)(j)(q)g(K(0),K(i))(q)

is constant over Sp.
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Proof. — The calculations here are inspired by, and generalize those of [51, pp. 93-

94]. As is well known,

(5.28) dh(i)(j) = −h(i)(m)h(j)(s)dh(m)(s) .

From (5.4)-(5.5) together with LK(i)
K(j) = 0 we have

dh(i)(j) = d[g(K(i),K(j))] = diK(i)
K(j) = −iK(i)

dK(j)

= −iK(i)
(−1)2(n+1−2)−1 ∗ ∗dK(j) = (−1)n ∗ (K(i) ∧ ∗dK(j)) ,

with a similar formula for d[g(K(0),K(j))]. Next,

dΩ(i) = d(−h(i)(j)
g(K(0),K(j)))

= −[g(K(0),K(j))dh
(i)(j) + h(i)(j)d[g(K(0),K(j))]]

= −[−g(K(0),K(j))h
(i)(m)h(j)(s)dh(s)(m) + h(i)(m)d[g(K(0),K(m))]]

= −h(i)(m)[−(−1)n
g(K(0),K(j))h

(j)(s) ∗ (K(s) ∧ ∗dK(m))

+ (−1)n ∗ (K(0) ∧ ∗dK(m))]

= (−1)n+1h(i)(m) ∗ [(Ω(s)K(s) +K(0)) ∧ ∗dK(m)]

= (−1)n+1h(i)(m) ∗ (ℓ ∧ ∗dK(m)) ,

and

iK(0)
. . . iK(s−1)

∗ dΩ(i) = (−1)n+1iK(0)
. . . iK(s−1)

h(i)(m) ∗ ∗(ℓ ∧ ∗dK(m))

= h(i)(m)iK(0)
. . . iK(s−1)

(ℓ ∧ ∗dK(m)) .

Since iK(i)
ℓ|Sp = g(ℓ,K(i))|Sp = 0, we obtain

iK(0)
. . . iK(s−1)

(ℓ ∧ ∗dK(m))|Sp = iK(0)
. . . iK(s−2)

[iK(s−1)
ℓ ∧ ∗dK(m)

+ (−1)1ℓ ∧ iK(s−1)
∗ dK(m)]|Sp

= −iK(0)
. . . iK(s−2)

(ℓ ∧ iK(s−1)
∗ dK(m))|Sp = . . .

= (−1)sℓ ∧ iK(0)
. . . iK(s−1)

∗ dK(m) |Sp

= (−1)sℓ ∧ ∗(dK(m) ∧K(s−1) ∧ . . . ∧K(0))|Sp

(5.3)
= 0 ,

and therefore

(5.29) iK(0)
. . . iK(s−1)

∗ dΩ(i)|Sp = 0 .

This last result says that dΩ(i)|Sp is a linear combination of the K(µ)’s, so for each

i there exist numbers α(µ) ∈ R such that

(5.30) dΩ(i)|Sp = α(µ)K(µ).

Now, the Ω(i)’s are clearly invariant under the action of the group generated by the

K(µ)’s, which implies

0 = iK(µ)
dΩ(i) = g(K(µ), α

(ν)K(ν)) .

This shows that α(µ)K(µ) is orthogonal to all Killing vectors, so it must be propor-

tional to ℓ. Since TqSp = ℓ⊥, we are done.

Returning to the proof of Theorem 5.8, we have shown so far that Sp is a null

hypersurface in {W = 0} \Zdgt, with the Killing vector lp := ℓ as in (5.14) tangent
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to the generators of Sp. In other words, Sp is a prehorizon. Furthermore,

TqM ∋ Y ∈ TqSp for some p ⇐⇒(5.31)

W (q) = 0 , K(0) ∧ . . . ∧K(s−1)|q 6= 0 , Y ⊥ lp .

For further purposes it is necessary to extend this result to the hypersurface Ŝp

defined in the statement of Theorem 5.8. This proceeds as follows:

It is well known [43] that Killing horizons are locally totally geodesic, by which

we mean that geodesics initially tangent to the horizon remain on the horizon for

some open interval of parameters. This remains true for prehorizons:

Corollary5.13. — Sp is locally totally geodesic. Furthermore, if γ : [0, 1) → Sp

is a geodesic such that γ(1) 6∈ Sp, then γ(1) ∈ Zdgt.

Proof. — Let γ : I → M be an affinely-parameterized geodesic satisfying γ(0) =

q ∈ Sp and γ̇(0) ∈ TqSp ⇐⇒ g(γ̇(0), lp) = 0. Then

(5.32)
d

dt
g(γ̇(t), lp) = g(∇γ̇(t)γ̇(t), lp) + g(γ̇(t),∇γ̇(t)lp) = 0 ,

where the first term vanishes because γ is an affinely parameterized geodesic, while

the second is zero by the Killing equation. Since g(γ̇(0), lp) = 0, we get

(5.33) g(γ̇(t), lp) = 0 , ∀t ∈ I .

We conclude that γ̇ remains perpendicular to lp, hence remains within Sp as long

as a zero of K(0) ∧ . . . ∧K(s−1) is not reached, compare (5.31).

Consider, now, the following set of points which can be reached by geodesics

initially tangent to Sp:

S̃p := {q : ∃ a geodesic segment γ : [0, 1] → M such(5.34)

that γ(1) = q and γ(s) ∈ Sp for s ∈ [0, 1)} \ {q : lp(q) = 0} .
Then Sp ⊂ S̃p, and if q ∈ S̃p \ Sp then q ∈ Zdgt by Corollary 5.13. We wish to

show that S̃p is a smooth hypersurface, included and maximally extended in the set

(5.16); equivalently

(5.35) S̃p = Ŝp .

For this, let q ∈ S̃p, let O be a geodesically convex neighborhood of q not containing

zeros of lp, and for r ∈ O define

(5.36) Rr = expO,r(lq(r)
⊥) ,

here expO,r is the exponential map at the point r ∈ O in the space-time (O, g|O).

It is convenient to require that O is included within the radius of injectivity of all

its points (see [64, Theorem 8.7]). Let γ be as in the definition of S̃p. Without loss

of generality we can assume that γ(0) ∈ O. We have γ̇(s) ⊥ lp for all s ∈ [0, 1), and

by continuity also at s = 1. This shows that γ([0, 1]) ⊂ Rq.

Now, Rγ(0) is a smooth hypersurface in O. It coincides with Sp near γ(0), and

every null geodesic starting at γ(0) and normal to lp there belongs both to Rγ(0)

and Sp until a point in Zdgt is reached. This shows that Rγ(0) is null near every

such geodesic until, and including, the first point on that geodesic at which Zdgt

is reached (if any). By (5.13) Rγ(0) ∩ Sp is open and dense in Rγ(0). Thus the

tangent space to Rγ(0) coincides with l⊥p at the open dense set of points Rγ(0) ∩
Sp, with that intersection being a null, locally totally geodesic (not necessarily
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embedded) hypersurface. By continuity Rγ(0) is a subset of (5.16), with TRγ(0) = l⊥p
everywhere. Since Rγ(0) ⊂ S̃p, Equation (5.35) follows.

The construction of the S̃p’s shows that every integral manifold of the distribution

l⊥p over the set

(5.37) Ω := {q ∈ M \ Zdgt | g(lp, lp)|q = 0 , W (q) = 0} ,
can be extended to a maximal leaf contained in Ω \ {q | lp(q) = 0}, compare (5.16).

To finish the proof of Theorem 5.8 it thus remains to show that there exists a leaf

through every point in Ω \ {q | lp(q) = 0}. Since this last set is contained in the

closure of Ω, we need to analyze what happens when a sequence of null leaves Ŝpn ,

all normal to a fixed Killing vector field lq, has an accumulation point. We show in

Lemma 5.14 below that such sequences accumulate to an integral leaf through the

limit point, which completes the proof of the theorem.

We shall say that S is an accumulation set of a sequence of sets Sn if S is the

collection of limits, as i tends to infinity, of sequences qni ∈ Sni .

Lemma5.14. — Let Ŝpn be a sequence of leaves such that lpn = lq, for some fixed

q, and suppose that pn → p. If lq(p) 6= 0, then p belongs to a leaf Ŝp with lp = lq.

Furthermore there exists a neighborhood U of p such that expU ,p(lq(p)
⊥) ⊆ Ŝp∩U

is the accumulation set of the sequence expU ,pn
(lq(pn)⊥) ⊆ Ŝpn ∩ U , n ∈ N.

Proof. — Let U be a small, open, conditionally compact, geodesically convex

neighborhood of p which does not contain zeros of lq. Let Ŝpn be that leaf, within

U , of the distribution l⊥q which contains pn. The Ŝpn ’s are totally geodesic subman-

ifolds of U by Corollary 5.15, and therefore are uniquely determined by prescribing

Tpn Ŝpn . Now, the subspaces TpnŜpn = lq(pn)⊥ obviously converge to lq(p)
⊥ in the

sense of accumulation sets. Smooth dependence of geodesics upon initial values

implies that expU ,pn
(lq(pn)⊥) converges in Ck, for any k, to expU ,p(lq(p)

⊥). Since

W vanishes on expU ,pn
(lq(pn)⊥), we obtain that W vanishes on expU ,p(lq(p)

⊥).

Since Tqn expU ,pn
(lq(pn)⊥) = l⊥p (qn) for any qn ∈ expU ,pn

(lq(pn)⊥) we conclude

that Tr expU ,p(lq(p)
⊥) = l⊥p (r) for any r ∈ expU ,p(lq(p)

⊥). So expU ,p(lq(p)
⊥)

is a leaf, within U , through p of the distribution l⊥q over the set (5.16), and

expU ,p(lq(p)
⊥) = Ŝp ∩ U is the accumulation set of the totally geodesic submani-

folds Ŝpn ∩ U ’s.

