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Abstract

In order to obtain asymptotical synchronization, we combine neg-
ative feedback control and dislocated negative feedback control with
partial replacement to the nonlinear terms of the response system, a
coupling version that was less explored. All these unidirectional cou-
pling schemes are applied between Lorenz systems where we consider
some values for the control parameters that lead to chaotic behavior.

The sufficient conditions for global stable synchronization are ob-
tained from a different approach of the Lyapunov direct method for the
transversal system. In one of the coupling we apply a result based on
the classification of the symmetric matrix A

T +A as negative definite,
where A is characterizing the transversal system. In the other couplings
presented here, the sufficient conditions are based on the derivative in-
crease of an appropriate Lyapunov function. In fact, the effectiveness
of the coupling between systems with equal dimension follows from the
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analysis of the synchronization error, e(t), and, if the system variables
can be bounded by positive constants, then the derivative of an appro-
priate Lyapunov function can be increased as required by the Lyapunov
direct method.
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1 Introduction

The ability of nonlinear oscillators to synchronize with each other is one of
the basis for the explanation of several natural processes. Therefore, chaos
synchronization is a robust property expected to hold in mademan devices
and plays a quite significant role in science. However, the hypotesis that two
or more chaotic systems can evolve in a coherent and synchronized way it is
not an obvious phenomenon, since it is impossible exactly reproduce the ini-
tial conditions and any infinitesimal perturbations that lead to divergence of
nearby starting orbits. Contrary to expectation, when ensembles of chaotic
oscillators are coupled, the attractive effect of a suitable coupling can coun-
terbalance the trend of the trajectories to diverge. In many cases there are
parameters that control the strength of coupling between the systems, and the
stability results from the synchronous chaotic state depending on them.

Coupled dynamical systems are constructed from simple low-dimensional
dynamical systems and form new and more complex processes. The chaotic
dynamics introduces new degrees of freedom in ensembles of coupled systems.
However, when two or more chaotic oscillators are coupled and synchroniza-
tion is achieved, in general the number of dynamic degrees of freedom for the
coupled system effectively decreases.

In what follows we will always consider two chaotic dynamical systems,
since they are sufficient to study the essential in the proposed coupling schemes.

Asymptotical Synchronization. Let X be a compact subset of Rm with
m ≥ 3 and consider two identical m-dimensional dynamical systems, S1 and
S2, defined on X by the nonlinear autonomous ordinary differential equations
u̇1 = f(u1; a) and u̇2 = f(u2; a), respectively, where a is a vector of real control
parameters.
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Let u1 (0) and u2 (0) be initial conditions for which, at certain value of a, S1

and S2 evolve to an asymptotically stable chaotic attractor A. The solutions
u1 (t) and u2 (t) of the systems, starting at u1 (0) 6= u2 (0) in the attraction
basin B(A), are independent trajectories in A after some transient period of
time. This evolution is characterized by a positive Lyapunov exponent.

Definition 1.1 The dynamical systems S1 and S2 are asymptotically syn-
chronized if

lim
t→+∞

‖u1 (t)−u2 (t)‖ = 0. (1)

The evolution of the difference e (t) = u2 (t)− u1 (t) between nearby starting
orbits is described by

ė (t) = u̇2 (t)− u̇1 (t) = f(u2 (t) ; a)− f(u1 (t) ; a). (2)

In the case of asymptotical synchronization, this difference gives the synchro-
nization error and the system (2) is called a transversal system (or error sys-
tem). From (1), we have that S1 and S2 achieve asymptotical synchronization
if the transversal system (2) has an asymptotically stable equilibrium point at
e (t) = 0.

When asymptotical synchronization is achieved, the dynamics of u1 (t)
and u2 (t) in A, on the 2m-dimensional phase space, are restricted to the
m-dimensional smooth invariant manifold

M ≡ {(u1,u2) ∈ X ×X | u1 = u2} ⊂ R
2m, (3)

where occurs the synchronized dynamics defined by the symmetric synchronous
chaotic state.

Transversal Stability of the Coupled System. Roughly speaking
the synchronization between two systems can be understood as a problem
of asymptotical stability of the associated chaotic attractor, A, in the 2m-
dimensional phase space of the coupled system [8], [6], [4].

