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ABSTRACT 
In this work we propose a novel approach to real-time texture 

tracking and registration, based on natural feature extraction from 
planar objects and template matching, Our method is oriented to 
planar objects with arbitrary textures but with rectangular 
topologies and well contrasted contours and does not require any 
external fiducial marker, either for the set-up or the tracking 
phases. Once the initial pose condition is obtained, previous 
planar object information is used to compute subsequent planar 
object’s pose, so that the time coherence of the input video stream 
is exploited. Our system is completely automated and produces 
real-time efficient tracking which can be applied to entertainment 
AR applications and other. The paper discusses also the novelty of 
the approach, in relation to other existing texture tracking 
algorithms. 

Categories and Subject Descriptors 
I.5.4 [Pattern Recognition]: Applications -- Computer vision; I.4.8 
[Image Processing and Computer vision]: Scene Analysis -- 
Motion, Tracking; J.7 [Computer in other systems]: consumer 
products. 

General Terms 
Algorithms, Measurement, Performance, Experimentation, 
Theory. 

Keywords 
Augmented Reality, Texture Tracking, Template Matching, 
Texture Reconstruction. 

1. INTRODUCTION 
The camera registration or tracking problem in Augmented 

Reality-AR tracking systems context has been a research topic of 
considerable interest and constant grow in the literature. There are 

a variety of different methods to accomplish this goal, with the 
first ones being introduced in 1992 by Caudel and Mitzell [1]. The 
proliferation of vision-based tracking techniques is due to the fact 
that they work well in real time and they only incur in one cost: 
the processor’s cost. We propose a novel approach to texture 
tracking based on natural feature extraction without the need of 
any kind of extra information, like fiducial markers [2], to extract 
planar objects pose, even for the set-up phase [3]. Our technique 
combines methods such as template matching, homography 
computation, like in [4], texture reconstruction by back-projection 
(as in [3]) and Kalman filtering. Our system has an off-line-
automated stage where all image good features to track are 
extracted, as well as all the ones needed to obtain the planar object 
initial pose. Then the algorithmic process can be divided in two 
phases: the set-up phase, which obtains the initial camera pose and 
the tracking phase. In the tracking phase two methods are 
adaptively applied: one, based in simple contour motion detection, 
that requires that the complete planar object must be visible, and 
the other one, based on texture reconstruction and template 
matching, which only requires the partial visibility of the planar 
object. The system is completely automated and produces real-
time efficient tracking. 

2. SYSTEM ARCHITECTURE 
Three main modules comprise our system: Video Capture 

Module, Texture System Manager and Open GL Rendering 
Module. The Video Capture module is implemented with 
Microsoft DirectShow filters, working with most Web Cameras or 
even with DV Firewire Camcorders. The Capture module works 
with 320x240 video resolution and can achieve 40 frames per 
second in video acquisition rate. This Video Capture module 
delivers each video frame to the Texture System Manager, which 
is responsible for all image-processing routines. These routines 
can be structured into three phases: Texture Automation 
Processing phase, Set-Up phase and Tracking phase. The Texture 
System Manager is also responsible for handling a list of textures 
to track, so that multi-texture tracking can be supported. Upon 
successful feature tracking (with a minimum of five tracked 
features), the Texture System Manager only has to deliver the 
texture pose to the Open GL Rendering Module, in order to 
register any 3D virtual information or object at the specified 
texture. 

3. Algorithm Description 
Our texture tracking algorithm includes a Texture Processing 

Phase (an off-line natural feature extraction technique) and a 
subsequent Real-Time Feature Tracking method, which is 

 



subdivided in a Set-Up Phase that computes the initial planar 
object pose and a Feature Tracking Phase, which tracks the planar 
object pose in time. 

3.1 Texture Processing (Off-Line) Phase 
The Texture Processing Phase is the first stage of the 

technique and is performed offline. At this stage, we acquire the 
planar object image and process this global template texture image 
in order to collect all the good features to track. In order for a 
feature to be considered valid, we must guarantee that its template 
pattern can’t be similar to any other feature’s template pattern. So, 
we can guarantee that these feature are unique in global template 
subspace. Another requirement is that features must have a 
balanced distribution over the image plane to ensure robust pose 
retrieval. The first step of the offline stage is feature extraction 
from the template image. For this purpose we compute the 
minimum eigen values of the image, which give us the potential 
localization of the good features to track. After that, for each 
extracted feature, a template match is done against all the others. 
If any template matching score is higher than 0.9 (90%), then this 
feature is discarded. If all scores are smaller than 0.9, then we 
proceed to the next step. We must now ensure that this unique 
feature is well distributed, or in other words, that there aren’t more 
features in a 10 pixels radius. If this fact reveals to be true, then 
we have just found a feature that is unique in the whole image, 
and that can ensure robust pose retrieval. At the end of this phase, 
a data file is written containing all features positions, so that these 
can be used by the main system. An external program developed 
for this purpose, called Texture Automizer, is responsible for the 
whole off-line process. 