The remainder of the proof of Theorem 5.4 consists in showing that the Ŝp’s

cannot intersect 〈〈Mext〉〉. We start with an equivalent of Corollary 5.13, with

identical proof:

Corollary5.15. — Ŝp is locally totally geodesic. Furthermore, if γ : [0, 1) → Ŝp

is a geodesic segment such that γ(1) 6∈ Ŝp, then lp vanishes at γ(1).

Corollary 3.8 shows that Killing vectors as described there have no zeros in

〈〈Mext〉〉, and Corollary 5.15 implies now:

Corollary5.16. — Ŝp∩〈〈Mext〉〉 is totally geodesic in 〈〈Mext〉〉 (possibly empty).

To continue, we want to extract, out of the Ŝp’s, a closed, embedded, Killing

horizon S+
0 . Now, e.g. the analysis in [55] shows that the gradient of g(lp, lp)

is either everywhere zero on Ŝp (we then say that Ŝp is degenerate), or nowhere
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vanishing there. One immediately concludes that non-degenerate Ŝp’s, if non-empty,

are embedded, closed hypersurfaces in 〈〈Mext〉〉. Then, if there exists non-empty

non-degenerate Ŝp’s, we choose one and we set

(5.38) S+
0 = Ŝp .

Otherwise, all non-empty Ŝp’s are degenerate; to show that such prehorizons, if

non-empty, are embedded, we will invoke analyticity (which has not been used so

far). So, consider a degenerate component Ŝp, and note that Ŝp does not self-

intersect, being a subset of the union of integral manifolds of a smooth distribution

of hyperplanes. Suppose that Ŝp is not embedded. Then there exists a point q ∈ Ŝp,

a conditionally compact neighborhood O of q, and a sequence of points pn ∈ Ŝp

lying on pairwise disjoint components of O ∩ Ŝp, with pn converging to q. Now,

Killing vectors are solutions of the overdetermined set of PDEs

∇µ∇νXρ = Rα
µνρXα ,

which imply that they are analytic if the metric is. So g(lp, lp) is an analytic

function that vanishes on an accumulating family of hypersurfaces. Consequently

g(lp, lp) vanishes everywhere, which is not compatible with asymptotic flatness.

Hence the Ŝp’s are embedded, coinciding with connected components of the set

{g(lp, lp) = 0 = W} \ {lp = 0}; it should be clear now that they are closed in

〈〈Mext〉〉. We define S+
0 again using (5.38), choosing one non-empty Ŝp,

We can finish the proof of Theorem 5.4. Suppose that W changes sign within

〈〈Mext〉〉. Then S+
0 is a non-empty, closed, connected, embedded null hypersurface

within 〈〈Mext〉〉. Now, any embedded null hypersurface S+
0 is locally two-sided,

and we can assign an intersection number one to every intersection point of S+
0

with a curve that crosses S+
0 from its local past to its local future, and minus

one for the remaining ones (this coincides with the oriented intersection number as

in [45, Chapter 3]). Let p ∈ S+
0 , there exists a smooth timelike future directed curve

γ1 from some point q ∈ Mext to p. By definition there exists a future directed null

geodesic segment γ2 from p to some point r ∈ Mext intersecting S precisely at p.

Since Mext is connected there exists a curve γ3 ⊂ Mext (which, in fact, cannot be

causal future directed, but this is irrelevant for our purposes) from r to q. Then

the path γ obtained by following γ1, then γ2, and then γ3 is closed. Since S+
0

does not extend into Mext, γ intersects S+
0 only along its timelike future directed

part, where every intersection has intersection number one, and γ intersects S+
0

at least once at p, hence the intersection number of γ with S+
0 is strictly positive.

Now, Corollary 2.4 shows that 〈〈Mext〉〉 is simply connected. But, by standard

intersection theory [45, Chapter 3], the intersection number of a closed curve with a

closed, externally orientable, embedded hypersurface in a simply connected manifold

vanishes, which gives a contradiction and proves that W cannot change sign on

〈〈Mext〉〉.
It remains to show that W vanishes at the boundary of 〈〈Mext〉〉. For this, note

that, by definition of W , in the region {W > 0} the subspace of TM spanned by

the Killing vectorsK(µ) is timelike. Hence at every p such that W (p) > 0 there exist

vectors of the formK(0)+
∑
αiK(i) which are timelike. But ∂〈〈Mext〉〉 ⊂ İ−(Mext)∪

İ+(Mext), and each of the boundaries İ−(Mext) and İ+(Mext) is invariant under

the flow of any linear combination of K(µ)’s, and each is achronal, hence W ≤ 0 on

∂〈〈Mext〉〉, whence the result.

In view of what has been said, the reader will conclude:
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Corollary5.17 (Killing horizon theorem). — Under the conditions of Theo-

rem 5.4, away from the set Zdgt as defined in (5.9), the boundary 〈〈Mext〉〉\〈〈Mext〉〉
is a union of embedded Killing horizons.

Let us pass now to the

Proof of Theorem 5.6: Let

π : 〈〈Mext〉〉 ∪ E
+ →

(
〈〈Mext〉〉 ∪ E

+
)
/
(

R × U(1)
)

︸ ︷︷ ︸
=:Q

denote the quotient map. As discussed in more detail in Sections 6.1 and 6.2 (keep-

ing in mind that, by topological censorship, 〈〈Mext〉〉 has only one asymptotically

flat end), the orbit space Q is diffeomorphic to the half-plane {(x, y) | x ≥ 0} from

which a finite number n̊ ≥ 0 of open half-discs, centred at the axis {x = 0}, have

been removed. As explained at the beginning of Section 7, the case n̊ = 0 leads to

Minkowski space-time, in which case the result is clear, so from now on we assume

n̊ ≥ 1.

Suppose that {W = 0}∩〈〈Mext〉〉 is non-empty. Let p0 be an element of this set,

with corresponding Killing vector field l0 := lp0 . Let W0 be the norm squared of l0:

W0 := g(l0, l0) .

In the remainder of the proof of Theorem 5.2 we consider only those Ŝp’s for which

lp = l0:

Ŝp ⊂ {W = 0} ∩ {W0 = 0} .
We denote by Cπ(p) the image in Q, under the projection map π, of Ŝp ∩

(〈〈Mext〉〉 ∪ E +). Define

Q̊ = 〈〈Mext〉〉/
(

R × U(1)
)
,

W
♭

0 :=
(
{W0 = 0} ∩ {W = 0} ∩ (〈〈Mext〉〉 ∪ E

+)
)
/
(

R × U(1)
)
,

Then W ♭
0 is a closed subset of Q, with the following property: through every point

q of W ♭
0 there exists a smooth maximally extended curve Cq, which will be called

orbit, entirely contained in W ♭
0 . The Cq’s are pairwise disjoint, or coincide. Their

union forms a closed set, and locally they look like a subcollection of leaves of a

foliation. (Such structures are called laminations; see, e.g., [39].)

An orbit will be called a Jordan orbit if Cq forms a Jordan curve.

We need to consider several possibilities; we start with the simplest one:

Case I: If an orbit Cq forms a Jordan curve entirely contained in Q̊, then the

corresponding Ŝp = π−1(Cq) forms a closed embedded hypersurface in 〈〈Mext〉〉,
and a contradiction arises as at the end of the proof of Theorem 5.4.

Case II: Consider, next, an orbit Cq which meets the boundary of Q at two or

more points which belong to π(A ), and only at such points. Let Iq ⊂ Cq denote

that part of Cq which connects any two subsequent such points, in the sense that

Iq meets ∂Q at its end points only. Now, every Ŝp is a smooth hypersurface in M

invariant under R × U(1), and therefore meets the rotation axis A orthogonally.

This implies that π−1(Iq) is a closed, smooth, embedded hypersurface in 〈〈Mext〉〉,
providing again a contradiction.

To handle the remaining cases, some preliminary work is needed. It is convenient

to double Q across {x = 0} to obtain a manifold Q̂ diffeomorphic to R
2 from which

a finite number of open discs, centered at the axis {x = 0}, have been removed, see
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Figure 5.1. The quotient space Q and its double bQ.

Figure 5.1. Connected components of the event horizon E + correspond to smooth

circles forming the boundary of Q̂, regardless of whether or not they are degenerate.

From what has been said, every Cq which has an end point at π(A ) is smoothly

extended in Q̂ across {x = 0} by its image under the map (x, y) 7→ (−x, y). We

will continue to denote by Cq the orbits so extended in Q̂.

The analysis of Cases I and II also shows:

Lemma5.18. — An orbit Cq which does not meet ∂Q̂ can cross the axis {x = 0}
at most once.

An orbit Cq will be called an accumulation orbit of an orbit Cr if there exists a

sequence qn ∈ Cr such that qn → q. Every orbit is its own accumulation orbit. It

is a simple consequence of the accumulation Lemma 5.14 that:

Lemma5.19. — Let Cq be an accumulation orbit of Cr. Then for every p ∈ Cq

there exists a sequence pn ∈ Cr such that pn → p.

We will need the following:

Lemma5.20. — Let rn ∈ Cr be a sequence accumulating at p ∈ π(A ) \ ∂Q̂. Then

p ∈ Cr, and Cr continues smoothly across {x = 0} at p.

Proof. — By Lemma 5.14 there exists an orbit Cp crossing the axis {x = 0}
transversally at p. Lemma 5.19 shows that Cr crosses the axis. But, by Lemma 5.18,

Cr can cross the axis only once. It follows that Cr = Cp and that p ∈ Cr.

Abusing notation, we still denote by W and W0 the functions W ◦π and W0 ◦ π.

If W and W0 vanish at a point lying at the boundary ∂Q̂, then the corresponding

circle forms a Jordan orbit. We have:

Lemma5.21. — The only orbits accumulating at ∂Q̂ are the boundary circles.

