

Greeks and Trojans Together
Luís Botelho

Luís.Botelho@iscte.pt
Nelson Antunes

Nelson.Antunes@iscte.pt
Mohmed Ebrahim

Mohmed.Ebrahim@iscte.pt
Pedro Ramos

Pedro.Ramos@iscte.pt
Communicating Intelligent Systems Group of ADETTI

Av. das Forças Armadas, Edifício ISCTE, 1600 Lisboa, Portugal

ABSTRACT
This paper describes a comprehensive solution for the integration
of object oriented ontology representation frameworks with
logic-based agent communication frameworks. The proposed
solution addresses the problem at both the agent communication
level and the agent implementation level. At the agent
communication level, we propose to extend logic content
languages with some domain independent operators that allow
building logic constructs as propositions from domain dependent
entities defined in an object oriented ontology. At the
implementation level, we propose to use object-oriented databases
as the support for the agent information. Finally, we propose an
automatic mechanism for translating agent messages using the
extended content language into ODMG OQL commands, which
are then used to interact with the object-oriented database. This
binding mechanism relies on a special purpose data dictionary
representing the mapping between the domain ontology and the
agent internal database.

Keywords
Ontology, Agent Communication, Content Language

1. INTRODUCTION
In agent communication, a message can be understood only if the
vocabulary used in the message content belongs to the ontology
used by the agent. If the vocabulary contained in the ontology is
described in terms of classes, objects, attributes and methods, but
the message content uses predicates, functions, constants, and
actions, the agent becomes helpless unless it can use some way of
integrating the two different representation frameworks.
The paper presents an approach to integrate object-oriented
ontologies with logic-based communication. In the scope of this
paper, the expression “object-oriented ontology” refers to
ontologies in which the domain is represented in terms of classes,
objects, attributes, and methods. The expression “logic-based
communication” refers to communication frameworks in which
the contents of the messages are built form predicates, functions,
constants, variables and actions.
In the Agentcities project [1], FIPA ACL [5] is used as the agent
communication language; FIPA SL [6] and KIF [8] may be used
as message content languages; and DAML+OIL [11] is used to
represent ontologies. These choices were driven by a set of well
founded reasons including project management reasons, current
industrial and standardisation trends, and existing technological
support. In spite of being well justified, these choices are not free
of problems. Namely, they imply the harmonisation of the
logic-based agent communication framework and the object
oriented ontology representation framework. Whereas FIPA ACL,

FIPA SL and KIF fit into a logic-based framework, DAML+OIL
fits into an object-oriented framework.
The choice of FIPA ACL (and, in general, any other agent
communication language based on speech acts [10]) entails the
use of a logic-based message content language because the
contents of ACL messages must be combinations of propositions
and terms. Information and closed query messages take
propositions as content; open query messages take referential
expressions as content; and request, negotiation and error
messages take combinations of actions and propositions as
content. FIPA SL and KIF are logic-based languages capable of
representing propositions and terms, as implied by the choice of
FIPA ACL language.
The paper presents an approach for the integration of
object-oriented and logic-based frameworks both at the
communication level and at the implementation level. At the
communication level (section 2), the paper proposes four new
relational, functional and action operators that may be used to
build logic-based communication constructs such as terms and
propositions from classes, objects, attributes and methods. At the
implementation level (section 3), information agents are
implemented on top of object databases, which are well suited to
directly maintain the information of the domain, which is formed
by instances of the object-oriented domain ontology. Received
messages are translated to commands of the object-oriented
database query language.
Section 4 presents three approaches that can be considered
alternatives to the current proposal. In one, [2] proposes the
extension of FIPA ACL with new performatives taking objects as
contents. In another alternative [4], we discuss the possibility of
using classes of the domain ontology to represent propositions
and other entities used in communication. Finally [9], we analyse
the use of transposition rules to convert the object-oriented
ontology into a relational model.