3.2 Set-Up Phase 
The Set-Up phase is dedicated in finding the initial texture 

(planar object) pose, so that the subsequent Feature Tracking 
Phase may begin.  

3.2.1 Contour Extraction and Initial Pose 
Computation 

We start by extracting all line contours in the image using an 
adaptive threshold technique [5] (see Figure 1). This technique 
computes and updates the local pixel threshold along the raster-
scanned line instead of a global image threshold computation, in 
order to solve the problems that occur in image binarization, 
caused by illumination, contrast, noise and other image 
degradation sources. Then these line contours are traced by 
following polylines with a complete 3x3-structuring element and 
by keeping the ones formed by four points. Small area contours 
are rejected, so that the main focus of the subsequent processing is 
the texture to track. The resulting contours are labeled, and the 
inner contours are discarded. This process is quite straightforward. 
By analyzing each traced contour, we can arrange them by the 
proximity of each centroid. With this scheme, we can find the 
contour that has the largest area lying around a certain centroid. 
By default, if no noise is induced, we will find two square 
contours for each texture, and only the outer one is considered 
valid. For each valid contour, its pose is computed using a 
classical pinhole camera model and the Five-Point Pose 
Algorithm with homography computation to determine the 
texture’s pose (camera extrinsic parameters), which is described in 
[6]. This algorithm requires the knowledge of at least five 3D 
world/2D projected image point correspondences, and of the 
camera intrinsic parameters. For that purpose we use the four 

corners of the rectangular contour and its centroid. After 
evaluating the rectangle pose, in relation to the camera reference 
frame, we still have an indetermination in the orientation of such 
basic shape, due to its symmetry. In Figure 3 we depict the 
problem: in the right hand side, we see the four possible 
orientations of the rectangular image, while just one is valid (the 
left hand side image). To solve this problem, given the rectangular 
planar object pose, we must compute its image back-projection 
and then perform template matching with each of the four images 
of the right hand side of Figure 3, to properly classify the 
orientation of the planar image in question. In the following sub-
sections, we discuss such techniques. 

3.2.2 Back-Projection and Template Matching 
By knowing the camera intrinsic and extrinsic parameters of 

the previous pose, which relates the world coordinates of the 
rectangular image with the pixel coordinates of that projected 
rectangle, we are able to evaluate the current back projected image 
pixels, with the pixels obtained in the current video stream frame, 
at the computed projected coordinates. This back-projected image 
is tested for template matching, with four pre-computed global 
template images oriented, respectively, by 0º, 90º, 180º and 270º 
(Figure 3), to determine the correct orientation of the rectangular 
texture detected in the current video stream. In general terms, the 
Template Matching algorithm is used to determine the level of 
similarity between two images and there are various possible 
methods to accomplish this. We have chosen a method [7], which 
computes the correlation coefficient ρ. This noise and luminance 
invariant coefficient is the measure of dissimilarity between the 
template image P and the image I, acquired from a live video 
stream, and was adopted in both phases of our Texture Tracking 
algorithm. When used in the second phase (Feature Tracking), we 
propose the use of circular patches, with an area of 16x16 pixels, 
instead of square ones for the Template Matching algorithm, in 
order to maximize the degree of correlation between patches, 
since feature points are centered spatially in regions of high 

frequency. These 
circular patches 
revealed more 
tolerance to small 
degrees of rotation and 
scaling. A threshold 
value of 0.9 (90%) was 
chosen. After the pose 
retrieval is achieved, 
two Kalman filters are 

initialized with the translational and rotational degrees of freedom 
of the computed texture pose, so that a more stable assumption 
about extrinsic camera parameters can be made in the tracking 
phase. Our implementation of Kalman filtering uses Open 
Computer Vision Library routines and data structures [8]. 
3.2.3 Pose Retrieval  

By knowing which orientation has the higher score of 
Template Matching (Figure 3), the camera pose of the current 
frame can be computed using the same approach as referenced in 
section 3.2.1 (the classical pinhole camera model and the Five-
Point Pose Algorithm with homography computation), when we 
have evaluated the initial pose.  

3.3 Feature Tracking Phase 
At the start of the Feature Tracking phase, it’s assumed we have 
the previous texture pose information. Now the system’s 

 
Figure 3 – Back-projected image 

and selected orientation. 