Proof. — Suppose that rn ∈ Cq accumulates at p ∈ ∂Q̂. Then, by continuity,

W (p) = W0(p) = 0, which implies that the boundary component through p is a

Jordan orbit. But it follows from Lemma 5.19 that any orbit accumulating at ∂Q̂
has to cross the axis more than once, and the result follows from Lemma 5.18.
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The remaining possibilities will be excluded by a lamination version of the

Poincaré-Bendixson theorem. We will make use of a smooth transverse orienta-

tion of all the Ŝp’s; such a structure is not available for a general lamination, but

exists in the problem at hand. More precisely, we will endow 〈〈Mext〉〉 ∪ E + with a

smooth vector field Z transverse to all Ŝp’s. The construction proceeds as follows:

Choose any decomposition of 〈〈Mext〉〉 ∪ E + as R × S̊ , as in Theorem 4.5: thus

each level set S̊t of the time function t is transverse to the stationary Killing vector

field K0, with the periodic Killing vector K1 tangent to S̊t. Let q ∈ Ŝp ∩S̊0; as the

null leaf Ŝp is transversal to S̊0, the intersection S̊0 ∩ Ŝp is a hypersurface in M of

co-dimension two. There exist precisely two null directions at q which are normal

to S̊0 ∩ Ŝp, one of them is spanned by l0(q); we denote by Z̊q the unique future

directed null vector spanning the other direction and satisfying Z̊q = Tq + Z̃q, where

Tq is the unit timelike future directed normal to S̊0 at q, and Z̃q is tangent to S̊ .

The above definition of Z̃q extends by continuity to q ∈ Ŝp ∩ S̊0.

Transversality and smoothness of l0 imply that there exists a neighborhood Oq

of q and an extension Ẑq of Z̃q to Oq with the property that Ẑq(r) is transverse to

Ŝr for every r ∈ Oq satisfying W0(r) = W (r) = 0. The neighborhood Oq can, and

will, be chosen to be invariant under R × U(1); similarly for Ẑq(r).

Consider the covering of S̊0 ∩ {W0 = 0}∩ {W = 0} by sets of the form Oq ∩ S̊0.

Asymptotic flatness implies that S̊0 ∩ {W0 = 0} ∩ {W = 0} is compact, which in

turn implies that a finite subcovering Oi := Oqi can be chosen. Let ϕi be a partition

of unity subordinated to the covering of 〈〈Mext〉〉 ∪ E + by the Oi’s together with

O0 :=
(
〈〈Mext〉〉 ∪ E

+
)
\
(
{W = 0} ∩ {W0 = 0}

)
.

The ϕi’s can, and will, be chosen to be R × U(1)–invariant. Set

Z :=
∑

i≥1

ϕiẐqi .

Then Z is smooth, tangent to S̊0, and transverse to all Ŝp’s.

Choose an orientation of Q̂. The vector field Z projects under π to a vector

field Z♭ on Q̂ transverse to each Cq. For each r ∈ Cq we define a vector Vq(r) by

requiring Vq(r) to be tangent to C1 at r, with {Vq, Z
♭} positively oriented, and with

Vq having length one with respect to some auxiliary Riemannian metric on Q̂. Then

Vq varies smoothly along Cq, and each Cq is in fact a complete integral curve of its

own Vq. The vector field Vp along Cp defines an order, and diverging sequences, on

Cp in the obvious way: we say that a point r′ ∈ Cp is subsequent to r ∈ Cp if one

flows from r to r′ along Vp in the forward direction; a sequence rn ∈ Vp is diverging

if rn = φ(sn)(p), where φ(s) is the flow of Vp along Cp, with sn ր ∞ or sn ց −∞.

By Lemma 5.14, if a sequence rn ∈ Cqn tends to r ∈ Cq, then the tangent spaces

TCqn accumulate on TCq. This implies that there exist numbers ǫn ∈ {±1} such

that ǫnVqn(rn) → Vq(r), and this is the best one can say in general. However, the

existence of Z guarantees that Vqn(rn) → Vq(r).

We are ready now to pass to the analysis of

Case III: In view of Lemmata 5.18 and 5.21, it remains to exclude the existence of

orbits Cq which are entirely contained within Q̂ \ ∂Q̂, and which do not intersect

π(A ), or which intersect π(A ) only once, and which do not form Jordan curves in

Q̊. Since {W = 0} ∩ S̊0 is compact, there exists p ∈ Q̂ and a diverging sequence

qn ∈ Cq such that qn → p. Again by Lemmata 5.18 and 5.21, p 6∈ ∂Q̂. The fact
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that Cp is a closed embedded curve follows now by the standard arguments of the

proof of the Poincaré–Bendixson theorem, as e.g. in [53]. The orbit Cp does not

meet ∂Q̂ by Lemma 5.21. If Cp met π(A ), it would have an intersection number

with {x = 0} equal to one by Lemma 5.18, which is impossible for a Jordan curve

in the plane. Thus Cp is entirely contained in Q̊, which has already been shown to

be impossible in Case I, and the result is established.

Similarly to Corollary 5.17, we have the following Corollary of Theorem 5.6,

which is essentially a rewording of Lemma 5.21:

Corollary5.22 (Embedded prehorizons theorem). — Under the conditions

of Theorem 5.2, away from the set Zdgt as defined in (5.9), the boundary 〈〈Mext〉〉\
〈〈Mext〉〉 is a union of embedded Killing prehorizons.

5.3. The ergoset in space-time dimension four. — The ergoset E is defined

as the set where the stationary Killing vector field K(0) is spacelike or null:

(5.39) E := {p | g(K(0),K(0))|p ≥ 0} .
In this section we wish to show that, in vacuum, the ergoset cannot intersect the

rotation axis within 〈〈Mext〉〉, if we assume the latter to be chronological.

The first part of the argument is purely local. For this we will assume that the

space-time dimension is four, that K(0) ≡ X has no zeros near a point p, that

K(1) ≡ Y has 2π–periodic orbits and vanishes at p, and that X and Y commute.

Let T̂ be any timelike vector at p, set

(5.40) T :=

∫ 2π

0

φt[Y ]∗T̂ dt ,

then T is invariant under the flow of Y . Hence T⊥ is also invariant under Y . Let SO

denote expp(T
⊥)∩O, where O is any neighborhood of p lying within the injectivity

radius of expp, sufficiently small so that SO is spacelike; note that SO is invariant

under the flow of Y . A standard argument (see, e.g., [2] Appendix C) shows that

Y vanishes on

Ap := expp(Ker∇Y ) ,

and that Ap is totally geodesic. Note that T ∈ Ker∇Y , which implies that Ap is

timelike.

We are interested in the behavior of the area function W near A , the set of

points where Y vanishes. We have ∇W |A = 0 and

∇µ∇νW |A = −∇µ∇ν

(
g(X,X)g(Y, Y ) − g(X,Y )2

)
(5.41)

= −2 (g(X,X)g(∇µY,∇νY ) − g(X,∇µY )g(X,∇νY )) .

The second term vanishes because [X,Y ] = 0, with Y vanishing on A :

Xα∇νYα|A = −Xα∇αYν = −Xα∇αYν + Y α
︸︷︷︸
=0

∇αXν = −[X,Y ]ν = 0 .

Now, the axis A is timelike, and the only non-vanishing components of the ten-

sor ∇µYν have a spacelike character on A . This implies that the quadratic form

∇µY
α∇νYα is semi-positive definite. We have therefore shown

Lemma5.23. — If X is spacelike at p ∈ A , then W < 0 in a neighborhood of p

away from A .
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Under the conditions of Theorem 5.1, we conclude that X cannot be spacelike

on A ∩ 〈〈Mext〉〉. To exclude the possibility that g(X,X) = 0 there,(16) let w be

defined as in (5.17),

w = X♭ ∧ Y ♭ ;

here, and throughout this section, we explicitly distinguish between a vector Z and

its dual Z♭ := g(Z, ·). We will further assume that X is causal at p, and that the

conclusion of Lemma 5.11 holds:

(5.42) dW ∧ w = Wdw .

Let T denote the field of vectors normal to SO normalized so that g(T,X) = 1;

note that Tp is, up to a multiplicative factor, as in (5.40). Let γ be any affinely

parameterized geodesic such that γ(0) = p, γ̇(0) ⊥ Tp and γ̇(0) ⊥ Xp; a calculation

as in (5.32) shows that

g(Y, γ̇) = g(X, γ̇) = 0

along γ. As Y is tangent to SO , from (5.42) we obtain

(5.43)
dW

ds
g(Y, Y )

︸ ︷︷ ︸
=dW∧X♭∧Y ♭(γ̇,T,Y )

= Wdw(γ̇, T, Y ) .

Now, iY dw = LY w − d(iY w) = −d(iY w), so that

dw(γ̇, T, Y ) = −d
(
iY (X♭ ∧ Y ♭)

)
(γ̇, T )

= d
(
− g(Y,X)Y ♭ + g(Y, Y )X♭

)
(γ̇, T )

=
(
− g(Y,X)dY ♭ + g(Y, Y )dX♭

)
(γ̇, T ) +

d(g(Y, Y ))

ds
.

Inserting this in (5.43), we conclude that

(5.44)
d

ds

(
W

g(Y, Y )

)
=
(
− g(Y,X)

g(Y, Y )
dY ♭ + dX♭

)
(γ̇, T )

︸ ︷︷ ︸
=:f

× W

g(Y, Y )
.

Let h be the metric induced on SO by g. Then h is a Riemannian metric invariant

under the flow of Y . As is well known (compare [19]) we have c−1s2 ≤ g(Y, Y ) =

h(Y, Y ) ≤ cs2. Since T ∈ Ker∇Y we have dY ♭(T, ·) = 0 at p. It follows that the

function f defined in (5.44) is bounded along γ near p. If g(X,X) = 0 at p, then the

limit at p of W/g(Y, Y ) along γ vanishes by (5.41). Using uniqueness of solutions of

ODE’s, it follows from (5.44) that W vanishes along γ. But this is not possible in

〈〈Mext〉〉 away from A by Theorem 5.1. We have therefore proved that the ergoset

does not intersect the axis within 〈〈Mext〉〉:

Theorem 5.24 (Ergoset theorem). — In space-time dimension four, and under

the conditions of Theorem 5.1, K(0) is timelike on 〈〈Mext〉〉 ∩ A .

A higher dimensional version of Theorem 5.24 can be found in [20].