It is important to distinguish between stability under tangent or under
transversal perturbations of the synchronization manifold M. As stated by
Pecora et al.[5], the limit (1) must be satisfied for all initial conditions in a
neighborhood of the equilibrium point e (t) = 0. Since the system (2) cha-
racterizes the dynamics in the transversal direction to M, it is necessary to
analyze if small transversal perturbations to M are reduced or amplified by
the evolution of S1 and S2. If they are reduced, then M is transversaly stable
and the synchronous chaotic state u1 = u2 it is also stable. So, in this case,
the synchronization stability is designated as transversal stability.

Usually the following stability criteria are applied:
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(i) Criterion based on the eigenvalues of the Jacobian matrix corresponding
to the flow over M, suggested by Fujisaka and Yamada [8],[7]; it requires
that the largest eigenvalue should be negative in order to obtain early stable
synchronization;

(ii) Criterion based on the construction and study of an appropriate Lya-
punov function, L (e (t)), for the vector field of transversal perturbations to
M, developed by He and Vaidya [2]; it requires that L must be positive definite
in a neighborhood of M, L (e (t)) ≥ 0, except in M where L (0) = 0, and its
derivative must be negative semidefinite, L̇ (e (t)) ≤ 0, and equal to 0 in M;

(iii) Criterion based on the estimation of Lyapunov exponents, developed
by Pecora and Carroll [4]; it is important to analyze if small transversal pertur-
bations decrease or not and it requires that the largest transversal Lyapunov
exponent should be negative.

The criterion (ii) allows us to prove a proposition about global asymptotical
stability of the transversal system defined by (2).

Theorem 1.2 Let A be the matrix characterizing the transversal system of
a coupling between identical systems S1 and S2. If there is a constant δ < 0
such that the symmetric matrix AT + A is negative definite and

AT +A ≤ δI

for any u1 and u2 in the phase space X, then the dynamics of the transversal
system is globally stable and the systems S1 and S2 are in stable synchroniza-
tion.

proof Consider the Lyapunov function defined by L(e (t)) = [e(t)]T · e(t).
Its derivative is given by

dL

dt
(e) =

d
(

eT
)

dt
· e+ eT ·

de

dt
= eT ·AT · e+ eT ·A · e, (4)

and verifies

L̇ (e) = eT
(

AT +A
)

e ≤ δ
(

eT ·I · e
)

= δ
(

eT · e
)

< 0 (5)

for all e 6= 0. The Lyapunov direct method guaranties the global asymptotical
stability of the transversal system

2 Unidirectional Coupling Schemes between

Continuous Chaotic Dynamical Systems

Coupling by Partial Replacement. Consider a decomposition u1 = (x1,y1)
of the system u1 into two subsystems, that is,

ẋ1 = g(x1,y1; a) ∧ ẏ1 = h (x1,y1; a) , (6)
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with variables x1 = (u1, . . . , uk) and y1 = (uk+1, . . . , um), respectively, for
1 ≤ k ≤ m. Since f (u1; a) = (f1 (u1; a) , . . . , fm (u1; a)), the vector fields g

and h are defined by the component functions of the vector field f as

g (u1; a) = (f1 (u1; a) , . . . , fk (u1; a)) (7)

and
h (u1; a) = (fk+1 (u1; a) , . . . , fm (u1; a)) . (8)

We take independent initial conditions x1 (0) and y1 (0) in the subsystems
defined in equation (6). Let ẏ2 = h (x1,y2; a) be a subsystem identical to
ẏ1 = h (x1,y1; a) where the variable x1 it is replaced by x2, that is, x2 = x1

and
ẏ2 = h (x1,y2; a) .

So, the equations

ẋ1 = g(x1,y1; a) ∧ ẏ2 = h (x1,y2; a) , (9)

with y2 (0) 6= y1 (0), will define a dynamical system u̇2 = f (u2; a) which shares
some of the variables with the system u̇1 = f (u1; a). Pecora and Carroll
[4] formalized this unidirectional coupling between the systems (6) and (9)
through the variable x1, u̇2 = fx2→x1

(u2; a) = f (x1,y2; a), where the coupled
system

ẋ1 = g(x1,y1; a) ∧ ẏ1 = h (x1,y1; a) ∧ ẏ2 = h (x1,y2; a) (10)

is obtained by a complete replacement of the signal driver subsystem ẋ1 =
g(x1,y1; a) in the response (or slave) system (9).