2. AGENT-COMMUNICATION LEVEL
This section describes four general-purpose operators that can be
used in the communication for creating propositions and terms
(including action propositions and action terms) from domain
classes, objects, properties and methods.
The explanation considers two possible modelling scenarios. In
one scenario, domain predicates are represented by methods;
domain actions are represented by methods; and domain functions
are represented by methods. In the other scenario, domain
predicates are represented by classes; domain actions are
represented by classes; and domain functions are represented by
methods. The system designer is free to choose his/her preferred
modelling approach.

mailto:Lu�s.Botelho@iscte.pt
mailto:Nelson.Antunes@iscte.pt
mailto:Mohmed.Ebrahim@iscte.pt
mailto:Pedro.Ramos@iscte.pt

2.1 Extending Logic-Based Content
Languages
Some of the proposed new operators are relational operators (i.e.,
predicates), others are functional operators, and others are action
operators.
The proposed extension assumes objects may be represented in a
logic-based content language as proposed in [2]. That is, an object
is a functional expression in which the functor is the name of the
object class, playing the role of a class constructor. The functional
expression arguments are the attributes of the object to be created.
Using this convention, the following functional expression
represents a restaurant named "Encher a Mula" with several other
attributes including restaurantAddress whose value is an object of
class Address having attributes publicPlace, number, city, and
zone.

(Restaurant
 :name "Encher a Mula"
 :phone 219999999
 :restaurantAddress (Address
 :publicPlace "Rua Associado Dias"
 :number 1
 :city Lisboa
 :zone downtown)
 :type traditional)

Figure 1. Object instance representation
The new added operators enable the manipulation of classes,
objects, attributes and methods.

New relational operator
instance/2 is a new relational operator used to access instances of
specified classes. (instance Object ClassName) means
that Object is an instance of the class named ClassName.
Operationally, instance/2 can be used to check whether an object
is an instance of a class and also to access the different instances
of a class. instance/2 was originally proposed in [2].

New functional operators
value/2 is a new functional operator used to access the value of an
attribute of an object. (value Object AttributeName) is
the value of the attribute named AttributeName of Object.
value/3 is used to apply a certain method with the specified set of
parameters to an object. (value Object MethodName
ArgumentSequence) is the value returned by the application
of method named MethodName with the arguments specified by
ArgumentSequence to Object. value/3 can be used only with
methods that do not return void.
If the attribute specified in value/2 or the method specified in
value/3 has multiple values, then value-expressions will represent
sets.
Value expressions may also be used with class methods and class
attributes instead of object methods and attributes. In those cases,
the first argument of the operator must be a class name.
value/2 was originally proposed in [2] as a relational operator.

New action operators
Action operators represent the execution of the specified action.
Our proposal has two action operators: apply/3 and execute/1.

apply/3 is an action operator used to represent the application of a
certain method with the specified set of parameters to an object.
(apply Object MethodName Arguments) represents
the application of method named MethodName with the
arguments specified by Arguments to Object. Arguments may be
either the sequence containing the values of the method
arguments or a set of named arguments. apply/3 should be used
with methods that change the sate of the world.
execute/1 is an action operator to be used to represent the
execution of an action represented by an object expression.
(execute ActionDesignator) represents the execution of
the action represented by ActionDesignator. ActionDesignator
must be an object expression. That is, it must be an expression
whose evaluation returns an object, for instance a referential
expression or a functional expression representing an object.

2.2 Information Message
This section shows an interaction in which a restaurant agent
receives the information that there is a traditional food restaurant
named "Encher a Mula" with phone number 219999999, located
in Lisbon, downtown, street "Associado Dias", number 1. In FIPA
ACL, information messages use the inform performative.

(inform
 :sender Some restaurant SME access agent
 :receiver Lisbon restaurant agent
 :content "(
 (instance
 (Restaurant
 :name \"Encher a Mula\"
 :phone 219999999
 :restaurantAddress (Address
 :publicPlace \"Rua Assoc. Dias\"
 :number 1
 :city Lisboa
 :zone downtown)
 :type traditional)
 Restaurant)
)"
 :language extended-FIPA-SL
)

Figure 2. Information Message
The message in figure 3 is expressed in the FIPA ACL
communication language and FIPA SL content language.