A corollary of Theorem 5.24 is that, under the conditions there, the existence of

an ergoset implies that of an event horizon. Here one should keep in mind a similar

(16)The analysis in Section 6 shows that X cannot become null on A ∩〈〈Mext〉〉 when the vacuum

equations hold and the axis can be identified with a smooth boundary for the metric q; this can

be traced to the “boundary point Lemma”, which guarantees that the gradient of the harmonic

function ρ has no zeros at the boundary {ρ = 0}. But the behavior of q at those axis points which

are not on a non-degenerate horizon and on which X is null is not clear.
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result of Hajiček [47], under conditions that include the hypothesis of smoothness of

∂E (which does not hold e.g. in Kerr [81]), and affine completeness of those Killing

orbits which are geodesics, and non-existence of degenerate Killing horizons. On

the other hand, Hajiček assumes the existence of only one Killing vector, while in

our work two Killing vectors are required.

6. The reduction to a harmonic map problem

6.1. The orbit space in space-time dimension four. — Let (M , g) be a

chronological, four-dimensional, asymptotically flat space-time invariant under a

R × U(1) action, with stationary Killing vector field K(0) ≡ X and 2π–periodic

Killing vector field K(1) ≡ Y . Throughout this section we shall assume that

(6.1)

〈〈Mext〉〉 = R ×M , where M is a three dimensional, simply connected manifold

with boundary, invariant under the flow of Y , with the flow of X consisting of

translations along the R factor. Moreover the closure M̄ of M is the union of a

compact set and of a finite number of asymptotically flat ends.

Recall that (6.1) follows from Corollary 2.4 and Theorem 4.5 under appropriate

conditions.

Because X and Y commute, the periodic flow of Y on 〈〈Mext〉〉 defines naturally

a periodic flow on M ; in our context this flow consists of rotations around an axis

in the asymptotically flat regions. Now, every asymptotic end can be compactified

by adding a point, with the action of U(1) extending to the compactified manifold

by fixing the point at infinity. Similarly every boundary component has to be a

sphere [50, Lemma 4.9], which can be filled in by a ball, with the (unique) action

of U(1) on S2 extending to the interior as the associated rotation of a ball in R
3,

reducing the analysis of the group action to the boundaryless case. Existence of

asymptotically flat regions, or of boundary spheres, implies that the set of fixed

points of the action is non-empty (see, e.g., [6, Proposition 2.4]). Assuming, for

notational simplicity, that there is only one asymptotically flat end, it then follows

from [83] (see the italicized paragraph on p.52 there) that, after the addition of a

ball Bi to every boundary component, and after the addition of a point i0 at infinity

to the asymptotic region, the new manifold M ∪Bi ∪ {i0} is homeomorphic to S3,

with the action of U(1) conjugate, by a homeomorphism, to the usual rotations

of S3. On the other hand, it is shown in [79, Theorem 1.10] that the actions are

classified, up to smooth conjugation, by topological invariants, so that the action

of U(1) is smoothly conjugate to the usual rotations of S3. It follows that the

manifold M ∪ Bi is diffeomorphic to R
3, with the U(1) action smoothly conjugate

to the usual rotations of R
3. In particular: a) there exists a global cross-section M̊2

for the action of U(1) on M ∪Bi away from the set of fixed points A ,(17) with M̊2

diffeomorphic to an open half-plane; b) all isotropy groups are trivial or equal to

U(1); c) A is diffeomorphic to R.(18)

Somewhat more generally, the above analysis applies whenever M can be com-

pactified by adding a finite number of points or balls. A nontrivial example is

(17)We will use the symbol A to denote the set of fixed points of the Killing vector Y in M or in

M , as should be clear from the context.
(18)We are grateful to Allen Hatcher for clarifying comments on the classification of U(1) actions.
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provided by manifolds with a finite number of asymptotically flat and asymptoti-

cally cylindrical ends, as is the case for the Cauchy surfaces for the domain of outer

communication of the extreme Kerr solution.

Summarizing, under (6.1) there exists in 〈〈Mext〉〉 an embedded two-dimensional

manifold M̄2, diffeomorphic to M̂2 ≈ [0,∞) × R minus a finite number of points

(corresponding to the remaining asymptotic ends), and minus a finite number of

open half-discs (the boundary of each corresponding to a connected component of

the horizon). We denote by M2 the manifold obtained by removing from M̄2 all its

boundaries.

6.2. Global coordinates on the orbit space. — We turn our attention now to

the construction of a convenient coordinate system on a four-dimensional, globally

hyperbolic, R × U(1) invariant, simply connected domain of outer communications

〈〈Mext〉〉. Let M̄2 and M̊2 be as in Section 6.1. We will invoke the uniformization

theorem to understand the geometry of M̄2; however, some preparatory work is

useful, which will allow us to control both the asymptotic behavior of the fields

involved, as well as the boundary conditions at various boundaries.

For simplicity we assume that 〈〈Mext〉〉 contains only one asymptotically flat

region, which is necessarily the case under the hypotheses of Theorem 2.3. On M2

there is a naturally defined orbit space-metric which, away from the rotation axis

{Y = 0}, is defined as follows. Let us denote by g the metric on space-time, let

X1 = X , X2 = Y , set hij = g(Xi, Xj), let hij denote the matrix inverse to hij

wherever defined, and on that last set for Z1, Z2 ∈ TpM̊
2 set

(6.2) q(Z1, Z2) = g(Z1, Z2) − hij
g(Z1, Xi)g(Z2, Xj) .

Note that if Z1 and Z2 are orthogonal to the Killing vectors, then q(Z1, Z2) =

g(Z1.Z2). This implies that if the linear span of the Killing vectors is timelike

(which, under our hypotheses below, is the case away from the axis {Y = 0} in the

domain of outer communications), then q is positive definite on the space orthogonal

to the Killing vectors. Also note that q is independent of the choice of the basis of

the space of Killing vectors.

To take advantage of the asymptotic analysis in [19], a straightforward calculation

shows that q equals

(6.3) q(Z1, Z2) = γ(Z1, Z2) −
γ(Y, Z1)γ(Y, Z2)

γ(Y, Y )
,

where γ is the (obviously U(1)–invariant) metric on the level sets of t (where t

is any time function as in Section 6.1) obtained from the space-time metric by a

formula similar to (6.2):

(6.4) γ(Z1, Z2) = g(Z1, Z2) −
g(Z1, X)g(Z2, X)

g(X,X)
.

(So γ is not the metric induced on the level sets of t by g.) The right-hand-

side is manifestly well-behaved in the region where X is timelike; this is the case

in the asymptotic region, and near the axis on 〈〈Mext〉〉 under the conditions of

Theorem 5.24.

In any case, the asymptotic analysis of [19] can be invoked directly to obtain

information about the metric q at large distances. Recall that if the asymptotic

flatness conditions (2.1) hold with k ≥ 1, then by the field equations (2.1) holds

with k arbitrarily large. We can thus use [19] to conclude that there exist coordinates

xA, covering the complement of a compact set in R
2 after the quotient space has
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been doubled across the rotation axis, in which q is manifestly asymptotically flat

as well (see Proposition 2.2 and Remark 2.8 in [19]):

(6.5) qAB − δAB = ok−3(r
−1) .

To gain insight into the geometry of q near the horizons, one can use (6.4) with X

being instead the Killing vector which is null on the horizon. It is then shown in [18]

that each non-degenerate component of the horizon corresponds to a smooth totally

geodesic boundary for γ. (It is also shown there that every degenerate component

corresponds to a metrically complete end of infinite extent provided that the Killing

vector tangent to the generators of the horizon is timelike on 〈〈Mext〉〉 near the

horizon, but it is not clear that this property holds.) Some information on the

asymptotic geometry of γ in the degenerate case can be obtained from [46, 66];

whether or not the information there suffices to extend our analysis below to the

non-degenerate case remains to be seen.

6.3. All horizons non-degenerate. — Assuming that all horizons are non-

degenerate, we proceed as follows: Every non-degenerate component of the bound-

ary ∂M is a smooth sphere S2 invariant under U(1). As is well known, every

isometry of S2 is smoothly conjugate to the action of rotations around the z axis

in a flat R
3, with the rotation axis meeting S2 at exactly two points. Thus, as

already mentioned in Section 6.1, we can fill each component of the boundary ∂M

by a smooth ball B3, with a rotation-invariant metric there. We denote by γ any

rotation-invariant smooth Riemannian metric on R
3 which extends the original met-

ric γ, and by q the associated two-dimensional metric as in (6.3). From what has

been said we conclude that every non-degenerate component of the horizon corre-

sponds to a smooth boundary ∂M/U(1) for the metric q, consisting of a segment

which meets the rotation axis at precisely two points. The filling-in just described

is equivalent to filling in a half-disc in the quotient manifold. Since the boundary

∂M is a smooth U(1) invariant surface for γ, it meets the rotation axis orthogonally.

This implies that each one-dimensional boundary segment of ∂M/U(1) meets the

rotation axis orthogonally in the metric q.

Consider, then, a black hole space-time which contains one asymptotically flat

end and N non-degenerate spherical horizons. After adding N half-discs as de-

scribed above, the quotient space, denoted by M̂2, is then a two-dimensional non-

compact asymptotically flat manifold diffeomorphic to a half-plane. Recall that we

are assuming (6.1), and that there is only one asymptotically flat region. We will

also suppose that

W > 0 on 〈〈Mext〉〉 \ A , and(6.6)

on 〈〈Mext〉〉 ∩ A the stationary Killing vector field X is timelike.(6.7)

Note that those conditions necessarily hold under the hypotheses of Theorem 5.1,

compare Theorem 5.24.

