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Resumo 

O presente trabalho relata os impactos na mobilidade urbana e qualidade do ar em 

Lisboa, Portugal, como consequência das restrições impostas para conter a transmissão 

do vírus SARS-CoV-2, causador da doença COVID-19, onde durante o primeiro período 

de emergência nacional (18-03-2020 a 03-05-2020) as reduções acentuadas nas atividades 

antropogénicas, nomeadamente o tráfego rodoviário, resultaram na redução generalizada 

das concentrações dos principais poluentes atmosféricos medidos nas seis estações de 

monitorização da qualidade do ar em Lisboa quando comparados ao período homólogo 

de 2013-2019, sendo o 𝑁𝑂2 o poluente atmosférico mais impactado com uma redução 

média de 54.35% nas estações de tráfego e 28.62% nas estações de fundo. Uma exceção 

a esta tendência foi o aumento observado na concentração de 𝑂3 de 12.89% nas estações 

de tráfego potencialmente devido a mudanças na relação 𝑁𝑂𝑥:COV e redução da ação de 

redução de 𝑂3 por reação com 𝑁𝑂 como resultado da redução acentuada da concentração 

de 𝑁𝑂𝑥 nas zonas habitualmente mais poluídas da cidade. Este fenómeno reforça a 

necessidade de medidas que mitiguem o aumento da poluição de 𝑂3 no âmbito do plano 

de melhoria da qualidade do ar de Lisboa e Vale do Tejo que visa a redução das 

concentrações de 𝑁𝑂2, nomeadamente medidas específicas de gestão de COV. O 

indicador de mobilidade da Google para o comércio local em Lisboa foi identificado 

como a atividade antropogénica mais relevante com uma correlação moderada e positiva 

com a concentração 𝑁𝑂2 (r=+0.54). A velocidade média do vento foi identificada como 

a atividade natural mais relevante com uma correlação moderada e negativa com a 

concentração 𝑁𝑂2 (r=-0.53). Foi treinada uma ML pipeline para prever a concentração 

𝑁𝑂2 que teve como entradas os dados de atividade antropogénica, meteorológica e 

qualidade do ar desde Março/2020 a Março/2021, obtendo 𝑅2=0.925 no conjunto de teste. 

A análise de importância dos atributos identificam as variáveis antropogénicas como 

responsáveis por 41.19% da concentração 𝑁𝑂2 enquanto que as variáveis naturais 

respondem por 58.81%. 

Palavras-Chave: Mobilidade urbana; qualidade do ar; COVID-19; aprendizagem 

automática 
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Abstract 

The present work reports the impacts on urban mobility and air quality in Lisbon, 

Portugal as a consequence of the imposed restrictions to curb the transmission of SARS-

CoV-2 virus which causes COVID-19 disease. During the first national emergency period 

(18-03-2020 to 03-05-2020) the sharp reductions in anthropogenic activities, most 

importantly road traffic, resulted in generally reduced criteria air pollutant concentration 

when compared to a homologous baseline from 2013-2019 measured in the six air quality 

monitoring stations throughout the city.  The most negatively impacted air pollutant was 

𝑁𝑂2 with a reduction of 54.35% in traffic stations and 28.62% reduction in background 

stations. An exception to this trend was the observed 𝑂3 concentration increase of 12.89% 

in traffic stations which is potentially due to changes in the 𝑁𝑂𝑥:VOC ratio and reduced 

𝑂3 titration by 𝑁𝑂 as a result of sharp decrease of 𝑁𝑂𝑥 emissions in the usually most 

polluted city hotspots. This phenomenon raises the need of additional measures to 

mitigate 𝑂3 pollution increases as part of the Lisbon and Tagus Valley air quality 

improvement plan which aims to reduce 𝑁𝑂2 concentrations, namely specific measures 

for VOC management. Google mobility indicator for local commerce was found to be the 

main anthropogenic activity indicator for Lisbon with a moderate and positive correlation 

with 𝑁𝑂2 concentration (r=+0.54), whereas the average wind speed  was the most 

relevant natural phenomena contributing to 𝑁𝑂2 concentration with a moderate and 

negative correlation (r=-0.53). A regressor ML pipeline was trained to predict 𝑁𝑂2 

concentration with the available anthropogenic activity, weather, and air pollutant inputs 

from March/2020 to March/2021, achieving 𝑅2=0.925 on the test set and subsequent 

feature importance analysis uncovered that anthropogenic features contribute to 41.19% 

of 𝑁𝑂2 concentrations and natural phenomena features contribute to 58.81%. 

Keywords: urban mobility; air quality; covid-19; machine-learning; automl 
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Chapter 1 – Introduction 

1.1. Topic Context 

The COVID-19 disease, caused by the SARS-CoV-2 virus, initially detected in 

Wuhan, China in December 2019, made its way to Europe arriving in the end of January 

2020 with the first reported cases in France on the 24th of January 2020. The first cases 

reported in Portugal on the 2nd of March 2020 happened while some other countries, such 

as Italy, were already in the first exponential COVID-19 case curve. 

The World Health Organization (WHO) declared COVID-19 a pandemic on the 11th 

of March 2020 and the Portuguese government started imposing pre-emptive restrictive 

measures on Monday, 16th of March, which made Friday, 13th of March, the last day of 

in-person work and study for many Portuguese, followed by the formal declaration of the 

national state of emergency in Portugal on the 18th of March 2020 until the 2nd of May 

2020 which introduced a general mandatory confinement to curb the spread of the disease. 

This resulted in an unprecedent reduction of anthropogenic activities responsible for the 

emission of several air pollutants.  

Immediately after the end of the (first) national emergency state, the national calamity 

situation was declared where a gradual lockdown easing plan, re-evaluated every two 

weeks, was executed between the 2nd of May and 15th of June for Lisbon Metropolitan 

Area (AML), restarting many in-person public, economic, educative, social and cultural 

activities with increased sanitary rules while some riskier activities remained prohibited 

like mass public events, nightclubs and public in football stadiums, and telework was no 

longer mandatory.  

The national calamity situation ended on the 1st of July for most of Lisbon 

Metropolitan Area (19 parishes of 5 municipalities remained in calamity situation due to 

the high incidence of COVID-19 cases) and gave way for the local contingency situation, 

while the rest of the country entered the alert situation. The local contingency situation 

was declared for the remaining Lisbon Metropolitan Area 19 parishes on the 30th of July. 

In April 2020, the month with most severe levels of confinement, the consumption of 

liquid fuels suffered unprecedent homologous reductions [1], -58.6% for Gasoline and -

47.0% for Diesel, and electrical energy consumption had an homologous drop of -13.8%, 

whereas 69% of the production was of renewable sources, 14% was imported and the 

remaining 17% of non-renewable sources was produced solely with Natural Gas with no 
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coal being burned since the two existing coal power plants in Portugal were 

commissioned in 1985 [2]. Changes in economic activity and telework promoted drastic 

changes in energy consumption [3], namely domestic energy consumption which in April 

2020 had a homologous increase of 31%, while industry energy consumption dropped 

17% and services dropped 43%. In April 2020 the maritime port of Lisbon registered a 

decrease of 47.70% in ships docked [4] and Lisbon International Airport registered a drop 

in 95.88% aircraft movements [5]. 

Throughout the most severe lockdown periods, government agencies, environmental 

associations and the press reported exceptional improvement of air quality in Lisbon and 

the cause was associated to the sharp reduction of anthropogenic pollutant activities. It is 

of the utmost importance to study the phenomena of air pollution response to variation of 

anthropogenic activities to better understand and quantify its causal relation and to 

support the decision process related to environmental policies. 

 

1.2. Motivation and topic relevance 

In a typical workday in 2019, Lisbon saw more than half a million road vehicles [6] 

transiting through the city. Around 370.000 vehicles came in from the periphery [7] 

adding to the roughly 213.000 vehicles from within the city. In 2019 Lisbon had a Tom-

Tom congestion Index of  33% [8], which means that it takes in average 33% more time 

per trip than in normal traffic conditions, with rush-hour drivers spending an average of 

43 extra minutes stuck in traffic per workday, thus increasing vehicle operation time, 

engine idle time, slower speeds, and lower gear operation, all contributing to increased 

fuel consumption and therefore pollutant emissions [9]. 

In Portugal in 2019, of all registered vehicles [10], diesel engines account for 65.47%, 

gasoline engines for 32.46%, LPG engines for 0.83% and 1,24% for other motorization 

types where all types of electric vehicles are included [11]. Moreover, in 2019, 62.02% 

of the Portuguese vehicle fleet is over 10 years [12], whose engines implement worse 

European emission standards than newer engines [13]. 

The 2017 Mobility Survey for the Lisbon Metropolitan Area [14] reports that 60.8% 

of all trips are done using private passenger vehicles (cars and motorbikes) and the 

occupation ratio of passenger vehicles is 1,60 persons. On the other hand, only 15.8% of 
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trips are done using public transportation and 23.5% of trips done with soft transportation 

means from which only 0.5% of trips are done using bicycles. 

The low electrification of the Portuguese vehicle fleet, the greater share of diesel 

engines, the large share of older vehicles (pre-EURO 5/6), high urban road congestion 

levels and low adoption of public transport make urban air pollution concentrations, 

namely 𝑁𝑂𝑥 and PM pollutants, in an urban setting such as Lisbon a tough phenomenon 

to tackle [15].  

Since 2011, the Lisbon municipality has been implementing a multi-stage roadmap 

coined Reduced Emission Zones (ZER) [7] to remove older vehicles, which implement 

worse emission standards, in the most affected downtown areas and main road arteries 

affected by increased air pollution. Currently in phase 3 since January 2015, all vehicles 

in ZER Zones 1 (downtown) must adhere to EURO 3 standard and EURO 2 in ZER Zones 

2 (Urban ring consisting of 1/3 of the area of Lisbon municipality). As of June 2021, ZER 

Phase 4 has been postponed [16] due to the COVID-19 pandemic and, when implemented, 

will implement stricter EURO standards, reduce maximum speeds and implement 

additional human and electronic means of enforcing the new rules which are currently 

largely unenforced as regularly reported by the press and environmental associations [17] 

[18]. 

Additional efforts by the municipality and government in recent years to reduce urban 

pollution [19] include expanding bike lanes, investment in mass public transportation 

systems and soft transportation means, reducing the prices of monthly passes of public 

transportation, introducing additional BUS lanes and suppressing car lanes, creation of 

deterrent car parking space near inter-modal public transport stations, creating pedestrian 

areas, adjusting speed limits and introducing speed radars, introducing parking meters 

with differentiated prices per zone and resident parking badges, creating a public bike 

shared mobility program (GIRA), financing the purchase of bikes for personal use and 

installing charging spots for electric vehicles. 

Simultaneously, an estimated increase in motorization rate of 14.89% in AML from 

2015 to 2019 [20] for passenger vehicles, resident population increase of 1.27% in AML 

from 2011 to 2019 [21], with a +3.03% contribution (+69.147 hab.) from peripheric 

municipalities and -6.07% contribution (-32.925 hab.) from Lisbon municipality, 

historical increase of usage of private vehicle for pendular movements in AML from 
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12.7% in 1981 to 53.82% in 2011 [22], act as opposing forces to efforts of air pollutant 

reduction in the city of Lisbon. 

In the Lisbon and Tagus Valley area the main contributing anthropogenic sources of 

primary air pollutants are predominantly road transport vehicles [23] with 𝑁𝑂𝑥 

contribution of 63%, 𝐶𝑂 contribution of 78% and 𝑃𝑀10 contribution of 62%, as well as 

minor contribution from other forms of transportation like air and sea transport, which 

were all gravely impacted by mobility restrictive measures to control the COVID-19 

pandemic.  

Air pollution in urban settings is a major source of concern due to adverse effects on 

human health leading to increased respiratory and cardiovascular disease development 

and premature death. Other impacts of air pollution include increases in sick leaves for 

workers and students, lower standards of living for vulnerable groups, such as asthmatic 

and elderly citizens, as well as added cost burden to public health systems. WHO 

estimates 4.2 million yearly deaths were related to air pollution in 2016 [24], EEA 

estimates that 6.690 premature deaths in Portugal (2018) are caused due to three main air 

pollutants (𝑁𝑂2, 𝑃𝑀2.5 and 𝑂3) [25] and an 858 city study in Europe for the year of 2015 

estimates that 1.837 premature yearly deaths in Lisbon Metropolitan Area are related to 

two main air pollutants (𝑁𝑂2, 𝑃𝑀2.5) [26], ranking 116th worst position for 𝑁𝑂2 related 

premature deaths and 514th worst position for 𝑃𝑀2.5 related premature deaths. 

The COVID-19 pandemic management by the Portuguese government and local 

Lisbon Metropolitan Area authorities included highly restrictive measures that severely 

reduced urban mobility in Lisbon for all transportation forms and for a large period of 

time. It is a once in a lifetime opportunity to measure and study the effects of reduced 

pollutant anthropogenic activities in an urban setting, which were previously only 

possible to simulate using atmospheric chemistry simulation techniques, in order to aid 

the definition and prioritization of air pollution reduction policies. 

 

1.3.Research Questions 

The main questions that should be answered by this work are: 

• How did primary and secondary air pollutant concentrations in Lisbon City 

change throughout the COVID-19 pandemic period? 
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• How did urban mobility patterns change in Lisbon City throughout the COVID-

19 pandemic period in response to COVID-19 pandemic related restrictions? 

• Is it possible to train a machine-learning model that can correctly predict 

concentration values for an air pollutant with the available data?  

• Can this machine-learning model identify the variable(s) that contribute the most 

to air pollutant concentration values and extrapolate the anthropogenic 

contributions to the air pollutant concentration from this model? 

 

1.4.Objectives 

The performance of the most relevant criteria primary and secondary air pollutants 

(𝑁𝑂2, 𝐶𝑂, 𝐶6𝐻6, 𝑂3, 𝑃𝑀10, 𝑃𝑀2.5 and 𝑆𝑂2) will be analyzed in depth for the Lisbon 

municipality before, during and after the main COVID-19 pandemic management 

milestones, namely confinement periods where anthropogenic activity was severely 

affected, in order to quantify the impacts of the COVID-19 pandemic restrictions on urban 

air quality parameters. 

It is also in scope to analyze multiple public transportation measures and mobility 

indexes in an attempt to explain and quantify routine changes in urban mobility in the city 

like vehicle driving, traffic jams, public transport rides or shared mobility modes, and 

quantify the contribution of these anthropogenic urban activities changes to the changes 

in urban air quality parameters. 

Finally, it is also an objective to train an air pollutant concentration prediction model, 

using atmospheric monitoring measures, air quality monitoring measures and urban 

mobility indexes, which are proxies for mobile anthropogenic pollutant emitters, in order 

to understand their predictive power and utility in monitoring air quality in an urban 

setting. 

Hopefully, the insights revealed by the present work on urban mobility dynamics and 

its impact on urban air quality will provide decision-makers with additional tools to aid 

future policy making regarding urban air quality management, as well as demonstrating 

that alternative data-driven approaches to modeling localized urban air pollutant 

concentrations are possible and provide accurate results. 
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1.5. Methodologic approach 

This dissertation is a hybrid between a basic research work and an applied research 

project [27], since it is related to a data-driven challenge sponsored by Lisbon LX Datalab 

challenge #49/2020 “Determining the COVID-19 pandemic impact on urban mobility 

and environment” [28] which intends to acquire specific insights and solve a specific 

problem, and a basic research work that aims to expand knowledge on urban air pollution 

modeling techniques.  

Therefore, the present work should be considered a use-inspired basic research work 

(Pasteur type research) where basic research, i.e: localized urban air pollution modeling, 

is motivated by ultimate application, i.e: implementing specific measures to solve air 

quality problems in the city, as shown in the Pasteur Quadrant depicted in Figure 1. 

 

Figure 1 – Pasteur Quadrant [29]1 

 

Due to the data science nature of the work carried out in this dissertation, a suitable 

methodology was needed to help structure and execute the required work. The CRISP-

DM process model was selected due to its maturity and because its iterative approach 

simplifies the bootstrap of the research work, when there are still a large number of 

unknowns, allowing for initial simpler and quicker business and data understanding, data 

wrangling and modeling, learning along the way and iterating several times gaining 

 
1 Image obtained via: http://blogs.nature.com/thescepticalchymist/2013/06/speaking-frankly-the-allure-of-pasteurs-quadrant.html  

http://blogs.nature.com/thescepticalchymist/2013/06/speaking-frankly-the-allure-of-pasteurs-quadrant.html
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deeper knowledge of both the business and available data until the objectives have been 

met and the model performance is acceptable. 

Additionally, taking into consideration that the present work relates to an ongoing 

pandemic, its management and how urban dynamics respond to change, a flexible 

iterative process model like CRISP-DM supports fail-fast iterations where a specific 

novel experiment is to be conducted midway along the dissertation work without any 

complexity or limitation introduced by the framework lifecycle. This iterative process 

also provides several milestones to iterate result evaluation with relevant stakeholders in 

order to gather feedback and be sure the work is going in the right direction. 

 

 

Figure 2 – CRISP-DM Methodology Phases and Flow [30]2 

 

The present work was conducted broadly following the CRISP-DM phases depicted 

in Figure 2: 

1. Business Understanding: As part of the Lx Datalab challenge #49 (Impact of 

COVID-19 pandemic on mobility and the environment) [28], several introductory 

materials were provided and discussions with the challenge sponsor were carried 

 
2 Imagem retirada do site: https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining 

https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
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out. With the business objectives understood and an initial understanding of the 

problem posed by the LX Datalab challenge, the initial iteration of literature review 

was concluded. In different phases of this work there was the need to interact with 

subject matter experts from several entities, such as CML, IPMA, APA and EEA, 

to further clarify business (or science) and data related questions as well as to 

perform literature review of additional subjects that were included in this 

dissertation scope. Most of the business understanding phase was conducted in 

Chapter 3.1 and from Chapter 2.2 to Chapter 2.6. 

2. Data Understanding: As part of the Business Understanding phase the required 

data to carry out this work was assessed. In this phase data was procured and 

acquired from several public and private entities. Several interactions were needed 

to match the data needs with the available data, and to properly understand and 

document the data provided, including quality issues, and fit for purpose analysis. 

An exploratory data analysis was conducted to get acquainted with the data 

structure and main characteristics such as missing or corrupted data, basic 

statistical analysis of the data features and identifying how to relate all datasets in 

the following phase. The bulk of the data understanding work was done from 

Chapter 3.2.1 to Chapter 3.2.9. 

3. Data Preparation: After the Data Understanding phase, an ETL process was created 

to integrate, transform, and load the available data into a multidimensional model 

in PowerBI. Several transformations to normalize dates, measurement units and 

data fill-in or correction were needed, multiple hourly fact data sources had to be 

aggregated to the model temporal grain (daily), dimensional tables for the 

monitoring stations were fitted into the model and a central date dimension was 

introduced to relate all the fact tables. Several logical calculated fields were added 

to several fact tables to simplify many of the analysis, such as moving averages, 

homologous analysis, or regulatory compliancy validations. While the ETL 

process is not extensively reported, the resulting data model is documented in 

Chapter 3.2.11 and aspects such as filtered data, data quality issues and 

aggregations performed were documented from Chapter to Chapter 3.2.1 to 

Chapter 3.2.9. 

4. Modeling: With the multidimensional model built and available for querying with 

PowerBI, two very distinct modeling activities were carried out. First, a statistical 
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analysis on the air pollution and urban mobility impact before and during the 

COVID-19 pandemic, which is still ongoing as of the time of the present work, to 

quantify the impact of specific pandemic management phases and the implemented 

public policies. Secondly, a denormalized dataset was extracted from PowerBI 

with several relevant data features for the modeling of urban air pollution with ML 

techniques. Machine learning models were trained to predict air pollutant 

concentrations using a machine learning genetic optimization library so feature 

importance analysis could be conducted to perform air pollutant source 

appointment analysis in a data-driven fashion. The bulk of modeling phase work 

was carried out from Chapter 3.4 to Chapter 3.10. 

5. Evaluation: For the statistical analysis phase, extensive graphical and statistical 

analysis was done to make sense of the impact of the different pandemic 

management phases on the main air pollutant and mobility indicators, thus 

allowing the correlation and discuss potential cause-effect of reduction of 

anthropogenic activities in air pollutant concentration. For the machine learning 

modeling phase, the genetic optimization library evaluates model performance 

using K-Fold cross-validation, which in the present work uses 5 folds. Since air 

pollutant concentration prediction is a regression problem, MSE (mean squared 

error) loss function was used as the model scoring function. The model 

performance score is then given by the average of each of the cross-validation 5 

folds. Additionally, for the proposed model, the other traditional regression 

metrics, such as MAE (mean absolute error), RMSE (root mean squared error), 

MSLE (mean squared log error) and 𝑅2 (coefficient of determination), were also 

computed to analyse the model performance. As with modeling phase work, the 

bulk of evaluation phase work was carried out from Chapter 3.4 to Chapter 3.10. 

6. Deployment: Since the present work aims to provide insights into the impact of the 

reduction of anthropogenic activities associated with COVID-19 restrictions on 

urban mobility and the environment, no system or framework was produced that 

could be deployed. In this sense, this phase concerns the actual use of the critical 

knowledge attained by the present work by public authorities for decision making 

and by the scientific community. The operationalization of a fully functioning 

system based on the present work is proposed as future work in Chapter 4.3. 
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Chapter 2 – Literature review 

 

 Three different research topics are explored independently. The first is related to all 

relevant variables, direct and indirect, that can play a part in inhibiting, emitting, 

transforming, transporting, trapping, deposition and re-suspension of pollutant gases and 

aerosols. This air pollutant lifecycle, as depicted in Figure 3, includes complex non-linear 

relationships of different mechanisms related to nature of emissions, weather patterns, 

photochemical reactions in the atmosphere and the topography, where resulting pollution 

effects can be deferred in time and in places far away from where the main contributing 

anthropogenic or biogenic emissions occurred. 

 

 

Figure 3 – Air Pollutant lifecycle schematic [30]3 

 

The second is related to machine learning techniques applied to model air pollution, 

namely in uncovering predictor power of variables, engineering data features and training 

models capable of capturing the air pollutant phenomena and comparing machine 

learning techniques in terms of weaknesses and strengths.  

The last is related to analysis of air pollutant performance during COVID-19 

restrictions in which anthropogenic activities were severely impacted. 

 
3 Image obtained from: https://www.eea.europa.eu/media/infographics/many-factors-contribute-to-air-1/view 

https://www.eea.europa.eu/media/infographics/many-factors-contribute-to-air-1/view
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Before these three topics, a brief description of the troposphere chemistry involving 

Nitrogen Oxides (𝑁𝑂𝑥) and Ozone (𝑂3) is described to further contextualize the 

phenomena being studied in the present work. 

 

2.1. Literature review process 

Following the CRISP-DM process model, the literature review process followed an 

iterative approach as well. Two initial research topics, “Machine Learning approaches to 

air pollutant concentration modeling” and “Impact of COVID-19 restrictions on urban air 

pollution”, were explored up to the required depth that could unlock an iteration where 

analysis and experiments were carried out, leading to either further refinement of the 

literature review for the two existing research topics or opening up way to new research 

topics, namely “Relevant variables for estimating urban air pollutant concentration” 

which was included at a later phase of the present work. 

In order to search existing relevant scholarly literature, Google Scholar was used. 

Taking into consideration that Google Scholar is not a scholarly literature database, but 

rather an academic search engine, it does not have an editorial review board and content 

quality is solely evaluated by means of specialized algorithms, so special care was taken 

to assess the source and quality of the papers, namely if they come from peer-reviewed 

journals as well as sorting out conference proceedings, reports, and other documents as 

grey literature. 

Literature for three different relevant research topics were searched separately. The 

literature research topics are as follows: 

• Relevant variables for estimating urban air pollutant concentration 

o Search query: (O3 OR NO2 OR SO2 OR CO OR PM2.5 OR PM10 OR 

C6H6) AND (Air Pollution) AND (variables OR factors OR predictors 

OR correlation) 

o Time filter: 1990-01-01 until now 

o Language: English, Portuguese 

o Full-text articles analyzed: 21 

• Machine learning methods for air pollutant concentration prediction 
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o Search query: (O3 OR NO2 OR SO2 OR CO OR PM2.5 OR PM10 OR 

C6H6) AND (Air Pollution) AND (Artificial Intelligence OR Machine 

Learning) 

o Time filter: From 2010-01-01 until now 

o Language: English, Portuguese 

o Full-text articles analyzed: 11 

• COVID-19 pandemic restrictions impact on urban air pollutant concentration 

o Search query: (O3 OR NO2 OR SO2 OR CO OR PM2.5 OR PM10 OR 

C6H6) AND (Air Pollution) AND COVID-19 

o Time filter: From 2020-01-01 until now 

o Language: English, Portuguese 

o Full-text articles analyzed: 17 

 

In addition to scholarly literature, several searches for grey literature, in the form of 

official technical and statistical reports, as well as other publications like fact sheets, were 

conducted in trusted and/or official Portuguese, European Union and International 

agencies related to environment, demography, mobility, etc. Finally, press articles related 

to pandemic management and environment in Lisbon were also searched through Google 

News. 

 

2.2. Atmospheric chemistry of Nitrogen Oxides and Ozone 

In urban centers, Nitrogen Oxides (𝑁𝑂𝑥) emissions are mostly associated to internal 

combustion powered vehicles. In Lisbon and Tagus Valley, internal combustion vehicles 

associated with road traffic are estimated to be responsible for 63% of all emissions, and 

when air and maritime transportation are included, the contribution increases to 71% [23].  

Nitrogen dioxide (𝑁𝑂2) is produced both directly and indirectly by the combustion of 

fuel at high temperatures in the engine which emit both Nitrogen dioxide (𝑁𝑂2) and Nitric 

Oxide (𝑁𝑂) in different ratios depending on the engine size and fuel. Directly emitted 

Nitric Oxide (𝑁𝑂) will then react with atmospheric oxidizing agents to effectively 

produce Nitrogen dioxide (𝑁𝑂2) indirectly. 

Simplified set of chemical reactions describing daytime 𝑁𝑂𝑥 atmospheric chemistry [31]: 

Anthropogenic sources of 𝑁𝑂: 
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(1) 𝑁2 + 𝑂2 → 2𝑁𝑂 [At high temperatures during combustion process] 

Main 𝑁𝑂2 formation mechanisms: 

(2) 𝑁𝑂 + 𝑂3 → 𝑁𝑂2 + 𝑂2 [𝑂3 titration by 𝑁𝑂 into 𝑁𝑂2can be a net destroyer of 

𝑂3in highly 𝑁𝑂 polluted scenarios, even during daytime] 

(3) 𝑅𝑂2 + 𝑁𝑂 → 𝑁𝑂2 + 𝑅𝑂 [𝑁𝑂 oxidation by free radicals generated by daytime 

VOC photolysis] 

Tropospheric 𝑂3 formation: 

(4) 𝑁𝑂2 + ℎ𝑣(𝜆 < 420𝑛𝑚)  → 𝑁𝑂 + 𝑂 [Daytime photolysis of 𝑁𝑂2] 

(5) After (4), 𝑂 + 𝑂2 → 𝑂3 [𝑂3 production] 

(6) Downwards 𝑂3 flux from the stratosphere 

Tropospheric 𝑂3 destruction besides (2): 

(7) 𝑂3 + ℎ𝑣(𝜆 < 300𝑛𝑚)  → 𝑂 + 𝑂2 [Daytime photolysis of 𝑂3] 

This cycle is further replenished by the oxidation of the 𝑁𝑂 molecule formed in reaction 

(4) into 𝑁𝑂2 by free radicals produced VOC photochemical complex reactions which 

means that tropospheric Ozone (𝑂3) is a result of both 𝑁𝑂𝑥 and VOC pollution.  

