
Fully Automated Texture Tracking Based on Natural
Features Extraction and Template Matching

Rafael Bastos
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

rafael.bastos@sapo.pt

 José Miguel Salles Dias
ADETTI

Av. das Forças Armadas,
Edifício ISCTE 1600-082 Lisboa
(+351) 21 782 64 80, Portugal

miguel.dias@iscte.pt

ABSTRACT
In this work we propose a novel approach to real-time texture

tracking and registration, based on natural feature extraction from
planar objects and template matching, Our method is oriented to
planar objects with arbitrary textures but with rectangular
topologies and well contrasted contours and does not require any
external fiducial marker, either for the set-up or the tracking
phases. Once the initial pose condition is obtained, previous
planar object information is used to compute subsequent planar
object’s pose, so that the time coherence of the input video stream
is exploited. Our system is completely automated and produces
real-time efficient tracking which can be applied to entertainment
AR applications and other. The paper discusses also the novelty of
the approach, in relation to other existing texture tracking
algorithms.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications -- Computer vision; I.4.8
[Image Processing and Computer vision]: Scene Analysis --
Motion, Tracking; J.7 [Computer in other systems]: consumer
products.

General Terms
Algorithms, Measurement, Performance, Experimentation,
Theory.

Keywords
Augmented Reality, Texture Tracking, Template Matching,
Texture Reconstruction.

1. INTRODUCTION
The camera registration or tracking problem in Augmented

Reality-AR tracking systems context has been a research topic of
considerable interest and constant grow in the literature. There are

a variety of different methods to accomplish this goal, with the
first ones being introduced in 1992 by Caudel and Mitzell [1]. The
proliferation of vision-based tracking techniques is due to the fact
that they work well in real time and they only incur in one cost:
the processor’s cost. We propose a novel approach to texture
tracking based on natural feature extraction without the need of
any kind of extra information, like fiducial markers [2], to extract
planar objects pose, even for the set-up phase [3]. Our technique
combines methods such as template matching, homography
computation, like in [4], texture reconstruction by back-projection
(as in [3]) and Kalman filtering. Our system has an off-line-
automated stage where all image good features to track are
extracted, as well as all the ones needed to obtain the planar object
initial pose. Then the algorithmic process can be divided in two
phases: the set-up phase, which obtains the initial camera pose and
the tracking phase. In the tracking phase two methods are
adaptively applied: one, based in simple contour motion detection,
that requires that the complete planar object must be visible, and
the other one, based on texture reconstruction and template
matching, which only requires the partial visibility of the planar
object. The system is completely automated and produces real-
time efficient tracking.

2. SYSTEM ARCHITECTURE
Three main modules comprise our system: Video Capture

Module, Texture System Manager and Open GL Rendering
Module. The Video Capture module is implemented with
Microsoft DirectShow filters, working with most Web Cameras or
even with DV Firewire Camcorders. The Capture module works
with 320x240 video resolution and can achieve 40 frames per
second in video acquisition rate. This Video Capture module
delivers each video frame to the Texture System Manager, which
is responsible for all image-processing routines. These routines
can be structured into three phases: Texture Automation
Processing phase, Set-Up phase and Tracking phase. The Texture
System Manager is also responsible for handling a list of textures
to track, so that multi-texture tracking can be supported. Upon
successful feature tracking (with a minimum of five tracked
features), the Texture System Manager only has to deliver the
texture pose to the Open GL Rendering Module, in order to
register any 3D virtual information or object at the specified
texture.

3. Algorithm Description
Our texture tracking algorithm includes a Texture Processing

Phase (an off-line natural feature extraction technique) and a
subsequent Real-Time Feature Tracking method, which is

subdivided in a Set-Up Phase that computes the initial planar
object pose and a Feature Tracking Phase, which tracks the planar
object pose in time.

