

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

Hugo Pinto João

Master Degree in Computer Science and Business Management,

Supervisor:

Phd Carlos Jorge Corredoura Serrão, Associate Professor

ISCTE - IUL

November/2021

2

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

Hugo Pinto João

Master Degree in Computer Science and Business Management,

Supervisor:

Phd Carlos Jorge Corredoura Serrão, Associate Professor

ISCTE - IUL

November/2021

3

Direitos de cópia ou Copyright

©Copyright: Hugo Pinto João.

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos, de arquivar

e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de forma digital,

ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar através de

repositórios científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de

investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

i

Acknowledgments

Sincere thanks to the supervisor of this thesis, Dr. Carlos Serrão, for providing guidance and unrestful

dedication throughout the development of this dissertation. I am profoundly grateful for the critical

spirit shown during the whole process, the follow-up and initiatives to share his knowledge and his time

to give me the motivation to complete this stage of my life. The meetings and conversations were vital

to form a comprehensive and objective critique mindset. It goes without saying that this thesis would

not have been possible without you.

I would also like to thank my co-workers at VTXRM – Software Factory, particularly Fernando Moura,

Luís Cravo, João Santos, Guilherme Lopes, and Filipe Ferreira, for their participation, availability, and

aid for any existing doubt or technical problem, as well as the support received during the whole

development.

To the entire board of directors at VTXRM – Software Factory for the allowance of the development

of this project, making it possible to test their software. Thanks for all the trust and support.

To my father, sister, brother-in-law, and all of my friends thank you for your constant support and belief

in me, thank you for the motivation and sermons that made me a more diligent person.

To all individuals that generously shared their tools and expertise with the open-source community,

thank you.

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

ii

Resumo

Atualmente, a Gestão de Segurança da Informação começa a tornar-se uma prioridade para a maioria

das Empresas, com o principal objetivo de impedir que identidades não autorizadas acedam a

informações confidenciais e as utilizem contra a organização. Uma das melhores formas de mitigar os

possíveis ataques é aprender com as metodologias dos atacantes. Existem inúmeras formas de o fazer,

mas a mais comum baseia-se na realização de Testes de Intrusão, uma simulação de um ataque para

verificar a segurança de um sistema ou ambiente a ser analisado. Este teste pode ser realizado através

de meios físicos utilizando hardware, através de engenharia social e através de vulnerabilidades do

ambiente. O objetivo deste teste é examinar, em circunstâncias extremas, o comportamento de sistemas,

redes, ou dispositivos pessoais, para identificar as suas fraquezas e vulnerabilidades.

Nesta dissertação será apresentada uma análise ao estado da arte relacionada com testes de penetração,

as ferramentas e metodologias mais utilizadas, uma comparação entre elas, serão também explicadas

algumas das vulnerabilidades mais críticas em aplicações web. O objetivo é o desenvolvimento de uma

metodologia genérica de testes de intrusão, ambicionando a sua aplicabilidade e genericidade em

aplicações web, sendo esta aplicada e descrita num teste de intrusão real à aplicação web desenvolvida

pela VTXRM – Software Factory (Accipiens), aplicando passo a passo métodos e softwares Open-

Source com o objetivo de analisar a segurança dos diferentes componentes do sistema no qual o

Accipiens está instalado. No final serão apresentados os resultados do mesmo e a sua análise.

Palavras-chave: Testes de Intrusão, Cibersegurança, Segurança, Aplicações Web, Auditoria de

Segurança TI, Riscos de TI e OWASP.

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

iii

Abstract

Nowadays, Security Management is beginning to become a priority for most companies. The primary

aim is to prevent unauthorized identities from accessing classified information and using it against the

organization. The best way to mitigate hacker attacks is to learn their methodologies. There are

numerous ways to do it, but the most common is based on Penetration Tests, a simulation of an attack

to verify the security of a system or environment to be analyzed. This test can be performed through

physical means utilizing hardware or through social engineering. The objective of this test is to examine,

under extreme circumstances, the behavior of systems, networks, or personnel devices, to identify their

weaknesses and vulnerabilities.

This dissertation will present an analysis of the State of the Art related to penetration testing, the most

used tools and methodologies, its comparison, and the most critical web application vulnerabilities.

With the goal of developing a generic security testing methodology applicable to any Web application,

an actual penetration test to the web application developed by VTXRM – Software Factory (Accipiens)

will be described, applying methods and Open-Source software step by step to assess the security of the

different components of the system that hosts Accipiens. At the end of the dissertation, the results will

be exposed and analyzed.

Keywords: Penetration tests, Cyber Security, Security, Web Application, IT Security Audit, IT Risks

and OWASP.

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

iv

Index

ACKNOWLEDGMENTS .. I

RESUMO ..II

ABSTRACT .. III

INDEX .. IV

TABLE INDEX ... IX

FIGURE INDEX ... X

GLOSSARY ..XIII

CHAPTER 1 - INTRODUCTION ... 1

1.1 PROBLEM STATEMENT AND CONTEXT .. 1

1.2 RESEARCH QUESTIONS .. 3

1.3 RESEARCH OBJECTIVES .. 3

1.4 RESEARCH METHODOLOGY ... 3

1.4.1 Problem identification and motivation ... 4

1.4.2 Definition of the objective ... 4

1.4.3 Design and development ... 4

1.4.4 Demonstration ... 4

1.4.5 Evaluation .. 5

1.4.6 Communication .. 5

1.5 DOCUMENT STRUCTURE .. 5

CHAPTER 2 – STATE OF THE ART .. 7

2.1 CYBERSECURITY.. 7

2.2 CONTEXT OF PENETRATION TESTING ... 7

2.3 RELATED WORK ... 8

2.3.1 Outlining Systematic Literature Review ... 9

2.3.2 Conducting a Systematic Literature Review .. 10

2.3.3 Information Extraction Process ... 11

2.4 WEB APPLICATION VULNERABILITIES ...12

2.5 PENETRATION TESTS ...13

2.6 EXPLOITATION ON WEB APPLICATIONS ...15

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

v

2.6.1 SQL Injections .. 16

2.6.2 Cross-Site Scripting ... 16

2.6.3 XML Injections ... 17

2.7 MOST COMMON TOOLS FOR PENETRATION TESTS..17

2.8 PENETRATION TESTING METHODOLOGIES ..19

2.9 CONCLUSION ...20

CHAPTER 3 – DESIGN AND DEVELOPMENT: GENERIC WEB APPLICATION PENETRATION TESTING
METHODOLOGY ..21

3.1 PLANNING ...22

3.1.1 Scoping Meeting ... 22

3.1.1.1 Sign NDA ... 23

3.1.1.2 Define Scope .. 23

3.1.1.3 Establish Lines of Communication .. 23

3.1.1.4 Emergency Contacts ... 24

3.1.1.5 Rules of Engagement.. 24

3.1.1.6 Define Metrics .. 24

3.1.2 Time Estimation ... 25

3.1.3 Define Dates .. 25

3.1.4 Review Architecture ... 26

3.1.5 Review Security Requirements .. 26

3.1.6 Define Tools .. 26

3.2 RECONNAISSANCE ..27

3.2.1 Target Identification .. 27

3.2.2 Reconnaissance Approach ... 27

3.2.2.1 Passive Reconnaissance .. 28

3.2.2.2 Semi-Passive Reconnaissance .. 28

3.2.2.3 Active Reconnaissance .. 29

3.2.3 External Active Footprinting ... 29

3.2.4 Identity Protection Mechanism... 30

3.3 SCANNING..30

3.3.1 Active Scan .. 30

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

vi

3.3.1.1 Network Scanning ... 31

3.3.1.2 General Application Scanning ... 31

3.3.1.3 Bruteforce Directory Listing ... 32

3.3.1.4 Vulnerability Identification ... 32

3.3.2 Passive Scan .. 33

3.3.2.1 Traffic Monitoring ... 33

3.3.2.2 Metadata Analysis ... 34

3.3.3 Testing ... 34

3.3.4 Code Review .. 35

3.3.4.1 Source Code Analysis ... 35

3.3.4.2 Request Analysis ... 36

3.3.5 Validation .. 36

3.4 VULNERABILITY ANALYSIS ..37

3.4.1 Threat Analysis ... 37

3.4.2 Availability of Exploit .. 38

3.4.3 Accessibility ... 38

3.4.4 Planning.. 39

3.5 EXPLOITATION ..39

3.5.1 Exploits .. 39

3.5.1.1 Public Exploits .. 40

3.5.1.2 Tailored and Customized Exploits .. 41

3.5.2 Further Penetration ... 41

3.5.2.1 New Vulnerabilities .. 42

3.5.3 Install Backdoors ... 42

3.5.4 Clean-up .. 43

3.6 ANALYSIS OF RESULTS ...43

3.6.1 Review .. 43

3.6.1.1 Review Rules of Engagement .. 44

3.6.1.2 Review the goals .. 44

3.6.1.3 Review Metrics ... 45

3.6.2 Analysis of the impact .. 45

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

vii

3.6.3 Analysis of the penetration test .. 45

3.7 REPORTING ...46

3.7.1 Executive Summary .. 46

3.7.1.1 Project Objectives ... 47

3.7.1.2 Project Scope .. 47

3.7.1.3 Timeframe of Tests ... 48

3.7.1.4 List of Targets ... 48

3.7.1.5 Limitations... 48

3.7.1.6 Findings .. 48

3.7.1.7 Prevention ... 49

3.7.2 Technical Report .. 49

3.7.2.1 Findings .. 50

3.7.2.2 Prevention ... 50

3.7.3 Additional Information ... 50

3.8 CONCLUSION ...51

CHAPTER 4 – DEMONSTRATION: PENETRATION TESTING METHODOLOGY ..52

4.1 ENVIRONMENT ...52

4.2 ACCIPIENS ...52

4.3 TOOLS ..55

4.3.1 Nmap .. 55

4.3.2 Metasploit .. 56

4.3.3 Burp Suite Community Edition ... 56

4.3.4 OWASP ZAP ... 57

4.3.5 Nessus .. 57

4.4 METHODOLOGY USED ...57

4.5 TEST CASE - ACCIPIENS ...58

4.5.1 Planning.. 59

4.5.2 Reconnaissance ... 59

4.5.3 Scanning ... 60

4.5.4 Vulnerability Analysis .. 63

4.5.5 Exploitation .. 65

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

viii

4.5.6 Analysis of the Results ... 66

4.5.7 Reporting ... 66

4.6 CONCLUSION ...67

CHAPTER 5 – CONCLUSIONS AND FUTURE WORK ..68

5.1 CONCLUSIONS ...68

5.2 LIMITATIONS AND FUTURE WORK ..69

5.2.1 Limited choice of vulnerability scanners ... 69

5.2.2 Limited test cases ... 69

5.2.3 Analysis of vulnerabilities and their exploits ... 69

5.2.4 Limitation of the scope .. 69

BIBLIOGRAPHY ...70

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

ix

Table Index

TABLE 1 – SYSTEMATIC LITERATURE REVIEW STAGES (PEREIRA & SERRANO, 2020) 8

TABLE 2 – FILTRATION PROCESS ..10

TABLE 3 – VULNERABILITIES FOUND WITH PENETRATION TESTS ...12

TABLE 4 - TOOLS USED FOR PENETRATION TESTS ..18

TABLE 5 – PLANNING STAGE PROCESS...59

TABLE 6 – RECONNAISSANCE STAGE PROCESS ..59

TABLE 7 – SCANNING STAGE PROCESS ...60

TABLE 8 – VULNERABILITIES FOUND ...63

TABLE 9 – VULNERABILITY ANALYSIS PROCESS ...63

TABLE 10 – EXPLOITATION STAGE PROCESS ...65

TABLE 11 – ANALYSIS OF THE RESULTS STAGE PROCESS ..66

TABLE 12 – REPORTING STAGE PROCESS ...67

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

x

Figure Index

FIGURE 1: COMPLAINT STATISTICS ON TOP 5 CRIME TYPE COMPARISON OF THE LAST FIVE
YEARS(FEDERAL BUREAU OF INVESTIGATION - INTERNET CRIME COMPLAINT CENTER, 2020). 2