Instead of completely replacing one of the variables in the response system
by its correspondent from the drive (master or transport) system, a partial
replacement can be used as suggested by Guemez and Matthias [1]. In this
case, a variable of the response system gives rise to its correspondent in the
drive system only in some of its equations. In general, the stability results in
partial replacement differ from those in complete replacement. In what follows
we will analyze the partial replacement in the nonlinear terms of the response
system.

Coupling by Dislocated Negative Feedback Control. Consider the
coupling between S1 and S2 through the linear term ρ(u2 − u1), that is,

u̇1 = f(u1; a) ∧ u̇2 = f(u2; a) + ρ(u2 − u1), (11)

where ρ = (ρ1, ρ2, ..., ρm) is the coupling parameter vector, with ρi > 0 for all
i = 1, . . . , m. The unidirectional coupling in (11) is designated by negative
feedback control through the damping term ρ(u2 − u1).
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Let u1 = (u1, u2, . . . , um) ∈ X and u2 = (u′

1, u
′

2, . . . , u
′

m) ∈ X be the
variables of S1 and S2, respectively. Suppose that the dynamical variable
uk(t), 1 ≤ k ≤ m, and its corresponding u′

k(t) can be measured. The addition
of ρ (uk − u′

k), with ρ > 0, to the response system, that is,























u̇′

1 = fa,1 (u
′

1, u
′

2, . . . , u
′

m) ,
· · ·
u̇′

k = fa,k (u
′

1, u
′

2, . . . , u
′

m) + ρ (uk − u′

k)
· · ·
u̇′

m = fa,m (u′

1, u
′

2, . . . , u
′

m)

, (12)

leads to a particular case of (11) in which a single variable, uk, makes the
coupling. The term ρ (uk − u′

k) is used as a control signal (or perturbation
signal) applied to the response system. In fact the control signal it is a negative
feedback added to the system with no effects on its solution. The parameter
ρ, known as coupling strength, it is experimentally adjustable and measures
the perturbation intensity.

From initial conditions u1 (0) and u2 (0) such that u1 (0) 6= u2 (0), the
vector state of each systems S1 and (12) are the same for certain value of ρ,
after a certain time tsync. When synchronization it is achieved, the control
signal became zero, and the symmetric synchronous chaotic state u1 = u2 is
established.

In this paper we study the dislocated negative feedback control. After
choosing the driver variable uk, the control signal ρ (u′

k − uk) is applied to the
j-th equation of the response system S2 with j 6= k. So, for 1 ≤ j, k ≤ m, the
response system is given by























u̇′

1 = fa,1 (u
′

1, u
′

2, . . . , u
′

m) ,
· · ·
u̇′

j = fa,j (u
′

1, u
′

2, . . . , u
′

m) + ρ (uk − u′

k)
· · ·
u̇′

m = fa,m (u′

1, u
′

2, . . . , u
′

m)

, (13)

for j 6= k. In what follows we apply this methodology to two coupled Lorenz
systems.

3 Case Study: Unidirectional Couplings be-

tween Nonlinear Lorenz Systems

Consider the Lorenz system






ẋ = σ (y − x)
ẏ = x (α− z)− y
ż = xy − βz

(14)
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where σ, α and β are positive real parameters. This system of nonlinear ordi-
nary differential equations, where σ is the Prandtl number, α is the Rayleigh
number and β is a geometric factor, describes the flow of a fluid in a heated
box along the base. In 1963, a research for the purpose of improving the
climate prediction, the meteorologist and mathematician Edward Lorenz [3]
introduced this system model as an approximate fluid flow from the atmo-
sphere. He found that, for a wide range of parameters, the solutions of the
system remain in a bounded region of phase space but oscillate in an irregular
and aperiodic way. Lorenz detected unusual dynamical behavior with σ = 10,
α = 28 and β = 8/3. Starting computer simulations from slightly different
initial conditions, he detected the sensitive dependence on initial conditions of
this system, one of the main properties of chaotic behavior. In what follow
we consider an unidirectional coupling scheme between two identical Lorenz
systems.