By (6.6) the metric q is positive definite away from A . Near A the metric γ

defined in (6.4) is Riemannian and smooth by (6.7), and the analysis in [19] shows

that A is a smooth boundary for q. After doubling across the boundary, one obtains

an asymptotically flat metric on R
2. By [19, Proposition 2.3], for k ≥ 5 in (2.1)

there exist global isothermal coordinates for q:

(6.8) q = e2u(dx2 + dy2) , with u −→√
x2+y2→∞

0 .
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In fact, u = ok−4(r
−1). The existence of such coordinates also follows from the

uniformization theorem (see, e.g., [1]), but this theorem does not seem to provide the

information about the asymptotic behavior in various regimes, needed here, in any

obvious way. As explained in the proof of [19, Theorem 2.7], the coordinates (x, y)

can be chosen so that the rotation axis corresponds to x = 0, with M̂2 = {x ≥ 0}.
The next step of the construction is to modify the coordinates (x, y) of (6.8) to a

coordinate system (ρ, z) on the quotient manifold M̄2, covering [0,∞)×R, so that

ρ vanishes on the rotation axis and the event horizons. This is done by first solving

the equation

∆qρR = 0 ,

on ΩR := M̄2∩{x2+y2 ≤ R2}, with zero boundary value on ∂M̄2, and with ρR = x

on {x2 + y2 = R2}. Note that

C = sup
∂ΩR\A

x− ρR ,

is independent of R, for R large, since x and ρR differ only on the event horizons.

Since ∆qx = 0, the maximum principle implies

x− C ≤ ρR ≤ x on ΩR .

By usual arguments there exists a subsequence ρRi which converges, as i tends to

infinity, to a q–harmonic function ρ on M̄2, satisfying the desired boundary values.

By standard asymptotic expansions (see, e.g., [15]) we find that ∇ρ approaches ∇x
as
√
x2 + y2 → ∞. In fact, for any j ∈ N we have

(6.9) ρ− x =

j∑

i=0

αi(ϕ)

(x2 + y2)i/2
+O((x2 + y2)−(j+1)/2) ,

where ϕ denotes an angular coordinate in the (x, y) plane, with αi being linear

combinations of cos(iϕ) and sin(iϕ), with the expansion being preserved under

differentiation in the obvious way. In particular ∇ρ does not vanish for large x, so

that for R sufficiently large the level sets {ρ = R} are smooth submanifolds. The

strips 0 < ρ < R are simply connected so, by the uniformization theorem, there

exists a holomorphic diffeomorphism

(x, y) 7→ (α(x, y), β(x, y))

from that strip to the set {0 < α < R , β ∈ R}. By composing with a Möbius

map we can further arrange so that the point at infinity of the (x, y)–variables is

mapped to the point at infinity of the (α, β)–variables. As the map is holomorphic,

the function α(x, y) is harmonic, with the same boundary values and asymptotic

conditions as ρ, hence α(x, y) = ρ(x, y) wherever both are defined. If we denote by

z a harmonic conjugate to ρ, we similarly obtain that z − β is a constant, so that

the map

(6.10) (x, y) 7→ (ρ, z)

is a holomorphic diffeomorphism between the strips described above. Since the

constant R was arbitrarily large, we conclude that the map (6.10) provides a holo-

morphic diffeomorphism from the interior of M̄2 to {ρ > 0 , z ∈ R}, and provides

the desired coordinate system in which q takes the form

(6.11) q = e2û(dρ2 + dz2) .
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From (6.9) and its equivalent for z (which is immediately obtained from the defining

equations ∂xρ = ∂yz, ∂yρ = −∂xz) we infer that û→ 0 as
√
ρ2 + z2 goes to infinity,

with the decay rate û = ok−4(r
−1) remaining valid in the new coordinates.

In vacuum the area function W satisfies ∆q

√
W = 0 (see, e.g., [91]). If we

assume that W vanishes on ∂〈〈Mext〉〉 ∪A (which is the case under the hypotheses

of Theorem 5.1), then W = ρ on ∂〈〈Mext〉〉 ∪ A . Since ∆qρ = 0 as well, we have

∆q(
√
W − ρ) = 0, with W − ρ going to zero as one tends to infinity by [19], and the

maximum principle gives

(6.12)
√
W = ρ .

6.4. Global coordinates on 〈〈Mext〉〉. — According to Section 6.1 we have

〈〈Mext〉〉 \ A ≈ R × S1 × R
∗
+ × R ,

and this diffeomorphism defines a global coordinate system (t, ϕ, ρ, z) on 〈〈Mext〉〉 \
A , with X = ∂t and Y = ∂ϕ. Letting (xA) = (ρ, z) and (xa) = (t, ϕ), we can write

the metric in the form

g = gab(dx
a + θa

Adx
A

︸ ︷︷ ︸
=:θa

)(dxb + θb
Bdx

B) + qABdx
AdxB ,

with all functions independent of t and ϕ. The orthogonal integrability condition

of Proposition 5.3 gives

dθa = 0 ,

so that, by simple connectedness of R
∗
+ × R, there exist functions fa such that

θa = dfa. Redefining the xa’s to xa +fa, and keeping the same symbols for the new

coordinates, we conclude that the metric on 〈〈Mext〉〉 \ A has a global coordinate

representation as

(6.13) g = −ρ2e2λdt2 + e−2λ(dϕ− vdt)2 + e2û(dρ2 + dz2)

for some functions v(ρ, z), λ(ρ, z), with ρ, z and û as in Section 6.3, see in particular

(6.12). We set

(6.14) U = λ+ ln ρ , so that g(∂ϕ, ∂ϕ) = ρ2e−2U = e−2λ .

Let ω be the twist potential defined by the equation

(6.15) dω = ∗(dY ∧ Y ) ,

its existence follows from simple-connectedness of 〈〈Mext〉〉 and from d∗(dY ∧Y ) = 0

(see, e.g., [91]). As discussed in more detail in Section 6.7 below (compare [91,

Proposition 2]), the space-time metric is uniquely determined by the axisymmetric

map

(6.16) Φ = (λ, ω) : R
3 \ A → H

2 ,

where H
2 is the hyperbolic space with metric

(6.17) b := dλ2 + e4λdω2 ,

and A is the rotation axis A := {(0, 0, z) , z ∈ R} ⊂ R
3. The metric coefficients

can be determined from Φ by solving equations (6.45)-(6.47) below. The map Φ

solves the harmonic map equations [36, 88]:

(6.18) |T |2b := (∆λ− 2e4λ|Dω|2)2 + e4λ(∆ω + 4Dλ ·Dω)2 = 0 ,

where both D and ∆ refer to the flat metric on R
3, together with a set of asymptotic

conditions depending upon the configuration at hand.

We continue with the derivation of those boundary conditions.
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6.5. Boundary conditions at non-degenerate horizons. — Near the points

at which the boundary is analytic (so, e.g., at those points of the axis at which X

is timelike), the map defined by (6.10) extends to a holomorphic map across the

boundary (see, e.g., [30]). This implies that û extends across the axis as a smooth

function of ρ2 and z away from the set of points {g(X,X) = 0}.
Let us now analyze the behavior of û near the points zi ∈ A where non-

degenerate horizons meet the axis. As described above, after performing a constant

shift in the y coordinate, any component of a non-degenerate horizon can locally be

described by a smooth curve in the ζ := x+ iy plane of the form

(6.19) y = γ(x) , γ(0) = 0 , γ(x) = γ(−x) .
Near the origin, the points lying in the domain of outer communications correspond

then to the values of x + iy lying in a region, say Ω, bounded by the half-axis

{x = 0, y ≥ 0} and by the curve x+ iγ(x), with x ≥ 0.

To get rid of the right-angle-corner where the curve x+ iγ(x) meets the axis, the

obvious first attempt is to introduce a new complex coordinate

(6.20) w := α+ iβ = −iζ2 .

If we write γ(x) = a2x
2 +O(x4), then the image of {x+ iγ(x) , x ≥ 0} under (6.20)

becomes

f1(x+ iγ(x)) = 2a2x
3 +O(x5) − i (x2 − a2

2x
4 +O(x6))︸ ︷︷ ︸

=:−t

(6.21)

= it+ 2a2|t|3/2 +O(|t|5/2) .

The remaining part {iy, y ∈ R
+}, of the boundary of Ω, is mapped to itself. It

follows that the boundary of the image of Ω by the map (6.20) is a C1,1/2 curve.

Here Ck,λ denotes the space of k-times differentiable functions, the k’th derivatives

of which satisfy a Hölder condition with index λ.

To improve the regularity we replace −iζ2 by f2(ζ) = −iζ2 + σ3ζ
3 for some

constant σ3. Then (6.21) becomes

f2(x+ iγ(x)) = (2a2 + ℜσ3)x
3 +O(x5) − i (x2 +O(x4))︸ ︷︷ ︸

=:−t

−ℑ(σ3)O(x4)(6.22)

= it+ (2a2 + ℜσ3)|t|3/2 +O(|t|5/2) .

The remaining part of the boundary of Ω is mapped to the curve f2(iy), with y ≥ 0:

f2(iy) = ℑσ3y
3 + i (y2 −ℜσ3y

3)︸ ︷︷ ︸
=:t

(6.23)

= it+ ℑσ3(|t|3/2 +O(|t|2)) .
and is thus mapped to itself if σ3 is real. Choosing σ3 = −2a2 ∈ R one gets rid

of the offending |t|3/2 terms in (6.22)-(6.23), resulting in the boundary of f2(Ω) of

C2,1/2 differentiability class.

More generally, suppose that the image of x + iγ(x) by the polynomial map

ζ 7→ w = fk−1(ζ) = −iζ2 + . . . has a real part equal to β2k−1x
2k−1 +O(x2k+1); then

the substraction from fk−1 of a term β2k−1ζ
2k−1 leads to a new polynomial map

ζ → w = fk(ζ) which has real part β2k+1x
2k+1 +O(x2k+3), and the differentiability

of the image has been improved by one. Since all the coefficients β2k+1 are real,

the maps fk map the imaginary axis to itself. One should note that this argument

wouldn’t work if γ had odd powers of x in its Taylor expansion.
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Summarizing, for any k we can choose a finite polynomial fk(ζ), with lowest

order term −iζ2, and with the remaining coefficients real and involving only odd

powers of ζ, which maps the boundary of Ω to a curve

(6.24) (−ǫ, ǫ) ∋ t 7→ (µ(t), ν(t)) :=

{
(0, t), t ≥ 0;

(O(tk+1/2), t), t ≤ 0,

which is Ck,1/2.