 

Figure 4 – Peak ozone isopleths generated from initial mixtures of VOC and NOx [31]4 

 

 
4 Image obtained via: https://www.tandfonline.com/doi/pdf/10.1080/1073161X.1993.10467187  

https://www.tandfonline.com/doi/pdf/10.1080/1073161X.1993.10467187
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The Ozone formation efficiency is related to the ratio of 𝑁𝑂𝑥 to VOCs since the 𝑁𝑂2 

recycling process is highly dependent on VOCs to oxidize the 𝑁𝑂 molecule resulting 

from the 𝑁𝑂2 photolysis process (4). This ratio, as depicted by the 𝑁𝑂𝑥:VOC isopleths 

in Figure 4 , defines if the tropospheric ozone production is limited by VOC or 𝑁𝑂𝑥 

concentrations. In VOC-limited scenarios such as urban centers, sharp drops in 𝑁𝑂𝑥 

concentrations, such as the ones during COVID-19 lockdown restriction periods, might 

result in additional 𝑂3 production while rebalancing towards a 𝑁𝑂𝑥 limited scenario (i.e: 

assuming a VOC-stable scenario, a 𝑁𝑂𝑥 decrease from point E to point D in Figure 4 will 

increase Ozone production efficiency) as well as reduced 𝑂3 titration by 𝑁𝑂.  

The present work is focused on analyzing 𝑁𝑂2 (Nitrogen dioxide) as a primary 

pollutant and 𝑂3 (Tropospheric Ozone) as secondary pollutant, omitting the role of 𝑁𝑂2 

as a precursor to other important secondary pollutants such as Particulate Matter (PM), 

Nitric acid (𝐻𝑁𝑂3) or  Peroxyacetyl nitrate (PAN). 

Finally, as already stated before, both 𝑁𝑂2 (precursor) and 𝑂3 (secondary) can be 

transported to places far away from its formation by air currents, which generates 

pollution events far from the places where the air pollutants were emitted or produced. 

In this sense, a simplified generalization of the Nitrogen Oxides (𝑁𝑂𝑥) and 

tropospheric Ozone (𝑂3) urban pollution can be described as depicted in Figure 5: 

 

Figure 5 – Generalized NOx – O3 lifecycle 
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2.3. Relevant variables for estimating urban air pollutants 

Atmospheric pollution depends on several anthropogenic and biogenic processes 

responsible for primary pollutant emission, chemical reactions in the atmosphere that lead 

to secondary pollutants, meteorological conditions which help potentiate such chemical 

reactions, the geography and topographic features, the long-range transportation of 

aerosols and gases as well as pollutant deposition and resuspension [32].  

Zhang et al. [33] investigated the main meteorological factors affecting the 

concentrations of particulate matter in Wuhan, China in the 2013-2016 period using data 

sourced from nine air quality monitoring stations in the city. High wind intensity was 

found to be linearly correlated with 𝑃𝑀2.5 concentration reduction, measuring 60% 

reduction in concentrations when wind speed is up to 6m/s while 𝑃𝑀10 was found to have 

a non-linear relationship with 15% concentration reduction when wind speed is up to 

6m/s, potentially due to resuspension of coarse particulate matter during high-wind 

intensity episodes. Regarding precipitation, the particulate matter wet deposition 

(washout) and resuspension preventive action was also measured as being more relevant 

from 𝑃𝑀10 than 𝑃𝑀2.5 with rainy days measuring 69% and 72% mean concentration 

respectively when compared to non-rainy days. 

Regarding Ozone secondary pollutant, Zoran et al. [34] measures the relationship 

between meteorological factors with ground-level Ozone formation in Milan, Italy in the 

period of January to April 2020. Air temperature and ground level Ozone formation is 

related since solar radiation, which is key to drive air temperature, increases 

photochemical performance of Ozone formation, having resulted in a positive correlation 

of 𝑅2= 0.84. It is also suggested that particulate matter with aerodynamic diameter of 2.5 

microns (𝑃𝑀2.5) and 10 microns (𝑃𝑀10) negatively affects ground level Ozone (𝑂3) 

production due to increased sunlight reflection on particulate matter thus slowing down 

photochemical reactions that produce Ozone. The negative correlation of ground level 

Ozone and 𝑃𝑀2.5 measured 𝑅2= −0.63 and 𝑃𝑀10 measured 𝑅2= −0.61. The relationship 

of ground level Ozone is also related to relative humidity since high relative humidity is 

associated with cloud formation, which also reduces the sunlight reaching the ground, 

washout effect of primary precursor pollutant 𝑁𝑂2 when precipitation occurs, and thus 

also slowing down photochemical reactions that produce Ozone having measured a 

negative correlation (𝑅2= −0.79). Finally, the dispersion of ground level Ozone is also 

affected by the Planetary Boundary Layer (PBL) height where higher PBL height, along 
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with stronger convective flows, is correlated with lower ground level Ozone 

concentrations, and conversely lower PBL height is correlated with higher ground level 

Ozone concentrations, effectively trapping pollutants near the surface, having measured 

a positive correlation (𝑅2= 0.74).   

Lecocq et al. [35] used seismometer data from 268 monitoring stations to model a 

proxy of anthropogenic activities, such as road traffic, trains, aircraft movements or 

industries, where during the COVID-19 pandemic related lockdowns it was measured a 

global reduction of seismic noise of 50%. For the specific case of  Brussels, Belgium this 

reduction was validated against other independent sources of anthropogenic activities, 

namely audible noise road traffic monitoring and Google mobility reports 

(Transportation) for the city of Brussels, having achieved strong positive correlations of 

0.93 for  and 0.86 respectively, which suggests seismic signal can be used as a proxy for 

anthropogenic activities. 

Bonet-Solà et al. [36] used data from Barcelona acoustic monitoring network used to 

monitor urban noise pollution associated with anthropogenic activities such as airport 

traffic, road traffic, industry, shopping, and leisure throughout the COVID-19 pandemic 

related lockdown in the city comparing multiple lockdown stages and 2018 to 2019 

homologous periods. A 49.56% reduction in noise levels was measured throughout the 

most severe lockdown period ranging from March to April 2020 where 𝑁𝑂2 

concentrations are also reported to have decreased 46%. Fridays and Saturdays were 

found to be the weekdays with a wider gap to the baseline and daytime leisure, restaurants 

and nightlife being the areas with wider gaps to the baseline, high road traffic zone noise 

levels reduction were milder than moderate traffic zones which also experienced relevant 

noise reductions during the afternoon. Such findings shows that acoustic noise in urban 

settings is a potential proxy for anthropogenic activities. 

Gualtieri et al. [37] used a municipality level mobility indicator from connected 

vehicles, maps and navigation system provided by EnelX & Here which was confirmed 

to be highly correlated with independent traditional traffic counters in Milan, Italy, 

achieving 𝑅2=0.972, mean bias of 0.8% and RMSE of 5.7% for the analysis period of 7th 

of February to 30th of April 2020 and was therefore considered a good proxy for road 

traffic so its contribution to the air pollution reduction during the COVID-19 pandemic 

restrictions in Italy could be extrapolated. 
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2.4. Impact of COVID-19 restrictions on urban air quality 

The impact of sharp reductions of anthropogenic activities throughout many countries 

during COVID-19 pandemic associated lockdowns were widely analyzed as to its impact 

and contributions to primary and secondary air pollutant concentrations. Rana et al. [38] 

carried out a systematic literature review of the impact of COVID-19 restrictions on air 

quality in China using PRISMA guidelines where 35 studies out of 396 met the eligibility 

criteria and were thoroughly analyzed. All articles were published in 2020 and included 

articles using both satellite (12) and ground monitoring (23) air pollutant concentration 

data, with temporal comparison to both pre and post lockdown periods in 2020 (8), 

comparison to the same period in 2019 (15) and the remainder compared using period 

ranges from 2015 to 2019 (12). The most studied air pollutant was 𝑁𝑂2 (80%) followed 

by 𝑃𝑀2.5 (75%) and the authors estimate that during COVID-19 lockdown periods the 

mean reduction of air pollutant concentrations reported was 45.1% for 𝑁𝑂2, 26.6% for 

𝑃𝑀2.5, 31.4% for 𝑃𝑀10, 31.3% for 𝑆𝑂2, 20.7% for 𝐶𝑂 and 21.7% for AQI. 

Highlighting some additional studies, Bauwens et al. [39] used satellite observations 

to acquire 𝑁𝑂2 vertical column measures from two satellite instruments, TROPOMI 

(TROPOspheric Monitoring Instrument) on board of Sentinel P-5 satellite and OMI 

(Ozone Monitoring Instrument) on board of Aura satellite, to reveal a sharp reductions of 

𝑁𝑂2 concentrations throughout the COVID-19 related lockdown phases in multiple cities 

throughout the world when compared to pre-lockdown periods and homologous periods 

in 2019. Notable examples include -43% to -57% in Wuhan, China, and -31% to -32% in 

Barcelona, Spain. 

Connerton et al. [40] used air quality data from ground monitoring stations in four 

megacities during the initial COVID-19 lockdown period in March 2020, and conducted 

a statistical analysis having measured pollutant concentration reductions, for instance in 

Paris, France, of 67% for 𝐶𝑂, 39% for 𝑁𝑂2 and 29% for 𝑃𝑀2.5 when compared to a 2015-

2019 air pollutant baseline. In order to extrapolate the contribution of the reduction of 

anthropogenic activities to the air pollutant measured concentration changes during the 

pandemic period, thus accounting for natural atmospheric phenomena that can disperse 

air pollutants or facilitate atmospheric chemical reactions that consumes said air pollutant, 

such as wind speed, air temperature and relative humidity, a General Linear Model was 

fitted with meteorology measures and a lockdown indicator variable as independent 

variables and air pollutant concentration as dependent variables, where it was found that 
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while both anthropogenic activities and meteorology significantly influence air pollutant 

concentrations, anthropogenic activities reduction contribution was heavier. 

Sicard et al. [41] investigated the effect of sharp reductions of 𝑁𝑂𝑥 emissions on 𝑂3 

concentrations during the COVID-19 related lockdowns in European and Chinese cities 

where it was suggested that local urban 𝑂3 concentrations greatly increased as 𝑁𝑂𝑥 

emissions decreased due to reduced 𝑂3 titration by 𝑁𝑂 thus raising the need of controlling 

VOC emissions to balance the 𝑁𝑂𝑥:VOC ratio which is key in tropospheric 𝑂3 formation. 

For instance, during the 2020 COVID-19 related lockdown period in Wuhan, China daily 

mean 𝑂3 concentration increased by 36% while 𝑁𝑂2 concentrations decreased 57%, when 

compared to a computed 2017-2019 baseline for the same period. 

 

2.5.Machine Learning based Air Pollutant Concentration Prediction 

Advanced atmospheric chemical transport frameworks [42] to model air pollution, 

such as CAMX or CMAQ, use as inputs a weather forecast model, an emission inventory 

for anthropogenic and biogenic sources and using a chemical transport model are able to 

output an 3D air pollution concentration map and compute source appointment analysis. 

On the other hand, instead of a framework capable of simulating complex atmospheric 

chemical interactions, which can rely on outdated or incorrect estimated emission stocks, 

there are other data-driven techniques which use statistical and machine learning 

techniques to model air pollutant concentrations, capture the complex non-linear 

relationship of the several variables that determine the concentration of a given air 

pollutant at a specific place and time. Rybarczyk and Zalakeviciute [43] have performed 

a systematic review of machine learning approaches to outdoor air pollution modeling 

following the PRISMA guidelines where 46 out of 103 papers published from 2010 to 

2018 met the eligibility criteria. It was found that the volume of publications of applied 

machine learning techniques related to air quality has ramped up from 2016 onwards, 

mostly published with regards to northern hemisphere geographies, and are mostly related 

to criteria pollutants (𝑁𝑂2, 𝑆𝑂2, 𝐶𝑂, 𝑃𝑀10, 𝑃𝑀2.5 and 𝑂3) or the Air Quality Index (AQI), 

whereas the largest group of publications are related to identifying relevant predictor 

variables and modeling non-linear relationship of variables in air pollution. The main 

algorithm classes ordered by prevalence found in the publications were Ensembles 

(mainly tree-based predictors), ANNs, SVMs and LRs. 
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 Further analyzing more recent publications, Vu et al. [44] trained a Random Forest 

ML algorithm and compared prediction results for 2017 𝑃𝑀2.5 concentrations in Beijing 

with those outputted by a WRF-CMAQ model and was able to produce a slightly more 

accurate value for the yearly mean 𝑃𝑀2.5 concentration, 61.8 – 62.4 µg/m3 for the WRF-

CMAQ model and 61.0 µg/m3 for the RF ML model, whereas the observed value was 

58.0 µg/m3. At the month granularity for 2017, the WRF-CMAQ model concentration 

predictions ranged from 3% to 33.6% difference when compared to the observed values, 

a mean difference of 7.8%, whereas the RF ML model predictions ranged from 0.4% to 

7.9%, a mean difference of 1.5%. Castelli et al. [45] employed SVR (Support Vector 

Regression) algorithm to predict air pollutant concentrations such as 𝑁𝑂2, 𝐶𝑂, 𝑆𝑂2, 𝑂3 

and 𝑃𝑀2.5 in California for years 2016 to 2018, using meteorological measures, pollutant 

concentration rolling means and timeseries features as predictors, achieving 𝑅2=0.937 on 

the validation set using the RBF (Radial Basis Function) kernel for 𝑁𝑂2 forecasting. Luna 

et al. [46] also employed an SVR (Support Vector Regression) algorithm to predict 𝑂3 

concentrations in Rio de Janeiro using ground monitoring stations data from 2011 and 

2012, using as data features the chemical precursors, such as 𝑁𝑂, 𝑁𝑂2, 𝑁𝑂𝑥 and 𝐶𝑂, as 

well as meteorological factors, namely wind speed, solar radiation, air temperature and 

relative humidity. This model achieved 𝑅2=0.912 on the validation set, having also 

trained an ANN (Artificial Neural Network) using the same data source to solve the same 

problem and achieving 𝑅2=0.915 on the same validation set.  
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2.6. Literature Review Summary 

 

A high-level summary of the most relevant papers on the three research topics analyzed in the literature review can be found in Table 1. 

 

Table 1 – Literature Review Summary of Main Articles 

Research topic Author(s) Title Source Main conclusions  

Machine 

learning based 

air pollutant 

concentration 

prediction 

 

Rybarczyk 

and 

Zalakeviciute 

(2018) 

Machine Learning Approaches for 

Outdoor Air Quality Modelling: A 

Systematic Review 

Applied Sciences 

(Q2 Journal) 

Volume of publications of applied machine learning techniques related to air quality has 

ramped up from 2016 onwards and are mostly related to criteria pollutants (𝑁𝑂2, 𝑆𝑂2, 

𝐶𝑂, 𝑃𝑀10, 𝑃𝑀2.5  and 𝑂3) or the Air Quality Index (AQI). The main algorithm classes 

ordered by prevalence found in the publications were Ensembles (mainly tree-based 

predictors), ANNs, SVMs and LRs. 

Vu et al. 

(2019) 

Assessing the impact of clean air action 

on air quality trends in Beijing using a 

machine learning technique 

Atmospheric 

Chemistry and 

Physics (Q1 Journal) 

Results from a Random Forest ML model trained with 2017 data to predict 𝑃𝑀2.5  

concentrations in Beijing slightly more accurate than those outputted by a WRF-CMAQ 

model. 

Castelli et al. 

(2020) 

A Machine Learning Approach to 

Predict Air Quality in California 

Complexity (Q1 

Journal) 

A Support Vector Regression model trained to predict air pollutant concentrations in 

California for years 2016 to 2018 achieved 𝑅2=0.937 on the validation set using the 

Radial Basis Function kernel for 𝑁𝑂2 forecasting. 

Luna et al. 

(2020) 

Prediction of ozone concentration in 

tropospheric levels using artificial neural 

networks and support vector machine at 

Rio de Janeiro, Brazil 

Atmospheric 

Environment (Q1 

Journal) 

Two models trained to predict ground-level Ozone concentrations in Rio de Janeiro 

using data from 2011 and 2012 achieved 𝑅2=0.912 (Support Vector Regression) and 

𝑅2=0.915 (Artificial Neural Network) on the validation set. 

Impact of 

COVID-19 

restrictions on 

urban air 

quality 

Rana et al. 

(2021) 

A Systematic Literature Review of the 

Impact of COVID-19 Lockdowns on Air 

Quality in China 

Aerosol and Air 

Quality Research 

(Q2 Journal) 

The most studied air pollutant was 𝑁𝑂2 (80%) followed by 𝑃𝑀2.5 (75%) and the authors 

estimate that during the COVID-19 lockdown periods the mean reduction of air 

pollutant concentrations reported were 45.1% (𝑁𝑂2), 26.6% (𝑃𝑀2.5), 31.4% (𝑃𝑀10), 

31.3% (𝑆𝑂2), 20.7% (𝐶𝑂) and 21.7% (AQI). 

Bauwens et 

al. (2020) 

Impact of Coronavirus Outbreak on 𝑁𝑂2 

Pollution Assessed Using TROPOMI 

and OMI Observations 

Geophysical 

Research Letters (Q1 

Journal) 

𝑁𝑂2 vertical column measures from the TROPOMI instrument aboard Sentinel P-5 

satellite show a sharp reduction of 𝑁𝑂2 concentrations during COVID-19 restrictions in 

multiple cities around the world when compared to pre-lockdown periods and 

homologous periods in 2019. Notable examples include -43% to -57% in Wuhan, China, 

and -31% to -32% in Barcelona, Spain. 

Connerton et 

al. (2020) 

Air Quality during COVID-19 in Four 

Megacities: Lessons and Challenges for 

Public Health 

International Journal 

of Environmental 

Research and Public 

Health (Q2 Journal) 

Analysis of four megacities during the initial COVID-19 lockdown period in March 

2020 measured pollutant concentration reductions, for instance in Paris, France, of 67% 

for 𝐶𝑂, 39% for 𝑁𝑂2 and 29% for 𝑃𝑀2.5 when compared to a 2015-2019 air pollutant 

baseline 
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Sicard et al. 

(2020) 

Amplified ozone pollution in cities 

during the COVID-19 lockdown 

Science of The Total 

Environment (Q1 

Journal) 

Sharp reductions of 𝑁𝑂𝑥 emissions augmented 𝑂3 concentrations during the COVID-19 

related lockdowns in European and Chinese cities due to reduced 𝑂3 titration by 𝑁𝑂. 

For instance, during the 2020 COVID-19 related lockdown period in Wuhan, China, 

daily mean 𝑂3 concentration increased by 36% while 𝑁𝑂2 concentration decreased 57% 

when compared to a 2017-2019 baseline for the same period. 

Relevant 

variables for 

estimating 

urban air 

pollutants 

Zhang et al. 

(2018) 

Influences of wind and precipitation on 

different-sized particulate matter 

concentrations (𝑃𝑀2.5, 𝑃𝑀10) 

Meteorology and 

Atmospheric Physics 

(Q3 Journal) 

A study in Wuhan, China for the 2013-2016 period found that wind intensity linearly 

correlated with 𝑃𝑀2.5, measuring 60% reduction when wind speed is up to 6m/s while 

𝑃𝑀10 has a non-linear relationship with a 15% concentration reduction when wind 

speed is up to 6m/s, potentially due to resuspension of coarse particulate matter during 

high-wind intensity episodes. Particulate matter wet deposition (washout) and 

resuspension preventive action was also measured as being more relevant from 𝑃𝑀10 

than 𝑃𝑀2.5 with rainy days measuring 69% and 72% mean concentration respectively 

when compared to non-rainy days. 

Zoran et al. 

(2020) 

Assessing the relationship between 

ground levels of ozone (𝑂3) and nitrogen 

dioxide (𝑁𝑂2) with coronavirus 

(COVID-19) in Milan, Italy 

Science of The Total 

Environment (Q1 

Journal) 

A study in Milan, Italy for the period of January to April 2020 found that sunlight 

reflection on particulate matter results in lowered tropospheric Ozone production having 

measured a negative correlation of ground level Ozone and 𝑃𝑀2.5 (𝑅2= −0.63) and 

𝑃𝑀10 (𝑅2= −0.61). High relative humidity increases cloud cover, which reflects 

sunlight, and Ozone precursor washout which results in a negative correlation (𝑅2= 

−0.79). Trapping effect of lower PBL height also results in increased Ozone 

concentrations resulting in a positive correlation (𝑅2= 0.74). 

Lecocq et al. 

(2020) 

Global quieting of high-frequency 

seismic noise due to COVID-19 

pandemic lockdown measures 

Science (Q1 Journal) 

Correlation analysis of urban seismic signal and audible noise road traffic monitoring, as 

well as Google mobility reports (Transportation), for the city of Brussels, Belgium 

during COVID-19 restrictions, achieved strong positive correlations of 0.93 for and 0.86 

respectively, which suggests seismic signal can be used as a proxy for pollutant 

anthropogenic activities. 

Bonet-Solà et 

al. (2021) 

The Soundscape of the COVID-19 

Lockdown: Barcelona Noise Monitoring 

Network Case Study 

International Journal 

of Environmental 

Research and Public 

Health (Q2 Journal) 

Data from Barcelona, Spain acoustic monitoring network shows a 49.56% reduction in 

urban noise during COVID-19 restrictions in 2020 when compared to a homologous 

2018-2019 baseline, which was found to be highly correlated to 𝑁𝑂2 reductions in the 

same period which was of 46%. 

Gualtieri et 

al. (2020) 

Quantifying road traffic impact on air 

quality in urban areas: A Covid19-

induced lockdown analysis in Italy 

Environmental 

Pollution (Q1 

Journal) 

A municipality level mobility indicator from connected vehicles, maps and navigation 

system provided by EnelX & Here was confirmed to be highly correlated with 

independent traditional traffic counters in Milan, Italy, achieving 𝑅2=0.972, mean bias 

of 0.8% and RMSE of 5.7% for the analysis period of 7th of February to 30th of April 

2020 and was therefore considered a good proxy for road traffic. 
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2.7. Differentiated approach 

Several differentiated approaches are to be taken in throughout this dissertation which 

can uncover academic and business implications. 

1. There is no comprehensive study on the impact of COVID-19 restrictions in urban 

air quality and mobility for Lisbon, Portugal geography which has particular 

topographic and orographic characteristics, as well as different weather patterns. 

 

2. Several articles refer to the usage of machine learning techniques to model air 

pollution but are usually fitted with only weather and air pollutant concentration 

data as independent variables. In an attempt to improve model performance and 

increase the interpretability of air pollution phenomena, the current work proposes 

the usage of multiple urban mobility indicators, covering different aspects of 

mobility modes in the city, as a group of independent variables that are proposed 

to be proxies for pollutant anthropogenic activities. 

 

3. Several articles refer to the usage of AutoML frameworks to model air pollution, 

but the results are not well discussed and not compared to applied traditional ML 

techniques when it comes to training efficiency, model performance and 

interpretability. 
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Chapter 3 – Analysis and results presentation 

3.1.Business Understanding 

The primary objective of the current work is to study the impact of the COVID-19 

pandemic restrictions imposed by the government and changes in anthropogenic activities 

in the urban environment and mobility in the city of Lisbon. Besides the immediate 

interest in learning the impacts of COVID-19 related restrictions on the urban mobility 

and the environment in Lisbon, the cause-effect relationship between the reduction of 

heavy emitter anthropogenic activities, such as road traffic, and the changes in 𝑁𝑂𝑥 and 

𝑂3 concentrations can be studied in a real-life laboratory with a months-long field 

experiment instead of simulated experiments or sub-optimal conditions such as the 

weekend effect or the holiday periods.  

For this problem to be correctly modelled in a data-driven way, common air pollutants 

concentration resultant of anthropogenic urban activity, atmospheric conditions, and 

mobility indexes per type of urban transportation mode, namely private vehicle means, 

must be available at a proper time granularity for the period in analysis (before, during 

and after the pandemic related restriction periods) and, where needed, for baseline periods 

that are used for comparison. 

Anthropogenic emissions related to urban mobility are not the solely responsible for 

the different types of air pollution experienced in the city. The long-range transport of 

aerosols (i.e: Sahara Desert dust, sea-salt spray), biogenic emissions (i.e: different type 

of plants), tropospheric ozone transported from other origins, sulphur dioxide being 

released naturally by a volcano or by being in the downwind path of an industrial complex 

can contribute to the air quality degradation in any specific geography as depicted in 

Figure 6. The convention on Long-Range Transboundary Air Pollution (LRTAP) and its 

protocols were put in place to investigate and propose solutions for these phenomena [47]. 

Nevertheless, as stated in the introduction, road transportation is generally considered the 

most relevant contributor to urban air pollution and the scope of the work is narrowed 

down to Lisbon, Portugal geographical context. 

Specifically, for the scope of this work, the focus is placed on the 𝑁𝑂2 primary pollutant, 

which in an urban setting is mostly associated with road transport, and the 𝑂3 secondary 

pollutant for which 𝑁𝑂2 is a precursor, along with VOCs, whereas the impact of COVID-

19 restrictions on the remainder criteria pollutants (𝐶𝑂, 𝑆𝑂2, 𝑃𝑀10, 𝑃𝑀2.5 and 𝐶6𝐻6) is 
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only analyzed in a high-level fashion. The atmospheric chemistry process associated with 

𝑁𝑂2 and 𝑂3 is described in section 2.2. 

 

 

Figure 6 – Schematic of chemical and transport processes related to atmospheric composition. 

These processes link the atmosphere with other components of the Earth system, including the 

oceans, land, and terrestrial and marine plants and animals [48]5 

 

Regulation is in place in the European Union, namely Decree Law No.102/2010 of 2010-

09-23 (transposition of EU Directives 2008/50/CE and 2004/107/CE),  to control air 

pollutant thresholds [49] in order to safeguard human health, which in Portugal is 

monitored and enforced by APA and CCDR-LVT. Additionally, WHO also has 

guidelines with the recommended thresholds for outdoor pollutants [24] which are usually 

tighter since they are forward looking and serve as reference for future legislation. Both 

EU and WHO defined threshold can be found in Table 2. 