2.3 Closed Query Example
This section presents an example in which an agent receives a
closed query. In FIPA ACL, closed queries are expressed by the
query-if performative.
In this example, the restaurant information agent receives a query
representing the question "Is there a traditional restaurant
located downtown?".

(query-if
 :sender Some Personal Assistant
 :receiver Lisbon Restaurant Agent
 :content "(
 (exists ?r (exists ?a
 (and
 (instance ?r Restaurant)
 (= (value ?r type) traditional)
 (= (value ?r restaurantAddress) ?a)
 (= (value ?a zone) downtown))))
)"
 :language extended-FIPA-SL
 :ontology AgentcitiesRestaurantOntology
 :reply-with query01
)

Figure 3. Closed Query Message

2.4 Opened Query Using a Relation
This section describes two approaches to represent relations
between objects. In the first case, the relation is represented by a
class of the domain ontology. In the second case, the relation is
represented by a method.
Figures 4 and 5 show the two ways of representing the query
"What are the names and addresses of downtown traditional
restaurants that are better than 'Encher a Mula'?".
In the first case, we assume the existence of a domain class named
Better with two attributes: worse and best, which are restaurants.
Actually, the class should also take another argument specifying
the comparison criterion but, for the sake of simplicity, we omit
such details here. The instances of this class represent pairs of
restaurants in which one is better than the other (according to
some criterion).

(query-ref
 :sender Some personal assistant
 :receiver Lisbon Restaurant Agent
 :content "(
 (all (sequence (value ?r1 name) ?address)
 (exists ?r1 (exists ?r2
 (and
 (instance
 (Better :best ?r1 :worse ?r2)
 Better)
 (=(value ?r2 name)\"Encher a Mula\")
 (=
 (value ?r1 restaurantAddress)
 ?address)))))
)"
 :language extended-FIPA-SL
 :reply-with query02
)

Figure 4. Opened Query Message

(query-ref
 :sender Some personal assistant
 :receiver Lisbon Restaurant Agent
 :content "(
 (all
 (sequence
 (value ?r1 name)
 (value ?r1 restaurantAddress))
 (exists ?r1 (exists ?r2
 (and
 (instance?r2 Restaurant)
 (=
 (value ?r2 name)
 \"Encher a Mula\")
 (=
 (value
 ?r2
 betterThan
 (sequence ?r1))
 true)))))
)"
 :language extended-FIPA-SL
 :reply-with query03
)

Figure 5. Opened Query Message
In the second example (figure 5), the Restaurant class has a
method called betterThan that is used to check whether or not the
object to which it is applied is better than the method single
argument. betterThan returns true or false. Actually, betterThan
should receive a second argument specifying the comparison
criterion but, for the sake of simplicity, we won't consider it here.

2.5 Request to Perform an Action
The FIPA ACL request performative is used for an agent to ask
another one to perform a given action. In this section we consider
two scenarios. In the first scenario, the requested action is
represented in the receiver's ontology by a class. In the second
scenario, the requested action is represented by a method.
In both cases, some personal assistant asks a restaurant
representative agent to book a table for 10 people to have dinner
at 8 PM.

(request
 :sender Some personal assistant
 :receiver The restaurant representative
 :content "(
 (action
 The restaurant representative
 (execute
 (BookTable
 :number_of_people 10
 :dinner_time 8PM)))
)"
 :language extended-FIPA-SL)

Figure 6. Request to perform an action.
In the following case, we assume that the booking action is
represented by the class called BookTable, which has two
attributes: number of people and dinner starting hour.
In the second example, we assume the ontology used by the
restaurant representative agent has the class Table, which contains
the method book taking two arguments: the number of people and
the dinner starting time.