Note that

(6.25) ψk(ζ) :=
√
ifk(ζ) = ζ

(
1 +O(|ζ|)

)
,

where
√· denotes the principal branch of the square root, is a holomorphic diffeo-

morphism near the origin. So

(6.26) w = fk(ζ) = −iψ2
k(ζ)

and we have

(6.27) dw dw̄ = 4|ψkψ
′
k|2dζ dζ̄ = 4|w||ψ′

k|2dζ dζ̄ .

We claim that the map

w 7→ η := ρ+ iz

extends across ρ = 0 to a Ck diffeomorphism near the origin. To see this, note

that we have again ∆ρ = 0 with respect to the metric dwdw̄, with ρ vanishing on

a Ck,1/2 boundary. We can straighten the boundary using the transformation

(6.28) w = (α, β) 7→ (α− µ(β), β) = w + (O(|β|k+1/2), 0) = w +O(|w|k+1/2) ,

where µ is as (6.24), and O(·) is understood for small |w|. Extending ρ with −ρ
across the new boundary, one can use the standard interior Schauder estimates on

the extended function to conclude that w 7→ ρ(w) is Ck,1/2 up-to-boundary. Now,

the condition dz = ⋆dρ, where ⋆ is the Hodge dual of the metric q, is conformally

invariant and therefore holds in the metric dw dw̄, so z is a Ck,1/2 function of w. By

the boundary version of the maximum principle we have dρ 6= 0 at the boundary

(when understood as a function of w), and hence near the boundary, so dz is non-

vanishing near the boundary and orthogonal to dρ. The implicit function theorem

allows us to conclude that the map w 7→ η is a Ck,1/2 diffeomorphism near w = 0.

Comparing (6.8) and (6.11) we have

(6.29) e2ûdη dη̄ = q = e2udζ dζ̄ =
e2u

4|w||ψ′
k|2

dw dw̄ ,

in particular dw dw̄ = e2ũkdη dη̄, and from what has been said the function ũk is

Ck−1,1/2 up to boundary. Hence

(6.30) e2û =
e2u+2ũk

4|w||ψ′
k|2

where u is a smooth function of (x2, y), while ψ′
k is a non-vanishing holomorphic

function of ζ = x + iy, ũk is a Ck−1 function of η = ρ + iz, and η 7→ w is a Ck

diffeomorphism, with w having a zero of order one where the horizon meets the

axis. Finally x+ iy is a holomorphic function of
√
iw, compare (6.26).

Choosing k = 2 we obtain

(6.31) û = −1

2
ln |w| + û1 + û2 ,
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where w is a smooth complex coordinate which vanishes where the horizon meets

the axis, û2 = − ln |ψ′
2|2/2 is a smooth function of (x, y), and û1 is a C1 function

of (ρ, z).

Taylor expanding at the origin, from what has been said (recall that η 7→ w is

conformal and that, near the origin, {ρ = 0} coincides with {α − µ(β) = 0}) it

follows that there exists a real number a > 0 such that

(ρ, z) =
(
a−2(α− µ(β)), a−2β

)
+O((α − µ(β))2 + β2) ,

which implies

(6.32) (α, β) = (a2ρ, a2z) +O(ρ2 + z2) .

Here we have assumed that z has been shifted by a constant so that it vanishes at

the chosen intersection point of the axis and of the event horizon.

We conclude that there exists a constant C such that

(6.33) |û+
1

2
ln
√
ρ2 + z2| ≤ C near (0, 0) .

This is the desired equation describing the leading order behavior of û near the

meeting point of the axis and a non-degenerate horizon.

6.5.1. The Ernst potential. — We continue by deriving the boundary conditions

satisfied by the Ernst potential (U, ω) near the point where the horizon meets the

axis. Here U is as in (6.13)-(6.14), and

ω is obtained from the function v appearing in the metric by solving (6.45) below.

Our analysis so far can be summarized as:

(6.34) x+ iy = ζ 7→ ψk(ζ) =
√
ifk(ζ) 7→ −i(ψk(ζ))2 = w 7→ ρ+ iz .

Each map is invertible on the sets under consideration; and each is a Ck diffeomor-

phism up-to-boundary except for the middle one, which involves the squaring of a

complex number.

Using ζ = ψ−1
k (

√
iw), the expansion

ψ−1
k (c+ id) = (c+ id)

(
1 +O(

√
c2 + d2)

)
,

which follows from (6.25), together with (6.32), we obtain

x+ iy = a
√
−z + iρ+O(ρ2 + z2) .

Equivalently,

(6.35) x =
aρ√

2(z +
√
z2 + ρ2)

+O(ρ2+z2) , y = a

√
z +

√
z2 + ρ2

2
+O(ρ2+z2) .

To continue, in addition to (6.1), (6.6) and (6.7) we assume that

The level sets of the function t, defined as the projection on(6.36)

the R factor in (6.1), are spacelike, with ∂ϕt = 0;

this is justified for our purposes by Theorem 4.5. Thus, the Killing vector ∂ϕ is

tangent to the level sets of t, so that

g(∂ϕ, ∂ϕ) = h(∂ϕ, ∂ϕ) ,

where h is the Riemannian metric induced on the level sets of t. As shown in [19],

we have

(6.37) h(∂ϕ, ∂ϕ) = f(x, y)x2 ,
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where the function f(x, y) is uniformly bounded above and below on compact sets.

Recall that U has been defined as − 1
2 ln(gϕϕρ

−2), and that (ρ, z) have been

normalized so that (0, 0) corresponds to a point where a non-degenerate horizon

meets the axis. We want to show that

(6.38) U = ln

√
z +

√
z2 + ρ2 +O(1) near (0, 0) .

(This formula can be checked for the Kerr metrics by a direct calculation, but we

emphasize that we are considering a general non-degenerate horizon.) To see that,

we use (6.37) to obtain

ln(gϕϕρ
−2) = ln(x2ρ−2) + ln(gϕϕx

−2) = 2 ln(xρ−1) +O(1) .

We assume that ρ2 + z2 is sufficiently small, as required by the calculations that

follow. In the region 0 ≤ |z| ≤ 2ρ we use (6.35) as follows:

ln(xρ−1) = ln



a+

√
2
(

z
ρ +

√
z2

ρ2 + 1
)
O(ρ3/2 + z2

ρ1/2 )
√

2(z +
√
z2 + ρ2)




= − ln

(√
2(z +

√
z2 + ρ2)

)
+O(1) .

In the region z ≤ 0 we note that

1

ρ

√
2(z +

√
z2 + ρ2) =

√
2(z +

√
z2 + ρ2)

√
2(−z +

√
z2 + ρ2)

ρ
√

2(−z +
√
z2 + ρ2)

=
2√

2(−z +
√
z2 + ρ2)

≤
√

2

(z2 + ρ2)1/4
.

Hence, again by (6.35),

ln(xρ−1) = ln



a+ 1
ρ

√
2(z +

√
z2 + ρ2)O(ρ2 + z2)

√
2(z +

√
z2 + ρ2)





= ln



a+O
(
(ρ2 + z2)3/4

)
√

2(z +
√
z2 + ρ2)



 = − ln

(√
2(z +

√
z2 + ρ2)

)
+O(1) .

In the region 0 ≤ ρ ≤ z/2 some more work is needed. Instead of (6.35), we want

to use a Taylor expansion of ρ around the axis α = 0, where α is as in (6.20). To

simplify the calculations, note that there is no loss of generality in assuming that

the map ψk of (6.25) is the identity, by redefining the original (x, y) coordinates to

the new ones obtained from ψk. Since in the region 0 ≤ ρ ≤ z/2 we have β ≥ 0, the

function µ(β) in (6.28) vanishes, so

α(ρ, z) = α(0, z)︸ ︷︷ ︸
=µ
(

β(0,z)
)
=0

+∂ρα(0, z)ρ+O(ρ2) = ∂ρα(0, z)ρ+O(ρ2) .

Note that ∂ρα(0, z) tends to a2 as z tends to zero, so is strictly positive for z small

enough. Instead of (6.35) we now have directly

x =
α√

2(β +
√
β2 + α2)

=⇒ x

ρ
=

∂ρα(0, z) +O(ρ)√
2(β +

√
β2 + α2)

.
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In the current region α is equivalent to ρ, β is equivalent to z,
√
β2 + α2 is equivalent

to z, and z is equivalent to 2(z +
√
z2 + ρ2), which leads to the desired formula:

ln(xρ−1) = − ln

(√
2(β +

√
β2 + α2)

)
+O(1)

= − ln



√

2(z +
√
z2 + ρ2)

√
2(β +

√
β2 + α2)

√
2(z +

√
z2 + ρ2)


+O(1)

= − ln

(√
2(z +

√
z2 + ρ2)

)
+O(1) .

This finishes the proof of (6.38).

Let us turn our attention now to the twist potential ω: as is well known, or

from [24, Equation (2.6)] together with the analysis in [19], ω is a smooth function

of (x, y), constant on the axis {x = 0}, with odd x–derivatives vanishing there. So,

Taylor expanding in x, there exists a constant ω0 and a bounded function ω̊ such

that

ω = ω0 + ω̊(x, y)x2

= ω0 +
ω̊(x, y)

(
aρ+

√
2(z +

√
z2 + ρ2)O(ρ2 + z2)

)2

2(z +
√
z2 + ρ2)

.(6.39)

In our approach below, the proof of black hole uniqueness requires a uniform

bound on the distance between the relevant harmonic maps. Now, using the coor-

dinates (λ, ω) on hyperbolic space as in (6.17), the distance db between two points

(x1, ω1) and (x2, ω2) is implicitly defined by the formula [3, Theorem 7.2.1]:

cosh(db) − 1 =
(e−2x1 − e−2x2)2 + 4(ω1 − ω2)

2

2e−2x1−2x2
.