 

 
5 Image obtained from: https://www.globalchange.gov/browse/multimedia/chemical-and-transport-processes-related-atmospheric-

composition 

https://www.globalchange.gov/browse/multimedia/chemical-and-transport-processes-related-atmospheric-composition
https://www.globalchange.gov/browse/multimedia/chemical-and-transport-processes-related-atmospheric-composition
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Table 2 – WHO Air Pollutant Safety Threshold Guidelines and EU regulated air quality 

thresholds for air pollutants in scope for this work 

Air Pollutant Entity Threshold Notes 

𝑁𝑂2 WHO 
40 μg/m3 annual mean 

200 μg/m3 1-hour mean 

 

𝐶𝑂 WHO 
*20 mg/m3 1-hour mean 

10 mg/m3 8-hour mean 

Exposure at these 

concentrations should be no 

longer than the indicated 

times and should not be 

repeated within 8 hours. 

𝑃𝑀2.5 WHO 
10 μg/m3 annual mean 

25 μg/m3 24-hour mean 

 

𝑃𝑀10 WHO 
20 μg/m3 annual mean 

50 μg/m3 24-hour mean 

 

𝑂3 WHO 100 μg/m3 8-hour mean  

𝑆𝑂2 WHO 
20 μg/m3 24-hour mean 

500 μg/m3 10-min mean 

 

𝑁𝑂2 EU 
40 μg/m3 annual mean 

*200 μg/m3 1-hour mean 

*Permitted yearly 

exceedances: 18  

𝐶𝑂 EU 10 mg/m3 8-hour mean  

𝑃𝑀2.5 EU 25 μg/m3 annual mean  

𝑃𝑀10 EU 
40 μg/m3 annual mean 

*50 μg/m3 24-hour mean 

*Permitted yearly 

exceedances: 35  

𝑂3 EU *120 μg/m3 8-hour mean 

*Permitted yearly 

exceedances: 25 days 

(averaged over 3 years) 

𝑆𝑂2 EU 
*125 μg/m3 24-hour mean 

**350 μg/m3 1-hour mean 

*Permitted yearly 

exceedances: 3 

**Permitted yearly 

exceedances: 24 

𝐶6𝐻6 EU 5 μg/m3 annual mean  

 

Additionally, the thresholds defined in Table 3 are used to issue public announcements 

which were introduced by Decree Law No.102/2010 of 2010-09-23 [30] to warn the 

population about severe pollution episodes so that specific mitigation measures can be 

implemented to avoid harm to public health, namely to the most fragile population groups 

affected by respiratory disease induced by poor air quality such as asthma. 

These regulatory thresholds are used throughout the statistical analysis of air pollutant 

concentration performance throughout COVID-19 pandemic lockdowns to understand 

how the compliance has been affected for the Lisbon geography. 
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Table 3 –EU regulated air quality thresholds for public announcement 

Air 

Pollutant 

Entity Threshold Notes 

𝑁𝑂2 EU/PT 
Alert: 400 μg/m3 1-hour 

mean 

** For 3 consecutive hours either 

in an area of 100km2 or entirety of 

a populational agglomeration 

𝑂3 EU/PT 

Info: 180 μg/m3 1-hour 

mean 

Alert: 240 μg/m3 1-hour 

mean 

 

𝑆𝑂2 EU/PT 
Alert: 500 μg/m3 1-hour 

mean 

For 3 consecutive hours either in 

an area of 100km2 or entirety of a 

populational agglomeration 

 

 

3.2.Available data sources 

In order to pursue this work objectives and according to the literature review process, 

several data sources are required to properly model the urban air pollution phenomena: 

(1) Air pollutant concentration, (2) meteorological parameters and (3) anthropogenic 

activity direct or indirect indicators.  

Table 4 – Approached entities, requested data and request success 

Entity Status Dataset 

APA/EEA Data available (Online) Air pollutant concentration (ground) 

ESA/Copernicus Data available (Online) Air pollutant concentration (satellite) 

IPMA Data available (On-demand) Metereological parameters 

Metropolitano de Lisboa Data available (On-demand) Subway ridership 

Carris Data unavailable Urban bus ridership 

Comboios de Portugal Data unavailable Suburban train ridership 

ANA Data available (On-demand) 
Lisbon airport volume of aircraft movements and 

passengers transported 

Google Data available (Online) Lisbon Mobility Report 

Apple Data available (Online) Lisbon Mobility Report 

Moovit Data available (Online) Lisbon Public Transport Mobility Index 

Waze Data available (Online) 
Lisbon Waze App driven distances; Lisbon Waze 

Jams 

SIBS No response Volume of Point-Of-Sales transactions. 

Via Verde No response 
Volume of highway toll passages; Volume of 

parking operations 

PSE Data unavailable Lisbon Mobility Report 

CML/EMEL Data available (On-demand) 
GIRA docks status and ridership; car Parking 

statistics; bike lane traffic counters 

DGS Data available (Online) COVID-19 pandemic daily reports 

SICO/EVM Data available (Online) Lisbon and Tagus Valley mortality 
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In this sense, apart from data available online, several public entities and companies 

were directly contacted to acquire such data as described in Table 4. 

As part of the data understanding phase of CRISP-DM, all the data  and respective 

metadata were analyzed, exploratory data analysis was performed, quality problems 

identified and finally loaded to the data analysis tool (PowerBI). 

The following sub-chapters describe the data sources used throughout this dissertation 

in a compact fashion while the full metadata for datasets with a large number of attributes 

is provided in the annexes of the present work. Additionally, many of the attributes are 

named in Portuguese and have not been translated due to source metadata consistency 

purposes. Nevertheless, the field description is properly detailed in English.  

 

 

3.2.1. Lisbon Ground-based Meteorological Data Source 

Data Source Description: Hourly weather measures were sourced from IPMA 

(Portuguese Institute for Sea and Atmosphere) for the Lisbon Gago Coutinho weather 

station (lat: 38,76620278, lon: -9,12749444) for the 2019 and 2020 years.  

 

The averaged hourly measures include wind speed (m/s) and direction (º), relative 

humidity (%), air temperature (ºC) and sea level air pressure (hPa). Hourly cumulative 

measures include total global radiation (KJ/m2) and accumulated precipitation (mm) 

 

Data Quality issues: Atmospheric condition measures for Lisboa Gago Coutinho station 

sourced from IPMA has missing data for the day 26/03/2020 which was filled-in with 

Lisboa Geofísico station data. 

 

Aggregation performed: The data-source reports weather parameters at the hour 

granularity. To integrate in the consolidated data model, a temporal aggregation to the 

daily grain was conducted. The resulting metrics include the minimum, maximum, 

average, quartile 1, quartile 2 (median) and quartile 3 concentrations values at the daily 

level for all metrics except the additive metrics total global radiation and accumulated 

precipitation which were additionally summed. 

 

Filtered Data: None 



40 

 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

  

 

3.2.2. Lisbon Mobility Indexes Data Sources 

Four different data sources describing urban mobility patterns in Lisbon, Portugal were 

used as proxy to measure changes in anthropogenic activities.  

 

Data Source Description: Google provides a community mobility report [50] which 

measures the per-weekday percentual change in user activity per location type (Retail & 

Recreation, Grocery & Pharmacy, Parks, Transit Stations, Workplace and Residential) of 

users with Google location services enabled in their mobile devices against a per-weekday 

baseline computed between 03-01-2020 and 06-02-2020 (pre-lockdown).  

 

Apple provides a mobility trend report [51] which measures the daily percentual change 

of Apple maps application walking and driving direction requests in the city of Lisbon, 

Portugal against the baseline day of 13-01-2020 (a pre-lockdown Monday).  

 

Moovit Insights Public Transit Index [52] provides a Lisbon 7-day public transportation 

ridership percentual change, measured with the Moovit App, from a baseline week 

computed for the week of 08-01-2020 to 15-01-2020.  

 

Waze provides COVID-19 Impact dashboard [53] which measures the percentual change 

of kilometers driven per day measured with the Waze App within the city of Lisbon 

against a pre-computed baseline scoped to the weekday for the period between 11-02-

2020 and 25-02-2020 (pre-lockdown). It is unknown if the Waze App user base in Lisbon 

is representative of all traffic types such as cargo heavy vehicles or light passenger 

vehicles, and in this sense, it might overestimate or underestimate the relationship of this 

indicator with expected road-based air pollutant contribution. 

 

All four mobility indexes suffer from a number of problems that cause some bias in the 

reported urban mobility change. 
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Data Quality Issues All used mobility indexes suffer from a yearly seasonal bias because 

the baseline periods were computed for a period of time during winter weeks 

(January/February 2020) in which most of Lisbon population is usually working on a 

typical year. This baseline periods are then used to compare mobility pattern changes 

throughout the entire year of 2020, namely during usual vacation periods in summer 

months when urban mobility drops sharply, leading to distortions in reported mobility 

pattern changes.  

 

Additionally, Apple mobility trend report suffers from an additional weekly seasonal bias 

because the baseline was computed from a single weekday (Monday).  

 

Filtered Data: None 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

 

3.2.3. Lisbon Subway Ridership Data Source 

Data Source Description: Lisbon daily subway ridership data per type of pass 

(occasional, regular, child, etc) was sourced from Metropolitano de Lisboa, the company 

who operates the Lisbon subway network, for the years of 2019 and 2020.  

 

Data Quality Issues: Lisbon subway ridership data missed data between 17-03-2020 and 

02-05-2020 because ticket validation machines were disabled to decrease queues, thus 

social contact, and interaction with ticketing machines and ticket validation machines. In 

this sense, those days were filled in by computing a per weekday baseline from the week 

02-03-2020 to 08-03-2020, normalized against the Google Public Transit Lisbon Index, 

which was then used to infer the filled-in values. 

 

Filtered Data: None 
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Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

 

3.2.4. Lisbon International Airport Traffic Data Source 

Data Source Description: Lisbon international airport (Humberto Delgado Airport) 

daily cumulative aircraft movements and non-transferred passengers were sourced from 

ANA (Aeroportos de Portugal) for the years 2019 and 2020. 

 

Non-transferred passengers better describe passengers that either arrive in Lisbon as their 

last flight leg or departure from Lisbon as their initial flight leg and therefore discarding 

passengers that were in-transfer and therefore neutral for this analysis. 

 

Data Quality Issues: None 

 

Filtered Data: None 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

 

3.2.5. Lisbon Air Pollutant Concentration Data Source 

Data Source Description: Hourly averaged air pollution measures were sourced from 

APA (Portuguese Agency for the Environment) via the EEA (European Environment 

Agency) for six urban air pollution stations, including three in high road traffic locations, 

from years 2013 to 2020.  

 

The measures include concentration values (μg/m3) for primary pollutants 𝑁𝑂2 (Nitrogen 

dioxide), 𝐶𝑂 (Carbon monoxide), 𝑆𝑂2 (Sulphur dioxide) and secondary pollutants 𝑃𝑀10 
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Particulate Matter < 10μm of diameter, 𝑃𝑀2.5 (Particulate Matter < 2.5μm of 

diameter), 𝑂3 (Ozone) and 𝐶6𝐻6 (Benzene). 

 

Data Quality issues: In the APA (Portuguese Environment Agency) air pollution dataset, 

for the 𝑃𝑀2.5 aerosol on background pollution station there’s no data for January 2020, 

for the 𝐶𝑂 pollutant there’s no data for 2014. Furthermore, Benzene measurements in 

Lisbon monitoring stations have multiple massive gaps throughout multiple years and 

months and therefore will not be reported in detail. 

 

A number of comparisons of 2020 air pollution levels with previous years (2013-2019 

baseline) are carried out in order to understand the magnitude of air pollutant 

concentration change during the several stages of the COVID-19 pandemic handling by 

Portuguese authorities. 

 

To understand any potential bias of this type of comparative analysis, for instance if air 

pollution levels changed significantly throughout the 2013 to 2019 period due to 

environmental policies, an historical worst station yearly average concentration per air 

pollutant is provided (Figure 7). 

 

Most air pollutants have had irregular trends in the 2013-2019 period with the exception 

of 𝑃𝑀10 which appears to follow a decrease trend since years 2018 and 2019 and Ozone 

(𝑂3) which decreased in 2013 and 2014 and stabilized in the following years. It may affect 

comparative analysis since an organic downward trend was already in progress. 

 

Moreover, a similar yearly worst station average per air pollutant analysis is provided by 

CCDR-LVT (Lisbon and Tagus Valley Regional Development Coordination 

Commission) with additional temporal span (2001-2019) which yields the same 

conclusion [10]. 
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Figure 7 – Lisbon worst station yearly average concentration per air pollutant 

 

Filtered Data: For 𝑁𝑂2, 𝑆𝑂2, 𝑂3, 𝑃𝑀10 and 𝑃𝑀2.5, measures with concentration equal 

to 0 μg/m3 were filtered from the analysis. For all pollutants, only samples with validation 

status equal to 1 were kept. 

 

Aggregation performed: The data-source reports air pollutant concentration sampling 

at the hour granularity. To integrate in the consolidated data model, a temporal 

aggregation to the daily grain was conducted. The resulting metrics include the minimum, 

maximum, average, quartile 1, quartile 2 (median) and quartile 3 concentrations values at 

the daily level. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

3.2.6. Portugal COVID-19 Pandemic Report 

Data Source Description: COVID-19 pandemic related health indicators  

 

The data is sourced from DGS (Direção Geral de Saúde) but it is currently gathered, 

integrated, and managed by a DSSG-PT (Data Science for Social Good Portugal) in their 

public repository [54]. It includes indicators such as the number of confirmed COVID-19 

cases, COVID-19 patients admitted to hospital wards and ICUs, COVID-19 related 

deaths and many other indicators. The data has a daily temporal granularity and also has 

2013 2014 2015 2016 2017 2018 2019

NO2 52.766651 53.237609 58.626446 57.344602 60.399414 60.687698 54.611514

O3 67.186 60.623399 57.254034 56.802762 57.663646 58.664607 58.03802

PM10 33.795172 29.925618 35.981193 32.425602 36.400589 28.376249 24.815447

PM25 11.825775 11.147168 14.948739 14.411583 11.599504 13.486851 11.654915

CO 348.15308 369.92151 340.90194 402.9269 367.71354 380.21559
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many of the indicators broken down by geographical regions, spanning from the very 

beginning of the pandemic in Portugal until the present date of this work. 

 

Data Quality Issues: None 

 

Filtered Data: None 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

 

3.2.7. Lisbon and Tagus Valley Mortality Report 

Data Source Description: Death certificate information system  

 

The data is sourced from DGS (Direção Geral de Saúde) SICO/EVM system and provides 

consolidated data on all deaths registered in Portugal as result of the digitalization of death 

certificates spanning a period including the years from 2014 to 2020. This data-source 

allows the analysis of registered deaths by type and geography, which for the present 

work is the Lisbon and Tagus Valley health region, namely excess mortality, or 

effectiveness of restrictive measures in the context of the COVID-19 pandemic. 

 

Data Quality Issues: None 

 

Filtered Data: Only date for LVT health region was kept. 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

 

3.2.8. Bike Lane Counter (Av. Duque de Ávila) 

Data Source Description: Bi-directional bike lane counter in Av. Duque de Ávila 

 



46 

 

The data source is the result of the count of bike passages through a sensor owned by the 

municipality in each of the directions (east/west) of a busy bike lane in the center of 

Lisbon, which aims to be a sample of the usage of bikes in the remainder of the city, in 

the period spanning January 2019 to October 2020. 

 

Data Quality Issues: Data gap from 16-04-2019 to 04-07-2019 doesn’t allow a complete 

homologous analysis. The expanding bike lane network, owned bicycles and shared bike 

programs might impact the homologous analysis since the baseline bike users are 

different. 

 

Filtered Data: None. 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata 

   

3.2.9. Shared Bike Trips (GIRA) 

Data Source Description: Total number of GIRA trips by day 

 

 The data source provides a daily trip count of GIRA rides spanning from January 2019 

to December 2020. GIRA is a municipality electric and regular shared bike service with 

pick-up/drop-off stations spanning large swaths of Lisbon municipality for regular and 

occasional bikers. 

 

Data Quality Issues: There are three days with data gaps (20/03/2020, 09/05/2020 and 

10/05/2020) The expanding bike lane network, owned bicycles and shared bike programs 

might impact the homologous analysis since the baseline bike users are different.  

 

Filtered Data: None. 

 

Aggregation performed: None. The original data-source is already at the daily temporal 

granularity. 

 

Data Source Metadata: See Appendix B – Data Source Metadata  
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3.2.10. Data Source Summary 

A high-level summary of the most relevant data-sources used in the present 

work can be found in Table 5. 

Table 5 – Data Sources 

Entity Dataset Grain Period Short description 

IPMA 
Meteorological 

parameters 
Hour 

2019-

2021* 

The measures include wind speed (m/s) and direction (º), 

relative humidity (%), air temperature (ºC), sea level air 

pressure (hPa), total global radiation (KJ/m2) and 

accumulated precipitation (mm) 

APA/EEA 
Air Pollutants 

Concentration 
Hour 

2013-

2021* 

Concentration values (μg/m3) for primary pollutants 𝑁𝑂2 

(Nitrogen Dioxide), 𝐶𝑂 (Carbon Monoxide), 𝑆𝑂2 (Sulphur 

Dioxide) and secondary pollutants 𝑃𝑀10 Particulate Matter 

< 10μm of diameter, 𝑃𝑀2.5 (Particulate Matter < 2.5μm of 

diameter) and 𝑂3 (Ozone). 

Apple 
Apple mobility 

trend report 
Daily 

2020-

2021* 

Daily percentual change of Apple Maps App walking and 

driving direction requests in the city of Lisbon, Portugal 

against the baseline day of 13-01-2020 (a pre-lockdown 

Monday). 

Google 
Community 

mobility report 
Daily 

2020-

2021* 

Per-weekday percentual change in user activity per location 

type (Retail & Recreation, Grocery & Pharmacy, Parks, 

Transit Stations, Workplace and Residential) of users with 

Google location services enabled in their mobile devices 

against a per-weekday baseline computed between 03-01-

2020 and 06-02-2020 (pre-lockdown). 

Moovit 

Moovit 

Insights Public 

Transit Index 

Daily 
2020-

2021* 

Lisbon 7-day public transportation ridership percentual 

change, measured with the Moovit App, from a baseline 

week computed for the week of 08-01-2020 to 15-01-2020 

(pre-lockdown). 

Waze 

COVID-19 

Impact 

dashboard 

Daily 
2020-

2021* 

Percentual change of kilometers driven per day measured 

with the Waze App within the city of Lisbon against a pre-

computed baseline scoped to the weekday for the period 

between 11-02-2020 and 25-02-2020 (pre-lockdown). 

Metropolitano 

de Lisboa 

Lisbon subway 

rides 
Daily 

2019-

2020 

Lisbon subway network daily cumulative rides (one-way 

trips) per type of pass (occasional, regular, child, etc) 

ANA Portugal 

Lisbon 

international 

airport traffic 

Daily 
2019-

2020 

Lisbon international airport (Humberto Delgado Airport) 

daily cumulative aircraft movements (inbound, outbound) 

and non-transferred passengers (passengers just transiting). 

DGS 

COVID-19 

pandemic 

report 

Daily 
2020-

2021* 

COVID-19 Pandemic related health indicators 

communicated by public entities broken down by 

geographical context. 

SICO/EVM 

Lisbon and 

Tagus Valley 

Mortality 

Daily 
2020-

2021* 

Consolidated data on all deaths registered in Portugal broken 

down by death type, age group and by geography. 

EMEL 
GIRA bike 

ridership 
Daily 

2019-

2020 

Daily Lisbon GIRA shared bike program ridership. 

 

* Incomplete year 

 

 



48 

 

3.2.11. Consolidated Data Model 

As previously described in chapter 1.5, after the data extraction, transformation and 

loading process, the resulting analytical data model loaded into PowerBI was used to 

support all of the visualizations and consolidated data extractions for machine learning 

purposes. A simplified diagram of the data model can be found in Figure 8.  

 

 
 

Figure 8 – Simplified analytical data model built in the present work 

 

3.3. Temporal and Spatial Scope of the Analysis 

The present work is based on several data sources describing weather, air pollution 

and urban mobility during the pre-pandemic and pandemic period in Lisbon Metropolitan 

Area, Portugal. The weather and air quality monitoring stations that were used in this 

work are depicted in Figure 9 and described in Table 6. 
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Figure 9 – Lisbon municipality geography boundaries, its reduced pollution emission zones and 

air pollution, weather monitoring stations. 

 

Table 6 – List of meteorological and air quality monitoring station 

Station Entity Altitude Location (Lat, Lon) Station Type 

Benfica (T) APA 76 m 38.748787, -9.201764 Traffic Air pollutant monitoring station 

Av. Liberdade (T) APA 44 m 38.721149, -9.146152 Traffic Air pollutant monitoring station 

Entrecampos (T) APA 86 m 38.748567, -9.149012 Traffic Air pollutant monitoring station 

Beato (B) APA 56 m 38.733686, -9.114497 Background Air pollutant monitoring station 

Olivais (B) APA 32 m 38.769783, -9.107292 Background Air pollutant monitoring station 

Restelo (B) APA 143 m 38.705738, -9.209461 Background Air pollutant monitoring station 

Gago Coutinho IPMA 140 m 38,766202,-9,127494 Metereological station 

T. da Ajuda IPMA 62 m 38,709561,-9,182825 Metereological station 

I. Geofísico IPMA 77 m 38,719077,-9,149722 Metereological station 

 

As for the temporal scope, the Portuguese government enacted different lockdown 

restrictions in several periods and geographies throughout the year of 2020 and 2021 to 

contain the spread of  COVID-19 pandemic. Each type of restriction implements different 

mechanisms that aim to reduce the spread of the disease. These types of restrictions have 

different effects on anthropogenic activities that produce air pollutants such as driving 

internal combustion vehicles, heating, industrial or energy production. 
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The present work mainly focuses on the months between March and July 2020, where the 

two main confinement periods occurred, to understand the impacts of restriction measures 

introduced by the authorities to manage the pandemic in the urban environment and 

mobility as summarized in Table 7. The preemptive approach to the management of the 

pandemic by the Portuguese government, which included strict lockdowns, resulted in 

limited spread of COVID-19 in the Lisbon and Tagus Valley health region as depicted in  

Figure 10. 

 

 

Figure 10 – Main phases of the pandemic management in the Lisbon Metropolitan Area. 

 

Table 7 – Description of the main phases of the pandemic management in the Lisbon 

Metropolitan Area 

Phase Start / End Description 

Pre-confinement 

04-02-2020 

to 13-03-

2020 

Since the first suspected cases in early February 

2020 until generalized lockdown in mid-March 

2020, several governmental decisions restricting 

international travel, large scale public events, 

some public services and hospital visits. Several 

reported companies started moving to a 

telework even before it was mandated by the 

government. 
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1st National General 

Confinement 

14-03-2020 

to 03-05-

2020 

Schools were closed in 12-03-2020 and 

telework was generalized in both public and 

private sector where 13-03-2020 was the last 

office day for most workers. National Alert state 

decreed in 13-03-2020 and shortly after the 

Emergency State was declared in 18-03-2020 

where the government enacted a number of 

restrictive measures to stop the spread of 

COVID-19. With most in-person public 

services, social, cultural, and economic 

activities related to tourism, restaurants, 

shopping, and general leisure closed, as well as 

limitation of mobility without proper 

authorization, urban mobility declined sharply. 

1st National Calamity 

State 

04-05-2020 

to 01-07-

2020 

A two week 3-phase, gradual reopening plan 

was implemented where mask mandates were 

introduced in public transportation, public 

services, schools, commerce, restaurants, and 

cafes reopened with additional sanitary rules, 

occupancy limitations and limited schedules. 

Telework, where possible, was still mandatory. 

High risk activities such as football fans in the 

stadiums, concerts, and nightclubs, were not 

allowed. Large social agglomerations were still 

not allowed (and dispersed if needed) and civic 

duty of confinement was recommended to every 

citizen. 

 

 

 

3.4.Mobility Analysis during COVID-19 Pandemic 

In March 2020, the Portuguese government mandated lockdowns required most of the 

population to remain at home. In Lisbon, public transportation ridership and trips using 

private car and soft transport means, such as bicycle or walking, were severely impacted 

as a result. 

The Moovit App, which is used to navigate metropolitan mass public transportation 

networks, provides a rolling 7-day ridership percentual change for Lisbon city measured 

with data from Moovit App usage, against a baseline week computed for the week of 08-

01-2020 to 15-01-2020 (pre-lockdown). 

 

According to this public transportation mobility index depicted in Figure 11, the most 

affected period was 09-04-2020 to 16-04-2020, where the 7-day rolling percentual change 

against the baseline estimated a 78.30% decrease in ridership. Even after the first state of 
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emergency ended on the 2nd of May 2020, demand for public transportation recovered 

only slightly to values far lower than from pre-pandemic periods, potentially due to 

general practice of telework, large scale lay-offs, reduced offer, and capacity of PT 

equipments, inexistent tourism as well as fear of contagium due to the enclosed nature of 

the public transportation equipments. During the first national emergency period (18-03-

2020 to 03-05-2020) the mean reduction in public transportation demand is estimated at 

75.63% against the index baseline. The index would only come to reach the pre-pandemic 

baseline levels on the 13th of July 2021. 

 

 

Figure 11 – Moovit Insights Public Transit Index for Lisbon, 2020 

 

According to the Apple Mobility Trend Report, which uses Apple Maps data from the 

navigation feature, the daily percentual change of direction requests in the city of Lisbon, 

Portugal against the baseline day of 13-01-2020 (a pre-lockdown Monday) provides 

details on other urban mobility means, namely walking and driving, which are two of the 

Apple Maps app modes. 

According to this index, the day with largest reduction of walking navigation requests 

was on the 29th of March 2020 with a reduction of 92.60% and on the 12th of April for 

driving navigation requests with a reduction of 86.02% as depicted in Figure 12. These 

results must be interpreted cautiously since the baseline period for comparison is a pre-

lockdown Monday and both the dates with largest reductions during the lockdowns are 
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Sundays which are days where there’s naturally reduced urban mobility associated to the 

weekends. 

Nevertheless, the results are consistent with the high initial adherence to lockdowns by 

the population, where in the first national emergency state (18-03-2020 to 03-05-2020) 

walking trips reduced in 89% and driving trips reduced in 78.84% against baseline, while 

during the first national calamity state (04-05-2020 to 01-07-2020) walking trips reduced 

in 72% and driving trips reduced in 43.05% against baseline. From this moment onwards, 

lockdown erosion and continuous de-escalation of confinement contributed to a steady 

increase in both mobility patterns until the summer.  

From the 1st of August 2020 onwards, the remaining 19 AML parishes still in calamity 

state, which still had special mobility restrictions due to the virus incidence, joined the 

rest of the AML to the lower state of contingency. This appears to be correlated with a 

sharp increase in walking trips starting in early August, with additional potential 

contributions from tourism, which peaked in August 2020, and the vacation periods that 

might have been spent closer to home. 