3.1 Texture Processing (Off-Line) Phase
The Texture Processing Phase is the first stage of the

technique and is performed offline. At this stage, we acquire the
planar object image and process this global template texture image
in order to collect all the good features to track. In order for a
feature to be considered valid, we must guarantee that its template
pattern can’t be similar to any other feature’s template pattern. So,
we can guarantee that these feature are unique in global template
subspace. Another requirement is that features must have a
balanced distribution over the image plane to ensure robust pose
retrieval. The first step of the offline stage is feature extraction
from the template image. For this purpose we compute the
minimum eigen values of the image, which give us the potential
localization of the good features to track. After that, for each
extracted feature, a template match is done against all the others.
If any template matching score is higher than 0.9 (90%), then this
feature is discarded. If all scores are smaller than 0.9, then we
proceed to the next step. We must now ensure that this unique
feature is well distributed, or in other words, that there aren’t more
features in a 10 pixels radius. If this fact reveals to be true, then
we have just found a feature that is unique in the whole image,
and that can ensure robust pose retrieval. At the end of this phase,
a data file is written containing all features positions, so that these
can be used by the main system. An external program developed
for this purpose, called Texture Automizer, is responsible for the
whole off-line process.

3.2 Set-Up Phase
The Set-Up phase is dedicated in finding the initial texture

(planar object) pose, so that the subsequent Feature Tracking
Phase may begin.

3.2.1 Contour Extraction and Initial Pose
Computation

We start by extracting all line contours in the image using an
adaptive threshold technique [5] (see Figure 1). This technique
computes and updates the local pixel threshold along the raster-
scanned line instead of a global image threshold computation, in
order to solve the problems that occur in image binarization,
caused by illumination, contrast, noise and other image
degradation sources. Then these line contours are traced by
following polylines with a complete 3x3-structuring element and
by keeping the ones formed by four points. Small area contours
are rejected, so that the main focus of the subsequent processing is
the texture to track. The resulting contours are labeled, and the
inner contours are discarded. This process is quite straightforward.
By analyzing each traced contour, we can arrange them by the
proximity of each centroid. With this scheme, we can find the
contour that has the largest area lying around a certain centroid.
By default, if no noise is induced, we will find two square
contours for each texture, and only the outer one is considered
valid. For each valid contour, its pose is computed using a
classical pinhole camera model and the Five-Point Pose
Algorithm with homography computation to determine the
texture’s pose (camera extrinsic parameters), which is described in
[6]. This algorithm requires the knowledge of at least five 3D
world/2D projected image point correspondences, and of the
camera intrinsic parameters. For that purpose we use the four

corners of the rectangular contour and its centroid. After
evaluating the rectangle pose, in relation to the camera reference
frame, we still have an indetermination in the orientation of such
basic shape, due to its symmetry. In Figure 3 we depict the
problem: in the right hand side, we see the four possible
orientations of the rectangular image, while just one is valid (the
left hand side image). To solve this problem, given the rectangular
planar object pose, we must compute its image back-projection
and then perform template matching with each of the four images
of the right hand side of Figure 3, to properly classify the
orientation of the planar image in question. In the following sub-
sections, we discuss such techniques.

3.2.2 Back-Projection and Template Matching
By knowing the camera intrinsic and extrinsic parameters of

the previous pose, which relates the world coordinates of the
rectangular image with the pixel coordinates of that projected
rectangle, we are able to evaluate the current back projected image
pixels, with the pixels obtained in the current video stream frame,
at the computed projected coordinates. This back-projected image
is tested for template matching, with four pre-computed global
template images oriented, respectively, by 0º, 90º, 180º and 270º
(Figure 3), to determine the correct orientation of the rectangular
texture detected in the current video stream. In general terms, the
Template Matching algorithm is used to determine the level of
similarity between two images and there are various possible
methods to accomplish this. We have chosen a method [7], which
computes the correlation coefficient ρ. This noise and luminance
invariant coefficient is the measure of dissimilarity between the
template image P and the image I, acquired from a live video
stream, and was adopted in both phases of our Texture Tracking
algorithm. When used in the second phase (Feature Tracking), we
propose the use of circular patches, with an area of 16x16 pixels,
instead of square ones for the Template Matching algorithm, in
order to maximize the degree of correlation between patches,
since feature points are centered spatially in regions of high