Using the (U, ω) parameterization of the maps, with U as in (6.14), the distance

measured in the hyperbolic plane between two such maps is the supremum of the

function db:

cosh(db) − 1 =
ρ4(e−2U1 − e−2U2)2 + 4(ω1 − ω2)

2

2ρ4e−2U1−2U2

=
1

2
(e2(U1−U2) + e2(U2−U1) − 2)︸ ︷︷ ︸

(a)

+2 ρ−4e2(U1+U2)(ω1 − ω2)
2

︸ ︷︷ ︸
(b)

.

Inserting (6.38) and the analogous expansion for the Ernst potential of a second

metric into (a) above we obviously obtain a bounded contribution. Finally, assuming

ω1(0, 0) = ω2(0, 0), up to a multiplicative factor which is uniformly bounded above

and bounded away from zero, (b) can be rewritten as a square of the difference of

two terms of the form

(6.40) fi := ω̊i

(
ai + ρ−1

√
2(z +

√
z2 + ρ2)O(ρ2 + z2)

)2

,

with i = 1, 2. We have the following, for all z2 + ρ2 ≤ 1:

1. The functions fi in (6.40) are uniformly bounded in the sector |z| ≤ ρ:

|fi| ≤ C
(
ai +

√
2(z +

√
z2 + ρ2)O(ρ+ z2/ρ)

)2

≤ C′ .

2. For 0 ≤ ρ ≤ −z we write

0 ≤ z +
√
z2 + ρ2 = |z|(

√
1 +

ρ2

z2
− 1) ≤ C

ρ2

|z| ,
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so that

|fi| ≤ C
(
ai +

1

|z|1/2
O(ρ2 + z2)

)2

= C(ai +O(|z|3/2))2 ≤ C′ .

3. For 0 ≤ ρ ≤ z one can proceed as follows: by (6.37), together with the analysis

of ω in [19], there exists a constant C such that near the axis we have

(6.41) C−1x2 ≤ g(∂ϕ, ∂ϕ) = h(∂ϕ, ∂ϕ) ≤ Cx2 ,
∣∣∣ω − ω|x=0︸ ︷︷ ︸

=:ω0

∣∣∣ ≤ Cx2

(recall that h denotes the metric induced by g on the slices t = const, where

t is a time function invariant under the flow of ∂ϕ). But

(6.42)

(ω1 − ω2)
2

ρ4e−2U1−2U2
=

(ω1 − ω2)
2

g1(∂ϕ, ∂ϕ)g2(∂ϕ, ∂ϕ)
≤ 2

(ω1 − ω0)
2 + (ω2 − ω0)

2

g1(∂ϕ, ∂ϕ)g2(∂ϕ, ∂ϕ)

= 2

(
ω1 − ω0

g1(∂ϕ, ∂ϕ)

)2

︸ ︷︷ ︸
≤C2

g1(∂ϕ, ∂ϕ)

g2(∂ϕ, ∂ϕ)︸ ︷︷ ︸
=e2(U2−U1)

+2

(
ω2 − ω0

g2(∂ϕ, ∂ϕ)

)2

︸ ︷︷ ︸
≤C2

g2(∂ϕ, ∂ϕ)

g1(∂ϕ, ∂ϕ)︸ ︷︷ ︸
=e2(U1−U2)

,

where gi denotes the respective space-time metric, while xi denotes the respec-

tive x coordinate. Uniform boundedness of this expression, in a neighborhood

of the intersection point, follows now from (6.38).

We are ready now to prove one of the significant missing elements of all previous

uniqueness claims for the Kerr metric:

Theorem 6.1. — Suppose that (6.1), (6.6)-(6.7) and (6.36) hold. Let (Ui, ωi), i =

1, 2, be the Ernst potentials associated with two vacuum, stationary, asymptotically

flat axisymmetric metrics with smooth non-degenerate event horizons. If ω1 = ω2

on the rotation axis, then the hyperbolic-space distance between (U1, ω1) and (U2, ω2)

is bounded, going to zero as r tends to infinity in the asymptotic region.

Proof. — We have just proved that the distance between two different Ernst po-

tentials is bounded near the intersection points of the horizon and of the axis. In

view of (6.7), the distance is bounded on bounded subsets of the axis away from the

horizon intersection points by the analysis in [19]. Next, both ωa’s are bounded on

the horizon, and both functions ρ2e−2Ua ’s are bounded on the horizon away from

its end points. Finally, both ωa’s approach the Kerr twist potential at infinity by

the results in [87] (the asymptotic Poincaré Lemma 8.7 in [21] is useful in this con-

text), so the distance approaches zero as one recedes to infinity by a calculation as

in (6.42), together with the asymptotic analysis of [19]; a more detailed exposition

can be found in [31].

6.6. The harmonic map problem: existence and uniqueness. — In this

section we consider Ernst maps satisfying the following conditions, modeled on the

local behavior of the Kerr solutions:

1. There exists Ndh ≥ 0 degenerate event horizons, which are represented by

punctures (ρ = 0, z = bi), together with a mass parameter mi > 0 and

angular momentum parameter ai = ±mi, with the following behavior for

small ri :=
√
ρ2 + (z − bi)2,

(6.43) U = ln
( ri

2mi

)
+

1

2
ln

(
1 +

(z − bi)
2

r2i

)
+O(ri).
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The twist potential ω is a bounded, angle-dependent function which jumps

by −4Ji = −4aimi when crossing bi from z < bi to z > bi, where Ji is the

“angular momentum of the puncture”.

2. There exists Nndh ≥ 0 non-degenerate horizons, which are represented by

bounded open intervals (c−i , c
+
i ) = Ii ⊂ A , with none of the previous bj’s

belonging to the union of the closures of the Ii. The functions U − 2 lnρ and

ω extend smoothly across each interval Ii, with the following behavior near

the end points, for some constant C, as derived in (6.38):

(6.44) |U − 1

2
ln(
√
ρ2 + (z − c±i )2 + z − c±i )| ≤ C near (0, c±i ) .

The function ω is assumed to be locally constant on A \ (∪i{bi} ∪j Ij), with

expansions as in (6.39) nearby.

3. The functions U and ω are smooth across A \ (∪i{bi} ∪j Ij).

A collection {bi,mi}Ndh
i=1 , Ij , j = 1, . . . , Nndh, and {ωk}, where the ωk’s are the

values of ωi on the connected components of A \ (∪i{bi}∪j Ij), will be called “axis

data”.

We have the following [24, Appendix C] (compare [33,93] and references therein

for previous related results):

Theorem 6.2. — For any set of axis data there exists a unique harmonic map

Φ : R
3 \ A → H

2 which lies a finite distance from a solution with the properties

1.–3. above, and such that ω = 0 on A for large positive z.

Here the distance between two maps Φ1 and Φ2 is defined as

d(Φ1,Φ2) = sup
p∈R3\A

db(Φ1(p),Φ2(p)) ,

where the distance db is taken with respect to the hyperbolic metric (6.17).

We emphasize the following corollary, first established by Robinson [84] using

different methods (and assuming |a| < m, which Weinstein [91] does not); the

approach presented here is due to Weinstein [91]:(19)

Corollary6.3. — For each mass parameter m and angular momentum parameter

a ∈ (−m,m) there exists only one map Φ with the behavior at the axis corresponding

to an I+–regular axisymmetric vacuum black hole with a connected non-degenerate

horizon centered at the origin and with ω vanishing on A for large positive z.

Furthermore, no I+–regular non-degenerate axisymmetric vacuum black holes with

|a| ≥ m exist.

Proof. — Theorem 4.5 shows that (6.1) and (6.36) hold, (6.6) follows from Theo-

rem 5.1, while (6.7) holds by the Ergoset Theorem 5.24. One can thus introduce

(ρ, z) coordinates on the orbit space as in Section 6.2, then the event horizon cor-

responds to a connected interval of the axis of length ℓ, for some ℓ > 0. Let (U, ω)

be the Ernst potential corresponding to the black hole under consideration, with ω

(19)Yet another approach can be found in [77]; compare [72, Section 2.4]. In order to become

complete, the proof there needs to be complemented by a justification of the assumed behavior of

their potential Φ (not to be confused with the map Φ here) on the set {ρ = 0}. More precisely,

one needs to justify differentiability of Φ on {ρ = 0} away from the horizons, continuity of Φ and

Φ′ at the points where the horizon meets the rotation axis, as well as the detailed differentiability

properties of Φ near degenerate horizons as implicitly assumed in [72, Section 2.4].
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normalized to vanish on A for large positive z. Let J be the total angular momen-

tum of the black hole, there exists a Kerr solution (UK , ωK), with ωK normalized to

vanish on A for large positive z, and such that the corresponding “horizon interval”

has the same length ℓ. We can adjust the z coordinate so that the horizon intervals

coincide. The value of ω on the axis for large negative z equals 4J , similarly for

ωK , hence ω = ωK on the axis except possibly on the horizon interval. Theorem 6.1

shows that (U, ω) lies at a finite distance from (UK , ωK). By the uniqueness part

of Theorem 6.2 we find (U, ω) = (UK , ωK), thus the ADM mass of the black hole

equals the mass of the comparison Kerr solution, and |a| < m follows.

6.7. Candidate solutions. — Each harmonic map (λ, ω) of Theorem 6.2 with

Ndh + Nndh ≥ 1 provides a candidate for a solution with Ndh + Nndh components

of the event horizon, as follows: let the functions v and û be the unique solutions

of the set of equations

∂ρv = −e4λρ ∂zω , ∂zv = e4λρ ∂ρω ,(6.45)

∂ρû = ρ
[
(∂ρλ)

2 − (∂zλ)
2 + 1

4e
4λ((∂ρω)2 − (∂zω)2)

]
+ ∂ρλ ,(6.46)

∂z û = 2 ρ
[
∂ρλ ∂zλ+ 1

4e
4λ∂ρω ∂zω

]
+ ∂zλ ,(6.47)

which go to zero at infinity. (Those equations are compatible whenever (λ, ω) sat-

isfy the harmonic map equations.) Then the metric (6.13) satisfies the vacuum

Einstein equations (see, e.g., [95, Eqs. (2.19)-(2.22)]). Every such solution provides

a candidate for a regular, vacuum, stationary, axisymmetric black hole with several

components of the event horizon. If Ndh + Nndh = 1 the resulting metrics are of

course the Kerr ones.