FIGURE 2: DESIGN SCIENTIFIC RESEARCH STAGES ... 4

FIGURE 3: DISTRIBUTION OF PAPERS OVER THE YEARS ..11

FIGURE 4: DISTRIBUTION OF PAPERS BY TYPE OF PUBLICATION ...12

FIGURE 5: PENETRATION TEST STAGES ..15

FIGURE 6: MAIN STAGES OF THE METHODOLOGY ..21

FIGURE 7: PROCESS 1 - MAIN PROCEDURES OF THE PLANNING STAGE ...22

FIGURE 8: PROCESS 1.1 - SCOPING MEETING (ITTO) ...22

FIGURE 9: PROCESS 1.1 - SUB-PROCESSES OF THE SCOPING MEETING...23

FIGURE 10: PROCESS 1.1.1 - SIGN NDA (ITTO) ...23

FIGURE 11: PROCESS 1.1.2 - DEFINE SCOPE (ITTO) ..23

FIGURE 12: PROCESS 1.1.3 - ESTABLISH LINES OF COMMUNICATION (ITTO) ..24

FIGURE 13: PROCESS 1.1.4 - EMERGENCY CONTACTS (ITTO) ..24

FIGURE 14: PROCESS 1.1.5 - RULES OF ENGAGEMENT (ITTO) ...24

FIGURE 15: PROCESS 1.1.6 - DEFINE METRICS (ITTO) ...25

FIGURE 16: PROCESS 1.2 - TIME ESTIMATION (ITTO) ...25

FIGURE 17: PROCESS 1.3 - DEFINE DATES (ITTO) ...25

FIGURE 18: PROCESS 1.4 - REVIEW ARCHITECTURE (ITTO) ..26

FIGURE 19: PROCESS 1.5 - REVIEW SECURITY REQUIREMENTS (ITTO) ...26

FIGURE 20: PROCESS 1.6 - DEFINE TOOLS (ITTO) ...26

FIGURE 21: PROCESS 2 - MAIN PROCEDURES OF THE RECONNAISSANCE STAGE27

FIGURE 22: PROCESS 2.1 - TARGET IDENTIFICATION (ITTO)..27

FIGURE 23: PROCESS 2.2 - RECONNAISSANCE APPROACH (ITTO) ...27

FIGURE 24: PROCESS 2.2 - SUB-PROCESSES OF THE RECONNAISSANCE APPROACH.............................28

FIGURE 25: PROCESS 2.2.1 - PASSIVE RECONNAISSANCE (ITTO)..28

FIGURE 26: PROCESS 2.2.1 - SEMI-PASSIVE RECONNAISSANCE (ITTO) ...29

FIGURE 27: PROCESS 2.2.2 - SEMI-PASSIVE RECONNAISSANCE (ITTO) ...29

FIGURE 28: PROCESS 2.3 - SEMI-PASSIVE RECONNAISSANCE (ITTO) ..29

FIGURE 29: PROCESS 2.4 - SEMI-PASSIVE RECONNAISSANCE (ITTO) ..30

FIGURE 30: PROCESS 3 - MAIN PROCEDURES OF THE SCANNING STAGE ...30

FIGURE 31: PROCESS 3.1 – ACTIVE SCAN (ITTO) ...31

FIGURE 32: PROCESS 3.1 - SUB-PROCESSES OF THE ACTIVE SCAN ...31

FIGURE 33: PROCESS 3.1.1 – NETWORK SCANNING (ITTO)..31

FIGURE 34: PROCESS 3.1.2 – GENERAL APPLICATION SCANNING (ITTO) ..32

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

xi

FIGURE 35: PROCESS 3.1.3 – BRUTEFORCE DIRECTORY LISTING (ITTO) ..32

FIGURE 36: PROCESS 3.1.4 – VULNERABILITY IDENTIFICATION (ITTO) ..33

FIGURE 37: PROCESS 3.2 – PASSIVE SCAN (ITTO) ...33

FIGURE 38: PROCESS 3.2 - SUB-PROCESSES OF THE ACTIVE SCAN ...33

FIGURE 39: PROCESS 3.2.1 – TRAFFIC MONITORING (ITTO) ...34

FIGURE 40: PROCESS 3.2.2 – TRAFFIC MONITORING (ITTO) ...34

FIGURE 41: PROCESS 3.3 – TRAFFIC MONITORING (ITTO) ...35

FIGURE 42: PROCESS 3.4 – TRAFFIC MONITORING (ITTO) ...35

FIGURE 43: PROCESS 3.4 - SUB-PROCESSES OF THE CODE REVIEW ...35

FIGURE 44: PROCESS 3.4.1 – SOUCE CODE ANALYSIS (ITTO) ...36

FIGURE 45: PROCESS 3.4.2 – REQUEST ANALYSIS (ITTO) ...36

FIGURE 46: PROCESS 3.5 – VALIDATION (ITTO)..37

FIGURE 47: PROCESS 4 - MAIN PROCEDURES OF THE VULNERABILITY ANALYSIS STAGE37

FIGURE 48: PROCESS 4.1 – THREAT ANALYSIS (ITTO) ..38

FIGURE 49: PROCESS 4.2 – AVAILABILITY OF EXPLOIT (ITTO) ...38

FIGURE 50: PROCESS 4.3 – ACCESSIBILITY (ITTO) ...38

FIGURE 51: PROCESS 4.4 – PLANNING (ITTO) ..39

FIGURE 52: PROCESS 5 - MAIN PROCEDURES OF THE EXPLOITATION STAGE ..39

FIGURE 53: PROCESS 5.1 – EXPLOITS (ITTO) ...40

FIGURE 54: PROCESS 5.1 - SUB-PROCESSES OF THE EXPLOITS ...40

FIGURE 55: PROCESS 5.1.1 – PUBLIC EXPLOITS (ITTO) ...41

FIGURE 56: PROCESS 5.1.2 – TAILORED AND CUSTOMIZED EXPLOITS (ITTO)41

FIGURE 57: PROCESS 5.2 – FURTHER PENETRATION (ITTO) ..42

FIGURE 58: PROCESS 5.2.1 – FURTHER PENETRATION (ITTO) ...42

FIGURE 59: PROCESS 5.3 – INSTALL BACKDOORS (ITTO)...42

FIGURE 60: PROCESS 5.4 – CLEAN-UP (ITTO) ...43

FIGURE 61: PROCESS 6 - MAIN PROCEDURES OF THE ANALYSIS OF RESULTS STAGE43

FIGURE 62: PROCESS 6.1 – REVIEW (ITTO)...44

FIGURE 63: PROCESS 6.1 - SUB-PROCESSES OF THE REVIEW ..44

FIGURE 64: PROCESS 6.1.1 – REVIEW RULES OF ENGAGEMENT (ITTO)..44

FIGURE 65: PROCESS 6.1.2 – REVIEW THE GOALS (ITTO) ..45

FIGURE 66: PROCESS 6.1.3 – REVIEW METRICS (ITTO) ...45

FIGURE 67: PROCESS 6.2 – ANALYSIS OF THE IMPACT (ITTO) ..45

FIGURE 68: PROCESS 6.3 – ANALYSIS OF THE PENETRATION TEST (ITTO) ..46

FIGURE 69: PROCESS 7 - MAIN PROCEDURES OF THE REPORTING STAGE ..46

FIGURE 70: PROCESS 7.1 – EXECUTIVE SUMMARY (INPUT AND OUTPUT) ..47

FIGURE 71: PROCESS 7.1 - SUB-PROCESSES OF THE EXECUTIVE SUMMARY ...47

FIGURE 72: PROCESS 7.1.1 – PROJECT OBJECTIVES (ITTO)..47

FIGURE 73: PROCESS 7.1.2 – PROJECT SCOPE (ITTO) ..47

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

xii

FIGURE 74: PROCESS 7.1.3 – TIMEFRAME OF TESTS (ITTO) ..48

FIGURE 75: PROCESS 7.1.4 – LIST OF TARGETS (ITTO) ...48

FIGURE 76: PROCESS 7.1.5 – LIMITATIONS (ITTO) ...48

FIGURE 77: PROCESS 7.1.6 – FINDINGS (ITTO) ..49

FIGURE 78: PROCESS 7.1.7 – PREVENTION (ITTO) ...49

FIGURE 79: PROCESS 7.2 – TECHNICAL REPORT (ITTO) ...49

FIGURE 80: PROCESS 7.2 - SUB-PROCESSES OF THE TECHNICAL REPORT ...49

FIGURE 81: PROCESS 7.2.1 – FINDINGS (ITTO) ..50

FIGURE 82: PROCESS 7.2.2 – PREVENTION (ITTO) ...50

FIGURE 83: PROCESS 7.3 – ADDITIONAL INFORMATION (ITTO) ..50

FIGURE 84: ACCIPIENS WORLDWIDE FOOTPRINT ...53

FIGURE 85: ACCIPIENS HOMEPAGE ...53

FIGURE 86: ACCIPIENS THREE-TIER ARCHITECTURE ..54

FIGURE 87: ACCIPIENS MODULES DIAGRAM ..55

FIGURE 88: OVERALL SCAN RESULT FROM NESSUS ...61

FIGURE 89: PACKAGE HTTP (MULTIPLE ISSUES) FROM NESSUS SCAN ...61

FIGURE 90: OWASP ZAP SCAN RESULTS ..62

FIGURE 91: RESULT OF CSS ON ACCIPIENS..66

Web Application Penetration Test: Proposal for a generic Web Application Testing Methodology

xiii

Glossary

IC3 – Internet Core Competency Certification

SQL – Structured Query Language

Pentest – Penetration Test

CSS – Cross-Site Scripting

OWASP – Open Web Application Security Project

Webapp – Web Application

PTES – Penetration Testing Methodologies and Standards

DSR – Design Science Research

DNS – Domain name servers

CSRF – Cross-Site Request Forgery

CORS – Cross-Origin Resource Sharing

XSS – Cross-Site Scripting

XML – Extensible Markup Language

HTTP – Hypertext Transfer Protocol

WASC – Web Application Security Consortium

HSTS – HTTP Strict Transport Security

RFC – Request for Comments

CSP – Content Security Policy

CVSS – Common Vulnerability Scoring System

NDA – Non-Disclosure Agreement

Introduction

1

Chapter 1 - Introduction

Nowadays, Information Security Management is beginning to turn into a priority for most companies.

The leading aim is to prevent unauthorized identities from accessing classified information and using it

against the organization (Alzahrani, 2018). Successful cyber-attacks can lead to significant losses

regarding classified information, direct economic losses, and reputational damage. The need for

vulnerability prioritization in organizations is widely recognized and systematically increasing;

therefore, new ways of reporting and assessing these vulnerabilities have emerged within the last years.

1.1 Problem statement and context

Our society is more technologically dependent than ever before, but cybercrime is also on the rise and

becoming more sophisticated. According to Cybersecurity Ventures (Morgan, 2020), the average cost

of cybercrime to companies has increased, reaching a total value of six trillion dollars in total per year.

Data breaches constantly increase, giving attackers access to sensitive data, personally identifiable

information (PII), protected health information (PHI), personal information, intellectual property, data,

and governmental and industry information systems.

Unfortunately, the up-to-date security approach may not be enough because security flaws may result

from misconfigured settings, network infrastructure design flaws, poorly implemented software, and

many others. If an organization truly wants to avoid risks, it should adopt a proactive approach. To do

it, it needs to seek out all types of vulnerabilities by systematically and actively testing the security for

vulnerabilities (Bechtsoudis & Sklavos, 2012). This can be done through different methodologies, like

penetration testing or vulnerabilitiy analysis. In this thesis the main focus will be penetration testing

which is an approach that simulates attacks to verify the security of a system or environment to analyze

its flaws (Denis et al., 2016).

These tests are made by targeting different entry points for the system since it can be done through

Database Injections (Abdul Raman, 2019), Network Man-in-the-Middle (Vondráček et al., 2018),

Denial of Service, Packet Sniffing, and many other possible attack vectors (Cangea, 2018; Wang et al.,

2016). In this dissertation, we will focus on Penetration Tests for Web Applications, how to deal with

flaws related to its runtime environment, some tools and methods used to test these flaws, and how to

audit the security of Web Applications.

Web Application security is more critical now than it used to be. With the rising technological adoption

(Skare & Riberio Soriano, 2021) and daily use of web applications for accessing data, tools, social

media, and even work collaboration directly over the internet, web applications security was never so

important. As it is possible to verify on figure 1, complaints regarding cyber crimes have been

https://www.upguard.com/blog/personally-identifiable-information-pii
https://www.upguard.com/blog/personally-identifiable-information-pii

Introduction

2

increasing from 2016 to 2020. In addition to direct financial and data theft, web application threats can

destroy assets, customer goodwill, and business reputations, leading to huge losses.

Figure 1: Complaint Statistics on top 5 Crime Type Comparison of the last five years(Federal

Bureau of Investigation - Internet Crime Complaint Center, 2020).

Web application security deals with security attacks against the application layer. Therefore, the concern

is to protect Web application servers against different security threats that exploit applications'

vulnerabilities (Jain & Jain, 2019). Combining a set of tools and the proper methodology makes it

possible to cover a broader range of security issues in a web application.

The penetration testing process can be divided into five generic stages: planning and reconnaissance,

where the scope and goal of the tests are defined and the intelligence needed to understand how a target

works and its potential weaknesses are gathered; the scanning stage, where the pentester will understand

how the target application can respond to different intrusions by scanning the network through static or

dynamic analysis (Poltavtseva & Pechenkin, 2017); the third stage is exploitation, as it is implicit, in

this stage the pen testers use tools like SQL injection, cross-site scripting and so on to exploit

vulnerabilities in the target in order to gain access to its data (Cangea, 2018; EC-Council, 2020). After

these three initial stages, it comes to maintaining access and analyzing the results, assuring that the

flaws found are real vulnerabilities and not false positives, to report them (Liu et al., 2017). The report

will contain important and detailed data that includes the sensitive data accessed, the specific

vulnerabilities exploited, the time the pentester remained in the system undetected, and other

information required.

Introduction

3

1.2 Research Questions

This dissertation intends to answer the following research question: Is it possible to specify and design

a generic web application penetration testing methodology applicable to most web applications?

1.3 Research Objectives

The objectives of this research are:

• Research on the most common methods, best practices, and tools used for web application

penetration testing

• Design a generic methodology applicable to conduct the assessment of any web application;

• Test the designed methodology on a real case scenario, using a production web application

• Evaluate the applicability of the methodology.

1.4 Research Methodology

The development of this dissertation will be conducted using the Design Science Research Methodology

allied with a Systematic Literature Review to research insight on the subject and then design a solution

based on the findings. Under the Design Science Research (DSR) methodology, it was intended to

perform a Systematic Literature Review to research insight on the subject. In DSR, the provided

guidelines assist researchers in conducting research based on defined principles, procedures, and

practices. DSR defines an iterative process divided into six stages (see Figure 2), problem identification

and motivation, the definition of the objective, the design and development, the demonstration, the

evaluation, and the communication (Peffers et al., 2020). It has also been structured in three phases

where the six stages are inserted, being this the exploration, induction, and deduction of the problem

through the context and the activities which leads to setting hypothesis, and then we have the second

phase where the solution is designed and tested to verify the hypothesis and the last phase where the

research is validated and generalized to other applications (Horvath, 2007). The main goal of the

methodology is to achieve knowledge and understand a specific problem domain by building and

applying a designed artifact (Hevner & Chatterjee, 2010).

Introduction

4

Figure 2: Design Scientific Research Stages

1.4.1 Problem identification and motivation

Security Management is beginning to turn into a priority for most companies. Taking that into

consideration, one of the best ways to evaluate the security of web applications is through a penetration

test. Considering that there are almost no guides on how to perform a penetration test on web

applications justifying the tools and methods used, this dissertation will present the beginning of the

development of a methodology to test applications that have similar characteristics to the target of the

pentest.

1.4.2 Definition of the objective

The objective of this dissertation is to present a step-by-step demonstration and development of a

methodology to assess the security of the web application Accipiens (developed by VTXRM - Software

Factory) through a penetration test, including all the tools and methods used, the reason for its appliance

and the analyses of the results.

1.4.3 Design and development

The design and development of this methodology is done on the Chapter 3, presenting all of the stages

and processes to perform a pentest, the input, tools and techniques and output of every process as well

as the representation of all processes.

1.4.4 Demonstration

The demonstration will be conducted through a pentest on Chapter 4 where it is reported the

environment setup, the eligibility of Accipiens, the tools used, as well as the entire penetration test

process, using the defined methodology and tools that most fit the application, the penetration test

requirements and goals by adopting the defined guidelines to assess Accipiens security.

Introduction

5

1.4.5 Evaluation

The evaluation was conducted in both VTXRM and this dissertation by analyzing the results, evaluating

the whole process, and confirming the vulnerabilities and entry points.

1.4.6 Communication

This stage refers to the communication of the dissertation in scientific publications (in this case, the

master's dissertation).

1.5 Document structure

This work is organized by chapters as follows: In Chapter 2, it is presented the state of the art and related

work; Chapter 3 will present the design and the development of the proposed generic web application

methodology; in Chapter 4, Accipiens will be explained, as well as the environment setup, the tools

used, and the demonstration of the applicability of the developed methodology to the Accipiens use-

case; Chapter 5 will present the conclusions of this dissertation and provide information for future

research and why it may be essential to continue developing this work.

Introduction

6

State of the Art

7

Chapter 2 – State of the Art

At this point, this research will contextualize the subject’s scope by extracting conclusions about the

methods and tools used by Penetration Testers. First, it will describe what Cybersecurity is as well as

Penetration Tests. The related work will then contextualize with more information on Web Application

Vulnerabilities, in-depth knowledge on Penetration Tests, the most common exploitations made on Web

Applications, and the most common tools used.

2.1 Cybersecurity

This era is thought to be the most secure, with everyone leaning towards security compared to the ease

of interoperability (Mukhopadhyay et al., 2019) which may lead to more security flaws due to its

unrestricted sharing possibilities. Cybersecurity is the practice of defending computers, servers, mobile

devices, electronic systems, networks, and data from malicious attacks. It is also known as information

technology security or electronic information security. The term applies in various contexts, from

business to mobile computing, and can be divided into a few common categories. Many organizations

understood that applying the same techniques, procedures, and tools used by attackers would be an

efficient form of testing and assessing risks and threats to their systems (Gondim et al., 2016).

These problems may be due to network security, application security, information security, operational

security, or end-user education. To effectively deal with these concerns, forming a security policy

according to its requirements and objectives would be a proactive approach to provide sufficient defense

layers against various attacks (Bechtsoudis & Sklavos, 2012).

An attack is some hostile, aggressive, or malicious action executed using its infrastructure or services

flaws against itself, and an attacker is some entity that executes an attack.

There are two types of cyber-attacks: passive and active. Passive attacks are challenging to detect. They

only monitor and scan the traffic between computers. Active attacks are attempts to make unauthorized

modifications to the system. They are easy to detect but usually produce considerable damages, such as

alterations of transmitted and stored data or new data flows created to access computers.

2.2 Context of Penetration Testing

Penetration Testing is a simulation of an attack to verify the security of a system or environment to be

analyzed. The objective of this test is to examine, under extreme circumstances, the behavior of systems,

networks, or personnel devices, to identify their weaknesses and vulnerabilities (Alzahrani, 2018).

There are five types of penetration tests, external testing, internal testing, blind testing, double-blind

testing, and targeted testing. In external tests, the attacker targets a company’s externally visible servers

State of the Art

8

or devices, such as domain name servers (DNS), e-mail servers, Web servers, or firewalls, to determine

whether an outside attacker can gain illegitimate access and which level of access he can obtain. The

internal tests simulate an inside attack behind the firewall by an authorized user with standard access

privileges. A blind test simulates the actions and procedures of an actual attacker by strictly limiting the

information given to the person or team that is performing the test beforehand. Double-blind testing

takes the blind test even further by only warning a few individuals within the organization that a test is

being conducted (Denis et al., 2016). Targeted testing on the otherhand requires the tester and security

personnel to work together and keep each other updated on every movement made during the tests,

providing real-time feedback from both parties. When conceiving a Penetration test, it must be decided

which approach should the tester take, Black-Box, where the tester either considers some information

or no information at all about a specified target (IP address, source code, or any additional information),

White-Box, where all the information regarding the target is shared or Gray-Box, where only part of

the information is shared, but everything else is hidden (Cangea, 2018).

There is an enormous variety of tools, mostly suitable for automatic testing, from open-source tools to

commercial tools, and lately, more online tools are also being developed with no cost associated with

the tester (Kalirathinam, 2019).

2.3 Related Work

To acquire more in-depth knowledge about the subject, a Systematic Literature Review was performed

(Kitchenham et al., 2009). The steps taken on this review are visible in Table 1.

Table 1 – Systematic Literature Review Stages (Pereira & Serrano, 2020)

Outlining Systematic

Literature Review

Conducting Systematic Literature

Review

Reporting the Review

Identification of the need for
a review

● Lack of security and

the increased need
for data protection

Applying filters and getting final articles
● 28 Articles

Report the findings
● Discussion about

data and draw

conclusions

The objective of the review

● Perform research on
the primary method

and tools to conduct

a Penetration Test

on Web
Applications

Perform Data extraction and analysis of

the sample
● Extract information about

methods, tools, and

methodologies on Penetration

Tests

State of the Art

9

Review Protocol
● Use a search string,

filters, repositories,

and defining

inclusion criteria.