frequency. These
circular patches
revealed more
tolerance to small
degrees of rotation and
scaling. A threshold
value of 0.9 (90%) was
chosen. After the pose
retrieval is achieved,
two Kalman filters are

initialized with the translational and rotational degrees of freedom
of the computed texture pose, so that a more stable assumption
about extrinsic camera parameters can be made in the tracking
phase. Our implementation of Kalman filtering uses Open
Computer Vision Library routines and data structures [8].
3.2.3 Pose Retrieval

By knowing which orientation has the higher score of
Template Matching (Figure 3), the camera pose of the current
frame can be computed using the same approach as referenced in
section 3.2.1 (the classical pinhole camera model and the Five-
Point Pose Algorithm with homography computation), when we
have evaluated the initial pose.

3.3 Feature Tracking Phase
At the start of the Feature Tracking phase, it’s assumed we have
the previous texture pose information. Now the system’s

Figure 3 – Back-projected image

and selected orientation.

Figure 4 – Reconstructed
feature patches (top-left);
Matched features in the live
image (top-right); Teapot
registration based on
computed pose (bottom).

processing path is divided in two distinct branches: when contours
are visible and when contours are occluded. For each frame at this
stage, contours are extracted like described in section 3.2.1. If any
four contour points is found, then we follow the first branch of the
tracking path: tracking with contours, if not, we proceed to the
tracking without contours algorithm.

3.3.1 Tracking with contours
When tracking with contours, we must verify if the found

contour corresponds to the previous one identified in the Set-Up
phase or in the Tracking phase (with contours), subject to a rigid
body motion. For that, we re-project the known texture’s
bounding rectangle vertexes (of the previous pose) into the 2D
image coordinate space using the previous pose camera
information. Then, a simple comparison is made in pixel
coordinates between the re-projected points and the current
contour vertexes. If this computation gives a result inferior to 20
pixels for each vertex, then we can assume that the compared
contour corresponds to the texture’s contour. On the other hand, if
this comparison result is not satisfactory, then we proceed to the
tracking without contours technique, which uses feature
information (section 3.3.2). When contours are matched, we need
a 5th point in order to compute the texture’s homography and

derive the texture pose,
using the technique
described in section 3.2.3.
Instead of using the contour
centroid, which will induce a
tracking error, we use a
more precise point that can
be found by matching a
known feature with the one
closest to the texture center.
For that, we use the
technique explained in
section 3.3.2, that first
reconstructs the known
feature patch using the
previous camera pose and
then performs template
matching in an area close to
the current texture centre, to

find the feature that occupies that centre.

3.3.2 Tracking without contours
If contour tracking fails, another algorithm based on feature

information is used. For that purpose, artificial texture
reconstruction based on the previous camera pose is preformed, in
order to simulate an approach to the current captured frame. After
this, we proceed to a process of selection of “good features to
match” based on a heuristic approach. Upon selection of such
“good features to match”, template matching is done between the
selected features of the reconstructed texture and features within
an area of 26x26 pixels, of the current video frame. If all five
features match succeed, then a new texture pose is retrieved. If
less then five features are matched, then we go back to the
beginning of the Set-Up Phase, which requires that the full texture
be visible.

3.3.3 Texture Reconstruction
In order to perform a closest match on subsequent frame features,
we use the previous camera extrinsic parameters to reconstruct the

current texture pose. As mentioned, template matching is done
between each feature located in the live video image and each
feature located in the reconstructed texture image. Feature’s
matching score will be stronger because scale and rotation factors
won’t have a large impact from one frame to another, when
working in real-time. By projecting world texture coordinates into
image (pixel) coordinates, we can compute an approach to the
current texture pose. Based on this reconstructed texture approach
and by knowing were all features identified from the template
image, should lie in the current frame, we can now start a dynamic
and adaptive template matching. This time feature selection will
follow certain rules, so that results can be more stable and with
less induced error.