 

 

Figure 12 – Apple Mobility Trend Report for Lisbon, 2020 

 

While Apple Mobility Trend focus on the number of direction requests by users, the Waze 

App COVID-19 Impact Index calculates the percentual change of kilometers driven per 

day measured with the Waze App within the city of Lisbon against a pre-computed 
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baseline scoped to the weekday for the period between 11-02-2020 and 25-02-2020 (pre-

lockdown). An important aspect of a measure related to driven distance is that it is 

expected to correlate better to vehicle related pollution emissions than the number of trips. 

 

According to this index, the day with the highest reduction of driven kilometers when 

compared to the respective baseline was the 10th of April 2020 with a reduction of 94% 

in driven kilometers as depicted in Figure 13. It then follows a similar distribution to the 

Apple Driving index but with a negative offset that widens from the beginning of the 

lockdown period until the summer period, potentially due to the fact that it measures 

driven kilometers and not number of trips, whereas it is possible that the average driven 

kilometers per trip during the lockdown periods were overall lower due to the more direct 

trips and non-leisure use of the private vehicle. 

During the first national emergency period (18-03-2020 to 03-05-2020), it registered a 

75.63% decrease in the daily driven kilometres registered with the Waze App while the 

first state of calamity (04-05-2020 to 01-07-2020), which was marked by lockdown 

erosion and continuous de-escalation of confinement, registered a 56.13% decrease 

against the baseline. 

 

 

 

Figure 13 – Waze COVID-19 Impact Index for Lisbon, 2020 

 

Google Community Mobility Index is a different mobility index type since it associates 

user activity to a location type instead of movement distances or the number of 
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movements. It derives a per-weekday percentual change in user activity per location type 

(Retail & Recreation, Grocery & Pharmacy, Parks, Transit Stations, Workplace and 

Residential) from data of users with Google location services enabled in their mobile 

devices against a per-weekday baseline computed between 03-01-2020 and 06-02-2020 

(pre-lockdown). 

According to this index depicted in Figure 14, the days with the sharpest reduction of 

activity in Grocery and Pharmacy (Commerce) was the 12th of April 2020 with a decrease 

in activity of 84%, for Workplace was the 10th of April 2020 with a decrease of 89%, for 

Parks was the 5th of April 2020 with a decrease of 91%, for Retail and Leisure was the 

12th of April 2020 with a decrease of 91% and for Public Transportation was the 10th of 

April 2020 with a decrease of 90%. On the other hand, for Residential activity there was 

a general increase peaking on the 10th of April 2020 with a maximum of +47%. 

 

 

Figure 14 – Google Community Mobility Report for Lisbon, 2020 

 

Lisbon subway network ridership was severely reduced as a consequence of COVID-19 

restrictions beginning in March 2020 as depicted in Figure 15. As one of the three main 

public transportation modes used in the city, it showcases the dramatic effect of the 

lockdown in the city.  
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Figure 15 – Lisbon Subway Ridership for 2019 and 2020 

 

The YoY analysis should be done with care since from September 2019 onwards a change 

in the prices of recurrent titles [55] increased the baseline usage of the subway network 

starting in April 2019. The first two months of 2020 where no restrictions were in-place, 

when compared to the homologous month in 2019 show that regular passes had an 

increase in ridership of 23%, free child passes 39% and overall ridership of 13%. In this 

sense two analysis are provided, an YoY monthly percentual change for 2019 and 2020, 

as well as a monthly percentual change against a static baseline (January/2020). 

 

As depicted in Figure 16, the most impacted month was April/2020, with a homologous 

decrease in total ridership of 84% when compared to 2019. For the same month, when 

compared to January/2020 baseline, there’s an 85% decrease in total ridership. The most 

impacted type of trip was the occasional title which measured a homologous ridership 

decrease of 92% and a decrease of 89% when compared to January/2020. This was 

expected since leisure and tourist ridership were virtually halted during the initial 

lockdowns. As detailed in section 3.2.3, the subway ridership data for April/2020 had to 

be filled-in via extrapolation since ticket validation was halted during the peak of the 

pandemic and thus should not be considered factual. 
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Figure 16 – Lisbon Subway (a) YoY monthly percentual ridership change 2019 and 2020 and 

(b) monthly percentual ridership change against January 2020 

 

 

In the first state of emergency (18-03-2020 to 03-05-2020), GIRA bike trips fell by 

68.47% when compared to the same period in 2019 but recovered during the first state of 

calamity (04-05-2020 to 01-07-2020) measuring an increase of 22.59% in ridership when 

compared to the same period in 2019 as depicted in Figure 17. After the first state of 

emergency, the usage of the shared GIRA bike during the first state of calamity increased 

in greater order of magnitudes than other types of urban transportation, namely the 

subway which still measured a 72.56% retraction against the same period in 2019. This 

could be attributed to increased demand for soft transportation means due to fear of 

contagium or because GIRA bike might also be used as an outdoor leisure activity and 

not only as a mean of transportation. 

 

International non-resident business or leisure visitors make their way to Lisbon from their 

home countries primarily by means of air transportation [56]. Besides aircraft emitted air 

and noise pollution, visitors temporarily enlarge Lisbon population and therefore the 

human footprint in terms of anthropogenic pollutant activities and additional pressure on 

public transportation systems. 
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Figure 17 – Lisbon GIRA shared-bike ridership for 2019 and 2020 

 

 

As depicted in Figure 18, the total non-transferred passengers in Lisbon airport during 

COVID-19 restrictions had a homologous reduction of 99.11% in the 15th week of the 

year and was measured to be only 4.423 passengers in 2020 (2020-04-05 to 2020-04-11) 

against 498.565 passengers in 2019 (2019-04-07 to 2019-04-13). Regarding the number 

of total aircraft movements, it had a homologous reduction of 96.44% in the same analysis 

period wherein 2020 there was only 152 movements against 4273 movements in 2019 

and some of the few flights were related with citizen repatriation efforts.   

 

The partial recovery from July 2020 onwards is related to the lifting of self-imposed travel 

restrictions by the Portuguese government [47] and additional relaxation of traveling rules 

from August 2020 onwards also had an effect [57]. The overall volume of passengers was 

also affected by travel restrictions imposed by the countries of origin of tourists or 

expatriates that visit Portugal (England, Germany, France, Italy, Spain, The Netherlands, 

etc.) and reciprocate restrictions of not allowing Portuguese citizens to travel to their 

countries. 
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Figure 18 – Lisbon international airport non-transferred passengers for 2019 and 2020 

 

By computing the Pearson Correlation of both public transportation mobility indexes for 

the year 2020 with an independent public transportation variable (subway ridership), it is 

found that Google Mobility Index for Public Transport correlates better than Moovit 

COVID-19 Public Transport Impact Index (r=0.98598 vs r=0.90812) and is thus a 

mobility index that correctly models public transport commuter routines in the city as 

shown in Figure 19. This could be useful not only to gauge changes in public transportation 

usage but to be used as a proxy indicator for public transportation usage in, for instance, 

the training of machine learning models. 

 

 

 

Figure 19 – Moovit and Google public transportation 2020 Mobility Indexes against an 

Independent Variable (Subway ridership) 
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A visual summary of the main impacts on urban mobility indicators in Lisbon during the 

first national emergency state period from 18-03-2020 to 03-05-2020 and during the first 

national calamity state period from 04-05-2020 to 01-07-2020 can be found in Figure 20. 

 

 

  

Figure 20 – Google, Apple, Moovit and Waze mobility index change during the 1st national 

emergency state period from 18-03-2020 to 03-05-2020 (1) and first national calamity state 

period from 04-05-2020 to 01-07-2020 (2) against a pre-pandemic baseline 
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3.5.Nitrogen Dioxide (NO2) performance during COVID-19 Pandemic 

While the present work used in-situ measures acquired by ground air quality 

monitoring stations, one can use satellite observations to have a high-level view of the 

impact of the confinement measures on Nitrogen dioxide (𝑁𝑂2), a pollutant emitted 

directly and indirectly by internal combustion vehicles. During the first national 

emergency state lockdown and the first half of the first calamity state (March-June), 

where the most restrictive measures affecting anthropogenic activities were in-place, a 

clear reduction on the density of the 𝑁𝑂2 vertical column measured by the TROPOMI 

instrument aboard Sentinel-P5 satellite when compared to the same period in 2019 as 

shown in Figure 21. 

 

 

Figure 21 – Lisbon and Tagus Valley Monthly Average of Total NO2 vertical column (μmol/m2) 

measured by the TROPOMI instrument onboard Sentinel-P5 satellite. 

 

For the same period, irrespective of the type of ground monitoring station (Background 

and Traffic), similar results can be observed. During the first national emergency 

lockdown and the first half of the first calamity state (March-June) 𝑁𝑂2 concentration 

levels measured at ground-level were severely reduced, having April/2020 reached a -

46,96% difference when compared to the median 𝑁𝑂2 concentration for April 2013-2019 

as depicted in Figure 22. 
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Figure 22 – All Lisbon stations monthly median NO2 concentration (μg/m3) for the years 2013-

2019 and 2020.  

 

When taking in consideration Lisbon air pollutant road traffic measurement stations it 

is also clear that during the first national emergency lockdown and the first half of the 

calamity state (March-June) 𝑁𝑂2 concentration levels measured at ground-level were 

severely reduced having April/2020 reached a -56,30% difference when compared to the 

median 𝑁𝑂2 concentration for April 2013-2019 (Figure 23). The drop is coherent with a 

sharp decrease in road transport contributions due to the imposed mobility restrictions. 

Regarding Lisbon air pollutant background measurement stations during the first 

national emergency lockdown and the first half of the calamity state (March-June), 𝑁𝑂2 

concentration levels measured at ground-level were moderately reduced, having 

April/2020 reached a -32,24% difference when compared to the median 𝑁𝑂2 

concentration for April 2013-2019 (Figure 24). 
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Figure 23 –Road traffic Lisbon monitoring stations monthly median NO2 concentration (μg/m3) 

for the years 2013-2019 and 2020.  

 

 

 

Figure 24 – Background Lisbon monitoring stations monthly median NO2 concentration 

(μg/m3) for the years 2013-2019 and 2020.  
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Figure 25 – Road traffic Lisbon monitoring stations NO2 concentration (μg/m3) 14-day Moving 

Aver-age per day of year for all years from 2013 to 2020. 

 

The unlocking phase must be analyzed with care since the general end of lockdown 

entered the seasonal vacation phase of most workers and students (June-September) 

where historically 𝑁𝑂2 levels are lower. This means that two opposed forces are driving 

the 𝑁𝑂2 concentrations. A lower granularity multi-year comparative analysis with a daily 

14-day moving average 𝑁𝑂2 concentration on Traffic monitoring stations allows a glance 

at the 𝑁𝑂2 performance during lockdown (Figure 25).  

Anthropogenic activities are not the sole driver of 𝑁𝑂2 concentrations. Seasonal 

weather patterns, as well as anomalous weather-related episodes, contribute to higher or 

lower 𝑁𝑂2 concentrations and these phases are explained in Chapter 3.8 to better 

understand 𝑁𝑂2 concentrations throughout the pandemic phases under analysis. 
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Figure 26 – Hourly NO2 median concentration in Traffic Stations for the National Confinement 

period (14-03-2020 to 03-05-2020) and homologous 2013-2019 period. 

 

Because 𝑁𝑂2 concentrations in cities and towns are mostly related to internal 

combustion vehicles, the hourly 𝑁𝑂2 average concentration profile in Lisbon closely 

follows road traffic patterns where the most obvious feature is the home-work-home 

commuting dynamics, both intra-city and pendular, in the morning period when people 

go to work and in the end of the day when people go back home.  

The hourly median 𝑁𝑂2 concentration profile during the 1st national lockdown period 

in traffic air quality monitoring stations is significantly lower than the same period in 

2019 and 2013-2019 baseline period, peaking in excess of -60% between 18:00h and 

20:00h. This happens because the curve itself changed to having a nearly flat post-

morning concentration instead of a steep uptick at the end of the day when usually 

commuters are driving back home from work due to telework and layoff and general 

closure of in-person economic, social, cultural, and administrative activities. The morning 

commuting period is also significantly lower, peaking at -53,67% at 09:00h but still 

maintaining the uptick shape contributed by the regular non-road traffic sources and 

residual vehicle traffic pertaining to essential workers and services, goods deliveries, and 

general deliveries commerce provisioning (Figure 26). 
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Figure 27 – Hourly NO2 median concentration in Background Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) and homologous 2013-2019 period. 

 

Regarding the background monitoring stations, the hourly median 𝑁𝑂2 concentration 

profile during the 1st national lockdown period is moderately lower when compared to 

the traffic stations as expected but still peaking below -40% between 18:00h and 21:00h 

when compared to the same period in 2019 and 2013-2019 baseline period (Figure 27).  

 

 

Figure 28 – NO2 median concentration in Traffic Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) and homologous 

2013-2019 period. 

 

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

μ
g/

m
3

Hour of Day

IQR 2013-2019 Mediana 2019 Mediana 2020 Mediana 2013-2019

0

10

20

30

40

50

60

70

Mon Tue Wed Thu Fri Sat Sun

μ
g/

m
3

Day of Week

IQR 2013-2019 Median 2013-2019 Median 2019 Median 2020



 

67 

 

Regarding the week-day profile of 𝑁𝑂2 concentrations, a larger period of time 

consisting of the first national emergency state and calamity situation, where both hard 

and soft lockdown measures were in place, was used to increase the analysis's statistical 

significance. As depicted in Figure 28, when comparing 𝑁𝑂2 median concentrations per 

weekday in traffic monitoring stations between the 2013-2019 baseline versus 2020 

lockdown periods, it is possible to identify Sunday as the day with the largest difference 

peaking at -56,15% difference. This could be attributed to the general closure of 

supermarkets and other allowed commerce on Sundays, leaving little allowed reasons for 

driving in the city. Additional insight is related to the 𝑁𝑂2 concentration differences 

between weekdays and weekends, having Sundays in the lockdown period in analysis -

40.26% than the average weekday of the same period, comparing to -27.90% during the 

same year period from the 2013-2019 baseline. By contrast, Saturdays in the lockdown 

periods in analysis were -11.22% of the average weekday of the same period, comparing 

to -9.57% during the same year period from the 2013-2019 baseline. This means that 𝑁𝑂2 

concentrations during weekends were much lower compared to the baseline and the gap 

between weekend and working weekdays was widened. The same pattern can be 

generally verified for background stations although concentrations are much lower, as 

expected (Figure 29). 

 

 

Figure 29 – NO2 median concentration in Background Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) and homologous 

2013-2019 period 
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Figure 30 – Annual average NO2 concentration in all Lisbon stations from 2013 to 2020 and 

the current violation threshold in place (40 µg/m3) 

 

 

Figure 31 – Count of yearly 1-hour mean violations (200 µg/m3) per year in Lisbon stations 

and allowed exceedances per year (18) 
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Regarding the Decree Law No.102/2010 of 2010-09-23 (transposition of EU 

Directives 2008/50/CE and 2004/107/CE), where air pollutant safety thresholds are 

regulated, in the pandemic year of 2020, the compliance of the annual mean 𝑁𝑂2 

concentration safety threshold of 40 µg/m3 was met by all six monitoring stations in 

Lisbon including the Av. da Liberdade station which, as far as the available data concerns, 

had never been able to meet this regulatory threshold (Figure 30). 

According to the same law, it is also defined a maximum number of eighteen yearly 

exceedances of 𝑁𝑂2 hourly-mean concentrations of 200 μg/m3. As shown in Figure 31, 

during the year of 2020 there was a single occurrence in Av. da Liberdade where this 

threshold was exceeded, and it was well before the pandemic period (05-02-2020) when 

mobility restrictions associated to the COVID-19 pandemic were in place in Lisbon. As 

a measure of comparison, the maximum registered 𝑁𝑂2 concentration during COVID-19 

lockdown periods in the Av. Liberdade monitoring station, namely during 1st emergency 

state and 1st calamity situation (14-03-2020 to 01-07-2020), was 99.7 µg/m3 on the 3rd of 

April 2020 compared to the same period in 2019 where it was measured 213.8 µg/m3 on 

the 1st of June 2019 or compared to the same period in 2018 where it was measured 237.7 

µg/m3 on the 18th of June 2018. 

 

3.6.Tropospheric Ozone (O3) performance during COVID-19 Pandemic 

During the initial 2020 lockdown months, the median concentration of tropospheric 

Ozone measured in traffic stations, where 𝑁𝑂𝑥 concentrations are also usually higher due 

to vehicle emissions, has had a sequential increase of 204.55% from February 2020 to 

March 2020 whereas on the 2013-2019 baseline, from February to March, it should only 

increase 28.93% as per the usual yearly seasonality. As shown in Figure 32, from March 

2020 onwards, Ozone concentrations remained at higher levels than the 2013-2019 

baseline peaking with a 2013-2019 baseline homologous 18.37% increase in March 2020, 

following a similar but inverse trend of 𝑁𝑂𝑥 concentrations. This could indicate that 

there’s change in 𝑁𝑂𝑥:VOC ratio and reduced effect of 𝑂3 titration by 𝑁𝑂, resulting in 

generally higher concentrations of 𝑂3 in the more polluted centre of the city which is 

usually VOC-limited. Other involved factors such as meteorology and other atmospheric 

parameters cannot explain this increase since a general increase in 𝑂3 in the traffic stations 

during lockdown period appears to exist during different types of weather, both beneficial 

and prejudicial to 𝑂3 formation, albeit in different magnitudes of increase. 
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Comparative analysis of tropospheric Ozone with the 2013-2019 baseline should be 

done with care since the 2013-2019 baseline includes two years (2013, 2014) where 

Ozone concentrations were generally higher with yearly averages of 67 µg/m3 and 60 

µg/m3 respectively, against 56-58 µg/m3 yearly averages from 2015 onwards. This 

means that the actual homologous increase of Ozone concentration in traffic areas should 

be greater. To further aid this exercise, the 2019 median Ozone concentration has been 

included where the gap is significantly higher during the lockdown period.  

 

 

 
 

Figure 32 –Road traffic Lisbon monitoring stations monthly median O3 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

 

As for the background stations, which usually present higher 𝑂3 concentrations due a 

different 𝑁𝑂𝑥:VOC regime and with less 𝑂3 titration by 𝑁𝑂, as in the more polluted city 

centre, the comparative analysis of 2020 tropospheric Ozone concentration with the 2013-

2019 baseline during COVID-19 lockdowns appears to show a slight negative change 

between -1% to -8% with some months within the statistical error margin (Figure 33). 

Since background stations are outside the high intensity traffic areas of the city and 

usually have much lower 𝑁𝑂𝑥 concentrations (𝑁𝑂𝑥 limited), the additional reduction in 

𝑁𝑂𝑥 concentration during lockdowns should justify this light 𝑂3 concentration reduction 

in the background stations.  
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Figure 33 –Background Lisbon monitoring stations monthly median O3 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

 

The hourly profile of tropospheric Ozone (𝑂3) in traffic monitoring stations is highly 

influenced by high 𝑁𝑂𝑥 concentrations emitted by internal combustion engine vehicles. 

Since 𝑁𝑂2 photolysis is the main net contributor of Ozone in these conditions, it is usually 

expected to have a similar, but inverse, distribution of 𝑂3 concentration when compared 

to 𝑁𝑂2 concentration during daytime. During night-time, without 𝑁𝑂2 photolysis to fuel 

the production of additional Ozone, it is slowly destroyed by titration of 𝑁𝑂 and might 

also be transported by air currents to other locations. 

Specifically, during COVID-19 lockdown periods, thus a 𝑁𝑂𝑥 deprived period due to 

the reduction of emissions, in traffic monitoring stations, night-time periods clearly show 

slower destruction of Ozone concentrations potentially due to lower availability of 𝑁𝑂 

for 𝑂3 titration which results in less 𝑂3 night scavenging resulting in overall increased 𝑂3 

concentrations. During the daylight period, the sharp reduction of 𝑁𝑂𝑥 concentrations 

appears to be correlated to the general increase of 𝑂3 concentrations in urban traffic 

monitoring stations due to sharp 𝑁𝑂𝑥 reduction in a usually VOC-limited regime, shifting 

the regime to a more 𝑁𝑂𝑥 limited regime with higher 𝑂3 production, and reduced effect 

of 𝑂3 titration by 𝑁𝑂 associated with usually polluted locations in urban centres. The 

period with the largest change 𝑂3 concentration change against the 2013-2019 baseline is 

the 7AM to 10AM period with a homologous 51.43% (07:00h), 46.45% (08:00h), 39.21% 
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(09:00h) and 20.07% (10:00h) increase of Ozone concentration, followed by the whole 

daylight period until 19:00h with 𝑂3 concentration increases against the 2013-2019 

baseline ranging from 6.78% to 17.55% and finally with the night time period between 

20:00h and 01:00h where 𝑂3 concentrations increase the gap against the baseline with 

positives changes between 16.67% and 24.79% (Figure 34). 

 

 

Figure 34 – Hourly O3 median concentration in Traffic Stations for the National Confinement 

period (14-03-2020 to 03-05-2020) versus 2019 and 2013-2019 Interquartile range, for the 

same year period. 

 

As for the background stations, the hourly profile doesn’t change much when 

compared against the 2013-2019 baseline, as already had been verified in the overall 𝑂3 

concentrations in background stations during the lockdown periods, but it shows a slight 

decrease. The largest decrease was 11.43% at 03:00h and 9.15% at 11:00h following a 

similar reduction on 𝑁𝑂𝑥 concentration registered in background stations whose already 

𝑁𝑂𝑥 limited regime should justify the slight 𝑂3 reduction (Figure 35).  
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Figure 35 – Hourly O3 median concentration in Background Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) versus 2019 and 2013-2019 Interquartile 

range, for the same year period. 

 

Regarding the weekly profile of tropospheric Ozone (𝑂3) in traffic monitoring stations 

during lockdown periods, all days of the week show an increase on the 𝑂3 concentration 

(Figure 36). The days with a higher gap to the baseline are Mondays (+20.40%), Thursdays 

(+19.83%) and Fridays (+18.15%) which are in line with the weekdays that had the 

greatest drops on 𝑁𝑂2 concentrations in the weekly profile analysis, further establishing 

the relationship between 𝑂3 increase and 𝑁𝑂2 decrease.  

Another interesting aspect is that due to the routine changes during lockdown periods 

the main precursor 𝑁𝑂2 has widened the weekend to weekday gap as discussed in Chapter 

3.5, which should in theory further increase the 𝑂3 weekend effect resulting in higher 𝑂3 

concentrations during the weekend days. This is not clearly noticeable, even with Sunday 

being the day of the week with the highest 𝑂3 median concentration just slightly above 

other days of the week, which could be attributed by meteorological factors, the short 

analysis period resulting in less statistical significance or changes in the 𝑂3 weekend 

effect during much lower 𝑁𝑂𝑥 concentrations. 
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Figure 36 – O3 median concentration in Traffic Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) versus 2013-2019 

Interquartile range, for the same year period. 

 

 

Figure 37 – O3 median concentration in Background Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) versus 2013-2019 

Interquartile range, for the same year period. 

 

Regarding the weekly profile of tropospheric Ozone in background stations during 

lockdown periods, all days of the week show slight decrease on the 𝑂3 concentration 

(Figure 37) with a somewhat irregular pattern irrespective of the usual 𝑂3 weekend effect. 

The day with the higher gap against the baseline was Saturday (+11.39%). 
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As for regulatory compliance of tropospheric Ozone (𝑂3) concentrations impacts on 

human health, Lisbon monitoring stations have been compliant to the mandatory 

regulatory indicator stipulated by the Decree Law No.102/2010 of 2010-09-23 

(transposition of EU Directives 2008/50/CE and 2004/107/CE), where air pollutant safety 

thresholds are regulated, since the beginning of its measurement. The regulatory indicator 

defines that the daily maximum of 8hr-averages should not exceed 120 µg/m3 𝑂3 

concentration more than 25 days per year, evaluated by a 3-year average. To assess 

changes introduced by COVID-19 lockdown periods in 2020, the simpler long-term 𝑂3 

concentration objective indicator has been used for the analysis. This indicator stipulates 

that no 8h-average of 𝑂3 concentration shall exceed 120 µg/m3 in all days of the year.  

The number of 120 µg/m3 exceedances measured in traffic stations, in this case the 

Entrecampos station, increased in 2020, following the already identified general 𝑂3 

concentration potentially changes in 𝑁𝑂𝑥:VOC regime and to the reduced 𝑂3 titration by 

𝑁𝑂 generated by severed 𝑁𝑂𝑥 emissions from vehicle traffic and other anthropogenic 

activities impacted by the COVID-19 restrictions. The exceedances were registered 

during three heatwave periods where high air temperature and solar radiation, as well as 

low average wind speed, during the months of May, July and September 2020 helped 

sustain higher 𝑂3 concentrations (Figure 38). These months registered percentual 

increases of the median 𝑂3 concentration measured in the Entrecampos monitoring station 

against the 2013-2019 baselines of 18.37%, 19.82% and 20.97% respectively.  

In May 2020, a heatwave from 26th to 29th registered an average of maximum daily air 

temperatures well over 30ºC and low average wind speeds measuring between 1.43 m/s 

and 2.89 m/s. It was the hotter May since 1931, with generally high air temperature 

averages and stable atmosphere influenced by the Azores anticyclone. There were 𝑂3 

exceedances of 120 µg/m3 on the 28th and 29th of May 2020 in both background and 

traffic monitoring stations. 

In July 2020, a heatwave from the 9th to the 18th registered an average of maximum 

daily air temperatures near 35ºC, including two days (16th and 17th) where it was well 

over 35ºC, registering as well generally low to moderate average wind speeds.  It was the 

hotter July since 1931, with generally high air temperature averages and stable 

atmosphere influenced by the Azores anticyclone. There were 𝑂3 exceedances of 120 

µg/m3 on the 11th, 13th to 17th and 22nd of July 2020 in both background and traffic 

monitoring stations. 
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In September 2020, a heatwave from the 3rd to the 13th registered an average of 

maximum daily air temperatures between 31ºC and 34ºC, registering as well generally 

low average wind speeds. It was the 11th hotter September since 1931, when taking in 

consideration the average maximum daily air temperature, with generally high air 

temperature averages and stable atmosphere in the first half of the month, influenced by 

the Azores anticyclone.  

 

 

Figure 38 – Count of Long-term O3 concentration violation for human health per year and 

maximum O3 8hr-average concentration median concentration from 2013 to 2020 

 

As for the public alert of high 𝑂3 concentrations to allow the mitigation of health 

impacts on the populations, the two defined thresholds are one hour-mean of 180 µg/m3 

(Informational) and one hour-mean 240 µg/m3 (Alert). During the year of 2020, there 

was one day (13/07/2020) in one specific hour (14:00h) when the Informational threshold 

was crossed in two background monitoring stations, Restelo and Olivais, when the 𝑂3 

concentrations reached 190 µg/m3 and 195 µg/m3 respectively (Figure 39).  This specific 
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event occurred during the already described heatwave in July 2020 with optimal 

conditions for formation of high 𝑂3 concentrations. 