● Analysis of the sample
characteristics

2.3.1 Outlining Systematic Literature Review

The main objective of this research is the review of the main methods and tools to conduct Web

Applications Penetration Testing. However, since the initial review process, it is clear that there are

numerous ways to perform Penetration Tests and report the results.

In order to obtain more information about this subject, seven online repositories were selected:

● Scopus;

● Taylor & Francis;

● Web of Science;

● EBSCOHost;

● Wiley Online Library;

● AIS eLibrary;

● Google Scholar;

From the review, the selection involved only articles in English, published in Journals or Scientific

Magazines and Conferences Proceedings released between 2015 and 2020, with some articles

developed prior to 2015 because of the relevance for this research.

Since all the Online Repositories use different search options, a keyword adaptation for each repository

was made, being the initial search made. The results were selected according to four filters and then

added to the Mendeley software to store all the articles and their information.

The first filter applies the keywords to the article title or the abstract or the author keywords, on the

second filter were the inclusion criteria of articles in English, published between 2015-2020 and peer-

review articles, the articles that did not meet these requirements were rejected (later, some articles prior

to 2015 were used for their relevance on this subject). On the third filter, was applied the quality criteria,

where only articles from Journals and Conferences were selected. The fourth and last filter used was

the Manual Selection of articles, where duplicated articles were removed and then, by assessing articles

introduction and abstract, there was a selection of the most relevant to the subject review as well as

some complementary ones needed to understand better the context of some security issues.

The keywords for the search were used in all repositories with operators AND and OR, being

“Penetration Tests” the main keyword.

State of the Art

10

 Keywords: (“Penetration tests”) AND ((“Cyber Security” OR “Security”) OR (“Web

Application Security” OR “WebApp Security”) OR (“IT Security Audit” OR “Security Audition” OR

“IT Risks”) OR (“OWASP”))

The main focus of this search was indeed Penetration Tests, but the inclusion of related subjects such

as Web Applications and IT Security created a more specific group of articles. The term OWASP means

Open Web Application Security Project. This not-for-profit foundation works to improve software

security, one of the leading entities about the subject that, through community-led open-source software

projects, has its influence in software security worldwide.

2.3.2 Conducting a Systematic Literature Review

As mentioned before, each platform has different search options. Due to those differences, Taylor &

Francis and Web of Science were used without the first filter.

The first filter (F1) was to select only articles related to the subject on the three domains included (article

title, abstract, and author keywords). These domains were selected because they summarise the article’s

matter, therefore being the main parts.

The second filter (F2) was the inclusion/exclusion criteria of the articles where it excluded all before

2015, not in English and white papers.

On the third filter (F3), the quality criteria were used to select only articles from journals and

conferences, turning 1465 articles into a selection of only 70 articles. Consequently, 70 article

introductions and abstracts were read to select the most relevant for the subject and its context, and it

was also made a verification for duplicates (F4), ending with a total of 28 articles.

Table 2 – Filtration Process

 F0 F1 F2 F3 F4

Scopus 540 205 109 18 6

Taylor & Francis 74 - 24 11 5

Web of Science 54 - 28 7 3

EBSCO Host 1082 74 16 9 4

Wiley Online Library 297,250 40,632 1,269 15 4

State of the Art

11

AIS eLibrary 2,684 408 9 6 3

Google Scholar 7,070 12 10 4 3

Total 308,754 41,321 1,465 70 28

2.3.3 Information Extraction Process

After the previous selection of articles, they were analyzed. For each one, the methodologies, methods,

year of publication, domain, and other characteristics were extracted to organize the review and its

context.

By examining Figure 3, between 2015-2020 (the focus of the research previously filtered), it is

noticeable that the distribution over the years tends to be increasing, possibly reflecting the widening

need for more secure software and new methods, tools, and methodologies being developed on this

subject.

Figure 3: Distribution of papers over the years

With Figure 4, we can observe that 14 articles belong to journals, representing 50% of the sample

collected, with 13 articles from Conference Proceedings and one from books.

0

1

2

3

4

5

6

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Number of Articles

Number of Articles

State of the Art

12

Figure 4: Distribution of papers by type of publication

2.4 Web Application Vulnerabilities

In terms of Web Application vulnerabilities, many can be found during penetration tests (see Table 3)

and many risks can be associated with them. However, the most common ones are categorized by

OWASP or WASC (Web Application Security Consortium), which are top entities in this field of

research. From OWASP, Web Applications have ten standard security risks associated with it, while

WASC divides them into more specific risks, creating a top 50 (Kim et al., 2009). These vulnerabilities

are susceptible to two different types of attack, Client-Side Attacks, and Server-Side Attacks. The

Client-Side attacks include various attacks (such as Cross-Site Request Forgery (CSRF), Cross-Origin

Resource Sharing (CORS), Cross-Site Scripting (XSS), Clickjacking, HTML Injection), to steal client’s

data from websites. In contrast, Server-Side Attacks are deployed against the webserver by targeting

vulnerable endpoints and sending malicious payloads to the servers. After the successful execution of

the payload, it responds to the attacker with the requested confidential data. This confidential data

includes server information, server services and version-related info, user information, passwords, and

others. (Nagendran et al., 2019).

Table 3 – Vulnerabilities found with Penetration Tests

Vulnerabilities Reference

Clickjacking (Jain & Jain, 2019; Nagpure & Kurkure, 2017; Singh et al., 2020)

SQL Injection

(Abdul Raman, 2019; Farah et al., 2015; Kalirathinam, 2019; Liu et

al., 2017; Nagendran et al., 2019; Nagpure & Kurkure, 2017; Palma
Salas & Martins, 2015)

Cross-site Scripting (XSS)

(Kalirathinam, 2019; Nagendran et al., 2019; Nagpure & Kurkure,

2017; Palma Salas & Martins, 2015; Vijayalakshmi & Syed

Mohamed, 2020)

Malformed XML (Jain & Jain, 2019; Palma Salas & Martins, 2015)

XML Bomb (Palma Salas & Martins, 2015)

0

2

4

6

8

10

12

14

16

Conference Proceedings Journal Article Books

Type of Publication

Type of Publication

State of the Art

13

Other XSS Vulnerabilities (Nagpure & Kurkure, 2017)

Cross-site Request Forgery
(Jain & Jain, 2019; Kalirathinam, 2019; Nagendran et al., 2019;
Nagpure & Kurkure, 2017)

File Upload Vulnerabilities (Kalirathinam, 2019; Nagpure & Kurkure, 2017; Singh et al., 2020)

Privilege Escalation (Nagendran et al., 2019; Nagpure & Kurkure, 2017)

Xpath Injection (Kalirathinam, 2019; Palma Salas & Martins, 2015)

HTTP response splitting (Kalirathinam, 2019)

Session Exploitation (Kalirathinam, 2019; Nagpure & Kurkure, 2017)

Browser Cache Weakness (Nagpure & Kurkure, 2017)

DoS (denial of service) (Gondim et al., 2016)

Bypass Authentication
(Cangea, 2018; Kalirathinam, 2019; Nagpure & Kurkure, 2017;
Wang et al., 2016)

PHP Vulnerable Code (Mudiyanselage & Pan, 2020; Nagendran et al., 2019)

Man-in-the-Middle

(Bechtsoudis & Sklavos, 2012; Cangea, 2018; Kalirathinam, 2019;

Mukhopadhyay et al., 2019; Vondráček et al., 2018; Wang et al.,
2016)

Spoofing
(Bechtsoudis & Sklavos, 2012; Cangea, 2018; Singh et al., 2020;

Wang et al., 2016)

Sniffing
(Alzahrani, 2018; Bechtsoudis & Sklavos, 2012; Cangea, 2018;
Kalirathinam, 2019; Wang et al., 2016)

2.5 Penetration Tests

When it is proposed to perform a penetration test, there are three possible approaches for the test: a

black-box approach, a white-box approach, or a grey-box approach. A black-box approach is the closest

to a real-life situation, where the attacker does not know all the ins and outs of the infrastructure that it

is targeting, being needed to use brute force attacks against it to try and find vulnerabilities or

weaknesses to exploit by trial and error. Since there is no information given on the source code or

software architecture, it takes longer to complete the test, resulting in the need for automated processes

to find vulnerabilities (Kalirathinam, 2019; Palma Salas & Martins, 2015). On the other hand, White-

box is the complete opposite, as the tester has full knowledge and access to the source code and its

architecture, giving the tester a shorter time frame than with a black-box approach; it is also a more

direct and complete test to the weaknesses. However, with this, it can be challenging to decide the focus

of the test, especially regarding system and component testing and analysis. Also, special tools are

needed to analyze and debug the software code. Grey-box combines the black-box approach and the

white-box approach, which means that the tester has partial knowledge of the targeted environment,

which in most cases is the software code and the system architecture diagrams. In a grey-box test,

usually manual and automated testing processes are used, allowing the tester to focus on main areas of

the target or specific vulnerabilities, which it knows about, to exploit and attack, making it easier to

discover alternative security flaws (Cangea, 2018; Kalirathinam, 2019).

The penetration testing process can be divided into five stages, Planning and Reconnaissance, Scanning,

Exploitation, Maintaining Access, and the Analysis of the Results (Bechtsoudis & Sklavos, 2012).

State of the Art

14

In the Reconnaissance stage, the attacker scouts for necessary information about the target. With this,

the attacker gains a foothold on the technologies used in the application and other relevant information

that will help him identify some security vulnerabilities. The attacker can even compromise the hosts

on which the target relies and then pivot into the target. Thereby, it does not need direct access to its

target to exploit it.

In the Scanning stage, the attacker uses the information gathered from recon done previously and with

host discovery, content discovery, scanning ports and services, and discovered vulnerabilities. It is

possible to select the right endpoint to begin carrying out the exploitation phase. The vulnerabilities

found can be considered Positive (if it turns out to be a fundamental flaw), Negative (if it is not an actual

vulnerability), False Positive (is when a scanner indicates that there is a vulnerability, but it is not), and

False Negative (vulnerabilities not found while doing Recon or Scanning but that exist, it just was not

found on the previous stages) (Wang et al., 2016).

In the Exploitation stage, the attacker will try to gain access to its target information and data. This can

be done with automated tools, as well as the previous stages. However, manual exploitation techniques

are the most appropriate way since a vulnerability can be exploited in a thousand different ways, but

each Pen tester has its methods and tools to do it. The vulnerabilities targeted by the attackers can be

represented under different terms depending upon the organization. As stated before, OWASP

summarises the vulnerabilities upon ten different types, while other platforms rate each vulnerability

differently; nevertheless, the vulnerability rating taxonomy is consistently rated by type, severity, and

impact (Nagendran et al., 2019).

After the Exploitation stage, the attacker must Maintain Access and its Privilege, with the intent of

escalating the privileges he gained access to, to stay in control of the data breach, which can result in

access to other user’s data, confidential data, and even find out other vulnerabilities for future

exploitation. All the incoming requests to a web server will be saved in a log file. Suppose the attacker

attains superuser permissions in the web server. In that case, he can delete the log file leaving no trace

for him. However, since it is not that easy to attain superuser permissions, it is better to use proxy

mechanisms to exploit vulnerabilities (in a Web context).

In the analysis of the results (the final stage), all the relevant data will be analyzed in other to confirm

or exclude the Positive/False Positive results. It will then be written a detailed report which includes the

name of the vulnerability, the vulnerable endpoint, the technical description of the vulnerability,

possible business impact and severity, as well as other additional information that may be asked to the

Pen Tester (Mudiyanselage & Pan, 2020).

State of the Art

15

Figure 5: Penetration Test Stages

While performing penetrations tests, it is possible to choose automated or manual testing methods, with

each method having its pros and cons. On one side, automatic testing methods are faster at scanning

their targets, enabling the tester to save its workforce and time on the second stage, since there are many

locations to scan for, providing a continuous evaluation of data with little effort, on the other side, there

are several unique vulnerabilities that cannot be detected by automatic scanners and it is more

susceptible to find false negatives and false positives (Singh et al., 2020). As for manual testing

methods, it is observed that automated scanners miss exceptional vulnerabilities that testers with

experience can locate, as well as the fact that they can find alternative security technics used by

developers to reduce the detection of vulnerabilities that prove to be false positives, even though it takes

longer to test applications thoroughly, it takes a need of cascaded intelligence to test specific

vulnerabilities.

Given the differences among websites and applications systems, the testers may need different tools to

perform these tests. However, it was observed that manual vulnerability assessment and penetration

testing are more accurate than automated vulnerability assessment and penetration testing, which do not

provide 100% accurate results (Nagpure & Kurkure, 2017; Singh et al., 2020).

In order to help the auditor with the analysis of the conducted tests, various intelligent data analysis

methods are being developed to simplify and automate the process. Only actions and information that

expand the testers’ knowledge are included to expose vulnerable objects for these methods. The

collected data is then reduced by applying thresholds to the actions and information, eliminating the

most inefficient action. The threshold applying can be calculated so that all information is considered.

However, this means more data volume for the tester to handle. Based on the data collected, it is possible

to compare properties and similarities to estimate relevant assessments to properties by types of attacks

and types of vulnerabilities, ranking them by individual properties, vulnerability levels estimate, and

similarities. In the end, the analyst should have enough knowledge about the tested system to report it

to the analysts(Poltavtseva & Pechenkin, 2017).

2.6 Exploitation on Web Applications

Web application security deals with security against attacks on the application layer. Therefore, the

concern is to protect Web Application servers against different security threats that exploit applications’

vulnerabilities (Jain & Jain, 2019). The five stages previously referred should be taken into account in

order to perform a penetration test. This way, the penetration tester will facilitate exploitation by

analyzing the vulnerabilities and weaknesses of the system. The most common vulnerabilities that are

widely exploited are SQL Injections, Cross-Site Scripting, and XML injections (Gupta et al., 2020;

Nagendran et al., 2019).

State of the Art

16

2.6.1 SQL Injections

SQL injections are malicious queries that are injected via data input fields in order to access

unauthorized data. Since most web applications use SQL Database, it is most common to test injections.

Suppose an attacker executes a malicious query and the server performs the attacker requested action

due to improper query validation. In that case, the attacker may leverage this to attain administrative

rights, letting him have complete access to the database. SQL injections are classified according to 4

different types, Error-based, Union-based, Boolean-based Blind SQL injections, and Stacked Queries

(Abdul Raman, 2019).

Error-based SQL injection is a technique that relies on error messages thrown by the database server to

receive information about data stored inside the database and the structure of the database. This

technique works when the target web application has been configured to disclose error messages a

response to errors.

Union-based is an in-band SQL injection technique that leverages the UNION operator to combine the

results of two or more SELECT statements into a single result. The combined results are then returned

as part of the HTTP response, which could be displayed on the web page.

Boolean-based SQL Injection is a “blind" or inferential SQL Injection technique that relies on sending

an SQL query to the database and "forcing" the application to return a different result. Depending on

the result, the content within the HTTP response will change or remain the same (Nagendran et al.,

2019).

In stacked queries, for each given parameter, a semicolon (;) appended at the end of a SQL statement

indicates the end of the statement. SQL scripts that come after the semicolon are parsed as a new SQL

statement; this allows the attacker to execute other SQL statements. Stacked queries can be used to

execute any SQL statement or stored procedure, in contrast to UNION attacks limited to SELECT and

UNION statements (Abdul Raman, 2019).

2.6.2 Cross-Site Scripting

On Cross-site scripting (XSS), the attacker injects a malicious script on the target website. This allows

the attacker to execute undesired functions on other users that visit the website. XSS attacks can have

severe impacts such as account takeover, credential stealing, data exfiltration, crypto mining,

keylogging, fingerprinting, tab-napping, screenshot capture, and others. XSS can be combined with

several other vulnerabilities to increase the impact level. The XSS attacks can be classified into three

main types, Reflected XSS, Stored XSS, and mXSS. Reflected XSS is a method where the attacker tests

various inputs upon the HTML tags to break them and execute his input. Stored XSS is a type of XSS

where the attacker supplies input to the Web Application, and after storing this input, if it is not encoded

with HTML, it will be served to all the users that visit the application. mXSS refers to Mutated XSS,

State of the Art

17

which abuses the incorrect reading of inner HTML by the application (Vijayalakshmi & Syed

Mohamed, 2020).

2.6.3 XML Injections

Given the fact that most XML processors allow the specification of an external entity such as a Uniform

Resource Indicator (URI) that is de-referenced and evaluated during the processing of an XML

document, it can be uploaded malicious payload to extract data, scan server's network or cause Denial

of Service (DoS) on the servers. (Gupta et al., 2020)

Various technics and algorithms are available, which can provide invaders the opportunity to execute

code remotely on the website server, access local resources and confidential files, insertion of malicious

content in messages or documents, and even execution of code on the website users system.