3.3.4 Feature Selection and Matching
With the purpose of updating the system with a fresh texture pose,
a template matching process and a correspondent feature selection
must be done. There are certain steps when choosing which
features are “good to match” and will be used in this process:

a) Features must lie within the video frame;
b) The first feature must be the one closest to the center of

the image;
c) The second feature must be the one closest to the top

left of the image;
d) The third feature must be the one closest to the top right

of the image:
e) The fourth feature must be the one closest to the bottom

left of the image:
f) The fifth feature must be the one closest to the bottom

right of the image.
From step b) to step f), when selecting features, template

matching is performed between each feature located in the live
video image and each feature located in the reconstructed texture
image. Features on the reconstructed image are selected with a
circular area of 16x16 pixels (see 3.2.2, Template Matching), and
searched in the current live video image within an area of 26x26
pixels, centered at the predicted feature location. With the concern
of optimizing the algorithm and reducing the processing cost,
minimum eigen values are computed within this region (26x26) of
interest in the live image and we assume that potential features
will reside in the location of these eigen values. After this
identification, template matching is done only with patches
centered in these potential features. If a given feature has a
matching score less then 0.9 (90%), then it is considered to be lost

Figure 5 – Flow diagram of the Fully Automated Texture

Tracking Algorithm.

Rendering velocity 54 fps

Total Processing cost 18 ms

- Contour Extraction 8 ms

- Back-Projection 5 ms

- Template Matching 4 ms

- Pose Estimation 1 ms

Table 3 – Set-Up Phase
Performance Results.

in the current frame
and the search
continues in the same
step, until a successful
match is found, or the
time step expires with
no success found. If
less then five features
matches are achieved,
then we assume that
feature tracking fails

and we proceed to a new Set-Up Phase. If five features are
matched, we proceed to the pose retrieval process, and feed the
rotation and translation Kalman filters with the new values taken
from the camera extrinsic parameters of the pose. At this stage, by
achieving a positive result in tracking, we may register any kind
of 3D object using the texture pose information (Figure 4).

4. PRECISION AND PERFORMANCE
TESTS
Table 1 shows the hardware configuration used when performing
precision and performance tests.

4.1 Precision Tests
Precision tests of our texture-tracking algorithm were based on the
simulation of the pose a 3D plane object (with a texture), subject

to translation
and rotation
degrees of
freedom,
much like the
ones that
occur when
using the
system with a
HMD. For

this simulation we have used the image texture reconstruction
technique mentioned in this paper. To achieve this, we have
recorded the live captured video output (in digital format) taken

from the camera. After this, we
have stored all the camera
extrinsic matrixes (one per
each frame) computed by our
algorithm in a data file (in off-
line mode). Each one of these
matrixes was used to
reconstruct synthetically a
texture, and the full set
generated a synthetic video
stream. This stream was then
used to feed our texture

tracking algorithm, so that the obtained camera poses could be
mathematically compared with
the known simulated poses, of
the texture plane. For this
simulation test, 3000 frames
were taken into account, and
for each degree of freedom all
computed and simulated
rotation and translation values
were stored. All computed
values suffered Kalman

filtering, so that tracking errors could be minimized. After that
stage, they were analyzed and the error was computed. As we can
see from the Table 1 results, translation has an overall average
error of 1.13 millimeters that is visually unnoticed in real-time
applications. Rotation has an overall average error of 1.45 degrees
that can be sometimes noticed in real-time applications, when the
user performs fast manipulations of the planar texture object.

4.2 Performance Tests
Performance tests were made using template texture images with

300x300 dpi and a
resolution of 640x480
pixels. The input video
resolution was 320x240
and the output video
resolution was 1024x768,
in full screen mode. The
graphics library used for
rendering was Open GL.
As we can see from the

results shown in Tables 3-5, the overall algorithm works in real
time in all phases, achieving 82 fps in the Tracking Phase, when
contours are visible. Our system is prepared to work with real
time frame capture and the limiting factor in the obtained tracking,
is thus the camera acquisition frame rate.