 

 

Figure 39 – Informational O3 threshold violations from 2013 to 2020 

 

3.7.Additional criteria pollutants and overall impact to air pollution 

While the present work is mainly focused on the response of the 𝑁𝑂2 and 𝑂3 pollutants 

during the main confinement phases of the COVID-19 pandemic in Lisbon, Portugal, a 

short analysis on the remaining criteria pollutants, 𝐶𝑂, 𝑃𝑀2.5 and 𝑃𝑀10, is provided to 

complete the high-level criteria pollutant homologous analysis. The 𝑆𝑂2 criteria pollutant 

is not reported in this work since, for the two monitoring stations in Lisbon reporting 𝑆𝑂2, 

this air pollutant concentration has been decreasing over the past few years to very low 

values due to the reduction of the usage of coal and fuel oil for power generation and 

general desulfurization of liquid fuels. This results in very low and potentially inaccurate 

readings due to low floating-point precision (1) in the measures recorded by monitoring 

stations. Over 25% of all 2019-2020 readings were below 0,1 µg/m3. 

As a by-product of the incomplete combustion of fossil fuels, road transport is 

estimated to contribute 78% of 𝐶𝑂 emissions in Lisbon and Tagus Valley which is slightly   

above the contribution of road transport to 𝑁𝑂𝑥 concentrations (63%) [23]. But unlike 

𝑁𝑂2, the median concentration of 𝐶𝑂 in traffic stations during the first national 

emergency state (18-03-2020 to 03-05-2020) only registered a decrease of 16.61% (Figure 
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40) against the 2013-2019 baseline opposed to the drop of 54.35% decrease for 𝑁𝑂2. It is 

not clear why 𝐶𝑂 concentrations have not decreased as much as 𝑁𝑂2 during lockdown 

period since road transport contributes heavily to both air pollutants. A possible cause 

could be that 𝐶𝑂, being a primary pollutant, which is not regenerated by photochemistry 

processes such as 𝑁𝑂2, has had a lower drop than 𝑁𝑂2 when comparing to the baseline. 

Other possible factors could be related to the fact that 𝐶𝑂 is lighter than 𝑁𝑂2, making it 

easier to disperse in the atmosphere, or due to the fact the vehicle mix during the 

lockdown periods were different than the baseline (i.e: diesel vs petrol; light vs heavy; 

newer vs older). Nevertheless, this disproportional drop in 𝑁𝑂2 and 𝐶𝑂 concentrations 

should be further investigated. 

 

 

Figure 40 – Road traffic (1) and Background Lisbon (2) monitoring stations monthly median 

CO concentration (μg/m3) for the years 2013-2019 and 2020.  

 

Particulate Matter with a diameter below 10 microns (𝑃𝑀10), also known as coarse 

particles, is a major source of urban pollution that causes serious health issues to humans 

namely respiratory and cardiovascular morbidity, such as aggravation of asthma, 

respiratory symptoms, and an increase in hospital admissions [58]. In an urban 

environment the main primary anthropogenic contributions to coarse particles are related 

to the internal combustion engine in road transport, tyre, and brake wear, as well as 

abrasion of the asphalt, whereas secondary anthropogenic contributions are mostly related 

to resuspension of dust and particles by vehicles.  

In the case of Lisbon and Tagus Valley region, road transport is estimated to account 

for 62% of anthropogenic 𝑃𝑀10 concentrations, with additional relevant contributions by 

the industry (26%) and production of electricity (9%). Biogenic causes for 𝑃𝑀10 are also 
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relevant and, for the Lisbon and Tagus Valley, are mostly related to episodes of dust 

transportation from North Africa deserts which introduces another variable in the analysis 

[23]. During the first national confinement period (18-03-2020 to 03-05-2020) the 

reduction of the median 𝑃𝑀10 concentration against the 2013-2019 baseline for the same 

period in traffic stations suffered a retraction of 46.69% while in background monitoring 

stations the reduction was measured at 14.32% (Figure 41). The results are consistent with 

the reduction in vehicle traffic during the lockdown periods. 

 

 

Figure 41 – Road traffic (1) and Background Lisbon (2) monitoring stations monthly median 

PM10 concentration (μg/m3) for the years 2013-2019 and 2020.  

 

Particulate Matter with a diameter below 2.5 microns (𝑃𝑀2.5) is especially dangerous 

to human health since they can penetrate deeper into the respiratory system and, when 

exposed to high concentrations for large periods of time, can cause serious respiratory 

and cardiovascular diseases and lung cancer [58]. The smaller particulate matter in urban 

environment is often related to secondary pollution formed in the atmosphere involving 

𝑁𝑂𝑥, 𝑆𝑂2 and COV, such as nitrates or sulphates, contrary to coarse particulate matter 

which is mostly related to primary pollution [23].  During the first national emergency 

(18-03-2020 to 03-05-2020) the reduction of the median 𝑃𝑀2.5 concentration against the 

2013-2019 baseline for the same period in traffic stations dropped 30.28% while in 

background monitoring stations the reduction was measured at 8.20% (Figure 42).  
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Figure 42 – Road traffic (1) and Background Lisbon (2) monitoring stations monthly median 

PM2.5 concentration (μg/m3) for the years 2013-2019 and 2020.  

 

The last regulated criteria pollutant is Benzene, which along with toluene, 

ethylbenzene and xylene make up the VOC “BTEX” aromatic group. Benzene is released 

into the atmosphere by evaporation of fossil fuels, paints, solvents, and other petroleum 

products, namely during production, transport and usage, energy production and heating. 

Additionally, in an urban setting it is estimated that 80% of concentrations are the result 

of the incomplete combustion process in internal combustion engines of vehicles making 

it a good indicator for urban anthropogenic VOCs. Benzene is a carcinogenic compound 

and its concentration is subject to regulation but in recent years the concentrations in 

Lisbon have been far from the human health threshold (yearly average higher than 5 

µg/m3) due to introduced regulatory limitations in Benzene concentrations in liquid fuels. 

The lifecycle of Benzene in the atmosphere can span up to several days and therefore can 

be transported by air currents and cause pollution episodes far from the emission location. 

The main Benzene removal mechanism from the atmosphere is through photochemical 

oxidation and, as with several other VOCs, a precursor of Ozone. [25]. In Lisbon, due to 

reduced data quality in Benzene (𝐶6𝐻6) concentrations measurements in monitoring 

stations, the sole monitored VOC could not be extensively reported as the other criteria 

pollutants. 

Nevertheless, comparing the available data from the Entrecampos traffic station during 

first state of emergency period in 2020 (66% samples available) with homologous periods 

in 2013 (0% samples available), 2014 (0% samples available), 2015 (100% samples 

available), 2016 (100% samples available), 2017 (26% samples available), 2018 (0% 

samples available) and 2019 (73% samples available), a 64.47% reduction in Benzene 
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concentrations is measured. Regarding the Olivais background monitoring station, the 

available data for the same period in 2020 (88% samples available) when compared to 

the single available year of 2019 (100% samples available) shows a 16.75% Benzene 

concentration reduction. 

As for the first calamity period in 2020 (100% samples available), comparing the 

available data from the Entrecampos traffic station to homologous periods in 2013 (0% 

samples available), 2014 (0% samples available), 2015 (100% samples available), 2016 

(54% samples available), 2017 (0% samples available), 2018 (0% samples available) and 

2019 (100% samples available), a 58.55% reduction in Benzene concentration is 

identified. Regarding the Olivais background monitoring station, the available data for 

the same period in 2020 (100% samples available), when compared to the single available 

year of 2019 (100% samples available), shows a 14.57% Benzene concentration 

reduction. 

A summary of the homologous change of the criteria air pollutants concentrations for 

traffic and background stations in Lisbon during the first national emergency state period 

from 18-03-2020 to 03-05-2020 (1) and the first national calamity situation period from 

04-05-2020 to 01-07-2020 (2) when compared to the 2013-2019 baseline (Figure 43).  

 

  

Figure 43 – Criteria air pollutant median concentrations homologous analysis of the 1st 

national emergency state period from 18-03-2020 to 03-05-2020 (1) and 1st national calamity 

situation period from 04-05-2020 to 01-07-2020 (2) against a same-period from 2013 to 2019 

baseline for background and traffic stations in Lisbon, Portugal.  

 

-5.15%

-28.62%

-8.42%

-14.32%

-8.20%

-16.75%-16.61%

-54.35%

12.89%

-46.64%

-30.28%

-64.47%-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

CO NO2 O3 PM10 PM2.5 C6H6

D
e
lt

a
 (

2
0

2
0

 v
s 

2
0

1
3

-2
0

1
9

) 
  
  

  
  
  
 (

1
)

Background Traffic

7.55%

-22.99%

-5.43%
-9.70%

-2.16%

-14.57%

-7.75%

-40.93%

6.76%

-41.45%

-27.96%

-58.55%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

CO NO2 O3 PM10 PM2.5 C6H6

D
e
lt

a
 (

2
0

2
0

 v
s 

2
0

1
3

-2
0

1
9

) 
  
  

  
  
  
 (

2
)

Background Traffic



82 

 

3.8. Relevant variable bivariate analysis 

For the initial stage in the variable analysis a Pearson correlation between the main 

dependent variables in scope, 𝑁𝑂2 (Nitrogen dioxide) and 𝑂3 (Ozone), and all other 

independent variables was computed taking into consideration the urban traffic 

monitoring station air pollutant measures for the period between March/2020 to 

March/2021. All variables related to air pollution, weather and mobility indexes were 

included in the correlation matrix. 

 

 

Variable NO2 Correlation O3 Correlation 

SUM_RADIAÇÃO_GLOBAL_TOTAL -0.273188 0.454226 

AVG_HUMIDADE_RELATIVA_MEDIA -0.090687 -0.38972 

AVG_TEMPERATURA_MEDIA -0.248014 0.383737 

MIN_TEMPERATURA -0.35166 0.383405 

MAX_TEMPERATURA -0.160445 0.351638 

AVG_PRESS_ATMOSFERICA_ESTACAO_MEDIA 0.3682 -0.410395 

AVG_PRESS_ATMOSFERICA_MAR_MEDIA 0.374044 -0.419959 

AVG_INTENSIDADE_VENTO_MEDIA -0.527739 0.387259 

MIN_INTENSIDADE_VENTO_MEDIA -0.43581 0.267402 

MAX_INTENSIDADE_VENTO_MEDIA -0.513174 0.41352 

SUM_PRECIPITACAO_ACUMULADA -0.112309 0.05736 

AVG_CHG_WAZE_KM 0.455335 -0.30106 

MED_TR_NO2 1 -0.541007 

MED_TR_O3 -0.541007 1 

MED_TR_CO 0.771071 -0.641279 

MED_TR_PM10 0.544638 -0.301011 

MED_TR_PM25 0.564506 -0.357821 

G_RETAIL_RECREATION 0.497434 -0.304965 

G_GROCERY_PHARMACY 0.536579 -0.310879 

G_PARKS 0.469234 -0.167697 

G_TRANSIT_STATIONS 0.468611 -0.287488 

G_WORKPLACE 0.206122 -0.205377 

G_RESIDENTIAL -0.234332 0.145957 

 

Figure 44 – NO2 and O3 Pearson Correlation Coefficients 

 

As a result, several of the relationships already identified during the literature review are 

now identified and quantified as to the strength of their correlation (Figure 44). Some of 
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the most obvious ones are the positive moderate correlations between 𝑁𝑂2 and several 

urban mobility indexes such as Waze driven kilometers (r=0.46) or Google Grocery and 

Pharmacy (r=0.54). As for weather related variables, 𝑁𝑂2 has a moderated negative 

correlation with the Average wind speed (r=-0.53) and as for the relationship with other 

air pollutants, 𝑁𝑂2 is moderately negatively correlated to 𝑂3 which is a byproduct of 𝑁𝑂2 

itself (r=-0.54) and is strongly correlated with 𝐶𝑂 (r=0.77) as they are usually co-linear 

in urban environments since they are both product of the combustion process in vehicle 

engines. 

In urban centers, Nitrogen Oxides (𝑁𝑂𝑥) emissions are often associated to internal 

combustion powered vehicles and in Lisbon and Tagus Valley internal combustion 

vehicles associated with road traffic are estimated to be responsible for 63% of all 

emissions [23]. With the COVID-19 pandemic related lockdowns, road traffic is 

estimated to have been greatly reduced with the worst month being April 2020 measuring 

an average reduction of 84.13% of driven Kms registered by Waze App while the median 

𝑁𝑂2 concentration in traffic monitoring stations registered a reduction of 56.30% for the 

same month when compared to the 2013-2019 baseline.  

 

 

Figure 45 – Relationship between Waze Mobility Index and NO2 Concentration (14d Moving 

Averages) 

 

A positive Pearson correlation of +0.46 is measured in the relation between daily 𝑁𝑂2 

median concentration and the Waze daily mobility index (Figure 46), which suggests that 
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with higher levels of vehicle mobility there’s also higher 𝑁𝑂2 concentration levels. 

During periods of optimal meteorological conditions that improve the atmospheric 

stability, general sharp 𝑁𝑂2 concentration upticks can be identified (Figure 45). These 

events occurred in 2020 at the end of May, mid-July, and early September, and have 

already been described in section 3.6. 

 

 

Figure 46 – Relationship between Daily %Change in driven KMs (Waze) and Daily Mean NO2 

Concentration 

 

It is well established that stable atmospheric conditions during high pressure events with 

low intensity wind are optimal conditions for primary air pollutants such as 𝑁𝑂𝑥, 𝐶𝑂, and 

VOC to locally linger near its emission sites and react to form secondary pollutants such 

as 𝑂3, when in presence of increased solar radiation and temperature, or Particulate 

Matter. Additionally, during these atmospheric stable periods, because there’s also less 

chance of rain there will be less air pollutant wet deposition and since there’s also less 

chance for cloud formation more solar radiation will reach the low troposphere thus 

fueling photochemical reactions associated with some secondary air pollutants such as 

𝑂3. Additionally, high pressure events, can facilitate the occurrence of thermal inversions 

in which colder air is trapped beneath a warmer air mass thus reducing air convection and 

pollutant dispersion. On the other hand, turbulent atmospheric conditions and high 

intensity winds will disperse and transport air pollutants via air currents and vertically via 

convection. During low pressure events, rain is also much more probable which will result 
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in additional air pollutant wet deposition and since these events are also commonly 

associated with cloud formation, less solar radiation reaches the low troposphere thus 

slowing down photochemical reactions that lead to pollution.  

In Lisbon, a moderate negative Pearson correlation of -0.53 is measured in the 

relationship between daily 𝑁𝑂2 median concentration and daily mean wind intensity for 

the year 2020 (Figure 48), which suggests that higher wind intensity tend to reduce 𝑁𝑂2 

concentration levels by means of atmospheric turbulence, air current transport and 

vertical convection. 

 

 

Figure 47 – Relationship between Wind Intensity and NO2 Concentration (14d Moving 

Averages) 

 

During the first national emergency phase covering the entirety of April/2020, where 

most of the severe lockdowns happened, the main meteorological parameters for Lisbon 

were not beneficial to 𝑁𝑂2 build-ups since it was a rainy month with only a slight mean 

air temperature positive anomaly where the synoptic analysis show that most of the month 

was depressionary. These wet and windy conditions favour lower 𝑁𝑂2 concentrations 

which in conjunction with highly reduced anthropogenic activities might have contributed 

to unprecedent low 𝑁𝑂2 concentrations in Lisbon throughout this period (Figure 47). 
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Figure 48 – Relationship between Daily Mean Wind Intensity and Daily Mean NO2 

Concentration 

 

During the main lockdown periods in analysis, from 18-03-2020 to 01-07-2020, the 

wind direction in Lisbon blew predominantly from NW to N direction with occasional 

strong winds (> 7 m/2) blowing from SW to W, as well as from NE (Figure 49). The 

relationship between wind speed and lower 𝑁𝑂2 concentrations can also be analyzed 

taking into consideration hourly wind direction patterns in Lisbon geographic region. For 

the period under analysis, winds in the morning rush hour, when usually higher 𝑁𝑂2 

concentrations build up in the city center due increased vehicle traffic, were usually 

concentrated in quadrant 330º – 70º with predominantly low wind speeds with a mean 

interval of 2.1 m/s - 2.6m/s from 07:00h to 10:00h and a mean 𝑁𝑂2 concentration of 26.7 

µg/m3 to 30.9 µg/m3. Towards the end of the day, even as the 𝑁𝑂2 buildup potential was 

lower due to the reduced pendular trips during the lockdown periods, the winds were 

predominantly concentrated in quadrant 220º - 340º with generally higher wind speeds 

with a mean interval of 4.1m/s – 4.5m/s from 17:00hM to 20:00h and a mean 𝑁𝑂2 

concentration of 19.9 µg/m3 to 22.0 µg/m3. As for 𝑂3, since it is mostly dependent on 

precursor availability, solar radiation, temperature, and stable enough atmosphere for the 

photochemical reactions that lead to 𝑂3 production to occur throughout the day, there’s a 

tendency for 𝑂3 concentrations to peak in the afternoon which is also when, specifically 

in Lisbon, wind speeds are usually higher. This is a possible reason for the 𝑂3 correlation 

coefficient to wind speed to be positive and not an indirect or direct causation effect. 
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Figure 49 – Wind Direction and Speed relationship with NO2 and O3 concentrations 

homologous analysis (2019 vs 2020) in traffic stations  for the 1st national emergency state and 

1st national calamity state periods (18-03-2020 to 01-07-2020) 
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During the 2020 COVID-19 lockdown related periods, the sharp reduction of 𝑁𝑂𝑥 

concentrations due to the reduction of emissions by road traffic appears to be correlated 

to the general increase of 𝑂3 concentrations in urban traffic monitoring stations due to 

sharp 𝑁𝑂𝑥 reduction in a VOC-limited environment as discussed in section 3.6. During 

periods of optimal meteorological conditions that improve the photochemical reactions 

efficiency, general sharp upticks can be identified. These were described as well in section 

3.6 and occurred in 2020 at the end of May, mid-July, and early September, and can be 

inspected on the graphic by the respective Average Air Temperature peaks (Figure 50). 

From a source appointment point of view, the higher 𝑂3 concentrations can be related 

to improved meteorological conditions, such as higher solar radiation, higher air 

temperatures and lower wind speed, and/or changes in precursors concentration and other 

compounds that are part of the complex photochemical reactions that create Ozone as 

described in 2.2.  

 

 

Figure 50 – Road traffic Entrecampos monitoring station NO2 and O3 concentrations (μg/m3) 

14-day Moving Average for 2020 and 2013-2019. Shaded with 2020 Daily Air Temperature 

Mean 14d Moving Average 

 

For instance, in April/2020 there doesn’t seem to have occurred exceptional conditions 

that could improve Ozone formation. This specific month was rainy and only slightly 
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hotter than the historical baseline with a minimal anomaly on the mean air temperature 

(+0.76C) but the month was characterized by a 12.31% increase in the median 𝑂3 

concentration in the traffic monitoring station of Entrecampos. For the same period, 

background stations registered a reduction of -6.76% in the median 𝑂3 concentration, the 

exact opposite trend. This behaviour appears to favour the hypotheses that the sharp 𝑁𝑂𝑥 

reduction at the Entrecampos traffic monitoring station in 2020 (-56.30%) had an effect 

in the 𝑂3 concentration increases measured at the same site, namely a change in the usual 

VOC-limited regime characteristic of traffic intensive spots in urban centres and the 

reduction of 𝑂3 titration by 𝑁𝑂 (Figure 50).  

On the other hand, that doesn’t happen in background stations within the city that 

usually have a lower 𝑁𝑂𝑥 concentration profile and operates in a more 𝑁𝑂𝑥 limited 

regime. The smaller decrease in 𝑁𝑂𝑥 concentration during COVID-19 restrictions in 

background stations, when comparing April 2020 to the 2013-2019 baseline, was -

32.24% which caused a slight decrease in 𝑂3 concentrations as it deepened even further 

into the 𝑁𝑂𝑥 limited region (Figure 51). 

 

 

Figure 51 – Background monitoring stations NO2 and O3 concentrations (μg/m3) 14-day 

Moving Average for 2020 and 2013-2019 
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Figure 52 – Hourly O3 and NO2 median concentration in Traffic Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) versus 2013-2019 

 

The diurnal pattern of 𝑁𝑂2 and 𝑂3 concentrations during the most severe lockdown 

period (1st emergency state) show clear differences to the 2013-2019 baseline. For the 

traffic monitoring stations, the morning rush 𝑁𝑂2 peak has a -53.67% drop at 09:00h 

against the 2013-2019 baseline and the end of day 𝑁𝑂2 peak there’s a -61.80% drop at 

20:00h. Conversely, 𝑂3 concentrations increased by 66.40% at 07:00h against the 2013-

2019 baseline and it remains 10% to 20% higher during the rest of the day (Figure 52). 

With such a drastic negative change in 𝑁𝑂𝑥 concentrations, the 𝑁𝑂𝑥:VOC regime also 

changed resulting in generally higher 𝑂3 concentrations even with reduced 𝑁𝑂𝑥 

concentrations, as already discussed in section 3.6. 𝑂3 concentrations are also further 

impacted by the reduced effect of 𝑂3 titration by 𝑁𝑂, which is characteristic of polluted 

environments such as the centre of large urban areas with large number of vehicles, and 

generally helps lowering 𝑂3 concentrations. Regarding the background stations, which 

usually register lower 𝑁𝑂2 concentrations and thus operate in more 𝑁𝑂𝑥 limited regime, 

a moderate reduction of 𝑁𝑂𝑥 concentrations during the lockdown periods have caused 

little change to 𝑂3 concentration. The usual 𝑁𝑂2 peak hour in background stations is at 

08:00h and it suffered a -32.85% concentration reduction against the 2013-2019 baseline. 

Ozone concentrations registered a slight increase for the same hour of 6.12% while during 

the rest of the day 𝑂3 concentrations remain slightly lower than the 2013-2019 baseline 

as 𝑁𝑂𝑥 concentrations remain at exceptional low concentrations levels.  
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Figure 53 – Hourly O3 and NO2 median concentration in Background Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) versus 2013-2019  

 

3.9. Modeling NO2 Concentration with AutoML 

Apart from an expert analysis of weather and pollutant emission data using traditional 

statistical analysis to assess the relationship between independent variables and the 

dependent variable, and, in the case of air pollution modeling, the usage of advanced and 

complex atmospheric chemical transport simulation models, it is also possible to use 

Machine Learning techniques to model physical and chemical phenomena involved in air 

pollution. In this work the AutoML framework TPOT [59] is used to discover a 

performant and interpretable machine learning model capable of explaining the 

relationship between independent and dependent variables as well as their strength. 

The TPOT AutoML framework uses a genetic optimization algorithm to search for an 

optimal solution for the stacking of pipeline stages (i.e: add a feature normalization stage, 

feature encoding stage, dimensionality reduction stage, regressor stage, etc.) and for each 

stage the optimal parameters of the processor (i.e: selector or regressor hyperparameters) 

as depicted in Figure 54. This approach accelerates the first iterations of modeling and 

evaluation from the CRISP-DM framework, which is traditionally carried out by Data 

Scientists in a mostly manual exploratory fashion and allows the identification of what 

algorithms and approaches yield promising results before investing in more advanced 

feature engineering, and overall model building and tuning in subsequent iterations. The 
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present work intends to train a sufficiently accurate model capable of identifying the most 

relevant independent data features used to model the 𝑁𝑂2 urban concentration 

phenomena and to identify any relation between independent features that might be of 

interest. 

 

 

Figure 54 – ML Pipeline steps automated by TPOT AutoML Framework 6 

 

The list of initial raw data features used to model 𝑁𝑂2 concentration (Table 8) were 

selected from the datasets described in section 3.2 taking in consideration known 

variables that potentiate the formation and destruction of the 𝑁𝑂2 air pollutant also 

described in the literature, as well in the findings described in Chapter 3.8.  

Since one of the main group of data features pertain to urban mobility indicators from 

Google, Waze, and Apple, which are proxies for anthropogenic activities, and these only 

started being collected in March 2020, the dataset used for modeling 𝑁𝑂2 daily median 

concentration contains 381 daily samples. 

 

 

 

 

 
6 Image obtained from http://epistasislab.github.io/tpot/  

http://epistasislab.github.io/tpot/
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Table 8 – List of data features 

Data Feature Short Description 
SUM_RADIAÇÃO_GLOBAL_TOTAL 

SUM_RADIAÇÃO_GLOBAL_TOTAL_LAG_1D 

Daily sum of total solar radiation (kj/m2) 

The same variable with a 24h lag 

AVG_DIRECAO_VENTO_MEDIA 

AVG_DIRECAO_VENTO_MEDIA_LAG_1D 

Daily average wind direction (north degrees) 

The same variable with a 24h lag 
AVG_HUMIDADE_RELATIVA_MEDIA 

AVG_HUMIDADE_RELATIVA_MEDIA_LAG_1D 

Daily average relative humidity (percentage) 

The same variable with a 24h lag 
AVG_TEMPERATURA_MEDIA 

AVG_TEMPERATURA_MEDIA_LAG_1D 

Daily average air temperature (ºC) 

The same variable with a 24h lag 
MIN_TEMPERATURA 

MIN_TEMPERATURA_LAG_1D 

Daily minimum air temperature hourly mean (ºC) 

The same variable with a 24h lag 
MAX_TEMPERATURA 

MAX_TEMPERATURA_LAG_1D 

Daily maximum air temperature hourly mean (ºC) 

The same variable with a 24h lag 
AVG_PRESS_ATMOSFERICA_MEDIA 

AVG_PRESS_ATMOSFERICA_MEDIA_LAG_1D 

Daily average atmospheric pressure at station level (hPa) 

The same variable with a 24h lag 
AVG_PRESS_ATMOSFERICA_MAR_MEDIA  

AVG_PRESS_ATMOSFERICA_MAR_MEDIA_LAG_1D 

Daily average atmospheric pressure at sea level (hPa) 

The same variable with a 24h lag 
AVG_INTENSIDADE_VENTO_MEDIA 

AVG_INTENSIDADE_VENTO_MEDIA_LAG_1D 

Daily average wind intensity (m/s) 

The same variable with a 24h lag 
MIN_INTENSIDADE_VENTO_MEDIA 

MIN_INTENSIDADE_VENTO_MEDIA_LAG_1D 

Daily minimum wind intensity hourly mean (m/s) 

The same variable with a 24h lag 
MAX_INTENSIDADE_VENTO_MEDIA 

MAX_INTENSIDADE_VENTO_MEDIA_LAG_1D 

Daily maximum wind intensity hourly mean (m/s) 

The same variable with a 24h lag 
SUM_PRECIPITACAO_ACUMULADA 

SUM_PRECIPITACAO_ACUMULADA_LAG_1D 

Daily sum of accumulated precipitation (mm) 

The same variable with a 24h lag 
AVG_CHG_WAZE_KM 

 

AVG_CHG_WAZE_KM_LAG_1D 

Daily change of driven kilometers measured by Waze App 

against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 
AVG_G_RETAIL_RECREATION       

  

AVG_G_RETAIL_RECREATION_LAG_1D 

Daily change of user activity in retail and recreation measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_G_GROCERY_PHARMACY      

    

AVG_G_GROCERY_PHARMACY_LAG_1D  

Daily change of user activity in local commerce measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_G_PARKS                    

 

AVG_G_PARKS_LAG_1D             

Daily change of user activity in parks measured by Google 

against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_G_TRANSIT_STATIONS         

 

AVG_G_TRANSIT_STATIONS_LAG_1D  

Daily change of user activity in transit stations measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_G_WORKPLACE                

 

AVG_G_WORKPLACE_LAG_1D         

Daily change of user activity in workplace areas measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_G_RESIDENTIAL              

 

AVG_G_RESIDENTIAL_LAG_1D       

Daily change of user activity in residential areas measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_A_DRIVING 

 

AVG_A_DRIVING_LAG_1D 

Daily change of Apple maps driving requests measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

AVG_A_WALKING 

 

AVG_A_WALKING_LAG_1D 

Daily change of Apple maps walking requests measured by 

Google against a pre-pandemic baseline (percentage) 

The same variable with a 24h lag 

MED_TR_NO2 

MED_TR_NO2_LAG_1D 

Daily NO2 median concentration (µg/m3) 

24h lag variable of NO2 concentration (µg/m3) 
MED_TR_O3 

MED_TR_O3_LAG_1D 

Daily O3 median concentration (µg/m3) 

24h lag variable of O3 concentration (µg/m3) 

MED_TR_CO 

MED_TR_CO_LAG_1D 

Daily CO median concentration (µg/m3) 

24h lag variable of CO concentration (µg/m3) 

MED_TR_PM25 

MED_TR_PM25_LAG_1D 

Daily PM2.5 median concentration (µg/m3) 

24h lag variable of PM2.5 concentration (µg/m3) 

MED_TR_PM10 

MED_TR_PM10_LAG_1D 

Daily PM10 median concentration (µg/m3) 

24h lag variable of PM10 concentration (µg/m3) 
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To assess the relationship between relevant factors in the 𝑁𝑂𝑥 air pollutant lifecycle 

described in the literature, a model with target dependent variable 𝑁𝑂2 was fitted 

including both primary urban air pollutants that occur nearly co-linearly with 𝑁𝑂𝑥, such 

as 𝐶𝑂, and secondary pollutants for which 𝑁𝑂𝑥 are precursors, such as 𝑂3 and 𝑃𝑀10. It 

was also fitted with additional data features such as meteorological parameters and 

mobility indexes as a proxy for anthropogenic activities.  