(request
 :sender Some personal assistant
 :receiver The restaurant representative
 :content "(
 (action
 The restaurant representative
 (apply
 (any ?table
 (and
 (instance ?table Table)
 (>=
 (value ?table num-of-seats)
 10
)
 (member
 8PM
 (value ?table free-slots))))
 book
 (sequence 10 8PM))
)"
 :language extended-FIPA-SL

)

Figure 7. Request to perform an action.
In the above message, the first argument of the apply/3 operator is
a referential expression that represents any table with more than
10 seats that is not reserved for 8 PM. The second argument is the
name of the method used to book the selected table. The third
argument is the sequence of arguments of the book method:
number of people and dinner starting time.

3. FROM AGENT MESSAGES TO OBJECT
DATABASE INTERACTIONS
In our proposal, agents are built on top of an object database. The
object database management system has an interface compatible
with the ODMG 3.0 object model therefore the best way to
interact with it is through OQL, the ODMG Object Query
Language [3].
Since our agents communicate through the exchange of FIPA
ACL messages with extended FIPA SL contents, ACL/SL
messages are translated to OQL commands. This section describes
the translation of ACL/SL messages to OQL commands.
The same approach could easily be used for other content and
query languages, such as KIF and XQuery.
As the agent internal database doesn't have exactly the same
model as the domain ontology, the translation process uses a Data
Dictionary that maps from the domain ontology classes and
attributes to the internal database classes and attributes. This way
the generated OQL command uses the internal database classes,
attributes and data types. Besides mapping from the domain
ontology to the internal data model, the Data Dictionary allows
the agent designer to define his or her own database actions, such
as create_new_restaurant. Finally, the Data Dictionary is used to
check attribute and method types. This is important, for instance,
to know when to use commas around string values.
In order to facilitate the creation of the Data Dictionary for an
agent, we have developed a Graphical User Interface that looks
into the database, and automatically creates part of the dictionary.
However, it is not possible to automatically create the whole
dictionary content, such as database actions and pre-defined

queries. Those are easily introduced by the agent designer through
the GUI.
The translation of ACL/SL messages into OQL commands is a
four-step process. In the first step, the message string, which is an
S-Expression, is converted into a parse tree representing the
structure of the S-Expression. In the second step, the parse tree
representing the S-Expression is converted into an object structure
representing the ACL message and its extended SL content. SL
expressions are validated during the first two steps.
In the third step, the object structure representing the ACL/SL
message is converted into another object structure, representing
the OQL query. Finally, in the fourth step, the method
toString() of the created objects is applied to produce the
final string format of the OQL command, which is passed to the
object database.
One of the advantages of having a stepwise translation process is
that it allows the agent designer to use only the steps found
appropriate in each situation. In some circumstances it may be
useful to be able of using only the third step of the translation.
There are messages, such as request-when,
request-whenever, cfp, and propose that cannot be
translated to OQL because they are not queries. However, some of
the translation steps may be used to process parts of the message.
The first and second steps can always be used to decompose the
message and its contents in its several parts. For instance, steps 1
and 2 can be used to isolate the condition part of action-condition
expressions. Once the condition part has been isolated, the agent
can then use steps 3 and 4 to determine whether or not the
condition is true. It may also be possible, at least in the cases of
database actions, to use the translator to create the database
command that implements the action.
Another advantage of the stepwise translation is that it is easier to
trace the origin of possible errors and hence to determine reason
part of the contents of failure messages.
Usually, the translation from ACL/SL to OQL is straightforward.
Domain independent constructs such as conjunction, negation and
disjunction are directly mapped onto OQL conjunction, negation
and disjunction. Domain entities such as class names and
attributes are easily converted using the Data Dictionary, which
contains a one-to-one mapping from the ontology to the internal
database. However, some aspects of the translation are not as
straightforward as applying the mapping represented by the Data
Dictionary.

1. Extended SL structures with format "(instance Object
Class)" are converted into OQL from-clauses with pattern "from
Object in i(Class)", in which i(Class) is the internal representation
of the class Class of the domain ontology.

2. Extended SL structures with format
"(value Object Attribute)" are converted into OQL object
expressions with pattern "Object.i(Attribute)", in which
i(Attribute) is the internal representation of the attribute Attribute
of the domain ontology.