5. CONCLUSIONS
We have proposed a novel approach to texture tracking based

on natural feature extraction in unprepared scenes without the
need of any kind of extra information previously added to the
scene, like fiducial markers to extract the planar textured objects
pose, including for the set-up phase [3]. Our method has been
shown to work in real-time and in indoor and outdoor
environments. However, it is restricted to planar surfaces, which
may be a problematic constraint in complex environments. The
system produces real-time efficient and robust tracking. Recent
state-of-the-art advances [9], have adopted a model-based method
to full 3D object tracking (in contrast to our method which is just
oriented to planar objects), where rough CAD model of parts of
the real scene are known beforehand. We intend also to generalize
our technique to 3D model-based tracking of indoor and outdoor
scenes.

6. REFERENCES
[1] Caudell, T.P. and Mizell, D.W., “Augmented Reality: An Application of Head-Up Display

Technology to Manual Manufacturing Processes,” in Proceedings IEEE Hawaii International
Conference on Systems Sciences, 1992, Kauai, HI, IEEE, 0073-1129-1/92, pp. 659-669.
January 1992.

[2] http://www.hitl.washington.edu/artoolkit/

[3] Kato, Hirokazu , Tachibana, K., Billinghurst, M., Grafe, M., “A Registration Method based on
Texture Tracking using ARToolKit”, in The Second IEEE International Augmented Reality
Toolkit Workshop, Nishi-Waseda Campus, Waseda University, Tokyo, Japan, 7th October
2003.

[4] G. Simon, A. Fitzgibbon and A. Zisserman, “Markerless Tracking using Planar Structures in the
Scene”, in ISMAR’ 00 Conference Proceeding, 2000.

[5] R. Sittisak, R. Yuttapong, “Adaptative Thresholding of Document Images Based on Laplacian
Sign”, International Conference on Information Technology: Coding and Computing, 2001.

[6] D. Nistér. “An Efficient Solution to the Five-Point Relative Pose Problem”, IEEE Conference
on Computer Vision and Pattern Recognition, Volume 2, pp. 195-202, 2003.

[7] Charles B. Owen, Fan Xiao, and Paul Middlin, “What is the best fiducial”, in The First IEEE
International Augmented Reality Toolkit Workshop, September 29, Darmstadt, Germany, 2002.

[8] http://sourceforge.net/projects/opencvlibrary/

[9] Comport, A. I., Marchand, E., Chaumette, F., A realtime tracker for markerless augmented
reality, IRISA - INRIA Rennes, France, in The Third IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’ 03), Tokyo, Japan, Oct. 7 - Oct. 10, 2003.

Processor Pentium IV / 2.66 GHz

RAM 457.712 KB RAM

Graphic
Adapter

ATI Mobility Radeon IGP
340M AGP, 64 MB

Hard Disk 60 GB

OS Window 2000 Service Pack
4

Table 1 – Used hardware.

Rendering velocity 62 fps

Total Processing cost 16 ms

- 5 Point Feature Reconstruction 10 ms

- Template Matching 5 ms

- Pose Estimation 1 ms

Table 5 –Tracking without
contours performance.

Average
Error

Over X
(Errx)

Over Y
(Erry)

Over
Z
(Errz)

Overall
(OvErr)

Translation
(mm) 0.58 0.57 2.23 1.13

Rotation
(deg) 1.28º 1.50º 0.66º 1.45º

Table 2 – System Pose Error when using
 feature/texture information

Rendering velocity 82 fps

Total Processing cost 12 ms

- Contour Extraction 8 ms

- Feature Reconstruction 2 ms

- Template Matching 1 ms

- Pose Estimation 1 ms

Table 4 –Tracking with
contours performance.