To perform this initial analysis, TPOT genetic algorithm optimizer ran 100 generations 

and 1000 retained individuals in every generation with a total of 101.000 model fits 

evaluations using sklearn KFold cross-validation with 5 folds on top of 75% of the 

original data (N=381) whereas the remainder 25% were kept for model performance 

testing purposes. In this initial run no specific template was used and TPOT ran with full 

autonomy, using all the 30 processors in the default Regressor configuration [60], to build 

a pipeline with whatever stages and with whatever hyperparameters that maximizes the 

𝑁𝑂2 model accuracy. One of the downsides of this approach is that there’s a good chance 

that complex pipelines and ensembles comprised of multiple stages pre-processing, 

feature engineering and selection, and potentially the stacking of multiple regressors 

estimators, which will pass on their outputs as synthetic features to the next processor, 

will render the built model uninterpretable. Nevertheless, it is a very good way to initially 

assess the predictive capability of the available data and have not only a model 

performance baseline but also an idea of the types of processors that work best for the 

problem at hand. 

One important aspect of AutoML is the relationship between training efficiency and 

achieved scores since the complexity to find a performant pipeline requires not only 

experimenting with different pipelines, which are composed of a number of sequential, 

stacked and unioned processors for the several modeling stages, but also the 

hyperparameter optimization of each of the processors. Several mechanisms in TPOT 

AutoML Framework allow the management of this trade-off namely the definition of the 

genetic optimization algorithm parameters such as the number of generations, which is 

the number of optimization iterations, population size, which is the number of individuals 

retained in every generation, and the other usual genetic algorithm parameters such as the 

offspring size, mutation rate and crossover rate. These parameters will ultimately define 

the number of model fits if the optimization process is not stopped midway in a manual 

or automatic fashion. A full optimization run is neither a guarantee that an optimal 
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solution will be found or that an optimal solution will not be found at an earlier phase of 

the optimization process. In order to optimize the process, one can use several 

mechanisms to limit how long the optimization process takes namely a global budget of 

time that overrides the number of generations, thus emitting the best pipeline in the Pareto 

front with the best score, or a maximum budget to optimize a single pipeline, thus 

avoiding that complex pipelines monopolize the optimization process time budget. 

Finally, in the case where an early near-optimal solution is found, the optimization 

process will naturally not be able to improve the performance of the pipelines for a 

number of generations which might be a condition for an automated early stop which is 

configured as the number of optimization generations where the Pareto front score has 

not improved. 

From an infrastructure perspective, the parallelization of workloads is also extremely 

important to speed up the optimization process which can be done using multiple CPU 

cores in a single machine or in multiple machines using a distributed task scheduler. Since 

there’s a high probability that the same pipeline will be scheduled for training by the 

genetic optimization algorithm over time in different generations, caching the pipeline 

training results will avoid recomputation. To avoid losing results in case of failures before 

the end of the optimization process it is also possible to checkpoint intermediate results 

of the optimization process to be able to resume it at a later time. 

 

Table 9 – Performance metrics of the Initial exploratory NO2 prediction pipeline on the test set 

Metric Result 

Mean Absolute Error (MAE):  2.768893312153063 

Mean Squared Error (MSE):  11.927811359229048 

Root Mean Squared Error (RMSE):  3.4536663647823667 

Mean Squared Log Error (MSLE):  0.01841957017242524 

𝑅2 Score (R2):  0.9246146971059643 
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Figure 55 – Initial exploratory AutoML based NO2 prediction performance 

 

This initial TPOT execution took roughly six days and two hours in a D4a_v4 Azure 

Virtual Machine (4 vCores, 16GB RAM and SSD Volume) using all the machine cores, 

keeping a cache of intermediate pipeline results to avoid unnecessary recomputations and 

periodically checkpointing the optimization process progress. This execution resulted in 

a complex pipeline (Figure 56) with nine stages, four pre-processors, one feature-selector 

and four stacked regressors, with a resulting average KFold Cross-Validation score on 

the training set of 12.87 (MSE) and 11.92 (MSE) on the 25% of records that was held for 

model testing. Having a similar MSE on both the CV (train + validate set) and test set is 

a good sign that the model is not overfitting or underfitting. While there was another 

pipeline that performed better on the training set with MSE=12.32, the reported pipeline 

performed better on the test set (Figure 55 and Table 9) and was therefore selected as the 

reference 𝑁𝑂2 prediction regressor ML pipeline. 
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Figure 56 – Initial exploratory AutoML based NO2 prediction pipeline stages and 

hyperparameters 

 

During this first run, the pipeline cross-validation score evolved rapidly during the first 

phases of the optimization process progress and slowed down on later phases with each 

generation taking longer to complete which is expectable since the average complexity 

of the pipelines increases over time with additional pipeline stages, unions, and stacks, 

that take longer to compute. The time required to complete a generation stabilized at 

around generation 40 since the optimizer focused on a similar cost and complexity search 

space for the remainder of the optimization process. It took 87 generations in 100 to 

achieve the best score, which took 122 hours in a total of 146 hours, and it took 36 

generations in 100 to achieve 80% of the optimization from a min-max perspective, which 

took 32 hours in a total of 146 hours. A depiction of how this process unfolded throughout 

the optimization process can be found in Figure 57 with the highlighted area representing 

the fulfilment of 80% of the training CV score optimization. 
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Figure 57 –TPOT AutoML training efficiency 

 

As referred earlier, the best TPOT AutoML produced pipeline from this experiment, 

while a valid model capable of predicting 𝑁𝑂2 concentration with a reasonable 

performance, is quite hard to interpret since the initial data features have been transformed 

multiple times by several processors in different stages of the pipeline. This only leaves 

the option of trying to breakdown the stages of the pipeline and diving into a rabbit-hole- 

like analysis on the internals of the underlying machine learning library in an attempt to 

map the original data features to their intermediate forms and then assess regressor feature 

importance methods. To further explore feature importance analysis and their 

contribution to the 𝑁𝑂2 concentration, two other simpler approaches can be taken. Firstly, 

the TPOT AutoML framework allows the usage of templates that, when properly setup, 

will generate only interpretable pipelines. Secondly, there is also the possibility to analyze 

the top performing pipelines of the initial TPOT execution and figure out the main pre-
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processing, selectors and regressors, along with their hyperparameters, that yield the best 

results and remove the stages that reduce interpretative capacity. Both these approaches 

are part of the interpretability versus performance trade-off and are expected to reduce 

the model accuracy but, since we have a base model to compare to, it is possible to 

measure the performance gap and assess its impact on the analysis. 

Analyzing the top 20 pipelines generated by TPOT sorted by Cross-Validation score, 

thirteen had as main or final regressor the XGBRegressor (eXtreme Gradient Boosting 

Regressor) from the xgboost python library [61], including the topmost performant 

already reported above, and seven had as the main or final regressor the LassoLarsCV 

from the sklearn library [62].  Besides scoring slightly better, all resulting XGBRegressor 

pipelines used a tree-based booster, which is not sensitive to monotonic transformations, 

so no data feature standardization is required and since all raw variables are numerical 

and continuous, no special encoding is also needed. On the interpretability side, 

XGBRegressor is considered an interpretable algorithm out-of-the-box, with specific 

methods to detail feature importance with different measures which are common in tree-

based algorithms namely the feature weight which is the number of times a feature is used 

to split the data across all trees, feature cover which is the average coverage across all 

splits the feature is used in and feature gain which is the average gain across all splits the 

feature is used in [63]. Additional advanced algorithms to assess feature importance for 

XGBRegressor are available and will be used in this work. 

In order to train an interpretable and performant 𝑁𝑂2 prediction model, another TPOT 

execution was done but in this case a template was used to force the AutoML framework 

to build and optimize a simple pipeline that consists of a single XGBRegressor processor. 

Apart from configuring TPOT to optimize a pipeline consisting of a single XGBRegressor 

processor stage, the rest of the parameters of the optimizer were kept as in the first 

experiment, meaning that there will be a total of 101.000 model fits. No change has been 

done on the original data set and this pipeline was trained with the same 75% original 

observations, which is enforced by the usage of the same initialization seed number used 

in the train-test split method, whereas the remainder of the 25% of the original 

observations were retained to further assess the performance of the model in a train + 

validate (5-Fold CV) holding out an additional test set. The selected hyperparameters are 

described in Table 10. 
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Table 10 – NO2 concentration interpretable model XGBRegressor optimized hyperparameters 

Hyperparameter Value 

objective 'reg:linear' 

learning_rate 0.03 

max_depth 4 

min_child_weight 1 

subsample 0.4 

colsample_bytree 0.8 

n_estimators 500 

 

The average 𝑅2 scores on the left-out validation folds of the K-Fold cross validation 

is 0.893 and the 𝑅2 score on the remainder 25% test set was 0.889, which seems to have 

produced a valid model (Table 11 and Figure 58), only slightly less accurate than the 

original TPOT generated pipeline which had 𝑅2=0.925 on the test set. 

 

Table 11 – Performance metrics of the NO2 concentration interpretable model on the test set 

Metric Result 

Mean Absolute Error (MAE):  3.2180649300416277 

Mean Squared Error (MSE):  17.16391991334616 

Root Mean Squared Error (RMSE):  4.142936146423954 

Mean Squared Log Error (MSLE):  0.021681443615292815 

𝑅2 Score (R2):  0.8890452484554431 

 

 

Figure 58 – NO2 concentration interpretable model performance on the test set 
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Feature importance analysis in the present work is done using the cross-algorithm 

game theory based approach SHAP (SHapely Additive exPlanations) [64], which 

connects optimal credit allocation with local explanations using the classic Shapley 

values from game theory and their related extensions, to assess the impact of one 

independent data feature on the regressor output, as well as allowing to study pairwise 

relationships interactions to uncover more complex and rich relationships between 

independent variables on the dependent variable. The SHAP implementation used is a 

polynomial time complexity implementation specific for tree-based algorithms or 

ensembles [65] such as the XGBRegressor being used in the present work. Some of the 

advantages of using SHAP is that we can have single prediction level feature importance 

analysis, as well as global importance feature analysis, instead of global-only feature 

importance analysis such as the weight, cover and gain metrics reported by the 

XGBRegressor. Additionally, the SHAP implementation removes the complexity of 

analyzing three different XGBRegressor feature importance metrics (gain, weight, and 

cover), which are sometimes inconsistent between themselves and are biased towards 

some particularity of the metric and data features, and instead allows the usage a unified 

approach to a more accurate and consistent feature importance in Machine Learning tree-

based algorithms. 

To interpret the SHAP values computed from the regressor predictions, assume that 

SHAP values computed for an independent variable (i.e: Air Temperature) from a list of 

predictions (each point) yield a negative value if it pushes down the predicted value for 

the dependent variable or up if the SHAP value is positive. In pairwise analysis, the red-

blue color gradient is associated with the additional independent variable domain value 

range and not the main independent variable SHAP value. 
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Figure 59 – NO2 concentration interpretable model feature importance analysis 

 

Regarding the under the sunlight chemical reaction of 𝑁𝑂2 with 𝑂3, in Figure 59 it is 

clear that the model favors positive 𝑁𝑂2 concentrations under lesser concentrations of 𝑂3 

(1) and that the interaction of the Global Radiation (kJ/m2) variable plays a role in the 

relationship between 𝑁𝑂2 and 𝑂3 (2), where in the presence of high solar radiation it  

favors greater 𝑂3 concentration and less 𝑁𝑂2 concentration as described in the literature. 

Additionally, the model favors higher 𝑂3 concentrations under reduced traffic days (3) 

potentially due to the reduction of 𝑂3 titration by 𝑁𝑂, and it also favors higher 𝑂3 

concentration and lower 𝑁𝑂2 concentration with lower relative humidity (4), potentially 

due to the usual cloud overcast associated with higher humidity levels and the enhanced 

effect of 𝑂3 dry deposition under higher humidity levels [66]. As for 𝐶𝑂, a pollutant that 

as 𝑁𝑂𝑥 is also emitted as part of the combustion process, it expectedly increases nearly 
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linearly as 𝑁𝑂2 increases (5). Finally, a more complex relationship, where 𝑃𝑀10 increases 

as 𝑁𝑂2 increases since 𝑁𝑂2 is a precursor to secondary 𝑃𝑀10 and also because primary 

𝑃𝑀10 is also caused by vehicles due to dust resuspension, asphalt, tyre, and brake abrasion 

as well as during fuel combustion process [67], thus co-occurring with 𝑁𝑂𝑥 emissions, 

further more related to the particle wet deposition mechanism that comes along with 

increased precipitation where it is clear that rainy days yield less 𝑃𝑀10 concentrations 

(6). 

 

3.10. Anthropogenic and Meteorological contributions to NO2 

Concentration 

In this experiment, we no longer include air pollutants for which 𝑁𝑂2 is a precursor, 

such as 𝑂3 and secondary PM, and nearly co-linear primary pollutants such as 𝐶𝑂, thus 

focusing on the underlying meteorological and anthropogenic factors that contribute 

directly to urban 𝑁𝑂𝑥 concentrations in an attempt to understand the contribution of such 

factors and analyze any pairwise interaction between several independent variables.  

The XGBRegressor hyperparameters in Table 12 were optimized with TPOT genetic 

algorithm optimizer using 100 generations and 1000 retained individuals in every 

generation with a total of 101.000 model fits evaluations using sklearn KFold cross-

validation with 5 folds.  

 

Table 12 – NO2 causes model XGB Regressor Hyperparameters found by T-POT 

Hyperparameter Value Hyperparameter Value Hyperparameter Value 

base_score 0.5 learning_rate 0.08 objective reg:linear 

booster gbtree max_delta_step 0 reg_alpha 0 

colsample_bylevel 1 max_depth 3 reg_lambda 1 

colsample_bynode 1 min_child_weight 3 scale_pos_weight 1 

colsample_bytree 0.7 missing None seed 0 

gamma 0 n_estimators 1000 silent 1 

importance_type gain nthread 1 subsample 0.4 
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This model is less accurate (𝑅2=0.889) on the test set than the model trained in the 

previous section (𝑅2=0.836), which in turn is also less accurate than the original TPOT 

𝑁𝑂2 Concentration prediction model with 𝑅2=0.925, due to the fact that the data features 

representing air pollutants emitted simultaneously with 𝑁𝑂2, such as 𝐶𝑂, and those for 

which 𝑁𝑂2 is a precursor, such as 𝑂3, 𝑃𝑀2.5 and 𝑃𝑀10, were removed so the 

anthropogenic contribution of the 𝑁𝑂2 lifecycle can be studied without being 

overshadowed by other factors which are also good 𝑁𝑂2 predictors but of no interest in 

this exercise. (Table 13 and Figure 60) 

 

Table 13 – Performance metrics of the NO2 cause model on the test set 

Metric Result 

Mean Absolute Error (MAE):  4.619360131633524 

Mean Squared Error (MSE):  31.216223957493977 

Root Mean Squared Error (RMSE):  5.587148105920764 

Mean Squared Log Error (MSLE):  0.05503345698523074 

𝑅2 Score (R2):  0.836004877566092 

 

 

Figure 60 – NO2 cause model performance on the test set 
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Figure 61 – Summary of feature importance analysis 

 

The SHAP value per data feature for all model train observations can be observed in 

the summary plot depicted in Figure 61. The main associations found during the statistical 

analysis in section 3.8 can be mapped to the importance the model has associated to the 

anthropogenic and meteorological data features. For instance, the daily average driven 

kilometers measured with Waze App and Google Local commerce mobility index 

impacts 𝑁𝑂2 concentration predictions negatively (lower SHAP values) when the data 

feature value is lower (bluer predictions), indicating that less driven kilometers or lower 

mobility levels are associated to lower 𝑁𝑂2 air pollutant concentration, and vice-versa. 

Similarly, the daily average wind intensity negatively impacts 𝑁𝑂2 concentration when 

the wind intensity is higher, meaning that high winds are associated with lower 

concentrations and relatively stagnant air (0.0-2.5 m/s) is associated with higher 𝑁𝑂2 

concentrations. 

The mean absolute value of SHAP values, depicted in Figure 62, tries to improve the 

information provided by averaging all prediction SHAP values by its absolute value so 

that negative contributions are not cancelled out by positive contributions and vice-versa. 
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Take in consideration for example weekday number, there’s a lot of predictions where 

this data feature caused an increase (positive SHAP values) of 𝑁𝑂2 whereas in other cases 

it caused a decrease (negative SHAP value), for instance weekdays versus weekends. 

Taking this into consideration, as shown in Figure 62,the model finds the anthropogenic 

activity proxy data feature, measured by Google as user activity levels on Local 

Commerce, as the topmost contributing independent variable from an anthropogenic 

source with a mean absolute SHAP value of +3.45, followed by the daily average wind 

intensity, which is a natural air pollutant dissipation mechanism, with a mean absolute 

SHAP value of +3.70, and considered the topmost contributing independent variable from 

a natural source, and then by the daily total solar radiation with +1.66 which is a very 

important potentiator of photochemical reactions in the atmosphere, namely the 

breakdown of 𝑁𝑂2 and 𝑂3 production cycle.  

By grouping all independent variables in either the anthropogenic or natural class, the 

mean absolute SHAP values can be summarized to assess which group contributes the 

most to 𝑁𝑂2 concentration. This model attributes a total of +13.98 summed mean absolute 

SHAP values to the natural class and +9.79 to the anthropogenic class, which suggests 

that natural phenomena are responsible for a greater share of 𝑁𝑂2 concentration 

formation. For this analysis the month number was not taken into consideration since it 

might relate to anthropogenic phenomena (holiday periods, school periods, etc) and 

natural phenomena (weather patterns change throughout the year). 

Zooming into the two most important independent variables, a Google mobility 

activity indicator which acts as an anthropogenic pollutant activity proxy variable, and 

the daily average wind speed, which is a natural air pollution dissipation mechanism, it is 

clear the correlation between their values and the negative or positive contribution to the 

𝑁𝑂2 concentration value for each of the predictions. For the Google mobility indicator, 

higher values contribute to higher 𝑁𝑂2 concentrations while the opposite is verifiable for 

the average wind speed where higher values contribute to lower 𝑁𝑂2 concentrations. As 

a complex and non-linear phenomenon, 𝑁𝑂2 concentration in urban environment depends 

on a number of variables that together can generate severely polluted or exceptionally 

clean air, and this appears to have happened in the most severe periods of the COVID-19 

pandemic lockdowns, namely in several periods of April/2020, when pollutant 

anthropogenic activities dropped severely as a result of the lockdowns and the weather 

parameters were not particularly favorable for 𝑁𝑂2 buildups to occur, namely with 



 

107 

 

depressionary atmosphere with moderate winds and rain, leading to unprecedented low 

𝑁𝑂2 concentrations.    

 

 

Figure 62 – Summary of feature importance analysis (mean absolute SHAP) 
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 Figure 63 – SHAP Values for the two most important independent variables (Daily Wind mean 

intensity and Daily Avg Google Local Commerce Activity Index) 

 

To further analyze particular predictions, let’s take into consideration the days with 

the lowest and highest 𝑁𝑂2 concentrations from the March/2020 to March/2021 dataset, 

5th of April 2020 with a median 𝑁𝑂2 concentration of 5.80 µg/m3 and 12th of September 

2020 with a median 𝑁𝑂2 concentration of 73.05 µg/m3. In these two particular days, the 

𝑁𝑂2 prediction model estimates 5.69 µg/m3 and 73.02 µg/m3 respectively with an error 

of -0.11 µg/m3 and -0.03 µg/m3. The detailed feature importance analysis at the 

prediction level allows a concrete explanation of the factors leading up to these values. 

 

 

Figure 64 – Top 10 contributing variables for the exceptional low NO2 concentration registered 

in 05-04-2020 

 



 

109 

 

 

Figure 65 – Top 10 contributing variables for the higher NO2 concentration registered in 12-

09-2020 

 

As for the 5th of April 2020 day, which was deep into the first national emergency 

period where mandatory confinement was in place, it was a particular windy day as 

depicted in Figure 64 with an average daily wind speed of 5.0 m/s and maximum hourly 

wind speed of 8.9 m/s which acts as an effective dispersion mechanism of 𝑁𝑂2 air 

pollution. This already 𝑁𝑂2 sub-optimal condition was further aided by severely reduced 

anthropogenic activities measured by urban mobility indicators due to the hard 

confinement phase and because it was a Sunday. This combination of negative 

contributions to 𝑁𝑂2 concentrations made this particular day the least 𝑁𝑂2 polluted day 

in Lisbon from 2013 to early 2021.  

A completely opposite example is the 12th of September 2020 which, while not even 

close to the most 𝑁𝑂2 polluted days in Lisbon on the records, is a good example of a 

moderately 𝑁𝑂2 polluted day. It was a hot Saturday with stagnated air and moderate cloud 

cover as depicted in Figure 65, measuring minimum hourly wind speed of 0 m/s, maximum 

hourly wind speed of 3.7 m/s and average daily wind speed of 2.1 m/s, which doesn’t 

help disperse 𝑁𝑂2, higher urban mobility activity, meaning higher 𝑁𝑂𝑥 emissions, and 

sub-optimal total solar radiation that didn’t allow 𝑁𝑂2 to 𝑂3 conversion to happen at a 

greater rate, generating moderately high 𝑁𝑂2 concentrations. 
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Figure 66 – All variables contribution to NO2 concentration registered in a regular day (11-11-

2020) 

 

While these two extreme examples seem rather intuitive and simple to analyze, by 

picking up a day with 𝑁𝑂2 concentration not to low and not to high, which means 

opposing forces drive the pollutant value to a more moderate value, it is clear  how non-

linear the 𝑁𝑂2 estimation is to the model when inspecting the feature contribution 

analysis. To inspect such a case, the 11th of November 2020 was chosen for the exercise 

having measured a 𝑁𝑂2 concentration of 29.75 µg/m3 with the 𝑁𝑂2 concentration 

prediction model estimating 29.74 µg/m3 with a measured error of -0.01 µg/m3. As 

depicted in Figure 66, this particular day 𝑁𝑂2 median concentration is affected by multiple 

natural and anthropogenic phenomena, each with its positive or negative contribution, 

with higher or lower strength, thus allowing for an in-depth analysis of, for instance, a 
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specific severe air pollution episode limited in time that require a detailed diagnosis. The 

main variables contributing to the 𝑁𝑂2 concentration in this particular day were that it 

was a moderately windy day, with an average daily wind speed of 4.1 m/s, maximum 

hourly wind speed of 5.4 m/s, and minimum hourly wind speed of 2.7 m/s, meaning that 

it is not particularly optimal for 𝑁𝑂2 buildups. On the other hand, urban mobility 

indicators show that it was a day with higher activity levels which translates to increased 

𝑁𝑂2 pollutant anthropogenic activities such as road traffic, aided by the fact that 

atmospheric photochemistry performance was reduced due to lower total solar radiation 

meaning that there’s reduced 𝑁𝑂2 photolysis which drives concentrations up.  

 

Chapter 4 – Conclusions and future work 

4.1. Main conclusions 

As for the impact of COVID-19 pandemic related restrictions in Lisbon on the urban 

mobility, it is estimated that during the first national emergency period (18-03-2020 to 

03-05-2020) public transportation ridership has suffered a homologous drop of 75% to 

80% while during the first calamity state period (04-05-2020 to 01-07-2020) it is 

estimated to have dropped 57% to 62%. Regarding the usage of private vehicles, during 

the first national emergency period, it is estimated to have suffered a reduction of 78% to 

84% while during the first calamity state period it is estimated to have dropped 43% to 

59%. Residential area mobility activity has increased 33% during the first national 

emergency period, decreasing to 19% during the first calamity state period. The urban 

mobility indicators used in the present work correlate moderately with the 𝑁𝑂2 air 

pollutant which is usually associated to anthropogenic activity in the city, whereas the 

local commerce indicator (Google) has the strongest Pearson correlation (r=0.54) and has 

also been identified as the main anthropogenic data feature contributing to 𝑁𝑂2 

concentration by the trained 𝑁𝑂2 concentration prediction pipeline.   