2.7 Most Common Tools for Penetration Tests

Nowadays, plenty of penetration testing software are available, some being open-source software and

some with costs associated with it, and even some online tools, but from the research done, most testers

seem to prefer open-source tools. Some of the tools used in penetration tests are as follows:

● Nmap ("Network Mapper"), an open-source tool for port scanning and OS fingerprinting. Nmap

has a scripting engine called Nmap Scripting Engine (NSE), allowing users to write their scripts

and automate their tasks. Nmap supports different types of scans to detect and evade various

types of IDS and Firewalls (Nagendran et al., 2019; Nmap, 2021).

● Nikto, an open-source web vulnerability scanner, is used to scan for server misconfigurations

and insecure files (Jain & Jain, 2019; Sullo, 2021).

● W3af, an automated open-source scanner that uses Python to test more than 200 different

vulnerabilities (W. Org., 2021).

● KNOXSS is an online XSS discovery tool based on its own server that is widely used to bypass

the Web Application Firewall using custom payloads directly (Logic, 2021).

● Acunetix, a web vulnerability scanner that tests for more than 4500 vulnerabilities (Liu et al.,

2017). It is one of the most used testing tools due to the number of vulnerabilities that it can

detect, being most of them varieties of SQL injections and cross-site scripting (Invicti, 2021a;

Nagpure & Kurkure, 2017).

● Wireshark, which is a protocol and traffic analyzer(Wireshark, 2021).

● sqlmap, an open-source penetration testing tool that automates the process of detecting and

exploiting SQL injection flaws and taking over database servers (Bernardo Damele A. G. &

Miroslav Stampar, 2021).

State of the Art

18

● Kali Linux is an open-source Linux-based operating system with many integrated tools used

for penetration tests (EC-Council, 2020; OffSec, 2021).

● Metasploit, a Ruby-based framework used for penetration tests with which it is possible to test

security vulnerabilities, execute attacks, enumerate networks. It is also possible to write, test,

and execute code for exploitations (EC-Council, 2020; Rapid7, 2021).

● OWASP Zed Attack Proxy, an exploitation and proxy tool that provides support to test the

steadiness and security of web applications and websites. By setting up the browser's proxy

(manually), it is possible to attack a website just by clicking a button, triggering an active attack

containing brute force scanners, proxy interception, active and passive scanners, port scanners,

and through web sockets (Nagpure & Kurkure, 2017; OWASP, 2021a).

Due to the number of vulnerabilities that must be tested, most testers use automatic scanners to detect

commonly occurring vulnerabilities, being more efficient given the amount of workforce and time

needed to detect all flaws and because automated tools are better for scanning a large number of

locations where sensitive data may be present (Singh et al., 2020).

Table 4 - Tools used for Penetration Tests

Application Name References

Nmap
(Cangea, 2018; Denis et al., 2016; Kalirathinam, 2019; Mukhopadhyay

et al., 2019; Nagendran et al., 2019)

Nikto (Nagendran et al., 2019; Teodoro & Serrao, 2011b)

W3af
(Denis et al., 2016; Kalirathinam, 2019; Nagendran et al., 2019; Teodoro

& Serrao, 2011a, 2011b; Vijayalakshmi & Syed Mohamed, 2020)

KNOXSS (Nagendran et al., 2019)

Acunetix
(Abdul Raman, 2019; Kalirathinam, 2019; Krasniqi & Bejtullahu, 2018;
Liu et al., 2017; Nagendran et al., 2019; Nagpure & Kurkure, 2017;

Teodoro & Serrao, 2011b; Vijayalakshmi & Syed Mohamed, 2020)

Wireshark
(Denis et al., 2016; Gondim et al., 2016; Mukhopadhyay et al., 2019;
Vondráček et al., 2018; Wang et al., 2016)

sqlmap
(Abdul Raman, 2019; Cangea, 2018; Kalirathinam, 2019; Liu et al.,

2017; Tetskyi et al., 2018)

Kali Linux
(Denis et al., 2016; Mudiyanselage & Pan, 2020; Mukhopadhyay et al.,

2019; Tetskyi et al., 2018)

Metasploit (Alzahrani, 2018; Cangea, 2018; Denis et al., 2016; Kalirathinam, 2019)

OWASP Zed Attack

Proxy

(Kalirathinam, 2019; Nagpure & Kurkure, 2017; Singh et al., 2020;

Tetskyi et al., 2018; Vijayalakshmi & Syed Mohamed, 2020)

Burp Suite (Cangea, 2018; Kalirathinam, 2019; Nagpure & Kurkure, 2017)

State of the Art

19

Nessus (Kalirathinam, 2019)

Vega (Kalirathinam, 2019; Vijayalakshmi & Syed Mohamed, 2020)

pentest-tools (Kalirathinam, 2019)

Google Dorking (Farah et al., 2015)

Websecurify (Teodoro & Serrao, 2011a)

NetSparker (Nagpure & Kurkure, 2017; Teodoro & Serrao, 2011b)

Rips Analyzer (Mudiyanselage & Pan, 2020)

Pixy (Mudiyanselage & Pan, 2020)

wpscan (Tetskyi et al., 2018)

OWASP Live CD
Project

(Teodoro & Serrao, 2011b)

WSAttacker (Palma Salas & Martins, 2015)

2.8 Penetration Testing Methodologies

Methodologies are designed to assure consistent outcomes; this is achieved by a clear, methodical, and

systematic approach to testing that ensures a reliable, consistent, and accurate outcome. On the other

hand, if a tester follows a very vague or poorly setup methodology, it may leave out essential security

flaws that an attacker may find, which would mean a failure to the pentest. The more comprehensive a

methodology is, the more comprehensive the outcome will be.

There are three widely used Open-source methodologies used for testing, Open-Source Security Testing

Methodology Manual (OSSTMM), Open Web Application Security Project (OWASP)

Testing Methodology, and Penetration Testing Execution Standard (PTES).

OSSTMM was developed by the Institute for Security and Open Methodologies (ISECOM) and offers

a detailed testing plan, metrics (for assessing security level), and recommendations for the final report.

In this methodology, there are five main topics to explore, Human Security (aspects that deal with direct

interaction between humans), Physical Security (any physical element of security that is operated

mechanically or physically), Wireless Communication, Telecommunications, and Data Networks

(which means the security of corporate networks and Internet connections) (ISECOM, 2021).

OSSTMM is mostly a methodology used for tests that focus on a company's entire telecommunication

and network infrastructure.

OWASP Testing Methodology, on the other hand, is much more focused on Web Applications and

services testing, focusing more on the core testing phases of web applications security testing instead

of complete coverage for a pentest. This methodology uses mostly black-box methods for testing and

State of the Art

20

is divided into four main phases, Information Gathering (covering exposure assessments and

deployment fingerprinting), Configuration and deployment management testing (for the evaluation of

the server security configurations), Web application security testing (with steps for testing different and

specific web apps vulnerabilities) and Reporting (which is the final phase of any penetration test)

(OWASP, 2021b).

The Penetration Testing Methodologies and Standards developed by PTES is a standard consistently

developed by information security experts from various industries that provide a minimum baseline on

the requirements of a pentest and how to conduct it. It consists of seven main sections that cover from

the initial communication and reasoning for the pentest to the final report, defining a guide on the whole

process which provides the most value for its users. The main sections are the Pre-engagement

interactions, Intelligence Gathering, Threat Modelling, Vulnerability Analysis, Exploitation, Post

Exploitation, and Reporting. In the Pre-engagement section, it is defined the scope of engagement and

the tools required. After the initial section, it comes to the Intelligence Gathering where the tested

organization provides general information about in-scope targets, and the tester gathers all the available

information from publicly accessible resources, which leads to the Threat Modelling section, on which

the tester will look to find vulnerabilities in the system, either through manual or automatic tools.

Vulnerability Analysis consists of identifying, validating, and evaluating the security risks associated

with the previously found vulnerabilities to find flaws in the system that could be exploited in the fifth

phase, the Exploitation to attempt to breach the system and its security. After the exploitation, there is

the Post Exploitation phase where must be considered the value of the compromised system and its

usefulness and scalability, finishing off with the Reporting phase in which an executive and technical

reports are issued and delivered, covering what was tested, how it was tested the vulnerabilities found,

and how were they found, guiding the organization to better their security practices (PTES, 2014).

2.9 Conclusion

The work conducted in this chapter aimed to identify the existing tools and methodologies to test the

security of web applications (through the usage of penetration testing methodologies and techniques).

A consensus was found among most studies in terms of methodology stages since most researchers

recommend using the five-stage method. On the other hand, it was also explicit from the literature that

most web applications penetration testers mostly use automated tools to scan and recognize

vulnerabilities. However, since there are many tools, it was not possible to find unanimity about the

most recommended tools for these tasks. As for the exploitation stage, most testers use manual methods

to achieve their goals. As it was verified, the number of false positives was lower than with automated

methods, resulting in more concise results.

Design and Development

21

Chapter 3 – Design and Development:

Generic Web Application Penetration

Testing Methodology

In this chapter, it will be presented the developed methodology. The design of this methodology was

influenced by the research made on state of the art. This methodology aims to give a complete guide

for any tester to apply during the assessment of the security of any web application through a penetration

test, leading to consistent results while taking a generic approach to the application. The methodology

is divided into seven main stages, Planning stage, Reconnaissance stage, Scanning stage, Vulnerability

Analysis stage, Exploitation stage, Analysis of Results stage, and Reporting stage. Each stage is divided

into sub processes which should be followed according to the flow present in the following figure.

Figure 6: Main Stages of the Methodology

This methodology covers every stage that a web application penetration test is supposed to have, from

the initial scoping meeting that will lead to the beginning of the test through the reconnaissance and

scanning stage on which the application interaction starts by gathering information to better understand

the target's infrastructure, through the vulnerability analysis and exploitation stage where the tester will

Design and Development

22

try to explore entry points and security flaws to exploit and gain access of the target, finishing the

process with the analysis of results and reporting stage, where the tester reviews all the project,

procedures, and artifacts to develop a final report on which the entire process is described in a manner

that makes sense to the executive management and technical staff.

Following are the main stages and sub-processes defined by this methodology, the Inputs, Tools,

Techniques, and Outputs represented according to the PMP ITTO(OSP International LLC, 2021)

(Project Management Professional – Inputs, Tools, Techniques, and Outputs), as well as the Process

Interaction within each stage. The inputs represent any item (internal or external to the project) required

by a process before it proceeds, the tools represent tangible artifacts like software programs or

templates, the techniques represent systematic procedures employed by human resources, and the

outputs represent a result generated by the process.

3.1 Planning

The first stage of this methodology is the Planning stage. This stage aims to define and plan the

penetration test by defining the scope, understanding the rules of engagement, getting to know more

about the requirement for the test, and defining the tools needed accordingly to the goals and dates (see

figure 7).

Figure 7: Process 1 - Main Procedures of the Planning Stage

3.1.1 Scoping Meeting

A scoping meeting is a meeting made between the testers and the customer on which the scope of the

test should be defined, and additional information about the system and internal procedures should be

presented (see figure 8).

Figure 8: Process 1.1 - Scoping Meeting (ITTO)

During a scoping meeting, the following steps should be taken (see figure 9):

Design and Development

23

Figure 9: Process 1.1 - Sub-processes of the Scoping Meeting

3.1.1.1 Sign NDA

An NDA is both parties signed document on which the tester compromises himself into not sharing any

private or sensitive information in any form (see figure 10). This document is usually signed before any

scoping discussion occurs, mainly to protect the company's privacy.

Figure 10: Process 1.1.1 - Sign NDA (ITTO)

3.1.1.2 Define Scope

This is one the most critical parts of the planning stage as it is when it is defined on what is to be tested

(see figure 11). During this part of the scoping meeting, a tester should try to be as exhaustive as possible

to explicitly define the scope to avoid scope creep (how a project’s requirements tend to increase during

the project development). The goals for the pentest must be specified, as well as ranges and domains,

targets information or technical details (if allowed), and additional information, such as limitations and

requirements. The tester should consider the complexity of the established requirements for the test

while defining the scope. The amount of information disclosed is directly connected to the application's

tester approach (black-box, grey-box, or white-box).

Figure 11: Process 1.1.2 - Define Scope (ITTO)

3.1.1.3 Establish Lines of Communication

In order to keep the customer informed, lines of communication should be established, as well as the

regularity of the meetings (see figure 12).

Design and Development

24

Figure 12: Process 1.1.3 - Establish Lines of Communication (ITTO)

3.1.1.4 Emergency Contacts

It is essential to establish emergency contacts as errors happen, and it is better to be safe than sorry. For

emergency contacts, a tester should prepare a list with the contacts, schedules of availability, and forms

to secure data transfer in case of need (see figure 13).

Figure 13: Process 1.1.4 - Emergency Contacts (ITTO)

3.1.1.5 Rules of Engagement

On the scope, it is defined what is going to be tested, and, in this part, it is defined on how the testing

should occur. For this, both parties should decide on the procedure for evidence handling, timeframe

for target tests, permissions to test, and approach limitations (specific methods that should not be

applied) (see figure 14). This set of rules ensures that the client’s system is not subjected to unnecessary

risks by the tester's actions and ensures that the exploitation and compromise of the application is

conducted accordingly to the customer's needs.

Figure 14: Process 1.1.5 - Rules of Engagement (ITTO)

3.1.1.6 Define Metrics

As Peter Drucker famously says, “if you cannot measure it, you cannot manage it”. Measuring results

and procedures is crucial for the results of the penetration test. Measures will help the tester, and the

Design and Development

25

customer determine and understand how much progress is being made during the process. With the

defined measures, a tester can later use that information and generate trend data that may help him better

estimate timeframes for tests. Usually, metrics define the percentage for coverage of the targets,

percentage of false-positive vulnerabilities, vulnerabilities per target, time spent per target, the severity

of vulnerabilities, and as much as needed (see figure 15).

Figure 15: Process 1.1.6 - Define Metrics (ITTO)

3.1.2 Time Estimation

After the scoping meeting, the tester must consider all the information to decide on a time estimation

for each task (see figure 16). The time estimation is directly related to a tester's experience and

knowledge since the experience will allow the tester to take less time with specific tasks that he may be

more comfortable with. While defining the time estimation, a tester should be prudent and count with

more time than he expects; if there is any mishap during the tests, he will still have a margin for the

extra time.

Figure 16: Process 1.2 - Time Estimation (ITTO)

3.1.3 Define Dates

Define a start and an end date explicitly (see figure 17). It not only protects the tester from scope creep,

but it also protects the client from delays on the results. The defined dates must consider the time

estimations previously established.

Figure 17: Process 1.3 - Define Dates (ITTO)

Design and Development

26

3.1.4 Review Architecture

Suppose any information on the target architecture is provided. In that case, it should be reviewed to

have a better understanding of the infrastructure and some of the possible entry points (see figure 18).

Figure 18: Process 1.4 - Review Architecture (ITTO)

3.1.5 Review Security Requirements

The security requirements dictate how an application works from a security perspective., this means

understanding user management, authentication procedures, authorization procedures, data

confidentiality, and session management (see figure 19). If provided, this information will ease the

process of access; if not, a tester should find a way to discover security flaws in the security mechanisms.

Figure 19: Process 1.5 - Review Security Requirements (ITTO)

3.1.6 Define Tools

For the decisions regarding the tools that the tester will use, he must consider the scope, the rules of

engagement, his limitations, and user experience. Specific tasks may require specific tools, so for this

reason, a tester should always be able to go for automatic scanners and exploits or go for manual

inspection and customized exploits. If there are no limitations from the customer, this part of the

planning stage is totally in charge of the tester (see figure 20).

Figure 20: Process 1.6 - Define Tools (ITTO)

Design and Development

27

3.2 Reconnaissance

The second stage of this methodology is the Reconnaissance stage. In this stage, the tester should

consider the goal and the rules of engagement and gather basic but specific information on the targets

(see figure 21). For this, a tester can use any type of reconnaissance approach towards the targets to

identify additional information about them and the protection mechanisms that may be affiliated with

them.

Figure 21: Process 2 - Main Procedures of the Reconnaissance Stage

3.2.1 Target Identification

Even though most information should be disclosed during the scoping meeting, a tester should always

identify his targets (see figure 22). This may help identify targets that were not part of the initial scope

or even find additional information about services or protocols used. In order to identify his targets, a

tester should consider the system architecture and test his connection to them.

Figure 22: Process 2.1 - Target Identification (ITTO)

3.2.2 Reconnaissance Approach

While performing the reconnaissance on the targets, a tester can have three approaches: a passive, semi-

passive, and active approach (see figure 23).