 
Figure 4 – Reconstructed 
feature patches (top-left); 
Matched features in the live 
image (top-right); Teapot 
registration based on 
computed pose (bottom). 

processing path is divided in two distinct branches: when contours 
are visible and when contours are occluded. For each frame at this 
stage, contours are extracted like described in section 3.2.1. If any 
four contour points is found, then we follow the first branch of the 
tracking path: tracking with contours, if not, we proceed to the 
tracking without contours algorithm. 

3.3.1 Tracking with contours 
When tracking with contours, we must verify if the found 

contour corresponds to the previous one identified in the Set-Up 
phase or in the Tracking phase (with contours), subject to a rigid 
body motion. For that, we re-project the known texture’s 
bounding rectangle vertexes (of the previous pose) into the 2D 
image coordinate space using the previous pose camera 
information. Then, a simple comparison is made in pixel 
coordinates between the re-projected points and the current 
contour vertexes. If this computation gives a result inferior to 20 
pixels for each vertex, then we can assume that the compared 
contour corresponds to the texture’s contour. On the other hand, if 
this comparison result is not satisfactory, then we proceed to the 
tracking without contours technique, which uses feature 
information (section 3.3.2). When contours are matched, we need 
a 5th point in order to compute the texture’s homography and 

derive the texture pose, 
using the technique 
described in section 3.2.3. 
Instead of using the contour 
centroid, which will induce a 
tracking error, we use a 
more precise point that can 
be found by matching a 
known feature with the one 
closest to the texture center. 
For that, we use the 
technique explained in 
section 3.3.2, that first 
reconstructs the known 
feature patch using the 
previous camera pose and 
then performs template 
matching in an area close to 
the current texture centre, to 

find the feature that occupies that centre.  

3.3.2 Tracking without contours 
If contour tracking fails, another algorithm based on feature 

information is used. For that purpose, artificial texture 
reconstruction based on the previous camera pose is preformed, in 
order to simulate an approach to the current captured frame. After 
this, we proceed to a process of selection of “good features to 
match” based on a heuristic approach. Upon selection of such 
“good features to match”, template matching is done between the 
selected features of the reconstructed texture and features within 
an area of 26x26 pixels, of the current video frame. If all five 
features match succeed, then a new texture pose is retrieved. If 
less then five features are matched, then we go back to the 
beginning of the Set-Up Phase, which requires that the full texture 
be visible. 

3.3.3 Texture Reconstruction 
In order to perform a closest match on subsequent frame features, 
we use the previous camera extrinsic parameters to reconstruct the 

current texture pose. As mentioned, template matching is done 
between each feature located in the live video image and each 
feature located in the reconstructed texture image. Feature’s 
matching score will be stronger because scale and rotation factors 
won’t have a large impact from one frame to another, when 
working in real-time. By projecting world texture coordinates into 
image (pixel) coordinates, we can compute an approach to the 
current texture pose. Based on this reconstructed texture approach 
and by knowing were all features identified from the template 
image, should lie in the current frame, we can now start a dynamic 
and adaptive template matching. This time feature selection will 
follow certain rules, so that results can be more stable and with 
less induced error. 

3.3.4 Feature Selection and Matching 
With the purpose of updating the system with a fresh texture pose, 
a template matching process and a correspondent feature selection 
must be done. There are certain steps when choosing which 
features are “good to match” and will be used in this process: 

a) Features must lie within the video frame; 
b) The first feature must be the one closest to the center of 

the image; 
c) The second feature must be the one closest to the top 

left of the image; 
d) The third feature must be the one closest to the top right 

of the image: 
e) The fourth feature must be the one closest to the bottom 

left of the image: 
f) The fifth feature must be the one closest to the bottom 

right of the image. 
From step b) to step f), when selecting features, template 

matching is performed between each feature located in the live 
video image and each feature located in the reconstructed texture 
image. Features on the reconstructed image are selected with a 
circular area of 16x16 pixels (see 3.2.2, Template Matching), and 
searched in the current live video image within an area of 26x26 
pixels, centered at the predicted feature location. With the concern 
of optimizing the algorithm and reducing the processing cost, 
minimum eigen values are computed within this region (26x26) of 
interest in the live image and we assume that potential features 
will reside in the location of these eigen values. After this 
identification, template matching is done only with patches 
centered in these potential features. If a given feature has a 
matching score less then 0.9 (90%), then it is considered to be lost 

 
Figure 5 – Flow diagram of the Fully Automated Texture 

Tracking Algorithm. 