3. Extended SL structures with format
"(value Object MethodName Arguments)" are converted into
OQL method invocation expressions with pattern
"Object.i(Attribute)(i(Arguments))", in which i(MethodName) and
i(Arguments) are the internal representation of MethodName and

Arguments of the domain ontology. In these mappings, some of
the arguments such as constants are not subject to translation.

4. Extended SL structures with format "(apply Object
MethodName Arguments)" are also translated to method
invocation expressions exactly as value/3 expressions.

5. The translation of extended SL structures with format
(execute ActionDesignator) makes intensive use of the Data
Dictionary, which contains the explicit parameterised templates of
this kind of action-expressions. The translator just has to use an
instantiation of the translated parameterised template stored in the
Data Dictionary.
Some SL content expressions are not directly translated to OQL.
First they are converted to an equivalent format, which is more
easily translated to OQL. Universally quantified questions are
converted to equivalent existentially quantified expressions, using
the definitional equivalence ∀xP ≡ ¬∃x¬P. Implications are
converted to equivalent disjunctions by the definitional
equivalence P⇒Q ≡ ¬P∨Q. Equivalence is also converted to
another format using the relation P⇔Q ≡ (P⇒Q)∧(Q⇒P) ≡
(¬P∧¬Q)∨(P∧Q). Double negations are also simplified before
translation to OQL.
In FIPA ACL there are two kinds of querying messages: query-if
and query-ref, used for closed and open queries respectively. The
content of a query-if message is a proposition. The equivalent
OQL command must determine whether or not that proposition is
true. The content of a query-ref message is an identifying
referential expression. The equivalent OQL command must return
the set of values that satisfy the specified condition.

6. SL structures with format "(ReferentialOperator ?var
Proposition)” are converted into OQL commands with pattern
"select OQLVar[.AttributeName] from OQLVar in VarDomain
where OQLConditions", in which VarDomain can be a class
name, or an attribute represented by a nested select.
This rule is just a simplification of the actual rule, since the first
argument of a referential operator can be any term, for instance a
sequence of variables.
The translation of referential expressions is independent of the
specific referential operator. The differences between referential
operators are handled when the result set returned by the database
is converted into a message. If the used referential operator is
iota, the result set must contain exactly one record. If it contains
more or less than one record, a failure message is generated. If the
used referential operator is any, the result set must contain at
least one record. If the result set is empty, a failure message is
generated. Otherwise, the reply will contain the first record
contained in the result set. If the used referential operator is all,
the result set is sent in the reply message, even if it is the empty
set.
When the received query is successfully processed, the receiver
replies with an inform message. In the case of open queries <s,
query-ref(r, ReferentialExpression)>, the reply is <r, inform(s, (=
ReferentialExpression i-1(ResultSet)))>, in which i-1(ResultSet) is
the domain ontology representation of the internal result set. In
the case of closed queries <s, query-if(r, Proposition)>, the reply
is <s, inform(r, Proposition)> if the result set is not empty and <s,
inform(r, (not Proposition))> if the result set is empty.

Unsuccessfully processed queries are replied with failure
messages.
In the following example, it is assumed that the domain ontology
and the internal data model are identical and include the class
Restaurant with attributes name, restaurantMenu (set of
instances of the class MenuItem) and restaurantAddress;
and the class MenuItem with attributes dish and price.

The message that is translated in the example (see Figure 8) is the
query "I want the names and the prices of the dishes cheaper than
10 Euro available in the restaurant named Encher a Mula".

(query-ref
 :sender Some personal assistant
 :receiver Lisbon restaurant agent
 :content “(
 (all
 (sequence (value ?item dish) ?price)
 (exists ?restaurant (exists ?item
 (and
 (instance ?restaurant Restaurant)
 (=
 \”Encher a Mula\”

 (value ?restaurant name)
)

 (member ?item (value
 ?restaurant restaurantMenu)
)
 (= ?price (value ?item price))
 (< ?price 10)))))
)”
 :language extended-FIPA-SL

)

Figure 8. Query-ref message
The result of translating the above message to an OQL command
is shown bellow.

select item.dish item.price
 from item in select r.restaurantMenu

from r in Restaurant where r.name =
“Encher a Mula”

 where item.price < 10

Figure 9. OQL command
It has been suggested that object oriented databases are not as
popular as they used to be, hence an XML query language should
be used instead. XQuery could certainly be an alternative. In that
case, we would have to translate the received messages to XQuery
instead of OQL.