Unidirectional Coupling by Dislocated Negative Feedback Con-

trol with Partial Replacement of x2. Consider the driver variable x1 by
adding the control signal ρ (x1 − x2), with ρ > 0, applied as dislocated nega-
tive feedback to the second equation of the response system. Furthermore, we
introduce the partial replacement of variable x2 by the corresponding x1 only
in the nonlinear terms x2z2 and x2y2 of the response system. We obtain the
following







ẋ1 = σ (y1 − x1)
ẏ1 = αx1 − x1z1 − y1
ż1 = x1y1 − βz1

∧







ẋ2 = σ (y2 − x2)
ẏ2 = αx2 − x1z2 − y2 + ρ (x1 − x2)
ż2 = x1y2 − βz2

. (15)

starting the coupled system from different initial conditions, that is, x1(0) 6=
x2(0), y1(0) 6= y2(0) and z1(0) 6= z2(0), the identical synchronization it is
reached if the coupled system evolution is continuously confined to a hyper-
plane M in the phase space. The coordinates ex = x2 − x1, ey = y2 − y1 and
ez = z2 − z1 of the synchronization error, e, in the transversal subspace of M
converge to 0 as t → +∞ if the point (0, 0, 0) in the transversal subspace of
M is an asymptotically stable equilibrium point. This resuming require that
the dynamical system in e = (ex, ey, ez) defining the transversal perturbations
should be asymptotically stable at the equilibrium point (0, 0, 0).

Consider now the function

f̆ = (σ (y2 − x2) , αx2 − x1z2 − y2 + ρ (x1 − x2) , x1y2 − βz2) (16)

obtained from the response in (15). For the whole values of ρ, the linearized
equation which defines the transversal perturbations to M is given by





ėx
ėy
ėz



 ≈ D(x2,y2,z2)f̆ ·





ex
ey
ez



 =





−σ σ 0
α− ρ −1 −x1

0 x1 −β



 ·





ex
ey
ez



 . (17)
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By studying the eigenvalues of the Jacobian matrix D(x2,y2,z2)f̆ , we conclude
that we can reach locally stable synchronization if ρsync = α− 1.

Now by taking the following values for the control parameters σ = 10,
α = 28 and β = 2.(6) and the strength coupling ρ = 27.1, we verify that
x2 → x1, y2 → y1 and z2 → z1 when the systems evolve (Fig. 1a). After a
certain period of time, the systems coordinates x, y and z verify the equalities
x2 = x1, y2 = y1 and z2 = z1 (Fig. 1b). So, the distances |x2 − x1|, |y2 − y1|
and |z2 − z1| converge to 0 over time (Fig. 1c). The equations x2 = x1, y2 = y1
and z2 = z1 define a hyperplane M in the 6-dimensional phase space.
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Figure 1: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ = 27.1. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

Applying the criterion (ii), it is obtained the threshold of globally stable
synchronization, ρ̃sync. It is greater than the threshold ρsync obtained for local
stability, that is,

ρ̃sync = α + σ > α− 1 = ρsync, (18)

leading to a more restrictive range of ρ values. In fact, consider the Lyapunov
function L (e) =

(

e2x + e2y + e2z
)

/2 which verifies L (e) > 0 if e 6= 0 and L (0) =
0 for all ρ > 0. It is necessary to determine the coupling strength ρ such that
the derivative of L satisfies L̇ (e) < 0 if e 6= 0 and L̇ (0) = 0. Substituting the
expression of ėx, ėy and ėz in

L̇ (e) = exėx + eyėy + ez ėz (19)



Dislocated Feedback Control with Partial Replacement between Chaotic Systems345

and simplifying, the derivative of L can be written as

L̇ (e) = −σe2x − e2y − βe2z + (σ + α− ρ) exey

≤ −σe2x − e2y − βe2z + (σ + α− ρ) |exey| .

Choosing a coupling strength satisfying ρ̃ > α + σ the conditions required
by the Lyapunov direct method are guaranteed. So, the globally stable syn-
chronization it is achieved in the coupled system with a coupling strength
ρ̃ = ρ̃ (σ, α) which do not depend on the control parameter β. In Figure
2(a,b,c) are taken the same values for the control parameters and the corres-
ponding synchronization threshold ρ̃ = 38.1. The time synchronization tsync
for ρ̃ = 38.1 is lower than the one obtained for ρ = 27.1 < 38.1.
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Figure 2: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ = 38.1. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

Table 1 presents sufficient conditions for globally stable synchronization
obtained from the study of other similar cases. It was applied the dislocated
control signal ρ (x1 − x2) and, in some cases, also the partial replacement of
x2 by its corresponding x1 in some nonlinear terms of the response system.
The constants ξ and K represent the expressions ρ − σ − α and Kx + K ′

x ,
respectively.