At the time of writing of this work, it is not known whether any such candidate

solution other than Kerr itself describes an I+–regular black hole. It should be

emphasized that there are two separate issues here: The first is that of uniqueness,

which is settled by the uniqueness part of Theorem 6.2 together with the remaining

analysis in this section: if there exist stationary axisymmetric multi-black hole

solutions, with all components of the horizon non-degenerate, then they belong to

the family described by the harmonic maps of Theorem 6.2. Note that Theorem 6.2

extends to those solutions with degenerate horizons with the behavior described

in (6.43). Conceivably this covers all degenerate horizons, but this remains to be

established.

Another question is that of the global properties of the candidate solutions: for

this one needs, first, to study the behavior of the harmonic maps of Theorem 6.2

near the singular set in much more detail in order to establish e.g. existence of a

smooth event horizon; an analysis of this issue has only been done so far [69, 91] if

Ndh = 0 away from the points where the axis meets the horizon, and the question of

space-time regularity at those points is wide open. Regardless of this, one expects

that for all such solutions the integration of the remaining equations (6.45)-(6.47)

will lead to singular “struts” in the space-time metric (6.13) somewhere on A .

7. Proof of Theorem 1.3

If E + is empty, the conclusion follows from the Komar identity and the rigid

positive energy theorem (see, e.g. [18, Section 4]). Otherwise the proof splits into

two cases, according to whether or not X is tangent to the generators of E +, to be

covered separately in Sections 7.1 and 7.2.



ON UNIQUENESS OF STATIONARY VACUUM BLACK HOLES 53

7.1. Rotating horizons. — Suppose, first, that the Killing vector is not tangent

to the generators of some connected component E
+
0 of E + = H + ∩ I+(Mext).

Theorem 4.14 shows that the isometry group of (M , g) contains R × U(1). By

Corollary 2.4 〈〈Mext〉〉 is simply connected so that, in view of Theorem 4.5, the

analysis of Section 6 applies, leading to the global representation (6.13) of the

metric. The analysis of the behavior near the symmetry axis of the harmonic map

Φ of Section 6.5 shows that Φ lies a finite distance from one of the solutions of

Theorem 6.2, and the uniqueness part of that last theorem allows us to conclude;

compare Corollary 6.3 in the connected case.

7.2. Non-rotating case. — The case where the stationary Killing vector X is

tangent to the generators of every component of H + will be referred to as the non-

rotating one. By hypothesis ∇(g(X,X)) has no zeros on E +, so all components of

the future event horizon are non-degenerate.

Deforming S near ∂S if necessary, we may without loss of generality assume

that S can be extended across E + to a smooth spacelike hypersurface there.

For the proof we need a new hypersurface S ′′ which is maximal, Cauchy for

〈〈Mext〉〉, with X vanishing on ∂S ′′. Under our hypotheses such a hypersurface

will not exist in general, so we start by replacing (M , g) by a new space-time

(M ′, g′) with the following properties:

1. (M ′, g′) contains a region 〈〈Mext〉〉′ isometric to (〈〈Mext〉〉, g);

2. (M ′, g′) is invariant under the flow of a Killing vector X ′ which coincides with

X on 〈〈Mext〉〉;
3. Each connected component of the horizon E

+
0

′
is contained in a bifurcate

Killing horizon, which contains a “bifurcation surface” where X ′ vanishes.

We will denote by S the union of these bifurcation surfaces.

This is done by attaching to 〈〈Mext〉〉 a bifurcate horizon near each connected

component of E + as in [82], invoking Corollary 5.17.

We wish, now to construct a Cauchy surface S ′ for 〈〈Mext〉〉′ such that ∂S ′ = S.

To do that, for ǫ > 0 let gǫ denote a family of metrics such that gǫ tends to g, as ǫ

goes to zero, uniformly on compact sets, with the property that null directions for

gǫ are spacelike for g. Consider the family of gǫ–null Lipschitz hypersurfaces

Nǫ := J̇+
ǫ (S) ∩ M ,

where J̇+
ǫ denotes the boundary of the causal future with respect to the metric

gǫ. The Nǫ’s are threaded with gǫ–null geodesics, with initial points on S, which

converge uniformly to g-null geodesics starting from S, hence to the generators of E +

(within M ′). It follows that, for all ǫ small enough, Nǫ intersects S transversally.

Furthermore, since E + is smooth, decreasing ǫ if necessary, continuity of Jacobi

fields with respect to ǫ implies that the Nǫ’s remain smooth in the portion between

S and their intersection with S . Choosing ǫ small enough, one obtains a smooth g-

spacelike hypersurface S ′, with boundary at S, by taking the union of the portion

of Nǫ between S and where it meets S , with that portion of S which extends

to infinity and which is bounded by the intersection with Nǫ, and smoothing out

the intersection. The hypersurface S ′ can be shown to be Cauchy by the usual

arguments [9, 40].

By [27] there exists an asymptotically flat Cauchy hypersurface S ′′ for 〈〈Mext〉〉,
with boundary on S, which is maximal.
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We wish to show, now, that 〈〈Mext〉〉′ , and hence 〈〈Mext〉〉, are static; this has

been first proved in [89], but a rather simple proof proceeds as follows: Let us

decompose X ′ as Nn+Z, where n is the future-directed normal to S ′′, while Z is

tangent. The space-time Killing equations imply

(7.1) DiZj +DjZi = −2NKij ,

where gij is the metric induced on S ′′, Kij is its extrinsic curvature tensor, and

D is the covariant derivative operator of gij . Since S ′′ is maximal, the (vacuum)

momentum constraint reads

(7.2) DiK
ij = 0 .

From (7.1)-(7.2) one obtains

(7.3) Di(K
ijZj) = −NKijKij .

Integrating (7.3) over S ′′, the boundary integral in the asymptotically flat regions

gives no contribution because Kij approaches zero there as O(1/rn−1), while Z

approaches zero there as O(1/rn−2) [25]. The boundary integral at the horizons

vanishes since Z and N vanish on S = ∂S ′′ by construction. Hence

(7.4)

∫

S ′′

NKijKij = 0 .

On a maximal hypersurface the normal component N of a Killing vector satisfies

the equation

(7.5) ∆N = KijKijN ,

and the maximum principle shows that N is strictly positive except at ∂S ′′. Static-

ity of 〈〈Mext〉〉′ along S ′′ follows now from (7.4). Moving the S ′′’s with the

isometry group one covers 〈〈Mext〉〉′ [27], and staticity of 〈〈Mext〉〉′ follows. Hence

〈〈Mext〉〉 is static as well, and Theorem 1.4 allows us to conclude that 〈〈Mext〉〉 is

Schwarzschildian. This achieves the proof of Theorem 1.3.

8. Concluding remarks

To obtain a satisfactory uniqueness theory in four dimensions, the following issues

remain to be addressed:

1. The previous versions of the uniqueness theorem required analyticity of both

the metric and the horizon. As shown in Theorem 4.11, the latter follows from

the former. This is a worthwhile improvement, as even C1–differentiability of

the horizon is not clear a priori. But the hypothesis of analyticity of the metric

remains to be removed.

In this context one should keep in mind the Curzon solution, where analyt-

icity of the metric fails precisely at the horizon. We further note an interesting

recent uniqueness theorem for Kerr without analyticity conditions [59]. How-

ever, the examples constructed at the end of Section 2.3.1 show that further

insights are needed to be able to conclude along the lines envisaged there.

The hypothesis of analyticity is particularly annoying in the static context,

being needed there only to exclude non-embedded Killing prehorizons. The

nature of that problem seems to be rather different from Hawking’s rigidity,

with presumably a simpler solution, yet to be found.
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2. The question of uniqueness of black holes with degenerate components of the

Killing horizon requires further investigations. Recall that non-existence of

stationary, vacuum, I+–regular black holes with all components of the event

horizon non-rotating and degenerate, follows immediately from the Komar

identity and the positive energy theorem [58] (compare [18, Section 4]). Fur-

thermore, the results here go a long way to prove uniqueness of degenerate,

stationary, axisymmetric, rotating configurations: the only element missing

is an equivalent of Theorem 6.1. We expect that Theorem 2.2 can be useful

for solving this problem, and we hope to return to that question in the near

future.

In any case, the above would not cover solutions with degenerate non-

rotating components. One could exclude such solutions by proving existence

of maximal hypersurfaces within 〈〈Mext〉〉 with an appropriate asymptotic

behavior at the cylindrical ends. The argument presented in Section 7.2 would

then apply to give staticity, and non-existence would then follow from [26], or

from Theorem 1.4.

3. The question of existence of multi-component solutions needs to be settled.

And, of course, the question of classification of higher dimensional stationary

black holes is largely unchartered territory.
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56 P.T. CHRUŚCIEL & J.L. COSTA

[10] G. Bunting & A. Masood–ul–Alam – “Nonexistence of multiple black holes in
asymptotically Euclidean static vacuum space-time”, Gen. Rel. Grav. 19 (1987),
p. 147–154.

[11] B. Carter – “Killing horizons and orthogonally transitive groups in space-time”,
Jour. Math. Phys. 10 (1969), p. 70–81.

[12] , “Black hole equilibrium states”, Black Holes (C. de Witt & B. de Witt, eds.),
Gordon & Breach, New York, London, Paris, 1973, Proceedings of the Les Houches
Summer School.

[13] , “Bunting identity and Mazur identity for non–linear elliptic systems including
the black hole equilibrium problem”, Commun. Math. Phys. 99 (1985), p. 563–591.

[14] U. Christ & J. Lohkamp – “Singular minimal hypersurfaces and scalar curvature”,
(2006), arXiv:math.DG/0609338.
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