4. ALTERNATIVE APPROACHES
In this section we describe three alternative approaches to the
proposal presented in this paper. In the first alternative, the
communication language is extended with new performatives so
that the agent can send information messages whose content is an
object.
In the second alternative approach, it is assumed that certain
ontology entities represent appropriate types of communication
entities. For instance, class C of the ontology plays the role of a
proposition in the communication.
Finally, the third alternative approach considers the
implementation of the agent on top of a relational database instead

of an object database. Then it uses transposition rules to map from
queries addressing an object database into queries addressing a
relational database.

4.1 Extending ACL to Handle Objects
In [2], Botelho and Ramos present an extension of the FIPA ACL
language with three new performatives to be used with objects:
present-object, ask-object, and subscribe-object.
present-object takes an object as content. It is used when the
receiver wants to present an object to the receiver. The sender
may reasonably assume that, upon receiving the message, the
sender will believe the message content to be an existing object of
the specified class. present-object is similar to the InformRef
performative proposed in [4].
ask-object is used when the sender wants the receiver to send it
the object that satisfies a given condition. ask-object takes a
referential expression as content, as is the case with query-ref.
However, query-ref is used when the sender wants the reply to use
the inform performative, whereas ask-object is used when the
sender wants to receive a present-object message.
subscribe-object is the persistent version of ask-object.
According to [2], agents receiving information messages
containing objects would create beliefs about the class and the
attributes of the received objects. Those beliefs could be used to
answer questions about the received objects.
The approach described in this section involves extending the
FIPA ACL language with three new performatives. Additionally,
it involves extending the first order predicate calculus with a set
of operators and new inference rules directed at reasoning about
objects.
The approach presented in this paper involves only the extension
of the content language with new operators, preserving the
general semantics and properties of the language. If simpler
solutions are preferred to more complex ones, then the proposal
presented in this paper would be preferred.

4.2 Representation Assumptions
A possible approach would be to assume that all classes in the
ontology would represent predicates in the agent communication.
If this assumption could be made, the name of an ontology class
would be mapped into the name of a communication predicate.
The attributes of an ontology class would be mapped into the
arguments of a predicate used in the communication.
This approach has severe problems though. For instance, we may
want to use objects (that is, class instances) as arguments of
predicates therefore some ontology classes would have to be
mapped into communication classes while some other ontology
classes would have to be mapped into communication functions
(e.g., class constructors).
Even if the above problem could be surpassed, what about the
representation of functions and actions? If classes always
represent predicates, then functions and actions must both be
represented by methods. Therefore we must be able of saying
which methods represent functions and which ones represent
actions. The conclusion is that, in the general case, the
harmonisation of object-oriented ontologies with logic-based
communication cannot be handled by general implicit