Unidirectional Coupling by Negative Feedback Control with Par-

tial Replacement of x2. Consider identical chaotic Lorenz systems coupled
by negative feedback control, that is,
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Disloc. Replac. Synchronization sufficient condition

to 2th eq. no β (ξ +Kz)
2 < 4σβ −K2

y

to 2th eq. on 3th eq. β (ξ +Kz)
2 < 4σβ − σK2

to 3th eq. on 2th eq. ξ2 < 4σ ∧ βξ2 < 4σβ −KKyξ +K2
y + σK2

Table 1: Unidirectional coupling by dislocated negative feedback control.







ẋ1 = σ (y1 − x1)
ẏ1 = αx1 − x1z1 − y1
ż1 = x1y1 − βz1

∧







ẋ2 = σ (y2 − x2) + ρ (x1 − x2)
ẏ2 = αx2 − x1z2 − y2 + ρ (y1 − y2)
ż2 = x1y2 − βz2 + ρ (z1 − z2)

(20)

where it is also made a partial replacement of variable x2 by x1 only in the
nonlinear terms x2z2 and x2y2 of the response system. Let f̆ be the function ob-
tained from the response, whose components are f̆1 = σ (y2 − x2)+ρ (x1 − x2),
f̆2 = αx2−x1z2−y2+ρ (y1 − y2) and f̆3 = x1y2−βz2+ρ (z1 − z2). Consider the
components ex = x2−x1, ey = y2−y1 and ez = z2−z1 of the error term e. For
all values of ρ, the linearized equation which defines transversal perturbations
to M is given by





ėx
ėy
ėz



 ≈ D(x2,y2,z2)f̆ ·





ex
ey
ez



 =





−σ − ρ σ 0
α −1 − ρ −x1

0 x1 −β − ρ



·





ex
ey
ez



 . (21)

The same can take the matrix form ė = A (x1) · e with

A =





−σ − ρ σ 0
α −1 − ρ −x1

0 x1 −β − ρ



 , (22)

and it follows that the main determinants of the matrix

AT +A =





−2 (σ + ρ) σ + α 0
σ + α −2 (1 + ρ) 0
0 0 −2 (β + ρ)



 (23)

are given by ∆1 = −2 (σ + ρ), ∆2 = 4 (σ + ρ) (1 + ρ)− (σ + α)2 and

∆3 =
[

2 (σ + α)2 − 8 (σ + ρ) (1 + ρ) 2 (σ + α)2
]

(β + ρ) . (24)

We have −∆1 > 0 and the condition −∆3 > 0 is satisfied when ∆2 > 0 (since
β + ρ > 0). So, we conclude by Theorem 1.2 that globally stable synchroniza-
tion occurs if the control and coupling parameters verify the inequality

4 (σ + ρ) (1 + ρ) > (σ + α)2 . (25)
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Taking σ = 10, α = 28 and β = 2.(6), we present the Figure 3(a,b,c) obtained
for ρ = 14.5, which is the lowest value of ρ in a tenth step that verifies the
previous inequality.
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Figure 3: Parameter values σ = 10, α = 28 and β = 2.(6); coupling strength
ρ = 14.5. (a) Coupled system attractor; (b) Synchronization manifold; (c)
Evolution of synchronization error

Such an approach it is inconclusive if it is not assumed the partial replace-
ment of the variable x2 by x1 in the nonlinear terms of the response system.

4 Conclusions

Either using an usual negative feedback control or applying a control signal
as the dislocated negative feedback, the combination of each of these unidi-
rectional couplings with replacement shows some advantages. Even when the
replacement is partial (on the nonlinear terms of the response system) we
obtained quite simple sufficient conditions for globally stable synchronization
between identical chaotic Lorenz systems. These conditions result from the
classification of the symmetric matrix AT +A as negative definite, where A

is the matrix characterizing the transversal system of coupling, or are based
on the increase of the derivative of an appropriate Lyapunov function. Theo-
rem 1.2 it is not applicable without partial replacement. The approach based
on derivative increase of an appropriate Lyapunov function also leads to a
sufficient condition for globally stable synchronization in a coupling by active-
passive decomposition for several driver signals.
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