Figure 23: Process 2.2 - Reconnaissance Approach (ITTO)

Design and Development

28

The three types of approach can and should be used while performing reconnaissance on the system

(see figure 24).

Figure 24: Process 2.2 - Sub-processes of the Reconnaissance Approach

3.2.2.1 Passive Reconnaissance

In a passive approach towards reconnaissance, a tester can only gather and use archived or stored

information (see figure 25). No traffic should be sent to the target as it is supposed to gather information

without being detected. This should not be a general procedure, but specific tasks or customers may

require this approach.

Figure 25: Process 2.2.1 - Passive Reconnaissance (ITTO)

3.2.2.2 Semi-Passive Reconnaissance

While performing reconnaissance with a semi-passive approach, a tester’s goal is to gather information

to profile the target without compromising himself, sending what would appear to be regular traffic or

behavior (see figure 26). A tester should not actively seek confidential information but published details

that may help profile the targets.

Design and Development

29

Figure 26: Process 2.2.1 - Semi-Passive Reconnaissance (ITTO)

3.2.2.3 Active Reconnaissance

The target should detect active reconnaissance as a tester is actively mapping the network structure,

scanning for ports, open services, unpublished directories, files, and servers, and if possible, gathering

information about database systems and services running in the background. The goal of this approach

is to enumerate and map the targets as much as possible (see figure 27).

Figure 27: Process 2.2.2 - Semi-Passive Reconnaissance (ITTO)

3.2.3 External Active Footprinting

External Active Footprinting is similar to active reconnaissance but from an external perspective. The

reconnaissance should be done as if the tester was outside the organization, interacting with the targets

to gain information (see figure 28). This can be achieved through different methods such as port

scanning, DNS discovery, forward or reverse DNS, DNS Bruteforce, web application discovery, and

host detection and enumeration. All these methods will help the tester better prioritize the targets

according to the information gathered about them.

Figure 28: Process 2.3 - Semi-Passive Reconnaissance (ITTO)

Design and Development

30

3.2.4 Identity Protection Mechanism

Accordingly to the target, the protection mechanisms should be identified and mapped to maximize the

efficiency of the tests and minimize the detection ratio (see figure 29). These protection mechanisms

can be network-based, host-based, at the application level, or even mechanisms to protect users and data

storage.

Figure 29: Process 2.4 - Semi-Passive Reconnaissance (ITTO)

3.3 Scanning

The third stage of the methodology is the scanning stage. In this stage, the tester should take a more

active role in the information gathering process, taking into account previous targets disclosed

information to start searching for new vulnerabilities. A tester should scan the application for entry

points and flaws during this process, then test and validate the findings (see figure 30). In this stage, the

tester starts to have a more active role in testing, dealing directly with the application and its services.

Figure 30: Process 3 - Main Procedures of the Scanning Stage

3.3.1 Active Scan

A tester should take a more active role in scanning during the scanning stage, interacting directly with

target components. This can be done with automated or manual tools to identify and evaluate the

security regarding possible vulnerabilities (see figure 31 and figure 32).

Design and Development

31

Figure 31: Process 3.1 – Active Scan (ITTO)

Figure 32: Process 3.1 - Sub-processes of the Active Scan

3.3.1.1 Network Scanning

Network scanning is mainly done through the appliance of automated tools to help the tester obtain a

basic overview of what may be available on the target network (see figure 33). This step towards the

scan of the application usually starts on the reconnaissance stage, while performing the port scan;

however, in this stage, it is intended to do a more in-depth analysis of the network, searching for

misconfigurations on the network, vulnerabilities in Voice over IP technologies, test for vulnerabilities

on the services and protocols used.

Figure 33: Process 3.1.1 – Network Scanning (ITTO)

3.3.1.2 General Application Scanning

General application scanning is a method used to find general flaws in the application. Either through

manual or automatic crawling, it is possible to find flaws in the application (see figure 34). While

performing the scan, a tester may find form fields to attempt SQL injections or XSS. While crawling

the application, it is also possible to find sensitive information in error details or on the Viewstate. The

most common tools used for this are Burp Suite (PortSwigger, 2021b), Nessus (Tenable, 2021b), and

Design and Development

32

OWASP ZAP (OWASP, 2021a), since they all have built-in crawlers that scan the application for

vulnerabilities.

Figure 34: Process 3.1.2 – General Application Scanning (ITTO)

3.3.1.3 Bruteforce Directory Listing

Bruteforce directory listing is a method used to find directories that were not found on previous steps

of the penetration test. A scanner will search for common and reachable directories. However, with

brute force directory listing, a tester might use standard wordlists or even customize wordlists regarding

terms used in the application (found during previous scans and reconnaissance) to find administrative

or sensitive directories, extending the engagement attack field (see figure 35). Sometimes this procedure

may cause a crash on the application or inundate the webserver with requests, causing a DDOS. Some

of the most common tools used for this are Nmap (Nmap, 2021), NetSparker (Invicti, 2021b), and

GoBuster (Christian Mehlmauer, 2021).

Figure 35: Process 3.1.3 – Bruteforce Directory Listing (ITTO)

3.3.1.4 Vulnerability Identification

While performing the previous procedures for the active scan of the application, a tester might come

across new vulnerabilities within the scope. An example of this situation is when the tester performs a

general application scan and finds form fields vulnerable to SQL injections. All the vulnerabilities found

must be analyzed and identified in order to exploit them in later stages (see figure 36). For this, a tester

should understand how the vulnerability was reached and found, how the vulnerability works, and what

kind of impact its exploit may have.

Design and Development

33

Figure 36: Process 3.1.4 – Vulnerability Identification (ITTO)

3.3.2 Passive Scan

A passive scan is when a tester scans the application taking a passive approach towards it (see figure

37).

Figure 37: Process 3.2 – Passive Scan (ITTO)

It is mainly done using a combination of automatic and manual tools as the automatic tools seek to find

and gather information, and the manual tools will help the tester analyze and assess the outputs (see

figure 38).

Figure 38: Process 3.2 - Sub-processes of the Active Scan

3.3.2.1 Traffic Monitoring

For passive scanning of the application, a tester can monitor the traffic, which could help determine the

specifics of an operating system or device. A tester may find misconfigurations, unsecured data transfer,

or even capture sensitive information during this process (see figure 39). The most common tools used

Design and Development

34

for this are Wireshark (Wireshark, 2021), Tcpdump (The Tcpdump Group, 2021), and WinDump

(Riverbed Technology, 2021).

Figure 39: Process 3.2.1 – Traffic Monitoring (ITTO)

3.3.2.2 Metadata Analysis

Metadata analysis consists of analyzing and evaluating the data that describe data instead of the data

itself. For example, when examining a file, the metadata information may contain details such as the

document author, when the document was created, and other information that can include custom

metadata. Within this metadata, it is possible to find internal addresses and paths to the server, IP

addresses, and other information, facilitating testers to gain additional access or information to discover

new entry points (see figure 40). This is mainly done manually, but tools such as FOCA (Josep, 2021)

or MetaCrawler (Metacrawler, 2021) are accessible for testers to use.

Figure 40: Process 3.2.2 – Traffic Monitoring (ITTO)

3.3.3 Testing

Vulnerability testing is the process of discovering vulnerabilities and security flaws associated with the

application. This can be done while performing an active scan of the application and must always be

tailored to the test requirements, the rules of engagement, and the end goal. For this procedure, a tester

will look into vulnerabilities within the established depth and breadth of the requirements, ensuring that

the assessment results meet the expectations regarding it (see figure 41). This should be done using

active methods and tools, helping the tester verify the authenticity of the findings. It is common to use

tools such as Nessus, OWASP ZAP, or Burp Suite for this procedure.

Design and Development

35

Figure 41: Process 3.3 – Traffic Monitoring (ITTO)

3.3.4 Code Review

For the scanning stage, it is also essential to manually inspect and review the code associated with the

application, the source code, or the analysis of requests made to the application (see figure 42).

Figure 42: Process 3.4 – Traffic Monitoring (ITTO)

Depending on the approach towards the pentest, a tester may be authorized to look into the application's

source code (in case of white-box testing), which, even though it may be an extensive procedure, will

help the tester to understand the workflow of the application better (see figure 43). It is also possible to

review with automatic tools, but most testers would agree that there is no substitute for manual

inspection.

Figure 43: Process 3.4 - Sub-processes of the Code Review

3.3.4.1 Source Code Analysis

Source code analysis is the process by which the tester will check the application's source code in search

of security issues as many security flaws may be undetected by vulnerability scanners. Any information

associated with security flaws is always in the source code. With access to the source code, a tester can

Design and Development

36

accurately determine all the procedures within the application and remove the guesswork around the

security tests. Findings are variable and may be related to flawed business logic, concurrency problems,

easter eggs, or even cryptography, being these the most harmful vulnerabilities in web applications (see

figure 44).

The analysis of the source code might be an extensive procedure since some of it should be done through

manual inspection. However, with the help of tools like SonarQube (SonarSource, 2021) or Appscan

(HCL Software, 2021), this process can be facilitated as these tools analyze and review the code,

searching for coding errors, security vulnerabilities, and design flaws, offering remediation measures to

assure stable and secure code.

Figure 44: Process 3.4.1 – Souce Code Analysis (ITTO)

3.3.4.2 Request Analysis

Another way of finding sensitive information or vulnerabilities is observing, analyzing, and

manipulating requests made between the application and the browser. Requests such as GET HTTP

requests may often disclose sensitive data that may be (or not) cryptographed, allowing the tester to

unveil new gateways to the application (see figure 45). This analysis can be done using Burp Suite

(using the Intruder) or with OWASP ZAP, as both software have a configurable proxy to intercept

requests, as well as plugins to help the tester transform encoded or raw data into usable information.

Figure 45: Process 3.4.2 – Request Analysis (ITTO)

3.3.5 Validation

The validation of the findings will allow the tester to do a better correlation between the chosen tools

and their limitations. This step should be considered during most penetration tests since it is critical for

the results to validate every input and output of the performed tasks and their results. This procedure is

crucial to help the tester reduce the number of identified vulnerabilities to only those that are valid (see

figure 46). This can be done either by testing the vulnerabilities or by inspection of the related flaw.

Design and Development

37

Figure 46: Process 3.5 – Validation (ITTO)

3.4 Vulnerability Analysis

The fourth stage of the methodology is the vulnerability analysis stage. In this stage, the tester will focus

his effort on identifying and evaluating the findings and establishing a path of execution for the

exploitation and testing of the vulnerabilities found (see figure 47). There are no software requirements

for this methodology stage since it should be mainly done through process reviews, manual inspection,

and public research.

Figure 47: Process 4 - Main Procedures of the Vulnerability Analysis Stage

3.4.1 Threat Analysis

After performing all the previous scanning procedures, a tester should do his research on all findings.

By doing this, the tester will have a better insight into how to conduct the exploitations, the impact they

may have, vulnerabilities associated with the findings, and the limitations within the rules of

engagement and the defined scope. In most cases, vulnerabilities can be found while doing public

research on the issues. However, sometimes, a tester needs to set up a replicated environment to make

a more in-depth analysis of the situation. The goal of threat analysis is to allow the tester to identify

potential vectors of attack regarding the final goal of the tests and consider its impact. Online platforms

such as NVD (National Vulnerability Database), OSVDB (Open Source Vulnerability Database),

Security Advisories, and Issue Trackers are great vulnerability databases that allow testers to look and

find more information regarding the analyzed vulnerabilities. CVE (Common Vulnerabilities and

Exposures) is also a great source of information regarding vulnerabilities found according to system

components, types of vulnerabilities, and the CVE numbers that make research more accurate since this

represents the identifier for specific vulnerabilities (see figure 48).

Design and Development

38

Figure 48: Process 4.1 – Threat Analysis (ITTO)

3.4.2 Availability of Exploit

While performing a vulnerability analysis, a tester should also consider his capability to either obtain

or develop exploits or payloads needed to test the environment. Not only by analyzing the availability

and accessibility of such exploits or payload but also by considering the usage of third parties and the

customization of specific methods to assess the veracity of the findings. This step is crucial for planning

the exploitation stage as this will help the tester confirm his findings and better understand how to take

advantage of certain design flaws (see figure 49). In terms of custom exploits, a widely used software

is Metasploit which contains a collection with a constantly increasing number of exploits available for

any tester to use.

Figure 49: Process 4.2 – Availability of Exploit (ITTO)

3.4.3 Accessibility

The accessibility analysis consists of accessing specific vulnerabilities or entry points to establish a

precise scenario and execution path for the exploitation (see figure 50). Considering the protection

mechanisms and the workflow of the targets, a tester should define all the requirements and needs to

access the entry point.

Figure 50: Process 4.3 – Accessibility (ITTO)

Design and Development

39

3.4.4 Planning

Taking all of the previous tasks into consideration, the planning of the following steps should have a

clear and concise output. Considering the scope and the rules of engagement, as well as all the findings,

allow the tester to determine a path of execution for his exploits with as much information as possible,

detailing the goals of exploitation, all of the entry points, how to access them, what payloads or exploits

to use, the tools and methods to use and how to configure the tools given the established goals (see

figure 51).

Figure 51: Process 4.4 – Planning (ITTO)

3.5 Exploitation

The fifth stage of the methodology is the exploitation stage. This stage's primary goal is to establish

access to the targets by bypassing security restrictions. Suppose all of the previous stages were

performed correctly. In that case, this stage should be pretty straightforward since most of the entry

points are established, the approach and engagement are planned, and all additional information was

considered for the appliance of payloads and exploits. If the attack vector is well established, there will

be a reasonable probability of success according to the defined goals. This stage may lead to a loop

between the exploitation stage and the vulnerability analysis stage since new vulnerabilities can be

found while performing exploitation on previous findings or while performing further penetration and

escalation of permissions (see figure 52).

Figure 52: Process 5 - Main Procedures of the Exploitation Stage

3.5.1 Exploits

While performing exploitation, the attack vectors should be precise and evasive. This means that since

the whole process aims to simulate an actual attack, the exploitation stage is the appliance of all of the

Design and Development

40

accumulated research done on the target, combined with evasive measures so a tester can execute

precise attacks to the target without being detected during the penetration test (see figure 53).

Sometimes is not possible to take evasive measures in exploits of brute force or flooding, but extra

cautions need to be taken to try and hide the testers’ identity.

Figure 53: Process 5.1 – Exploits (ITTO)

There are mainly two types of exploits, the public, and the tailored and customized exploits; both have

their applicability and should be used according to the needs of the tester (see figure 54). There are

numerous tools for the execution of exploits, being the most popular, Burp Suite, OWASP ZAP,

Metasploit, Nmap, Sqlmap (Bernardo Damele A. G. & Miroslav Stampar, 2021), and w3af (W. Org.,

2021).

Figure 54: Process 5.1 - Sub-processes of the Exploits

3.5.1.1 Public Exploits

In order to maximize the chances of successfully exploiting a target’s vulnerability, a tester will want

to access as many resources as possible. With all of the information gathering done in previous steps, a

tester can search for public exploits available on the internet or in other types of documentation. These

exploits are developed according to specific vulnerabilities in specific hardware or software

configurations, so if all requirements are met, they can be applied by the tester. In this step, a tester

should take caution in terms of the liability and the source of the vulnerability since there are several

fake exploits designed to harm or destroy their user’s computer. Some exploit databases considered

trustworthy are Exploit-DB (Security, 2021), Searchsploit (K. Org., 2021), Metasploit, and even Google

(Google, 2021) (see figure 55).

Design and Development

41

Figure 55: Process 5.1.1 – Public Exploits (ITTO)

3.5.1.2 Tailored and Customized Exploits

Since every attack will tend to be different in how the exploitation occurs, to achieve successful results,

the tester may need to tailor and customize the exploitation to fit the testing scenario. By clearly

understanding the testing environment and the applicability of an exploit, a tester will increase his

chances of achieving a successful attack. Since public exploits may be too specific to certain versions

of operating systems or applications, there is the need to change and customize exploits for their

execution. This process may require an environment simulation to test the changes and guarantee its

results. Even if a tester has all the information gathered about the system in his hands, having a working

infrastructure and system to test the exploits will make the exploitation process easier. This is justified

due to memory address changes based on service packs or new version releases. For this task, a tester

will need to know how to read code developed in different programming languages and understand how

the payloads work for each exploitation to adapt them according to his needs (see figure 56).

Figure 56: Process 5.1.2 – Tailored and Customized Exploits (ITTO)

3.5.2 Further Penetration

After executing successful exploits and depending on the rules of engagement and the scope of the test,

a tester may further enumerate and gain access to other systems on the client’s infrastructure. Using the

access that was granted during the exploitation of vulnerabilities, a tester may be able to execute actions

within the compromised system, allowing him to upload tools into the system, enumerate DNS of the

internal network, execute brute force attacks, execute remote exploits, and abuse of compromised

credentials. A tester may also use the compromised system to proxy to an internal network, configure

port forwarding, access restrict information, and even manipulate authentication. This is mainly done

using shell commands within the compromised system (see figure 57).