assumptions. We need the means to specify which communication
entity types are played by each ontology entities.
In [4], Cranefield and Purvis present an approach for the
integration of logic-based communication with object-oriented
ontologies. The approach defines a meta-model of general content
languages. This meta-model defines entities as propositions,
definite descriptions and ground terms, and specifies several
relations among them. The approach defines the communication
role played by each class in the domain ontology. For instance,
the instances of a certain class may play the role of propositions
used in the content language while the instances of another class
may play the role of definite descriptions used in the content
language and so forth.
This is a very promising approach but it does not solve all
problems yet. First of all, it does not handle all kinds of
object-descriptions (it handles only definite descriptions and
functional expressions representing value type terms). Second, it
does not handle action terms. Finally, and possibly more
importantly, it does not specify the semantics of propositions
represented by objects. How does an agent know that such a
proposition is true? However the authors are working on some of
these issues.
At least while the approach described in [4] does not solve the
referred problems, the proposal presented in this paper seems to
be preferable since it does not exhibit any of the mentioned
limitations.
McDermott and co-authors [7] present an object-oriented
ontology (using DAML+OIL) of PDDL, a language of the first
order predicate calculus1.
That ontology defines entities such as propositions, functional
expressions, predicates, and functions. This work suggests yet an
alternative approach. This would use the ontology defined by
McDermott and others as an ontology representation framework.
Using the new framework, the domain could be modelled in terms
of predicates, functions, functional expressions and propositions.
We have two objections against this approach. First we would not
be using an object-oriented framework for representing the
domain ontology, as decided by the Agentcities project. The
model of the domain would be treated as a second category
component among agent technologies. Second, if we are
modelling the domain using a logic-based framework, we should
use an existing logic-based ontology representation framework
such as Ontolingua, instead of creating a new one on top of
DAML+OIL.

4.3 Transposition Rules
Sections 4.1 and 4.2 presented two alternative approaches at the
level of the integration of object-oriented ontologies with logic
based agent communication. This section presents an alternative
at the implementation level. In our proposal, the agent domain
information is stored in an object database. In the alternative
approach described in this section, the agent information is stored
in a relational database. This approach has the advantage of using
a more stable and well-supported technology.

1 www.cs.yale.edu/~dvm/daml/drsonto.daml

Given this alternative, received messages must be translated into
SQL queries, instead of the OQL queries of our approach. Since
the domain ontology is an object-oriented ontology, the
communication will refer to the classes, objects, attributes and
methods of the ontology (see section 2), while the agent database
is organised around relations, fields and tuples. Therefore,
translating messages into SQL commands is not a straightforward
process since the models do not directly match. First, we have to
understand the translation between the two models.
In order to automate the process of translating messages
containing classes, objects and attributes, two kinds of rules are
necessary:

1. Ontology Mapping Rules: map an object oriented
ontology representation framework into a relational model; and

2. Query Mapping Rules: map queries containing classes,
objects, attributes and methods into SQL queries. The Query
Mapping Rules are derived from the Ontology Mapping Rules.
Some ontology mapping rules have already been defined using a
computational formalism [9], in the context of the UML (Unified
Modelling Language) object model [1]. Below, we informally
present three examples.

a) Each class is mapped into a relational table;
b) If class C has been mapped into table T, a scalar attribute

of C is mapped into an attribute of the relational table T;
c) If class C has been mapped into table T, a collection

attribute of C is mapped into a new relational table that
inherits, as foreign key, the primary key of table T.

From a complete set of ontology mapping rules like the above
three examples, it would be possible to create a set of query
mapping rules that could be used to automatically translate
received query messages into SQL commands.
The alternative approach briefly sketched in this section could in
principle be used, however only the model mapping rules for
mapping object-oriented models into relational models have been
formalised. To the best of our knowledge, there is no documented
set the rules for mapping queries addressing object-oriented
databases into queries addressing relational databases. Therefore,
the approach presented in this paper seems to be more reliable
than the hypothetical alternative approach briefly described in this
section.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a comprehensive approach that
allows the integration of object-oriented ontologies, logic-based
agent communication, and object-oriented internal databases. The
proposal comprises two levels. The first level handles the
integration of object oriented domain ontologies with logic-based
agent communication. The second level deals with the integration
of communication with internal object-oriented databases.
The integration of object oriented domain ontologies with
logic-based agent communication was achieved through
extending logic content languages such as KIF and FIPA SL in
order to enable expressing propositions from object-oriented
domain ontologies. The key for this was to use only general-
purpose predicates, functions and actions. All the domain
dependent concepts are represented by classes, objects, attributes,
and methods. Contrarily to the proposal described in [4], our