Rendering velocity 54 fps 

Total Processing cost 18 ms 

- Contour Extraction 8 ms 

- Back-Projection 5 ms 

- Template Matching 4 ms 

- Pose Estimation 1 ms 

Table 3 – Set-Up Phase 
Performance Results. 

in the current frame 
and the search 
continues in the same 
step, until a successful 
match is found, or the 
time step expires with 
no success found. If 
less then five features 
matches are achieved, 
then we assume that 
feature tracking fails 

and we proceed to a new Set-Up Phase. If five features are 
matched, we proceed to the pose retrieval process, and feed the 
rotation and translation Kalman filters with the new values taken 
from the camera extrinsic parameters of the pose. At this stage, by 
achieving a positive result in tracking, we may register any kind 
of 3D object using the texture pose information (Figure 4). 

4. PRECISION AND PERFORMANCE 
TESTS  
Table 1 shows the hardware configuration used when performing 
precision and performance tests. 

4.1 Precision Tests 
Precision tests of our texture-tracking algorithm were based on the 
simulation of the pose a 3D plane object (with a texture), subject 

to translation 
and rotation 
degrees of 
freedom, 
much like the 
ones that 
occur when 
using the 
system with a 
HMD. For 

this simulation we have used the image texture reconstruction 
technique mentioned in this paper. To achieve this, we have 
recorded the live captured video output (in digital format) taken 

from the camera. After this, we 
have stored all the camera 
extrinsic matrixes (one per 
each frame) computed by our 
algorithm in a data file (in off-
line mode). Each one of these 
matrixes was used to 
reconstruct synthetically a 
texture, and the full set 
generated a synthetic video 
stream. This stream was then 
used to feed our texture 

tracking algorithm, so that the obtained camera poses could be 
mathematically compared with 
the known simulated poses, of 
the texture plane. For this 
simulation test, 3000 frames 
were taken into account, and 
for each degree of freedom all 
computed and simulated 
rotation and translation values 
were stored. All computed 
values suffered Kalman 

filtering, so that tracking errors could be minimized. After that 
stage, they were analyzed and the error was computed. As we can 
see from the Table 1 results, translation has an overall average 
error of 1.13 millimeters that is visually unnoticed in real-time 
applications. Rotation has an overall average error of 1.45 degrees 
that can be sometimes noticed in real-time applications, when the 
user performs fast manipulations of the planar texture object.  

4.2 Performance Tests 
Performance tests were made using template texture images with 

300x300 dpi and a 
resolution of 640x480 
pixels. The input video 
resolution was 320x240 
and the output video 
resolution was 1024x768, 
in full screen mode. The 
graphics library used for 
rendering was Open GL. 
As we can see from the 

results shown in Tables 3-5, the overall algorithm works in real 
time in all phases, achieving 82 fps in the Tracking Phase, when 
contours are visible. Our system is prepared to work with real 
time frame capture and the limiting factor in the obtained tracking, 
is thus the camera acquisition frame rate. 

5. CONCLUSIONS  
We have proposed a novel approach to texture tracking based 

on natural feature extraction in unprepared scenes without the 
need of any kind of extra information previously added to the 
scene, like fiducial markers to extract the planar textured objects 
pose, including for the set-up phase [3]. Our method has been 
shown to work in real-time and in indoor and outdoor 
environments. However, it is restricted to planar surfaces, which 
may be a problematic constraint in complex environments. The 
system produces real-time efficient and robust tracking. Recent 
state-of-the-art advances [9], have adopted a model-based method 
to full 3D object tracking (in contrast to our method which is just 
oriented to planar objects), where rough CAD model of parts of 
the real scene are known beforehand. We intend also to generalize 
our technique to 3D model-based tracking of indoor and outdoor 
scenes. 
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Processor Pentium IV / 2.66 GHz 

RAM 457.712 KB RAM 

Graphic 
Adapter 

ATI Mobility Radeon IGP 
340M AGP, 64 MB 

Hard Disk 60 GB 

OS Window 2000 Service Pack 
4 

Table 1 – Used hardware. 

Rendering velocity 62 fps 

Total Processing cost 16 ms 

- 5 Point Feature Reconstruction 10 ms 

- Template Matching 5 ms 

- Pose Estimation 1 ms 

Table 5 –Tracking without 
contours performance. 

Average 
Error 

Over X 
(Errx) 

Over Y 
(Erry) 

Over 
Z 
(Errz) 

Overall 
(OvErr) 

Translation 
(mm) 0.58 0.57 2.23 1.13 

Rotation 
(deg) 1.28º 1.50º 0.66º 1.45º 

Table 2 – System Pose Error when using 
 feature/texture information 

Rendering velocity 82 fps 

Total Processing cost 12 ms 

- Contour Extraction 8 ms 

- Feature Reconstruction 2 ms 

- Template Matching 1 ms 

- Pose Estimation 1 ms 

Table 4 –Tracking with 
contours performance.  