Regarding the impact of COVID-19 pandemic related restrictions in Lisbon on the air 

quality, during the first national emergency period (18-03-2020 to 03-05-2020) and 

subsequent calamity state period (04-05-2020 to 01-07-2020) the main criteria air 

pollutants have generally decreased in both urban background and urban traffic stations 

when compared to a 2013-2019 baseline with the exception of Ozone (𝑂3) in urban traffic 

stations which have increased. With a sharp reduction in anthropogenic activities, most 
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importantly in road traffic, and with depressionary weather suboptimal for 𝑁𝑂2 build-ups 

in the first phase, 𝑁𝑂2 registered a 54.35% drop in the first phase and 40.39% in the 

second phase in urban traffic stations, while in background stations it dropped 28.62% 

and 22.99%, respectively. Such unprecedented drops in 𝑁𝑂2 concentrations caused the 

usually polluted Av. Liberdade station to comply with the regulatory yearly 40 µg/m3 

mean threshold value in 2020 which, as far as the available data, this particular station 

had never been able to meet. Regarding 𝑂3 secondary pollutant, during the first phase 

there was an increase of 12.89% in urban traffic stations and 6.76% in the second phase, 

while in background stations it decreased 8.42% in the first phase and 5.43% in the second 

phase. Tropospheric Ozone concentration increases in urban traffic monitoring stations 

suggests relevant changes in the 𝑁𝑂𝑥:VOC ratio and reduced 𝑂3 titration by 𝑁𝑂, a result 

of sharp decrease of 𝑁𝑂𝑥 emissions in the usually most polluted and VOC-limited city 

hotspots. This finding raises the need of additional measures to mitigate 𝑂3 pollution 

increases as part of the Lisbon and Tagus Valley air quality improvement plan which aims 

to reduce 𝑁𝑂2 concentrations, namely specific measures for VOC management.  

An AutoML framework (TPOT) was used to build, train, and optimize a regressor ML 

pipeline to predict 𝑁𝑂2 concentration with the available anthropogenic activity, weather, 

and air pollutant inputs from March/2020 to March/2021, achieving 𝑅2=0.925 out of the 

box on the test set. This is an acceptable result for an AutoML approach when compared 

to other recently purpose-built 𝑁𝑂2 prediction models such as 𝑅2=0.920 [68], 𝑅2=0.890 

[69] and 𝑅2=0.937 [45]. Further model performance improvements could be achieved by 

tackling some of the research limitations documented in Chapter 4.3. An interpretable 

𝑁𝑂2 prediction model was trained to perform feature importance analysis which, from a 

global perspective, uncovered that anthropogenic features contribute to 41.19% of 𝑁𝑂2 

concentrations and natural phenomena features contribute to 58.81%, with the average 

daily wind speed feature as the most important feature, followed by the Google daily local 

commerce activity indicator. At the individual prediction level, it was also provided a 

technique to intuitively inspect the contributing factors and their strengths leading to that 

particular estimation which is highly relevant to perform the diagnosis of a particular 

severe pollution episode.  
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4.2. Research limitations 

The mobility impact assessment during COVID-19 pandemic restrictions is missing 

data for other main mass public transit operators in the city such as bus, train, and boat 

operators (Carris, CP Suburbano and Fertagus, Transtejo and Soflusa) for which the data 

could not be sourced and thus not reported. 

All mobility indexes used in the present work were provided by entities that have 

access to mobility data, such as Google, Apple, Moovit and Waze, which in the wake of 

the COVID-19 pandemic, in an attempt to help public authorities make better decisions 

on pandemic management, started collecting, computing, and reporting these mobility 

indicators. For this reason, all these indicators, which are good proxies for anthropogenic 

pollutant activities, were unavailable before January 2020 and therefore limited the 

amount of data available to train urban air pollution concentrations ML models. 

The present work did not include any VOC concentration data in most analysis due to 

data quality issues and unavailability of VOC monitoring data. VOCs are known to be an 

important factor in 𝑂3 production and while the emissions of anthropogenic VOC in 

Lisbon, from both mobile and fixed sources, is assumed to have been reduced in wake of 

the impact of lockdown restrictions, it is assumed that it is not a significant driver in 

changes to the NOx/VOC mixing ratio since biogenic VOCs largely outweigh 

anthropogenic VOCs, 89% versus 9% of all non-methane VOC emissions respectively in 

LMA [68], and the analysis period is not large enough to consider significant changes in 

biogenic emissions.  

Due to the unavailability of suitable hardware and time constraints, no Neural Network 

or GPU-assisted cuML/DMLC estimators were used and the hyperparameter search space 

was not as expansive as it could have been during the automatic machine-learning model 

genetic optimization process. 

 

4.3. Future research proposals 

As to proposed future work, the following items could be further explored to enhance 

the present or related research. 

The findings of the present work, namely the contribution analysis of road traffic to 

the 𝑁𝑂2 concentration in Lisbon, could be compared with the proposed mitigative actions 
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to reduce 𝑁𝑂2 and 𝑃𝑀10 concentrations in the LMA air quality improvement plan [47] 

that involve manipulating the Mean Daily Traffic (MDT) to achieve specific 

concentration objectives. 

Acquire data and report the COVID-19 pandemic restrictions impact on the remaining 

Lisbon public transportation modes, such as train, bus, and boat, as well as other shared 

transportation modes such as taxi or ride-sharing operators and, finally, on shared soft 

transportation methods such as bikes, e-mopeds, and e-scooters, in order to have a 

complete picture of the urban mobility dynamics during the pandemic periods. 

Update all descriptive statistical analysis and machine learning models for the 

remaining COVID-19 pandemic phases in Lisbon, more specifically the 2nd National 

Emergency phase that occurred from the fall of 2020 into spring of 2021, since seasonal 

effects on air pollution and meteorology between July and March were not analyzed in 

the present work, and in order to document urban mobility and air pollution impacts 

throughout the entirety of the COVID-19 pandemic. 

It is not clear why 𝐶𝑂 concentrations have not decreased as much as 𝑁𝑂2 during 

lockdown period since road transport contributes heavily to both air pollutants. A possible 

cause could be that 𝐶𝑂, being a primary pollutant, which is not regenerated by 

photochemistry processes such as 𝑁𝑂2, has had a lower drop than 𝑁𝑂2 when comparing 

to the baseline. Other possible factors could be related to the fact that 𝐶𝑂 is lighter than 

𝑁𝑂2, making it easier to disperse in the atmosphere, or due to the fact the vehicle mix 

during the lockdown periods were different than the baseline (i.e: diesel vs petrol; light 

vs heavy; newer vs older). Nevertheless, this disproportional drop in 𝑁𝑂2 and 𝐶𝑂 

concentrations should be further investigated to fully understand this phenomenon. 

Investigate noise pollution changes during the most restrictive COVID-19 pandemic 

phases, namely near Lisbon Airport, main road traffic arteries and intersections, including 

its effect in citizens well-being.  

Furthermore, it would also be interesting to study the effects of lockdown fatigue 

throughout COVID-19 lockdowns on the effectiveness of pandemic management policies 

on urban mobility and the spread of the disease in order to aid decision makers in the case 

of a future pandemic scenario. 

Identify any changes on the urban mobility routines by its citizens, workers/students, 

and visitors’ routines after the end of COVID-19 lockdowns in 2021 and its impact to the 
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commuting efficiency in the city. Propose improvements in the urban mobility offerings 

to improve efficiency and seize the opportunity to rebalance transportation means 

dominated by private vehicles during the pre-pandemic period. 

Re-run the ML experiments with increased amount of collected data, with additional 

GPU-assisted computational power to use additional estimators, namely Neural Networks 

and cuML/DMLC, and to search over an expanded hyperparameter search space in order 

to increase model performance. 

Additionally, as future work, it would be interesting to operationalize the present work 

into a fully functioning city-agnostic system. Define generic data interfaces for simplified 

data integration, uplift the ETL process to allow for delta loads, dimension change 

management and update of the multidimensional model, update visualizations in a public 

dashboard solution and continuously retrain machine learning models, enabling the 

interpretation of feature contribution for the past and present assisted by purpose-built 

visualizations, as well as allowing for short future horizon air pollutant concentration 

interpretable predictions via dashboard and an inference API. 
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Annexes and Appendices 

 

Appendix A – Data tables related to figures 

 

Table 14 – All Lisbon stations monthly median NO2 concentration (μg/m3) for the years 2013-

2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 35,5±0,35 (µg/m3) 34±0,85 (µg/m3) -4,23% 28326 3706 

Feb 28,1±0,34 (µg/m3) 40,7±0,87 (µg/m3) 44,84% 26153 3992 

Mar 24,8±0,31 (µg/m3) 18,2±0,57 (µg/m3) -26,61% 27810 4102 

Apr 23±0,28 (µg/m3) 12,2±0,38 (µg/m3) -46,96% 27673 4236 

May 21,1±0,3 (µg/m3) 14±0,39 (µg/m3) -33,65% 27048 4155 

Jun 18,1±0,28 (µg/m3) 11,7±0,34 (µg/m3) -35,36% 26467 4305 

Jul 16,3±0,27 (µg/m3) 17±0,59 (µg/m3) 4,29% 26925 4440 

Aug 16,6±0,31 (µg/m3) 11,2±0,39 (µg/m3) -32,53% 26684 4097 

Sep 25,9±0,34 (µg/m3) 21,4±0,76 (µg/m3) -17,37% 26441 4278 

Oct 31,9±0,4 (µg/m3) 22,4±0,64 (µg/m3) -29,78% 27844 4417 

Nov 35±0,36 (µg/m3) 27,7±0,65 (µg/m3) -20,86% 26905 4316 

Dec 38,2±0,35 (µg/m3) 26±0,65 (µg/m3) -31,94% 28014 4323 

Data table related to Figure 22 

 

Table 15 –Road traffic Lisbon monitoring stations monthly median NO2 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 47±0,52 (µg/m3) 42,8±1,13 (µg/m3) -8,94% 14493 2191 

Feb 40±0,5 (µg/m3) 51,4±1,23 (µg/m3) 28,50% 13202 2086 

Mar 36±0,48 (µg/m3) 22,4±0,87 (µg/m3) -37,78% 14189 2231 

Apr 34,1±0,43 (µg/m3) 14,9±0,61 (µg/m3) -56,30% 14117 2080 

May 31,6±0,46 (µg/m3) 18,45±0,66 (µg/m3) -41,61% 14447 1926 

Jun 27±0,46 (µg/m3) 15,4±0,54 (µg/m3) -42,96% 13514 2148 

Jul 24,8±0,47 (µg/m3) 24,3±0,98 (µg/m3) -2,02% 13313 2227 

Aug 25±0,51 (µg/m3) 15±0,62 (µg/m3) -40,00% 13949 2225 

Sep 37,7±0,54 (µg/m3) 32,3±1,2 (µg/m3) -14,32% 13486 2158 

Oct 46,3±0,62 (µg/m3) 33±0,94 (µg/m3) -28,73% 13600 2224 

Nov 48,5±0,55 (µg/m3) 35,65±0,91 (µg/m3) -26,49% 13010 2158 

Dec 49±0,53 (µg/m3) 34,5±0,94 (µg/m3) -29,59% 13932 2162 

Data table related to Figure 23 
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Table 16 – Background Lisbon monitoring stations monthly median NO2 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 24,8±0,41 (µg/m3) 21,4±1,06 (µg/m3) -13,71% 13833 1515 

Feb 18,6±0,39 (µg/m3) 27,5±1,03 (µg/m3) 47,85% 12951 1906 

Mar 16,4±0,33 (µg/m3) 14,2±0,63 (µg/m3) -13,41% 13621 1871 

Apr 15,2±0,28 (µg/m3) 10,3±0,44 (µg/m3) -32,24% 13556 2156 

May 13,9±0,25 (µg/m3) 11,2±0,39 (µg/m3) -19,42% 12601 2229 

Jun 12,4±0,22 (µg/m3) 8,8±0,34 (µg/m3) -29,03% 12953 2157 

Jul 11,6±0,18 (µg/m3) 13,1±0,51 (µg/m3) 12,93% 13612 2213 

Aug 11,8±0,25 (µg/m3) 8,7±0,31 (µg/m3) -26,27% 12735 1872 

Sep 17,8±0,32 (µg/m3) 14,8±0,72 (µg/m3) -16,85% 12955 2120 

Oct 21,3±0,41 (µg/m3) 14,8±0,72 (µg/m3) -30,52% 14244 2193 

Nov 24,3±0,4 (µg/m3) 19,5±0,84 (µg/m3) -19,75% 13895 2158 

Dec 27,8±0,41 (µg/m3) 18,4±0,8 (µg/m3) -33,81% 14082 2161 

Data table related to Figure 24 

 

Table 17 – Hourly NO2 median concentration in Traffic Stations for the National Confinement 

period (14-03-2020 to 03-05-2020) and homologous 2013-2019 period. 

Hour Median 2013-2019 (CI95) Median 2020 (CI95) Difference N (2013-2019) N (2020) 

0 36,8±2,02 (µg/m3) 15,1±2,84 (µg/m3) -58,97% 959 143 

1 29,1±1,96 (µg/m3) 12,25±2,47 (µg/m3) -57,90% 957 142 

2 23±1,77 (µg/m3) 10,2±1,94 (µg/m3) -55,65% 957 140 

3 18,8±1,57 (µg/m3) 7,85±1,56 (µg/m3) -58,24% 952 144 

4 17,8±1,42 (µg/m3) 8,8±1,19 (µg/m3) -50,56% 953 142 

5 22,2±1,31 (µg/m3) 12±1,54 (µg/m3) -45,95% 958 142 

6 33,2±1,41 (µg/m3) 16,6±2,11 (µg/m3) -50,00% 959 145 

7 48,4±1,56 (µg/m3) 26,2±2,67 (µg/m3) -45,87% 960 145 

8 57±1,66 (µg/m3) 29,4±2,83 (µg/m3) -48,42% 962 145 

9 49,75±1,54 (µg/m3) 23,05±2,39 (µg/m3) -53,67% 960 144 

10 38,1±1,33 (µg/m3) 19,2±2,05 (µg/m3) -49,61% 953 142 

11 33,5±1,2 (µg/m3) 17,35±1,9 (µg/m3) -48,21% 954 142 

12 31,35±1,14 (µg/m3) 16,2±1,42 (µg/m3) -48,33% 956 143 

13 29,4±1,05 (µg/m3) 14,3±1,32 (µg/m3) -51,36% 957 143 

14 27,25±1,05 (µg/m3) 13,3±1,18 (µg/m3) -51,19% 956 144 

15 27,55±1,2 (µg/m3) 13,35±1,24 (µg/m3) -51,54% 952 144 

16 28,6±1,34 (µg/m3) 13,35±1,14 (µg/m3) -53,32% 950 144 

17 31,8±1,61 (µg/m3) 13,85±1,39 (µg/m3) -56,45% 959 144 

18 38,2±1,68 (µg/m3) 15,2±1,52 (µg/m3) -60,21% 961 145 

19 45,2±1,73 (µg/m3) 17,6±1,71 (µg/m3) -61,06% 961 143 

20 48,95±1,8 (µg/m3) 18,7±2,14 (µg/m3) -61,80% 960 143 

21 45,9±1,9 (µg/m3) 18,5±2,81 (µg/m3) -59,69% 959 143 

22 41,55±1,85 (µg/m3) 17±2,79 (µg/m3) -59,09% 960 143 

23 40,4±1,94 (µg/m3) 16,65±2,8 (µg/m3) -58,79% 959 144 

Data related to Figure 26 
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Table 18 – Hourly NO2 median concentration in Background Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) and homologous 2013-2019 period.  

Hour Median 2013-2019 (CI95) Median 2020 (CI95) Difference N (2013-2019) N (2020) 

0 18,8±1,39 (µg/m3) 14,25±2,3 (µg/m3) -24,20% 913 134 

1 15,3±1,36 (µg/m3) 14,15±2,04 (µg/m3) -7,52% 916 134 

2 11,75±1,24 (µg/m3) 11,9±1,69 (µg/m3) 1,28% 914 133 

3 10,2±1,11 (µg/m3) 11,55±1,52 (µg/m3) 13,24% 913 134 

4 9,2±1,01 (µg/m3) 11,1±1,32 (µg/m3) 20,65% 914 134 

5 10,9±1 (µg/m3) 11,65±1,45 (µg/m3) 6,88% 913 134 

6 16±1,18 (µg/m3) 15,65±1,9 (µg/m3) -2,19% 915 134 

7 26,9±1,34 (µg/m3) 20,4±2,16 (µg/m3) -24,16% 914 134 

8 31,2±1,31 (µg/m3) 20,95±2,02 (µg/m3) -32,85% 914 134 

9 23,6±1,08 (µg/m3) 15,5±1,7 (µg/m3) -34,32% 913 133 

10 16,4±0,85 (µg/m3) 12,5±1,52 (µg/m3) -23,78% 906 133 

11 13,5±0,67 (µg/m3) 9,55±1,39 (µg/m3) -29,26% 906 134 

12 11,3±0,55 (µg/m3) 7,9±1,2 (µg/m3) -30,09% 908 135 

13 10,5±0,49 (µg/m3) 7,3±1,05 (µg/m3) -30,48% 910 135 

14 9,9±0,48 (µg/m3) 6,4±0,87 (µg/m3) -35,35% 909 135 

15 10,2±0,46 (µg/m3) 7±0,62 (µg/m3) -31,37% 907 135 

16 11,1±0,46 (µg/m3) 7,2±0,78 (µg/m3) -35,14% 909 135 

17 12,9±0,56 (µg/m3) 7,8±0,84 (µg/m3) -39,53% 914 135 

18 15,9±0,66 (µg/m3) 8,7±0,86 (µg/m3) -45,28% 912 135 

19 20,2±0,83 (µg/m3) 10,6±1,07 (µg/m3) -47,52% 913 135 

20 24±1,14 (µg/m3) 13,9±1,61 (µg/m3) -42,08% 913 135 

21 22,8±1,27 (µg/m3) 13±1,87 (µg/m3) -42,98% 913 135 

22 21,9±1,26 (µg/m3) 13,9±2,21 (µg/m3) -36,53% 913 135 

23 20,9±1,34 (µg/m3) 14,55±2,36 (µg/m3) -30,38% 913 134 

Data related to Figure 27 

 

Table 19 – NO2 median concentration in Traffic Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) and homologous 

2013-2019 period. 

Week

Day 

Median 2013-2019 

(CI95) 

Median 2020 (CI95) Differenc

e 

N (2013-

2019) 

N (2020) 

Mon 34,1±0,63 (µg/m3) 17±0,83 (µg/m3) -50,15% 7308 1097 

Tue 33,2±0,62 (µg/m3) 18,6±0,84 (µg/m3) -43,98% 7271 1110 

Wed 33,5±0,66 (µg/m3) 18,75±0,79 (µg/m3) -44,03% 7257 1124 

Thu 33,6±0,64 (µg/m3) 17,4±0,85 (µg/m3) -48,21% 7247 1036 

Fri 34,8±0,66 (µg/m3) 17,8±0,97 (µg/m3) -48,85% 7237 1002 

Sat 30,6±0,61 (µg/m3) 15,9±0,8 (µg/m3) -48,04% 7294 1078 

Sun 24,4±0,55 (µg/m3) 10,7±0,57 (µg/m3) -56,15% 7329 1074 

Data related to Figure 28 
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Table 20 – NO2 median concentration in Background Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) and homologous 

2013-2019 period. 

Week

Day 

Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Mon 15,5±0,37 (µg/m3) 11,2±0,55 (µg/m3) -27,74% 6863 1098 

Tue 14,9±0,35 (µg/m3) 12,1±0,58 (µg/m3) -18,79% 6763 1103 

Wed 14,8±0,39 (µg/m3) 11,85±0,55 (µg/m3) -19,93% 6678 1104 

Thu 14,8±0,37 (µg/m3) 11,2±0,54 (µg/m3) -24,32% 6694 1029 

Fri 15,2±0,38 (µg/m3) 10,2±0,61 (µg/m3) -32,89% 6772 1045 

Sat 12,7±0,38 (µg/m3) 9,1±0,63 (µg/m3) -28,35% 6832 1103 

Sun 11±0,33 (µg/m3) 6,9±0,46 (µg/m3) -37,27% 6895 1104 

Data related to Figure 29 

 

Table 21 – NO2 annual average NO2 concentration in all Lisbon stations from 2013 to 2020. 

Year Av. Liberdade Beato Benfica Entrecampos Olivais Restelo 

2013 52.77 No Data No Data 38.80 29.39 22.34 

2014 53.24 19.75 34.27 36.95 25.98 21.53 

2015 58.63 20.47 34.42 38.81 29.23 21.39 

2016 57.34 19.70 35.20 36.95 27.82 18.74 

2017 60.40 26.74 38.18 40.79 30.46 22.06 

2018 60.69 24.54 37.66 40.54 30.43 21.22 

2019 54.61 21.08 34.29 35.79 27.24 19.82 

2020 39.46 17.41 28.65 29.42 20.86 19.68 

Data related to Figure 30 

 

Table 22 –Road traffic Lisbon monitoring stations monthly median O3 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

 
Month Median 2013-2019 

(CI95) 

Median 2020 

(CI95) 

Difference N (2013-

2019) 

N (2020) 

Jan 33,6±0,72 (µg/m3) 28±1,87 (µg/m3) -16,67% 4171 560 

Feb 43,9±0,8 (µg/m3) 22±1,76 (µg/m3) -49,89% 3232 684 

Mar 56,6±0,76 (µg/m3) 67±1,47 (µg/m3) 18,37% 3558 744 

Apr 65±0,76 (µg/m3) 73±1,52 (µg/m3) 12,31% 3452 717 

May 64,7±0,77 (µg/m3) 74±1,54 (µg/m3) 14,37% 3597 744 

Jun 55,6±0,81 (µg/m3) 58±1,39 (µg/m3) 4,32% 3129 719 

Jul 54,25±0,79 (µg/m3) 65±1,98 (µg/m3) 19,82% 3722 720 

Aug 57,6±0,79 (µg/m3) 60±1,61 (µg/m3) 4,17% 4308 495 

Sep 49,6±0,75 (µg/m3) 60±2,02 (µg/m3) 20,97% 4015 719 

Oct 37,7±0,72 (µg/m3) 50±1,76 (µg/m3) 32,63% 4119 744 
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Nov 30,4±0,72 (µg/m3) 30±1,65 (µg/m3) -1,32% 3080 720 

Dec 22,4±0,69 (µg/m3) 39±1,81 (µg/m3) 74,11% 3466 703 

Data related to Figure 32 

Table 23 –Background Lisbon monitoring stations monthly median O3 concentration (μg/m3) 

for the years 2013-2019 and 2020. 

 
Month Median 2013-2019 

(CI95) 

Median 2020 

(CI95) 

Difference N (2013-

2019) 

N (2020) 

Jan 46±0,41 (µg/m3) 41±1,17 (µg/m3) -10,87% 13477 1395 

Feb 58±0,38 (µg/m3) 37±1,07 (µg/m3) -36,21% 13367 2037 

Mar 66,8±0,37 (µg/m3) 66±0,79 (µg/m3) -1,20% 13650 2229 

Apr 74±0,38 (µg/m3) 69±0,84 (µg/m3) -6,76% 14080 2158 

May 74±0,36 (µg/m3) 70±0,92 (µg/m3) -5,41% 14633 2230 

Jun 64±0,38 (µg/m3) 59±0,83 (µg/m3) -7,81% 14882 2086 

Jul 60,4±0,4 (µg/m3) 61±1,26 (µg/m3) 0,99% 15056 2088 

Aug 60,1±0,44 (µg/m3) 53±0,88 (µg/m3) -11,81% 15076 2232 

Sep 58,4±0,42 (µg/m3) 61±1,18 (µg/m3) 4,45% 14823 2154 

Oct 48±0,38 (µg/m3) 52±0,93 (µg/m3) 8,33% 14789 2231 

Nov 42,9±0,35 (µg/m3) 35±0,9 (µg/m3) -18,41% 14489 2147 

Dec 31±0,37 (µg/m3) 45±0,91 (µg/m3) 45,16% 13618 2096 

Data related to Figure 33 

 

Table 24 – Hourly O3 median concentration in Traffic Stations for the National Confinement 

period (14-03-2020 to 03-05-2020) versus 2013-2019 Interquartile range, for the same year 

period.  

Hour Median 2013-2019 (CI95) Median 2020 (CI95) Difference N (2013-2019) N (2020) 

0 59,2±2,99 (µg/m3) 71±6,23 (µg/m3) 19,93% 237 49 

1 63,5±3,1 (µg/m3) 70±6,01 (µg/m3) 10,24% 237 49 

2 67±3,08 (µg/m3) 69±5,81 (µg/m3) 2,99% 237 49 

3 67,5±2,96 (µg/m3) 69±5,9 (µg/m3) 2,22% 237 49 

4 64,7±2,89 (µg/m3) 66±5,31 (µg/m3) 2,01% 237 49 

5 60,7±2,98 (µg/m3) 66±5,65 (µg/m3) 8,73% 237 49 

6 49,8±3,16 (µg/m3) 61±6,1 (µg/m3) 22,49% 238 49 

7 35±2,96 (µg/m3) 53±6,01 (µg/m3) 51,43% 237 49 

8 33,8±2,63 (µg/m3) 49,5±5,75 (µg/m3) 46,45% 238 48 

9 43,1±2,38 (µg/m3) 60±4,8 (µg/m3) 39,21% 238 48 

10 55,8±2,15 (µg/m3) 67±4,81 (µg/m3) 20,07% 236 49 

11 62,4±1,94 (µg/m3) 70±4,56 (µg/m3) 12,18% 237 49 

12 69,3±1,94 (µg/m3) 74±4,3 (µg/m3) 6,78% 237 49 

13 72,95±1,95 (µg/m3) 79±4,13 (µg/m3) 8,29% 238 49 

14 75,1±1,95 (µg/m3) 82±3,81 (µg/m3) 9,19% 238 49 

15 76,1±1,98 (µg/m3) 82±3,8 (µg/m3) 7,75% 237 49 

16 75,7±2,08 (µg/m3) 83,5±3,35 (µg/m3) 10,30% 235 48 

17 73,2±2,25 (µg/m3) 83±3,67 (µg/m3) 13,39% 236 49 

18 68,6±2,49 (µg/m3) 79±3,89 (µg/m3) 15,16% 237 49 

19 63,8±2,57 (µg/m3) 75±4,26 (µg/m3) 17,55% 238 49 
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20 59,9±2,81 (µg/m3) 74±4,93 (µg/m3) 23,54% 239 49 

21 58,5±2,95 (µg/m3) 73±5,71 (µg/m3) 24,79% 239 49 

22 60±2,91 (µg/m3) 70±5,84 (µg/m3) 16,67% 239 49 

23 60±2,91 (µg/m3) 71±6,03 (µg/m3) 18,33% 237 49 

Data related to Figure 34 

Table 25 – Hourly O3 median concentration in Background Stations for the National 

Confinement period (14-03-2020 to 03-05-2020) versus 2013-2019 Interquartile range, for the 

same year period. 