Design and Development

42

Figure 57: Process 5.2 – Further Penetration (ITTO)

3.5.2.1 New Vulnerabilities

While exploiting vulnerabilities or by further penetration on the system, a tester may find new

vulnerabilities to test as permissions escalate and access is granted to different parts of the system (see

figure 58). These findings will require analysis in order to evaluate them . This process will lead into a

loop between the fourth and the fifth stages of this methodology because since new vulnerabilities were

found, a tester must evaluate the risk and impact of the findings (as represented on figure 6).

Figure 58: Process 5.2.1 – Further Penetration (ITTO)

3.5.3 Install Backdoors

The ability to modify and manipulate configurations within compromised systems allows testers to

install backdoors to persist in the system (see figure 59). Installed backdoors should require

authentication (in order to prevent unattended attackers) and, when possible, persist in the system after

reboots. Backdoors allow testers to bypass the normal authentication process after compromising a

system. This can be done to maintain or to ease future access or to exploit the system further. In order

to install a backdoor, a tester can use tools designed for that purpose or use simple tools like NetCat

(“Hobbit,” 2021), whose primary goal is to be used to read and write data across network connections.

With this, a tester allows himself to persist his access to the system even if he gets disconnected for

some reason.

Figure 59: Process 5.3 – Install Backdoors (ITTO)

Design and Development

43

3.5.4 Clean-up

Before performing a clean-up on the system, a tester should ensure that all the exploitation steps are

documented and that there are no more tests to perform on the system. The clean-up is a procedure on

which a tester will clean up the system from any trace of the penetration test. This includes removing

all executables, returning all the system settings and configurations to their original values, removing

all of the installed backdoors, removing any user accounts created to connect to compromised systems,

and restoring the database from backup to guarantee no data was damaged during the process (see figure

60).

Figure 60: Process 5.4 – Clean-Up (ITTO)

3.6 Analysis of Results

The sixth stage of the methodology is the analysis of results stage. In this stage, a tester is supposed to

review the entire process to validate if all the rules of engagement were followed, if the established

goals were reached, if all the metrics are applicable, is it also supposed to analyze the overall impact of

the penetration test on the application. This stage is divided into three main tasks, a review of established

rules of engagement, goals and metrics, the analysis of the impact of the penetration test, and the

analysis of the penetration test procedure as a whole (see figure 61).

Figure 61: Process 6 - Main Procedures of the Analysis of Results Stage

3.6.1 Review

In order to evaluate compliance to previously established requirements and rules, these need to be

reviewed to validate if the whole procedure went accordingly (see figure 62 and figure 63). For this

review, the tester needs to check if the entire approach towards the penetration tests fits what was

expected.

Design and Development

44

Figure 62: Process 6.1 – Review (ITTO)

Figure 63: Process 6.1 - Sub-processes of the Review

3.6.1.1 Review Rules of Engagement

Since the rules of engagement are established to protect both parties (tester and customer), the

penetration test should be evaluated accordingly to what was defined (see figure 64). A tester should

assess all of the procedures taken during the penetration test to check if every action was done

accordingly. After reviewing these, the tester should communicate the result of the analysis within the

report on the reporting stage.

Figure 64: Process 6.1.1 – Review Rules of Engagement (ITTO)

3.6.1.2 Review the goals

The whole penetration testing process was done for a reason, and this is defined through the goals

previously established (see figure 65). A tester should evaluate the penetration test results and validate

if they meet the defined goals. This information must be present within the report developed in the

reporting stage.

Design and Development

45

Figure 65: Process 6.1.2 – Review the goals (ITTO)

3.6.1.3 Review Metrics

The review of the metrics and their correlation with the findings is essential to measure the performance

and effectiveness of the penetration test (see figure 66). Suppose the metrics are well defined and

established. In that case, both parties will have a more clear and concise perspective of the results, not

only for the customer to evaluate the work done by the tester but also for the tester to evaluate what

went accordingly to the expectations. This information must be present within the report developed in

the reporting stage.

Figure 66: Process 6.1.3 – Review Metrics (ITTO)

3.6.2 Analysis of the impact

After performing all the security tests and assessments and cleaning up all of the traces of the penetration

test, a tester should analyze and evaluate the impact of the whole process on the targets (see figure 67).

If done correctly, there will be no impact on the systems, but the tester should do this evaluation to

guarantee the system's integrity and of the used methods.

Figure 67: Process 6.2 – Analysis of the impact (ITTO)

3.6.3 Analysis of the penetration test

Considering everything, an ethical tester should evaluate and assess all of the procedures done during

the penetration test (see figure 68). What went accordingly to the expectations, what failed, which tools

Design and Development

46

were best suited for specific tasks, and all additional information should be analyzed. This is mainly a

procedure for the tester to evaluate his approach and skills. Self-evaluation is a crucial component for

improvement and self-development. This information can be disclosed in the final report, but it is not

mandatory.

Figure 68: Process 6.3 – Analysis of the penetration test (ITTO)

3.7 Reporting

The seventh stage of the methodology is the reporting stage. The reporting stage is the final product of

the penetration test. After finishing all of the previous steps and stages, a tester must elaborate a report

on which he will present the customer all of the information regarding his approach, the tools and

methods used, a summary of all findings and the risks associated with them, the impact of the

exploitation by an outside party, prevention measures to be taken in order to fix security flaws, all of

the technical information regarding the test (describing in detail the scope, the findings, the paths of

attack, and the risks associated), as well as all the limitations found during the tests. The final report

should be well written, informative, easy to understand and appeal to executive management and

technical staff. For this methodology, a final report should be divided into three sections, the executive

summary, the technical report, and an additional section for additional information (this last section is

not crucial for the final product) (see figure 69).

Figure 69: Process 7 - Main Procedures of the Reporting Stage

3.7.1 Executive Summary

The executive summary sums up the overall findings of the assessment (see figure 70). This section

aims to elucidate business managers and system owners on a high-level view of the vulnerabilities

discovered and how to remediate those. The language of this section should not be very technical, and

the tester must guarantee that even if the risks assumed in the report are related to the system, the tester

Design and Development

47

would not know the risk for the organization in case of exploitation, as this is the job for a risk manager

to identify and calculate. In this chapter, the tester should also include information regarding the project

objectives, the scope, the timeframe for the tests, the list of targets, the limitations found, a summary of

the findings, and the remediation measures (see figure 71).

Figure 70: Process 7.1 – Executive Summary (Input and Output)

Figure 71: Process 7.1 - Sub-processes of the Executive Summary

3.7.1.1 Project Objectives

In this subsection of the report, the tester must outline all of the objectives and goals of the penetration

test, as well as the metrics used and their values accordingly to the findings and the expected outcome

of the tests (see figure 72).

Figure 72: Process 7.1.1 – Project Objectives (ITTO)

3.7.1.2 Project Scope

In this subsection of the report, the tester must outline the agreed scope of the tests and how it was

respected during the testing process (see figure 73).

Figure 73: Process 7.1.2 – Project Scope (ITTO)

Design and Development

48

3.7.1.3 Timeframe of Tests

In this subsection of the report, the tester must outline the timeframe of the tests and the dates of the

commence and conclusion of the tests (see figure 74).

Figure 74: Process 7.1.3 – Timeframe of Tests (ITTO)

3.7.1.4 List of Targets

In this subsection of the report, the tester must list the targets of the tests and any additional information

that may be relevant for the topic (see figure 75).

Figure 75: Process 7.1.4 – List of Targets (ITTO)

3.7.1.5 Limitations

In this subsection of the report, the tester must outline every limitation found during the tests. For

example, limitations in terms of methods, technical issues, performance, limitation of tools, and any

additional information regarding this topic (see figure 76).

Figure 76: Process 7.1.5 – Limitations (ITTO)

3.7.1.6 Findings

In this subsection of the report, the tester must outline every vulnerability found during the tests with

information regarding the risks for the system (see figure 77).

Design and Development

49

Figure 77: Process 7.1.6 – Findings (ITTO)

3.7.1.7 Prevention

In this subsection of the report, the tester must outline the action plan for remediation and prevention

of the vulnerabilities found during the tests (see figure 78).

Figure 78: Process 7.1.7 – Prevention (ITTO)

3.7.2 Technical Report

This section of the report should be clear, concise, and more technical than the executive summary and

include all the necessary information for the technical teams to understand the security flaws and the

prevention measures, and the severity rank of each vulnerability found (see figure 79 and figure 80). In

order to give the readers a better understanding, screenshots and command lines may be included to

show the steps taken during the exploitation.

 Figure 79: Process 7.2 – Technical Report (ITTO)

Figure 80: Process 7.2 - Sub-processes of the Technical Report

Design and Development

50

3.7.2.1 Findings

In this subsection, a tester must include detailed information regarding his findings, including all

necessary information for the technical team to understand and replicate (if needed) the scenario of the

tests (see figure 81). It should also include a severity ranking for all of the vulnerabilities and a technical

description of the issue and the affected objects. Screenshots and command lines may be presented in

order to give a better understanding of the procedures.

Figure 81: Process 7.2.1 – Findings (ITTO)

3.7.2.2 Prevention

In this subsection, a tester must include detailed information regarding the prevention measures to be

taken into account, including all the technical information for the technical team to resolve the issues

found (see figure 82).

Figure 82: Process 7.2.2 – Prevention (ITTO)

3.7.3 Additional Information

This final section of the reporting is not mandatory. However, a tester may want to add additional

information regarding the tests, which could be a self-evaluation of the process or any information

regarding previously established points of relevance (see figure 83).

Figure 83: Process 7.3 – Additional Information (ITTO)

Design and Development

51

3.8 Conclusion

This methodology was defined and specified, taking into consideration some of the most industry-used

web application penetration testing methodologies. This methodology can be considered as a work in

progress since it requires further validation in a more significant number of test cases to be considered

as an applicable methodology, but it can still be developed with that purpose. It was inspired by the

research made during state of the art, taking into consideration the base standards and methods used by

professional testers and combining them with some of the most common tools that most testers use. Its

development aimed to assist any tester to follow a generic guide in order to assess any web application

through any method of penetration testing (black-box, grey-box, white-box). The recommended tools

are mostly Open-Source to be as generic and inclusive as possible, but some commercial tools were still

referred and are recommended. There may be more tools to choose from, but the ones referred on this

methodology go accordingly to the industry standards.

Demonstration

52

Chapter 4 – Demonstration: Penetration

Testing Methodology

For the development of this dissertation, it was decided to conduct a pentest to the web application

Accipiens. This choice was made due to the access granted as a technical consultant working for

VTXRM and the need to develop a methodology to assess Accipiens security with consistent results.

Accipiens was the chosen test case for this dissertation in order to prove this methodology appliance.

This chapter will present more information on the environment setup, a small presentation of Accipiens

and its infrastructure, outline the most appropriate tools for this process, analyze different testing

methodologies, and demonstrate the appliance of the developed methodology.

4.1 Environment

The environment setup was composed of a Virtual Machine with Kali Linux OS installed for the Design

and Development stage. During the Pre-Engagement phase, it was defined that the scope of the Pentest

should only be a specific port of installation of the software with a specific address for connection,

which required access to a Virtual Private Network (VPN). Permissions for the use of the application

were granted but with limited access, which restrained direct connection to the database through the

given credentials. All-access was granted within the WebApp but not to all directories included in terms

of application permissions.

While working for VTXRM, some knowledge was acquired about Accipiens and some of the

frameworks and infrastructures used to host the application. However, there were some restrictions

regarding access to core source code and the architecture of the network and application. Considering

this, the methodology applied to the pentest was planned according to a grey box approach.

It was confirmed that the application was hosted on Microsoft Internet Information Services

(Microsoft IIS). Most of the scripts were developed based on .Net Architecture Guides. The database is

hosted in Microsoft SQL Server. The back-end scripts were primarily developed in C# programming

language, and the web services were developed in Soap, REST JavaScript, and Angular.

4.2 Accipiens

The Accipiens is a financial software developed by VTXRM – Software Factory that achieves to turn

their customers into market leaders through an Enterprise Resource Planning (ERP) solution in the

market. It is built under a Service Oriented Architecture to support Business Process Management and

Demonstration

53

developed to be a Web Application used wherever it is needed. It was developed to create software

capable of achieving high scalability associated with a flexible and modular architecture, acting as a

contract management system that helps standardize processes globally, increase productivity, and

reduce costs. It is developed in various languages and can cover the whole business life cycle, from

Leasing to Credit and Factoring businesses.

Figure 84: Accipiens Worldwide Footprint

Accipiens is used in more than ten countries over three continents (see figure 84). It offers software that

benefits its clients with fully automated processes, tailored workflows, a configurable solution, industry

standards implementation, and powerful credit analysis features (see figure 85).

Figure 85: Accipiens Homepage

The application is divided into three tiers, the data tier, the logic tier, and the web tier (see figure 86).

The data tier is where the database is located, organized by data sources. The stored data is distributed

through ADO.NET (a set of classes used to access data sources and is developed under the .Net

Framework) to the logic tier. The logic tier is divided into two layers, the data layer that accesses data

and manipulates it and the business layer where the data is processed and through the implemented web

Demonstration

54

services is transported into the web tier. The web tier is composed of a presentation layer where the UI

(user interface) is responsible for presenting the information required.

Figure 86: Accipiens three-tier architecture

The authentication of users is done by HTTP, and most of the application is developed under the .Net

framework with most scripts developed in C#, a Microsoft SQL Server database, most of the web

services are developed in JavaScript, Angular, SOAP and REST and is hosted on Microsoft Internet

Information Services. The version control of the application development was made using Microsoft

Team Foundation Server (TFS) and, more recently, upgraded into Azure DevOps. The security of the

application is defined through user profiles with specific permissions per user/role.

A standard technical consultant at VTXRM has access to all modules of the application and most of the

directories within (see figure 87), but the permissions for each port of installation are given, taking into

account the projects that the consultant is allocated.

Demonstration

55

Figure 87: Accipiens modules diagram

4.3 Tools

The first part of the Pentest was to understand which were the best tools to perform a vulnerability and

security assessment within the available Open Source scanners and including some commercial

scanners. The selected tools were chosen based on previous research made during the development of

section 2.7, by taking into account the review made by Shay Chen on SecTool (Chen, 2016), which

evaluates (commercial and open-source) vulnerability scanners based on the features of each one,

having in mind that the authentication for Accipiens is made through NTMLv2 (an authentication

protocol used by Windows to authenticate network users) using the VPN connection and by consulting

professional security testers on the most used scanners in the industry.

The initial tools selected were Nmap, Metasploit, Burp Suite, OWASP ZAP, Nessus, w3af, and

Acunetix. Later, this list was narrowed down since the w3af tool was removed from Kali Linux,

and its installation was not possible due to Module problems and the lack of

ConfigParser. Acunetix was removed from the list since its usage was restricted, and no access was

granted for academic purposes. A free license was asked for to PortSwigger for Burp Suite Pro, but

it was not granted, resulting in the usage of the free version, Burp Suite Community Edition.

4.3.1 Nmap

As stated previously, Nmap is an open-source tool for port scanning and OS fingerprinting; its everyday

use is network discovery and security auditing. Nmap uses raw IP packets to determine available hosts,

services, operating systems, possible firewalls or packet filters, plus many other characteristics. It was

chosen due to its popularity among security testers and its variety of utilities, which make it possible to

Demonstration

56

scan many different components and elements belonging to a particular network, giving fundamental

output during a network scan.

As described by Nmap Organization, it is flexible by including many port scanning mechanisms,

powerful since it has been used to scan massive networks with thousands of machines, portable due to

the compatibility with all major OS's, easy to use, free by letting any user download it without a cost,

well documented and translated in multiple languages, supported by a big community of developers and

users, acclaimed with many awards and popular.

4.3.2 Metasploit

Metasploit is a very versatile framework, easy to customize, and compatible with most operating

systems. Built into Kali, this framework made it easier for pentesters to remote test the security of

systems. This tool allows users to develop and execute exploits via command line or through GUI, with

many commercial-grade exploits and an extensive exploit development environment. This

framework is divided into modules that contain a lot of scripts, tools, and plugins with a library that

allows exploiting different vulnerabilities without having to write additional code by only defining an

exploit and its payload.

4.3.3 Burp Suite Community Edition

Burp Suite is a platform used for the security testing of web applications. It is a tool capable of mapping

and analysis of an application environment. The Community Edition features some essential tools, such

as a Repeater, a Decoder, a Sequencer, a Comparer, Burp Intruder, HTTP(s)

and WebSocket's proxy. With many plugins and functionalities available, this tool is one of the most

recommended by professional testers.