approach does not require an explicit mapping between the
domain ontology and the communication. Classes, objects,
attributes and methods of the ontology are all handled as terms in
the communication.
The integration of logic-based messages with internal
object-oriented databases is achieved by a translation process,
which relies in a Data Dictionary representing a one-to-one
mapping from the domain ontology entities into the internal
database entities. Since agent communication directly refers to
object-oriented entities and the agent internal information is also
stored in an object-oriented database, the translation is not
difficult. The main difficulties are due to expressiveness
differences between logic content languages and object oriented
database query languages.
Our proposal grants agent designers considerable modelling
freedom. They may chose to represent domain relations, functions
and actions both by objects and by methods.
This paper contributes an elegant, comprehensive, robust,
flexible, and simple approach to gather together the Greeks and
Trojans of the modelling arena. Domain models do not loose their
object-oriented lineage, agent communication also preserves its
logic-based background, and none is treated as a second category
component among agent technologies as it would be the case in
approaches such as [7]. Our current proposal is simpler, less
restricted, or fairer than other related approaches.
We envisage yet two ontology-related future problems.
Sometimes the domain ontology is so large that it is not practical
to have a single agent responsible for maintaining all the
described information. Sometimes, it is covenant that the domain
ontology is divided into smaller ontologies, each one maintained
by a specific agent. In this case, we need to find a systematic way
to provide an integrating interface between the several agents
maintaining parts of the ontology and the remaining of the
multi-agent system, which is only prepared to handle the domain
as whole.
Since agent societies will be constantly growing, new services
being created by different agent development teams, it will be
impossible and undesirable to ensure that there will not exist
agents with different underlying domain ontologies. The second
and also more difficult future problem will be overcoming such
ontology mismatches.

6. AKNOWLEDGEMENTS
The research described in this paper is partly supported by the EC
project Agentcities.RTD, reference IST-2000-28385 and partly by
UNIDE/ISCTE. The opinions expressed in this paper are those of
the authors and are not necessarily those of the Agentcities.RTD
partners. The authors are also indebted to all other past and
current members of the Agentcities ADETTI team.

7. REFERENCES
[1] Booch, G.; Rumbaugh, J.; and Jacobson, I. The Unified

Modeling Language User Guide. Addison-Wesley
Publishing Company. 1999

[2] Botelho, L.M.; and Ramos, P. Extending the FIPA ACL
Language. From Object Based Descriptions to Relational
Representations. Proc. of the Workshop on Distributed

Artificial Intelligence and Multi-Agent Systems
(DAIMAS2000) 2000

[3] Cattell, R.G.G; and Barry, D. The Object Data Standard:
ODMG 3.0. Morgan Kaufman Publishers. London. 2000

[4] Cranefield, S.; and Purvis, M. A UML profile and mapping
for the generation of ontology-specific content languages.
Submitted. 2002

[5] Foundation for Intelligent Physical Agents. FIPA
Communicative Act Library Specification. Specification
Document XC00037H. 2001

[6] Foundation for Intelligent Physical Agents. FIPA SL Content
Language Specification. Specification Document
XC00008G. 2001

[7] McDermott, D.; and Dou, D. 2002. Representing Disjunction
and Quantifiers in RDF. In Proc. of the Semantic Web
Conference. Forthcoming. 2002.

[8] National Committee for Information Technology Standards.
Knowledge Interchange Format: Draft proposed American
National Standards. Technical Report NCITS.T2/98-004.
1998. http://logic.stanford.edu/kif/dpans.html

[9] Rio, L.; and Ramos, P. Mapping Object Oriented Models
into Relational Models: a formal approach. In Proc. of
International Conference on Infrastructure for E-Business,
E-Education, E-Science, and E-Medicine. Forthcoming.
2002

[10] Searle, J.R. Speech Acts. Cambridge University Press. 1969

[11] van Harmelen, F.; Patel-Schneider, P.F.; and Horrocks, I.
Reference Description of the DAML+OIL (March 2001)
Ontology Markup Language. DAML+OIL Document, URL
2001. http://www.daml.org/2000/12/reference.html

[12] Willmott, S.; Dale, J.; Burg, B.; Charlton, P; and O'Brien, P.
Agentcities: a worldwide open agent network. Agentlink
News, 2001. 8:13-15