Hour Median 2013-2019 (CI95) Median 2020 (CI95) Difference N (2013-2019) N (2020) 

0 66,55±1,45 (µg/m3) 65±3,24 (µg/m3) -2,33% 946 147 

1 68,3±1,45 (µg/m3) 63±3,14 (µg/m3) -7,76% 953 147 

2 70,8±1,44 (µg/m3) 64±3,07 (µg/m3) -9,60% 953 147 

3 70±1,4 (µg/m3) 62±2,95 (µg/m3) -11,43% 951 147 

4 67,2±1,37 (µg/m3) 62±2,73 (µg/m3) -7,74% 950 147 

5 64,3±1,36 (µg/m3) 59±2,86 (µg/m3) -8,24% 950 147 

6 59,1±1,46 (µg/m3) 54±3,22 (µg/m3) -8,63% 949 147 

7 51±1,5 (µg/m3) 53±3,21 (µg/m3) 3,92% 950 147 

8 49±1,35 (µg/m3) 52±2,73 (µg/m3) 6,12% 950 147 

9 58±1,21 (µg/m3) 57±2,75 (µg/m3) -1,72% 947 146 

10 67±1,13 (µg/m3) 62±2,67 (µg/m3) -7,46% 941 145 

11 73,75±1,04 (µg/m3) 67±2,57 (µg/m3) -9,15% 946 146 

12 79,9±0,96 (µg/m3) 73±2,53 (µg/m3) -8,64% 951 147 

13 84,2±0,95 (µg/m3) 77±2,35 (µg/m3) -8,55% 951 147 

14 86,8±0,94 (µg/m3) 80±2,32 (µg/m3) -7,83% 946 147 

15 88±0,95 (µg/m3) 81±2,18 (µg/m3) -7,95% 946 147 

16 88±0,97 (µg/m3) 81±2,13 (µg/m3) -7,95% 953 147 

17 86,4±0,98 (µg/m3) 80±2,22 (µg/m3) -7,41% 953 147 

18 83±0,99 (µg/m3) 79±2,38 (µg/m3) -4,82% 954 147 

19 77±1,04 (µg/m3) 78±2,59 (µg/m3) 1,30% 953 147 

20 71±1,21 (µg/m3) 72±2,74 (µg/m3) 1,41% 953 147 

21 70,45±1,33 (µg/m3) 70±2,99 (µg/m3) -0,64% 952 147 

22 69,2±1,36 (µg/m3) 68±3,24 (µg/m3) -1,73% 953 147 

23 68±1,42 (µg/m3) 67±3,38 (µg/m3) -1,47% 952 147 

Data related to Figure 35 

 

Table 26 – O3 median concentration in Traffic Stations per day of the week during the National 

Emergency period and Calamity State (14-03-2020 to 01-07-2020) versus 2013-2019 

Interquartile range, for the same year period. 

Week

Day 

Median 2013-2019 

(CI95) 

Median 2020 (CI95) Differenc

e 

N (2013-

2019) 

N (2020) 

Mon 59,8±1,11 (µg/m3) 72±1,9 (µg/m3) 20,40% 1766 384 

Tue 59,6±1,11 (µg/m3) 65±1,97 (µg/m3) 9,06% 1766 383 

Wed 60±1,11 (µg/m3) 68±2,08 (µg/m3) 13,33% 1728 384 

Thu 59,25±1,02 (µg/m3) 71±2 (µg/m3) 19,83% 1756 358 

Fri 58,4±1,04 (µg/m3) 69±2,41 (µg/m3) 18,15% 1785 359 

Sat 63±1,11 (µg/m3) 68±2,41 (µg/m3) 7,94% 1788 384 

Sun 65,4±1,12 (µg/m3) 72,5±2,17 (µg/m3) 10,86% 1782 384 
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Data related to Figure 36 

Table 27 – O3 median concentration in Background Stations per day of the week during the 

National Emergency period and Calamity State (14-03-2020 to 01-07-2020) versus 2013-2019 

Interquartile range, for the same year period. 

Week

Day 

Median 2013-2019 

(CI95) 

Median 2020 (CI95) Differenc

e 

N (2013-

2019) 

N (2020) 

Mon 70,1±0,54 (µg/m3) 69±1,09 (µg/m3) -1,57% 7475 1123 

Tue 70±0,52 (µg/m3) 65±1,16 (µg/m3) -7,14% 7379 1141 

Wed 70,1±0,52 (µg/m3) 66±1,17 (µg/m3) -5,85% 7338 1152 

Thu 69,7±0,51 (µg/m3) 67±1,09 (µg/m3) -3,87% 7387 1079 

Fri 68,8±0,5 (µg/m3) 65±1,38 (µg/m3) -5,52% 7453 1078 

Sat 71,1±0,54 (µg/m3) 63±1,37 (µg/m3) -11,39% 7511 1139 

Sun 72±0,52 (µg/m3) 68±1,22 (µg/m3) -5,56% 7528 1128 

Data related to Figure 37 

 

Table 28 – Traffic Lisbon monitoring stations monthly median CO concentration (μg/m3) for the 

years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 

(CI95) 

Difference N (2013-

2019) 

N (2020) 

Jan 345,1±6,12 (µg/m3) 321±13,03 (µg/m3) -6,98% 11530 2041 

Feb 295±4,39 (µg/m3) 348±10,04 (µg/m3) 17,97% 10326 2032 

Mar 269,7±2,81 (µg/m3) 232±3,64 (µg/m3) -13,98% 12260 2085 

Apr 250±1,98 (µg/m3) 193±2,74 (µg/m3) -22,80% 12559 2157 

May 226,4±1,71 (µg/m3) 214±2,35 (µg/m3) -5,48% 13188 2120 

Jun 203±1,83 (µg/m3) 180±2,25 (µg/m3) -11,33% 11680 2117 

Jul 208±1,58 (µg/m3) 207±3,42 (µg/m3) -0,48% 13105 2212 

Aug 224,15±2,02 (µg/m3) 183±2,34 (µg/m3) -18,36% 12766 2227 

Sep 267,3±2,31 (µg/m3) 238±4,75 (µg/m3) -10,96% 12231 2159 

Oct 298±3,76 (µg/m3) 261±6,06 (µg/m3) -12,42% 12941 2228 

Nov 316,1±4,96 (µg/m3) 297±10,11 (µg/m3) -6,04% 12408 2143 

Dec 379±6,84 (µg/m3) 290±10,29 (µg/m3) -23,48% 12803 2160 

 

Table 29 – Background Lisbon monitoring stations monthly median CO concentration (μg/m3) 

for the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 300±9,34 (µg/m3) 218±12,27 (µg/m3) -27,33% 4402 31 

Feb 255±6,5 (µg/m3) 287±14,79 (µg/m3) 12,55% 3978 695 

Mar 224±3,38 (µg/m3) 232±4,55 (µg/m3) 3,57% 4128 739 

Apr 215±2,82 (µg/m3) 206±4 (µg/m3) -4,19% 4246 720 

May 200±2,05 (µg/m3) 209±2,27 (µg/m3) 4,50% 3899 741 
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Jun 173±1,68 (µg/m3) 168±2,16 (µg/m3) -2,89% 3985 720 

Jul 168±1,93 (µg/m3) 189±3,27 (µg/m3) 12,50% 3714 743 

Aug 182±2,85 (µg/m3) 174±2,4 (µg/m3) -4,40% 3977 742 

Sep 200±2,58 (µg/m3) 218±6,03 (µg/m3) 9,00% 4282 720 

Oct 202±4,57 (µg/m3) 273±9,36 (µg/m3) 35,15% 4434 628 

Nov 234±7,4 (µg/m3) 294,5±16,82 (µg/m3) 25,85% 4299 720 

Dec 300±11,66 (µg/m3) 278±16,83 (µg/m3) -7,33% 3983 712 

 

Table 30 – Traffic Lisbon monitoring stations monthly median PM2.5 concentration (μg/m3) for 

the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 

(CI95) 

Difference N (2013-

2019) 

N (2020) 

Jan 11,1±0,35 (µg/m3) 11,9±0,82 (µg/m3) 7,21% 4193 735 

Feb 10,8±0,31 (µg/m3) 13,7±0,54 (µg/m3) 26,85% 3487 689 

Mar 10,3±0,21 (µg/m3) 10,2±0,36 (µg/m3) -0,97% 4240 740 

Apr 10,5±0,19 (µg/m3) 6,6±0,28 (µg/m3) -37,14% 4232 714 

May 10,3±0,19 (µg/m3) 8,3±0,35 (µg/m3) -19,42% 4275 735 

Jun 10±0,21 (µg/m3) 5,8±0,32 (µg/m3) -42,00% 3974 708 

Jul 10,8±0,21 (µg/m3) 11,5±0,42 (µg/m3) 6,48% 4038 736 

Aug 8,75±0,26 (µg/m3) 6,3±0,26 (µg/m3) -28,00% 3880 734 

Sep 11,4±0,23 (µg/m3) 9,75±0,42 (µg/m3) -14,47% 3665 718 

Oct 11,6±0,27 (µg/m3) 7,2±0,31 (µg/m3) -37,93% 4067 722 

Nov 11±0,29 (µg/m3) 8,3±0,54 (µg/m3) -24,55% 3642 634 

Dec 14,9±0,36 (µg/m3) 7±0,41 (µg/m3) -53,02% 4256 688 

 

Table 31 – Background Lisbon monitoring stations monthly median PM2.5 concentration 

(μg/m3) for the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 9±0,32 (µg/m3) NA NA 4345 NA 

Feb 8±0,26 (µg/m3) 16,3±0,55 (µg/m3) 103,75% 3959 619 

Mar 7,5±0,19 (µg/m3) 10,2±0,36 (µg/m3) 36,00% 4875 726 

Apr 8,1±0,18 (µg/m3) 6,1±0,27 (µg/m3) -24,69% 4714 670 

May 7,9±0,16 (µg/m3) 9±0,44 (µg/m3) 13,92% 4678 740 

Jun 7,3±0,18 (µg/m3) 6,4±0,26 (µg/m3) -12,33% 4679 680 

Jul 8,3±0,17 (µg/m3) 12,5±0,42 (µg/m3) 50,60% 4892 702 

Aug 8,4±0,25 (µg/m3) 5,5±0,18 (µg/m3) -34,52% 4771 740 

Sep 9,2±0,2 (µg/m3) 7,4±0,35 (µg/m3) -19,57% 4664 712 

Oct 9,4±0,25 (µg/m3) 6,2±0,21 (µg/m3) -34,04% 5063 726 

Nov 8,8±0,24 (µg/m3) 9,1±0,47 (µg/m3) 3,41% 4695 713 

Dec 11,5±0,32 (µg/m3) 7,5±0,43 (µg/m3) -34,78% 4728 681 
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Table 32 – Traffic Lisbon monitoring stations monthly median PM10 concentration (μg/m3) for 

the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 

(CI95) 

Difference N (2013-

2019) 

N (2020) 

Jan 24,55±0,34 (µg/m3) 22,9±0,58 (µg/m3) -6,72% 12084 2108 

Feb 24,3±0,31 (µg/m3) 25,9±0,59 (µg/m3) 6,58% 10762 2083 

Mar 22,6±0,26 (µg/m3) 18,8±0,4 (µg/m3) -16,81% 12156 2227 

Apr 22,3±0,24 (µg/m3) 11,6±0,25 (µg/m3) -47,98% 11573 2152 

May 23±0,22 (µg/m3) 15±0,31 (µg/m3) -34,78% 11575 2163 

Jun 21,1±0,24 (µg/m3) 11,5±0,27 (µg/m3) -45,50% 11271 2133 

Jul 23,2±0,22 (µg/m3) 21,5±0,39 (µg/m3) -7,33% 11071 2221 

Aug 22,4±0,29 (µg/m3) 13,6±0,29 (µg/m3) -39,29% 11557 1886 

Sep 25,2±0,24 (µg/m3) 18,5±0,4 (µg/m3) -26,59% 11574 2138 

Oct 26,6±0,34 (µg/m3) 15,7±0,31 (µg/m3) -40,98% 12227 2191 

Nov 25,3±0,32 (µg/m3) 17,2±0,5 (µg/m3) -32,02% 12182 2144 

Dec 29,5±0,37 (µg/m3) 15,3±0,47 (µg/m3) -48,14% 12835 2054 

 

Table 33 – Background Lisbon monitoring stations monthly median PM10 concentration 

(μg/m3) for the years 2013-2019 and 2020. 

Month Median 2013-2019 

(CI95) 

Median 2020 (CI95) Difference N (2013-

2019) 

N (2020) 

Jan 18,3±0,42 (µg/m3) 15,9±1,8 (µg/m3) -13,11% 5179 21 

Feb 17,4±0,37 (µg/m3) 24,7±0,77 (µg/m3) 41,95% 5710 685 

Mar 17,8±0,3 (µg/m3) 20,3±0,6 (µg/m3) 14,04% 6169 738 

Apr 16,7±0,28 (µg/m3) 13,8±0,42 (µg/m3) -17,37% 5457 682 

May 16,9±0,26 (µg/m3) 17±0,47 (µg/m3) 0,59% 5603 744 

Jun 16±0,28 (µg/m3) 12,05±0,39 (µg/m3) -24,69% 5670 718 

Jul 16,9±0,26 (µg/m3) 21,5±0,59 (µg/m3) 27,22% 6292 744 

Aug 17,5±0,36 (µg/m3) 13,2±0,36 (µg/m3) -24,57% 5855 744 

Sep 20,3±0,29 (µg/m3) 17,15±0,66 (µg/m3) -15,52% 5744 714 

Oct 18,9±0,35 (µg/m3) 14,8±0,45 (µg/m3) -21,69% 6374 724 

Nov 16,5±0,31 (µg/m3) 16,3±0,79 (µg/m3) -1,21% 6259 713 

Dec 20,4±0,41 (µg/m3) 15,5±0,7 (µg/m3) -24,02% 6205 681 

 

Appendix B – Data Source Metadata 

Table 34 – IMPA Meteorology data source metadata 

Field Data Type Description 

ESTACAO INT Station Code 

ANO INT Sample year 

MS INT Sample month of year 

DI INT Sample day of month 

HR INT Sample hour of day 
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P_E_MD FLOAT Hourly average station level air pressure (hPa) 

P_M_MD FLOAT Hourly average sea level air pressure (hPa) 

T_MED FLOAT Hourly average of air temperature (Celsius) 

HR_MED FLOAT Hourly average of air relative humidity (percentage) 

DD_MED FLOAT Hourly average wind direction (north degree 

FF_MED  FLOAT Hourly average wind speed (m/s) 

RG_TOT FLOAT Hourly total global radiation (KJ/m2) 

PR_QTD FLOAT Hourly total precipitation (mm) 

 

Table 35 – APA Air Pollution data source metadata 

Field Data Type Description 

Countrycode STRING Country or territory ISO2 code. 

Namespace 

STRING Inspire identifier/namespace of reporting entity, given by 

data provider. 

AirQualityNetwork 

STRING Inspire identifier (Local Id) of air quality measurement 

network, given by data provider.   

AirQualityStation 

STRING Inspire identifier (Local Id) of air quality measurement 

station, given by data provider.  

AirQualityStationEoI

Code 

STRING EoI code of air quality measurement station (as in AirBase).

  

SamplingPoint 

STRING Inspire identifier (Local Id) of sampling point, given by data 

provider.  

SamplingProcess 

STRING Inspire identifier (LocalId) of sampling process (procedure), 

given by data provider.  

Sample 

STRING Inspire identifier (LocalId) of sample (featureofinterest), 

given by data provider.  

AirPollutant 

STRING Air polluting substance, level of which is measured and 

reported to the EEA (see notation in Data Dictionary: 

http://dd.eionet.europa.eu/vocabulary/aq/pollutant). 

AirPollutantCode 

STRING Air polluting substance, level of which is measured and 

reported to the EEA (see id in Data Dictionary: 

http://dd.eionet.europa.eu/vocabulary/aq/pollutant). 

AveragingTime 

STRING Averaging time/frequency of reported air quality values (see 

in Data Dictionary: 

http://dd.eionet.europa.eu/vocabulary/aq/primaryObservatio

n).  

Concentration FLOAT Measured concentration of air polluting substance. 

UnitOfMeasurement 

STRING Unit of concentration of air polluting substance (see in Data 

Dictionary: 

http://dd.eionet.europa.eu/vocabulary/uom/concentration). 

DatetimeBegin 

DATETME Date-time begin of measurement (UTC+1 for hourly data 

and original time zone for other averaging times).  

DatetimeEnd 

DATETIME Date-time end of measurement (UTC+1 for hourly data and 

original time zone for other averaging times).  

Validity 

INT Information about data validity, given by data provider (see 

in Data Dictionary: 

http://dd.eionet.europa.eu/vocabulary/aq/observationvalidity

). 

Verification 

INT Information whether data have been verified by data 

provider (see in Data Dictionary: 

http://dd.eionet.europa.eu/vocabulary/aq/observationverifica

tion).  

 

 

Table 36 – DGS COVID-19 dataset metadata 

Field Data Type Description 
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data DATE Date when this data was added to the dataset 

data_dados DATETIME Date to which the measures refer to 

confirmados INT Confirmed cases 

confirmados_arsnorte INT Confirmed cases in ARS Norte 

confirmados_arscentro INT Confirmed cases in ARS Centro 

confirmados_arslvt INT Confirmed cases in ARS Lisboa e Vale do Tejo 

confirmados_arsalentejo INT Confirmed cases in ARS Alentejo 

confirmados_arsalgarve INT Confirmed cases in ARS Algarve 

confirmados_acores INT Confirmed cases in Região Autónoma dos Açores 

confirmados_madeira INT Confirmed cases in Região Autónoma da Madeira 

confirmados_estrangeiro INT Confirmed cases abroad 

confirmados_novos INT 

Difference between the confirmed cases in the day 

before and the actual day. 

recuperados INT Total recoveries 

obitos INT Total deaths 

internados INT Number of patients admitted to hospital wards 

internados_uci INT Number of patients admitted to the ICU 

lab INT 

Number of suspected cases awaiting laboratory 

confirmation 

suspeitos INT 

Number of suspected cases (definition changed in 

29/02/2020) since 01/01/2020 

vigilancia INT Number of cases under surveillance by health authorities 

n_confirmados INT 

Number of suspected cases which did not result in 

infection 

cadeias_transmissao INT Number of active contagium chains 

transmissao_importada INT 

Number of confirmed cases via transmission of infected 

foreign nationals 

confirmados_0_9_f INT 

Number of confirmed cases for the female gender from 

0 to 9 years 

confirmados_0_9_m INT 

Number of confirmed cases for the male gender from 0 

to 9 years 

confirmados_10_19_f INT 

Number of confirmed cases for the female gender from 

10 to 19 years 

confirmados_10_19_m INT 

Number of confirmed cases for the male gender from 10 

to 19 years 

confirmados_20_29_f INT 

Number of confirmed cases for the female gender from 

20 to 29 years 

confirmados_20_29_m INT 

Number of confirmed cases for the male gender from 20 

to 29 years 

confirmados_30_39_f INT 

Number of confirmed cases for the female gender from 

30 to 39 years 

confirmados_30_39_m INT 

Number of confirmed cases for the male gender from 30 

to 39 years 

confirmados_40_49_f INT 

Number of confirmed cases for the female gender from 

40 to 49 years 

confirmados_40_49_m INT 

Number of confirmed cases for the male gender from 40 

to 49 years 

confirmados_50_59_f INT 

Number of confirmed cases for the female gender from 

50 to 59 years 

confirmados_50_59_m INT 

Number of confirmed cases for the male gender from 50 

to 59 years 

confirmados_60_69_f INT 

Number of confirmed cases for the female gender from 

60 to 69 years 

confirmados_60_69_m INT 

Number of confirmed cases for the male gender from 60 

to 69 years 

confirmados_70_79_f INT 

Number of confirmed cases for the female gender from 

70 to 79 years 

confirmados_70_79_m INT 

Number of confirmed cases for the male gender from 70 

to 79 years 
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confirmados_80_plus_f INT 

Number of confirmed cases for the female gender from 

80+ years 

confirmados_80_plus_m INT 

Number of confirmed cases for the male gender from 

80+ years 

sintomas_tosse FLOAT 

Percentage of cases that report symptom:  cough. 

(Sampled) 

sintomas_febre FLOAT 

Percentage of cases that report symptom:  fever. 

(Sampled) 

sintomas_dificuldade_res

piratoria FLOAT 

Percentage of cases that report symptom:  difficulty 

breathing. (Sampled) 

sintomas_cefaleia FLOAT 

Percentage of cases that report symptom:  headache. 

(Sampled) 

sintomas_dores_muscula

res FLOAT 

Percentage of cases that report symptom:  muscular 

pain. (Sampled) 

sintomas_fraqueza_gener

alizada FLOAT 

Percentage of cases that report symptom:  weakness. 

(Sampled) 

confirmados_f INT Total number of females confirmed cases 

confirmados_m INT Total number of male confirmed cases 

obitos_arsnorte INT Total deaths in ARS Norte 

obitos_arscentro INT Total deaths in ARS Centro 

obitos_arslvt INT Total deaths in ARS Lisboa e Vale do Tejo 

obitos_arsalentejo INT Total deaths in ARS Alentejo 

obitos_arsalgarve INT Total deaths in ARS Algarve 

obitos_acores INT Total deaths in Região Autónoma dos Açores 

obitos_madeira INT Total deaths in Região Autónoma da Madeira 

obitos_estrangeiro INT Total deaths abroad 

recuperados_arsnorte INT Total recoveries in ARS Norte 

recuperados_arscentro INT Total recoveries in ARS Centro 

recuperados_arslvt INT Total recovieres in ARS Lisboa e Vale do Tejo 

recuperados_arsalentejo INT Total recoveries in ARS Alentejo 

recuperados_arsalgarve INT Total recoveries in ARS Algarve 

recuperados_acores INT Total recovieres in Região Autónoma dos Açores 

recuperados_madeira INT Total recovieres in Região Autónoma da Madeira 

recuperados_estrangeiro INT Total recoveries abroad 

obitos_0_9_f INT Total deaths female from 0 to 9 years 

obitos_0_9_m INT Total deaths male from 0 to 9 years 

obitos_10_19_f INT Total deaths female from 10 to 19 years 

obitos_10_19_m INT Total deaths male from 10 to 19 years 

obitos_20_29_f INT Total deaths female from 20 to 29 years 

obitos_20_29_m INT Total deaths male from 20 to 29 years 

obitos_30_39_f INT Total deaths female from 30 to 39 years 

obitos_30_39_m INT Total deaths male from 30 to 39 years 

obitos_40_49_f INT Total deaths female from 40 to 49 years 

obitos_40_49_m INT Total deaths male from 40 to 49 years 

obitos_50_59_f INT Total deaths female from 50 to 59 years 

obitos_50_59_m INT Total deaths male from 50 to 59 years 

obitos_60_69_f INT Total deaths female from 60 to 69 years 

obitos_60_69_m INT Total deaths male from 60 to 69 years 

obitos_70_79_f INT Total deaths female from 70 to 79 years 

obitos_70_79_m INT Total deaths male from 70 to 79 years 

obitos_80_plus_f INT Total deaths female from 80+ years 

obitos_80_plus_m INT Total deaths male from 80+ years 
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obitos_f INT Total deaths female 

obitos_m INT Total deaths male 

confirmados_desconheci

dos_m INT 

Number of confirmed cases for the male gender with 

unknown age 

confirmados_desconheci

dos_f INT 

Number of confirmed cases for the female gender with 

unknown age 

ativos INT Number of active cases 

internados_enfermaria INT Number of patients admitted in wards but not in ICU 

confirmados_desconheci

dos INT Number of confirmed cases with unknown gender 

 

 

Table 37 – Apple Mobility Trend Report data source metadata 

Field Data Type Description 

Date DATE Date 

Driving Trips 

Change 

FLOAT Daily percentual change of Apple maps application driving 

direction requests in the city of Lisbon compared against a 

pre-pandemic baseline 

Walking Trips 

Change 

FLOAT Daily percentual change of Apple maps application walking 

direction requests in the city of Lisbon compared against a 

pre-pandemic baseline 

 

Table 38 –Moovit Insights Public Transit Index data source metadata 

Field Data Type Description 

Date DATE Date 

Mobility Index 

Change 

FLOAT 7-day public transportation ridership percentual change, 

measured with the Moovit App, against a pre-pandemic 

baseline. 

 

Table 39 – Google COVID-19 Community Mobility Report data source metadata 

Field Data Type Description 

Data DATE Date 

Retalho e lazer 

FLOAT Mobility trends for places like restaurants, cafes, shopping 

centers, theme parks, museums, libraries, and movie theaters, 

compared to a pre-pandemic baseline. 

Mercearias e 

farmácias 

FLOAT Mobility trends for places like grocery markets, food 

warehouses, farmers markets, specialty food shops, drug 

stores, and pharmacies, compared to a pre-pandemic baseline. 

Parques 

FLOAT Mobility trends for places like national parks, public beaches, 

marinas, dog parks, plazas, and public gardens, compared to a 

pre-pandemic baseline. 

Estações transporte 

públicos 

FLOAT Mobility trends for places like public transport 

hubs such as subway, bus, and train stations, compared to a 

pre-pandemic baseline. 

Locais de trabalho 

FLOAT Mobility trends for places of work, compared to a pre-

pandemic baseline. 

Residencial 

FLOAT Mobility trends for places of residence, compared to a pre-

pandemic baseline. 

 

Table 40 – Waze COVID-19 Impact data source metadata 

Field Data Type Description 

Date DATE Date 
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Mobility Index 

Change 

FLOAT Percentual change of kilometers driven per day measured with 

the Waze App within the city of Lisbon against a pre-

pandemic baseline 

 

Table 41 – Lisbon international airport traffic data source metadata 

Field Data Type Description 

Centro Negócios STRING Airport name 

Date DATE Date 

Movement type INT Arrival / Departure indicator 

No-transfer passengers 

INT Number of passengers either boarding in Lisbon or 

deboarding in Lisbon for the given date. Transferred 

passengers not included. 

Movement Count INT Count of aircraft movements for the given date 

 

Table 42 – Lisbon Subway ridership data source metadata 

Field Data Type Description 

Dia de Exploração DATE Date 

Passe INT Regular title validation (i.e: monthly pass) 

Ocasional INT Occasional ticket validation 

Gratuito Criança INT Child free validations (up to 12yrs) 

Outros Gratuitos INT All other free validations 

Soma INT Sum of all validations in the given day 

 

Table 43 – Death certificates data source metadata 

Field Data Type Description 

Data DATE Date 

Área de saúde STRING Health region (i.e: Lisbon and Tagus Valley) 

Mortes INT Total number of deaths 

 

Table 44 – Bike Lane counter (Av. Duque de Ávila) data source metadata 

Field Data Type Description 

Time DATETIME Date 

Piloto Lx INT Total number of bikes passing through the sensor 

Piloto Lx Ciclistas 

Entradas 

INT Total number of bikes passing east bound 

Piloto Lx Ciclistas 

Saídas 

INT Total number of bikes passing west bound 

 

Table 45 – GIRA Trips data source metadata 

Field Data Type Description 

Data DATE Date 

Viagens INT Number of GIRA trips in the given day 

 