Since the use of Burp Suite was restrained to the Community Edition, the features available are as

follows:

Repeater – A simple tool for manually manipulating and reissuing individual HTTP

and WebSocket messages in order to analyze the application's responses.

Decoder – This tool is mainly used to transform encoded or raw data into its canonical, encoded, or

hashed form by recognizing different encoding formats.

Sequencer – This tool allows testers to validate unpredictable information such as session tokens, anti-

CSRF (Cross-Site Request Forgery) tokens, password reset tokens, and more.

Comparer – The Compare is a simple tool used to compare any two items of data.

Proxy – With Burp Suite, it is possible to operate a web proxy server between the browser and the

targeted application, which can intercept, inspect and modify raw traffic passing in both directions.

Demonstration

57

Intruder – The Intruder is a tool for automated customized attacks. It is highly configurable to perform

various tasks, from brute-force guessing of web directories to active exploitation of complex

vulnerabilities.

4.3.4 OWASP ZAP

The OWASP ZAP is an open-source web application security scanner maintained by a team of

international volunteers, being one of the world's most used web app scanners. Used as a proxy server,

it allows users to manipulate the total traffic that passes through it, making it possible to map web

application directories and resources through the ZAP spider. This tool is easy to set up and use, finding

and detecting security vulnerabilities related to SQL injection, Broken Authentication, Sensitive

data exposure, Broken Access control, Security misconfiguration, Cross-Site Scripting

(XSS), Insecure Deserialization, Components with known vulnerabilities, and Missing security

headers. Through its compatibility, it is possible to setup in all major OS's.

4.3.5 Nessus

Nessus is an Open-source remote security scanning tool mainly used for vulnerability assessments and

penetration testing engagements. Testing each port of a computer can determine what service it is

running and then test it for any known vulnerability to prevent attackers from carrying out malicious

attacks. It can search for vulnerabilities related to authentication and access to sensitive data,

misconfigurations, denial of service vulnerabilities, software flaws, malware, and missing patches. It

uses a server-client architecture, and it allows for the installation of several plugins to handle a wide

variety of vulnerability checks.

4.4 Methodology used

The designed methodology used for this dissertation is divided into seven stages, similar to the

methodology developed by PTES. The whole testing process starts with a scoping meeting on which an

NDA (non-disclosure agreement) between the tester and client is signed to guarantee the client that no

confidential or sensitive data will be disclosed or shared in any form. After the agreement, the scope of

the test should be defined, in terms of infrastructure limitations, requirements, metrics to evaluate the

security and the targets of the test (database, application, network, social engineering, and others).

Additional information about the target should also be disclosed accordingly to the scope and the

expected approach (if a tester is expected to have a black-box approach, no information should be

disclosed, if it is a white-box approach, the tester should have access to all the information on the system

as well as its source code and if it is a grey-box approach, only relevant information should be

disclosed), as well as the technical details of the infrastructure and other relevant processes. With this

information, a tester is supposed to define a time estimation for the test and decide the tools to use and

Demonstration

58

the methodology he is going to apply. The next step of this methodology is the Reconnaissance stage,

in which the tester should investigate more information about the application, the network, and the

systems where it is hosted. For this, through tools like Nmap, Burp Suite, or Metasploit, it is possible

to map the network, the open host ports, and its running services, to map some of the application

directories, and to discover information about the database used, the system where it is running on,

disclosed addresses, versions, instance, and server name and the TCP port where it is running. After

gathering basic information about the target, the tester should start the Scanning stage by taking a more

active approach towards the application. Utilizing automatic scanners makes it less time consumable,

but some manual inspections should also be done. For the active scan, a tester can use Nessus to test

the application security and scan for active vulnerabilities; OWASP ZAP can also be done with the

same goal and use the built-in crawler to map the application deeply, discover new directories or

vulnerabilities. Burp Suite is an excellent tool for manually inspecting intercepted messages between

the browser and the application to review and analyze different interactions. The Vulnerability Analysis

stage starts with understanding the impacts of the previously found vulnerabilities, assessing their entry

points, and classifying them according to their severity. After analyzing all the information on the

vulnerabilities found, the Exploitation starts on which a tester is going to try to exploit the entry points

to confirm or deny the presence of a vulnerability on the target, as well as test possible entry points or

exploits that were not found during the scanning stage but that the application could be vulnerable.

During this process, a tester could find new vulnerabilities. In that case, those should be analyzed again,

creating a loop between the Vulnerability Analysis and the Exploit stages until no more new

vulnerabilities are found. Suppose there are no more vulnerabilities to test. In that case, the tester should

proceed to the Analysis of the Results stage in order to evaluate and assess the results of the exploitation,

concluding on the possible impact that the exploitation may have on the system, the risks associated,

how to prevent it and the overall result of the pentest in terms of the metrics defined. The last stage of

the methodology is the Reporting stage on which a tester is intended to fill and deliver to the customer

a report with detailed information about the scope, the vulnerabilities found, the steps to find it and to

exploit it, the impact it may have, remediation for the vulnerability and any additional technical detail

considered relevant.

4.5 Test Case - Accipiens

This chapter will present the test case for the application of the developed methodology, using specific

methods and tools to assess the security of Accipiens. Every phase of the methodology will be explained

in terms of the procedures.

Demonstration

59

4.5.1 Planning

Table 5 – Planning Stage Process

Input Tools Output

NDA Microsoft Word Basic Application Information

System Information Virtual Machine Set of Tools

Technical Details Adobe Reader Chosen Methodology

Scope of the test

The main goal of the pentest is to focus the effort on process review and manual inspection of the

application and its functionalities while also making code reviews and security testing. The first step

was to plan the pentest. Together with VTXRM, it was decided to take a grey box approach. The system

behind Accipiens was partially explained, access was granted to a specific port of installation, there was

no NDA signed since the employment contract already has a non-disclosure clause in order to restrain

sensitive information from being leaked (specific directories, the information on some ports, and the

localization of some vulnerabilities), and the tools to use were selected (Nmap, Metasploit, Burp Suite

Community Edition, OWASP ZAP, and Nessus). Knowing the system infrastructure and some of the

protocols used may be a good starting point to list known vulnerabilities of its components. However,

due to the previous pentest made on Accipiens, they were all fixed in terms of application

configurations and server flaws.

4.5.2 Reconnaissance

This stage intends to do recon into the application to find more about its structure, components, and

application insight. With this, the second step of the pentest starts with scanning the application and the

network that supports it.

Table 6 – Reconnaissance Stage Process

Input Tools Output

Network Address Nmap Network Map

Web Application Burp Suite Application Map

MS SQL Metasploit Database Addresses

Using Burp Suite, it was possible to map most directories used by the Accipiens through manual

inspection of the application and finding other ports related to the Web Application (which ended up

Demonstration

60

being a support port with little to no importance for this test). After mapping the application, it was time

to map the network using Nmap. Initially, the command used for Nmap was:

nmap -sC -sV -oN nmap/initial ‘web application address’

-sC = Script Scan

-sV = Service Version Detection

-oN = output scan in normal format

Nmap then reported all available ports used by the application, what type of ports are used and their

states, services running, authentication and the type of authentication present, and the host scripts.

After mapping the application and the network, it was time to search for any database connection, not

to exploit it but to have basic knowledge of the structure and all the nodes that belong to it. In order to

find all database addresses, one of the auxiliary modules of Metasploit was used, which in this case was

MSSQL_Ping. By setting up credentials (Username and Password) and a target address or range of

hosts, this module queries on port 1434 to determine the listening TCP ports of any MSSQL server.

With this, the basic reconnaissance of the application was completed, and most of the application scope

was mapped and ready to be scanned and analyzed.

4.5.3 Scanning

This stage aims to find new vulnerabilities and new entry points through a more active scan than the

previous stage. Using the right tools and proper configuration is possible to find vulnerabilities in the

system. For this pentest, automatic scanners were mainly used while also performing some manual

inspection of code on HTTP requests.

Table 7 – Scanning Stage Process

Input Tools Output

Accipiens UI Nessus Potencial Vulnerabilities

Web Application Address Burp Suite Application Dictionary / Wordlist

Accipiens Directories OWASP ZAP

 Manual Inspection

The first step taken towards the scanning phase was to run Nessus and configure a Scan with Web

Application Tests as its policy. During the scan configuration, the credentials and the type of

authentication were parametrized; it was also defined that the scan should go through every reachable

port by pinging hosts that use TCP, ARP, ICMP, or SYN. The scan was also configured to search for

Demonstration

61

all vulnerabilities while using low bandwidth links to slow down the scan when network congestion is

detected.

Figure 88: Overall Scan result from Nessus

Figure 89: Package HTTP (Multiple Issues) from Nessus scan

As it is observable on figure 88 and figure 89, the results show a maximum severity of the

vulnerabilities to be Medium Level, which in this case were Browsable Web Directories and in the

package HTTP (Multiple Issues), the only vulnerability with relevant severity was HSTS Missing from

HTTPS Server (RFC 6796). Everything else detected by Nessus was merely informative, which does

not directly translate into a vulnerability but, it may be important info to exploit flaws in the application

configuration.

After running the Nessus scan and giving the results, it was time to use Burp Suite to analyze the

requests made between the server and the setup proxy. It was intended to search more specifically into

Demonstration

62

authentication messages, executions, and calls to the database. In this step, the Burp Suite tools used

were the Proxy, the Decoder (used to decode hashes), the Repeater (in order to manipulate requests to

try to find some vulnerabilities within the responses of the server), and lastly, the Sequencer (which was

used to validate anti-CSRF tokens). This process involved much manual inspection of the application

and the messages traded between both systems, but besides new browsable directories that

were found in this process, no significant results were found, and since the most sensitive files and

directories found while browsing were restricted (no permissions to access) or not found (error 404 –

File or directory not found) when accessed, it ended with no added value. Since Burp Suite saves all of

the application directories, it was possible to create a wordlist of words used in the context of the

application, which could later be used for brute force exploitation or directory guessing. While running

the manual inspection of Accipiens, an application error appeared. When Accipiens has an internal error

(during the execution of any script that has an error or handling unexpected data), a stack with the error

pops up with information from both Frontend and Backend. By analyzing the stack, it was possible to

find some sensitive information, which was about the error and information about internal scripts,

directories, and files, as well as some database information, which could be used to facilitate

exploitation.

OWASP ZAP was then used to scan the application using HTTP authentication with the given

credentials, but it was not able to find any vulnerability with the automatic scanner since it was not able

to login into the application. For this reason, a manual scan was done, and the following vulnerabilities

were flagged (see figure 90).

Figure 90: OWASP ZAP Scan results

With OWASP ZAP Spider, it was also possible to map all directories, scripts, and files previously

discovered, but it also checked for input forms and payloads unknown until this moment. Given the

previous results, it is noticeable that much more vulnerabilities were found and, in this case, with higher

severity than with the previous software’s.

Demonstration

63

Table 8 – Vulnerabilities found

Vulnerability Severity Scanner used

Viewstate without MAC Signature High OWASP ZAP

Browsable Web Directories Medium Nessus

HSTS Missing from HTTPS Server (RFC

6796)

Medium Nessus

CSP: Wildcard Directive Medium OWASP ZAP

Potential IP Addresses Found in the Viewstate Medium OWASP ZAP

Absence of Anti-CSRF Tokens Low OWASP ZAP

Cookie no HttpOnlyFlag Low OWASP ZAP

Cookie without SameSite Attribute Low OWASP ZAP

Incomplete or No Cache-control Header Set Low OWASP ZAP

Server Leaks Information via “X-Powered-By”

HTTP Response Header Field(s)

Low OWASP ZAP

Timestamp Disclosure – Unix Low OWASP ZAP

X-AspNet-Version Response Header Low OWASP ZAP

X-Content-Type-Options Header Missing Low OWASP ZAP

4.5.4 Vulnerability Analysis

The next step for the pentest was to analyze the vulnerabilities found until this point. In order to do this,

it is mandatory to check the vulnerabilities found, understand how they work and their impact in case

of exploitation.

Table 9 – Vulnerability Analysis Process

Input Tools Output

List Vulnerabilities Research Severity

System Information Acquired Knowledge Impact

 Entry Points

 Attack Vectors

Demonstration

64

From the scanning phase, we ended up with thirteen different vulnerabilities, of which one of them had

a high severity, four with medium severity, and seven with low severity. The severity of a

vulnerability is defined by the Common Vulnerability Scoring System (CVSS); it evaluates the severity

and not the risk directly associated with the vulnerability by representing only the intrinsic

characteristics of a vulnerability, which are constant over time and across user environments. The

severity is a measure used for assessing and communicating the characteristics and impacts of security

vulnerabilities.

The vulnerabilities found with the most considerable severity are as follows:

• Viewstate without MAC Signature – The ViewState is a client-side state management technique

that allows storing user data on the page during the post back. By default, the server signed the

serialized value to prevent tampering by the user, but it can be disabled by setting the

Page.EnableViewStateMac property to false, allowing an attacker to modify the contents of the

ViewState and cause arbitrary data to be deserialized and processed by the server. To prevent

it, the Page.EnableViewStateMac property must be defined as TRUE (PortSwigger, 2021a).

• Browsable Web Directories – This issue means that a web directory was found and is

browsable. By using access restriction or disabling directory indexing, this can be prevented.

Another prevention option is to ensure that the directories do not leak any confidential

information or give access to sensitive data (Rapid7, 2021).

• HSTS Missing from HTTPS Server (RFC 6796) – The remote web server is not forcing HSTS

as defined by RFC 6797. HSTS is an optional response header that can be configured on the

server to instruct the browser to only communicate via HTTPS. The remote web server can be

configured to use HSTS in order to prevent it (Tenable, 2021a).

• CSP: Wildcard Directive – CSP adds a layer of security that helps detect and mitigate certain

types of attacks such as XSS or data injections. Poorly configured CSP allows attackers to

execute malicious code on the browser. This can be prevented by configuring the webserver to

set the CSP header(Scan Repeat, “CSP Scanner: Wildcard Directive”).

• Potential IP Addresses Found in the Viewstate – The ViewState is turned on by default on

ASP.NET, serializing the data in every control on the webpage. If the ViewState is turned on,

it allows a user to encrypt or decrypt the content of hidden fields. If an IP address is found, it

can be easily read and used to access servers and services that may be less secure than other

entry points. This can be prevented by ensuring that the page uses HTTPS, checking if

ViewState contains any sensitive information, and encrypting the ViewState to hide it from all

users (Repeat, 2021).

Demonstration

65

Not all the vulnerabilities found had a direct impact on the application, even though some could cause

arbitrary data to be deserialized and processed by the server or allow SSL-stripping man-in-the-middle

attacks and weaken cookie-hijacking protection.

4.5.5 Exploitation

In this stage, the main goal is to confirm if the vulnerabilities found are real vulnerabilities or just false-

positive artifacts found during the previous stages; it is also intended to explore new entry points or

exploitations whose vulnerabilities were not flagged but still may be present.

Table 10 – Exploitation Stage Process

Input Tools Output

Vulnerabilities Metasploit New Vulnerabilities

Entry Points Burp Suite Confirmation of Vulnerabilities

Exploits OWASP ZAP

Attack Vectors Manual Testing

All the above vulnerabilities are stated as positive, but not exploited during the test, since they existed

due to configurations made on the network and the application itself intentionally. Nonetheless, other

vulnerabilities were also tested to assure the maximum efficiency of the pentest. The configuration

setting for each vulnerability was checked in order to confirm the findings. For this, vulnerabilities such

as SQL injection, Cross-site scripting, HTTP request smuggling, XML injection, and brute-force

attacks were also tested. After all the tests, SQL injection was well handled by Accipiens, not revealing

to be a flaw in the application since all information is dealt through the backend, which tests for

injections in all the forms used, the CSS, and the XML injection were both handled by

the Request.Form validation defined on the page directive. The brute-force attacks for directories and

authentication made of diverse wordlists, not only from commonly known wordlists, as with the

wordlist created from the directories mapped by Burp Suite and OWASP ZAP, but since the

authentication is handled by HTTP, which timeout after some tries and no new directories were found it

is plausible to assume that it is not a vulnerability of the application. As for the HTTP request

smuggling, it was impossible to test if it was a real vulnerability since it was impossible to bypass the

requests' authentication. Some known vulnerabilities of the system were also tested in terms of the

frameworks used and system specification and from reports of previous pentests made to the

application.

Demonstration

66

Figure 91: Result of CSS on Accipiens

Since the access was already granted and none of the vulnerabilities found were exploited, there was no

privilege escalation and effort involved to maintain access.

4.5.6 Analysis of the Results

Despite the results, and even though not many vulnerabilities were found, it does not imply that the

system is unbreakable and secure.

Table 11 – Analysis of the Results Stage Process

Input Tools Output

Results of Exploitation Manual Inspection Impact on the System

Established Goals and Scope Result of Pentest

Some of the vulnerabilities found are still something to worry about, for instance, the information

contained in the errors stack, which exposes internal information about the server configuration and

paths to any user that runs into an error (see figure 91). Most of the vulnerabilities found are positive,

but they can all be avoided by changing the parametrization of the application and its configurations.

4.5.7 Reporting

The communication of the technical details of the test and all of the aspects planned on the first stage

of the pentest is done in the Reporting stage. At this point, the tester should elaborate a document

containing a description of the scope, information disclosed during the process, the steps taken by the

Demonstration

67

tester to exploit any vulnerability, the impact of the performed exploitation, and solutions to solve the

found vulnerabilities.

Table 12 – Reporting Stage Process

Input Tools Output

Executive Summary Manual Inspection Final Report

Technical Report Microsoft Word

Additional Information

In this case, the report of the whole process is mainly done through this dissertation, except for sensitive

details regarding local addresses, the location of the vulnerabilities, and additional technical information

due to the NDA previously signed.

4.6 Conclusion

The penetration testing results show that the application has some vulnerabilities, mainly in terms of

configuration and the disclosure of sensitive data (directories, scripts, and additional system

information) and browsable directories. Most of these vulnerabilities can be prevented by setting the

correct configuration for the application and setting up the proper permissions for the existing

directories. However, since Accipiens is hardly reachable to users outside of the organization, these

vulnerabilities do not pose a critical threat to the application.

Conclusions and Future Work

68

Chapter 5 – Conclusions and Future Work

5.1 Conclusions

In this dissertation, a new methodology to perform web application penetration testing was developed,

involving seven stages, similar to the PTES methodology, applying some of the standards within the

main sections, performing a scoping meeting, using a similar approach to the intelligence-gathering

process, and undergoing the same rules of engagement, while also taking a more active approach

towards the application, following the same basics of each stage of the OWASP methodology.

The primary difference and value in the design methodology is its genericity. PTES presents a standard

methodology to be followed by both customers and testers, allowing businesses to get more information

on specific baselines of work and testers to get more information on what should be taken into account

and the activities needed to perform a penetration test. OWASP presents a detailed methodology to test

applications during the whole software development life cycle and is directly related not only to the

application but also the whole system and its network. In the developed methodology, any tester may

find generic methods and tasks to perform a complete penetration test, with the main focus being the

application itself and not the whole system.

As a proof of concept, Accipiens software was used as a test case for a penetration test using the defined

methodology. Through the appliance of this methodology on a real application scenario that was

assessed through previous penetration tests and corrections and having results that go accordingly to

standards of two of the most applied methodologies for penetration testing, it is possible to assume that

it applies to assessing the security of an application. Each step taken towards this process was explained,

and the tools used, ending with the finding of some vulnerabilities.

This investigation adds value to the academic level because it contains not only a comparison between

different types of tools and methodologies but also an applicable methodology to test web applications

using specific testing standards and tools that ended resulting in no false-positive vulnerabilities found,

and even though there were not many vulnerabilities found, some could have severe consequences for

the application and its integrity. It is also clear that constant security analysis should be performed on

developed software as the risks increase with technological adoption. Even if companies take measures

to prevent any security flaw, there is still human error. It is better to prevent than to cure.

Conclusions and Future Work

69

5.2 Limitations and Future Work

The limitations and future work are related and can be explained through four main topics: limitation

in terms of the chosen tools, the limited test cases, the analysis of vulnerabilities and their exploits, and

limitation of the scope.

5.2.1 Limited choice of vulnerability scanners

While performing the pentest, only open-source vulnerability scanners were used. According to the

research made, they were chosen based on evaluation, coverage, and accuracy while detecting

vulnerabilities and their usage as standard. During the demonstration of the methodology, with the use

of the scanners and due to familiarization with the software, some of the configurations and proper use

of the tools turned out to be easier as the tests were going through, so it would be recommended to

perform some tests to the chosen tools before applying this methodology, as each application is

different. However, there are many more scanners to be used; thus, it is recommended to apply this

methodology to test other web applications and include more tools within the industry standards.

5.2.2 Limited test cases

As this methodology was only used to test Accipiens, future work can be done by testing and applying

this methodology on other web applications to develop it to cover a wider variety of vulnerabilities,

using more tools and becoming more generic.

5.2.3 Analysis of vulnerabilities and their exploits

Future work can be done for a more in-depth approach in analyzing vulnerabilities and their exploits as

the knowledge applied was based on the research made during the systematic literature review and the

vulnerability analysis stage of the methodology. It is recommended to have more expertise towards the

penetration testing subject and a better understating of the process behind these methods of assessing

security.

5.2.4 Limitation of the scope

Due to the limitation of the scope, certain operative services were excluded from the scope, as well as

the database. In order to thoroughly test the developed methodology, future work can be done in order

to test the appliance of this methodology to test the entire infrastructure behind the web application; this

way, it may be possible to conclude more limitations and tasks to be developed and performed.

Appendices

70

Bibliography

Abdul Raman, R. H. (2019). Enhanced Automated-Scripting Method for Improved Management of

SQL Injection Penetration Tests on a Large Scale. 2019 IEEE 9th Symposium on Computer

Applications & Industrial Electronics (ISCAIE), 259–266.

https://doi.org/10.1109/ISCAIE.2019.8743936

Alzahrani, M. E. (2018). Auditing Albaha University Network Security using in-house Developed

Penetration Tool. Journal of Physics: Conference Series, 978(1). https://doi.org/10.1088/1742-

6596/978/1/012093

Auger, R. (2012). Threat Classification “Taxonomy Cross Reference View.”

http://projects.webappsec.org/w/page/13246975/Threat Classification Taxonomy Cross

Reference View

Bechtsoudis, A., & Sklavos, N. (2012). Aiming at Higher Network Security through Extensive

Penetration Tests. IEEE Latin America Transactions, 10(3), 1752–1756.

https://doi.org/10.1109/TLA.2012.6222581

Bernardo Damele A. G., & Miroslav Stampar. (2021). sqlmap. https://sqlmap.org/

Cangea, O. (2018). Ethical Hacking Solution to Defeat Cyber Attacks. Petroleum - Gas University of

Ploiesti Bulletin, Technical Series, 70(2), 29–36.

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=136232619&site=eds-live

Chen, S. (2016). Price and Feature Comparison of Web Application Scanners. SECTOOL Market.

http://sectoolmarket.com/price-and-feature-comparison-of-web-application-scanners-

opensource-list.html

Christian Mehlmauer. (2021). Gobuster. Github. https://github.com/OJ/gobuster

Denis, M., Zena, C., & Hayajneh, T. (2016). Penetration testing: Concepts, attack methods, and defense

strategies. 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), 1–

6. https://doi.org/10.1109/LISAT.2016.7494156

EC-Council. (2020). TOP PENETRATION TESTING TOOLS THAT ARE EASY TO USE.

https://blog.eccouncil.org/top-penetration-testing-tools-that-are-easy-to-use/

Farah, T., Alam, D., Kabir, Md. A., & Bhuiyan, T. (2015). SQLi penetration testing of financial Web

applications: Investigation of Bangladesh region. 2015 World Congress on Internet Security

(WorldCIS), 146–151. https://doi.org/10.1109/WorldCIS.2015.7359432

Federal Bureau of Investigation - Internet Crime Complaint Center. (2020). Internet Crime Report.

Appendices

71

Gondim, J. J. C., de Oliveira Albuquerque, R., Nascimento, A. C. A., Villalba, L. J. G., & Kim, T. H.

(2016). A methodological approach for assessing amplified reflection distributed denial of service

on the internet of things. Sensors (Switzerland), 16(11). https://doi.org/10.3390/s16111855

Google. (2021). https://www.google.pt/

Gupta, C., Singh, R. K., & Mohapatra, A. K. (2020). A survey and classification of XML based attacks

on web applications. Information Security Journal: A Global Perspective, 29(4), 183–198.

https://doi.org/10.1080/19393555.2020.1740839

HCL Software. (2021). AppScan. https://www.hcltechsw.com/appscan

Hevner, A., & Chatterjee, S. (2010). Design Research in Information Systems (Vol. 22). Springer US.

https://doi.org/10.1007/978-1-4419-5653-8

“Hobbit.” (2021). Netcat 1.10. https://nc110.sourceforge.io/

Horvath, I. (2007). Comparison of three methodological Approaches of design research. 16th

International Conference on Engineering Design.

Invicti. (2021a). Acunetix. https://www.acunetix.com/

Invicti. (2021b). Netsparker. Invicti. https://www.netsparker.com/

ISECOM. (2021). OSSTMM. OSSTMM. https://www.isecom.org/OSSTMM.3.pdf

Jain, T., & Jain, N. (2019). Framework for Web Application Vulnerability Discovery and Mitigation

by Customizing Rules Through ModSecurity. 2019 6th International Conference on Signal

Processing and Integrated Networks (SPIN), 643–648.

https://doi.org/10.1109/SPIN.2019.8711673

Josep. (2021). FOCA. Github. https://github.com/ElevenPaths/FOCA

Kalirathinam, S. P. (2019). Penetration Testing Tool for Web Applications.

Kim, S., Han, H., Shin, D., Jeun, I., & Jeong, H. (2009). A study of international trend analysis on web

service vulnerabilities in OWASP and WASC. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 5576

LNCS (pp. 788–796). https://doi.org/10.1007/978-3-642-02617-1_80

Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009).

Systematic literature reviews in software engineering – A systematic literature review.

Information and Software Technology, 51(1), 7–15. https://doi.org/10.1016/j.infsof.2008.09.009

Krasniqi, G., & Bejtullahu, V. (2018, October 27). Vulnerability Assessment and Penetration Testing:

Case study on web application security. 2018 UBT International Conference.

https://doi.org/10.33107/ubt-ic.2018.213

Appendices

72

Liu, L., Su, G., Xu, J., Zhang, B., Kang, J., Xu, S., Li, P., & Si, G. (2017). An Inferential Metamorphic

Testing Approach to Reduce False Positives in SQLIV Penetration Test. 2017 IEEE 41st Annual

Computer Software and Applications Conference (COMPSAC), 675–680.

https://doi.org/10.1109/COMPSAC.2017.276

Logic, B. (2021). Knoxss. https://knoxss.me/

Metacrawler. (2021). Metacrawler. https://www.metacrawler.com/

Morgan, S. (2020). Global Cybercrime Damages Predicted To Reach $6 Trillion Annually By 2021.

CyberCrime Magazine. https://cybersecurityventures.com/annual-cybercrime-report-2020/

Mudiyanselage, A. K., & Pan, L. (2020). Security test MOODLE: a penetration testing case study.

International Journal of Computers and Applications, 42(4), 372–382.

https://doi.org/10.1080/1206212X.2017.1396413

Mukhopadhyay, D., Karmakar, S., Meshram, A., & Jadhav, A. (2019). A Prototype of IoT based

Remote Controlled Car for Pentesting Wireless Networks. 2019 Global Conference for

Advancement in Technology (GCAT), 1–7. https://doi.org/10.1109/GCAT47503.2019.8978354

Nagendran, K., Adithyan, A., Chethana, R., Camillus, P., & Bala Sri Varshini, K. B. (2019). Web

application penetration testing. International Journal of Innovative Technology and Exploring

Engineering, 8(10), 1029–1035. https://doi.org/10.35940/ijitee.J9173.0881019

Nagpure, S., & Kurkure, S. (2017). Vulnerability Assessment and Penetration Testing of Web

Application. 2017 International Conference on Computing, Communication, Control and

Automation (ICCUBEA), 1–6. https://doi.org/10.1109/ICCUBEA.2017.8463920

Nmap. (2021). Nmap. Nmap. https://nmap.org/

OffSec. (2021). Kali Linux. https://www.kali.org/

Org., K. (2021). Searchsploit. Kaliorg. https://www.kali.org/tools/exploitdb/

Org., W. (2021). w3af. http://w3af.org/

OSP International LLC. (2021). PMP ITTO Complete Guide (Inputs, Tools, Techniques & Outputs).

PMP ITTO Complete Guide (Inputs, Tools, Techniques & Outputs).

OWASP. (2021a). OWASP ZAP. OWASP. https://owasp.org/www-project-zap/

OWASP. (2021b). Penetration Testing Methodologies. https://owasp.org/www-project-web-security-

testing-guide/latest/3-The_OWASP_Testing_Framework/1-

Penetration_Testing_Methodologies#owasp-testing-guides

Appendices

73

Palma Salas, M. I., & Martins, E. (2015). A Black-Box Approach to Detect Vulnerabilities in Web

Services Using Penetration Testing. IEEE Latin America Transactions, 13(3), 707–712.

https://doi.org/10.1109/TLA.2015.7069095

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V., & Bragge, J. (2020). Design

Science Research Process: A Model for Producing and Presenting Information Systems Research.

http://arxiv.org/abs/2006.02763

Pereira, R., & Serrano, J. (2020). A review of methods used on IT maturity models development: A

systematic literature review and a critical analysis. Journal of Information Technology, 35(2),

161–178. https://doi.org/10.1177/0268396219886874

Poltavtseva, M. A., & Pechenkin, A. I. (2017). Intelligent data analysis in decision support systems for

penetration tests. Automatic Control and Computer Sciences, 51(8), 985–991.

https://doi.org/10.3103/S014641161708017X

PortSwigger. (2021a). ASP.NET ViewState without MAC enabled.

https://portswigger.net/kb/issues/00400600_asp-net-viewstate-without-mac-enabled

PortSwigger. (2021b). Burp Suite. PortSwigger. https://portswigger.net/

PTES. (2014). High Level Organization of the Standard. Penetration Testing Execution Standard.

http://www.pentest-standard.org/index.php/Main_Page

Rapid7. (n.d.). Metasploit Framework. Retrieved January 5, 2021, from

https://docs.rapid7.com/metasploit/msf-overview/

Rapid7. (2021). Browsable web directory. https://www.rapid7.com/db/vulnerabilities/http-generic-

browsable-dir/

Repeat, S. (2021). IP Addresses Found in the Viewstate can be dangerous. https://scanrepeat.com/web-

security-knowledge-base/potential-ip-addresses-found-in-the-viewstate

Riverbed Technology. (2021). Windump. https://www.winpcap.org/windump/

Security, O. (2021). Exploit-DB. Exploit-DB. https://www.exploit-db.com/

Singh, N., Meherhomji, V., & Chandavarkar, B. R. (2020). Automated versus Manual Approach of

Web Application Penetration Testing. 2020 11th International Conference on Computing,

Communication and Networking Technologies (ICCCNT), 1–6.

https://doi.org/10.1109/ICCCNT49239.2020.9225385

Skare, M., & Riberio Soriano, D. (2021). How globalization is changing digital technology adoption:

An international perspective. Journal of Innovation & Knowledge.

https://doi.org/10.1016/j.jik.2021.04.001

Appendices

74

SonarSource. (2021). SonarQube. https://www.sonarqube.org/

Sullo, C. (2021). Nikto. https://github.com/sullo/nikto

Tenable. (2021a). HSTS Missing From HTTPS Server (RFC 6797).

https://www.tenable.com/plugins/nessus/142960

Tenable. (2021b). Nessus. Tenable. https://pt-br.tenable.com/products/nessus

Teodoro, N., & Serrao, C. (2011a). Assessing the Portuguese Web applications security. 2011 World

Congress on Internet Security (WorldCIS-2011), 21–26.

https://doi.org/10.1109/WorldCIS17046.2011.5749875

Teodoro, N., & Serrao, C. (2011b). Web application security: Improving critical web-based applications

quality through in-depth security analysis. International Conference on Information Society (i-

Society 2011), 457–462. https://doi.org/10.1109/i-Society18435.2011.5978496

Tetskyi, A., Kharchenko, V., & Uzun, D. (2018). Neural networks based choice of tools for penetration

testing of web applications. 2018 IEEE 9th International Conference on Dependable Systems,

Services and Technologies (DESSERT), 402–405.

https://doi.org/10.1109/DESSERT.2018.8409167

The Tcpdump Group. (2021). tcpdump. https://www.tcpdump.org/

Vijayalakshmi, K., & Syed Mohamed, E. (2020). Case Study: Extenuation of XSS Attacks through

Various Detecting and Defending Techniques. Journal of Applied Security Research, 1–36.

https://doi.org/10.1080/19361610.2020.1735283

Vondráček, M., Pluskal, J., & Ryšavý, O. (2018). Automated Man-in-the-Middle Attack Against Wi-Fi

Networks. The Journal of Digital Forensics, Security and Law.

https://doi.org/10.15394/jdfsl.2018.1495

Wang, S.-L., Wang, J., Feng, C., & Pan, Z.-P. (2016). Wireless Network Penetration Testing and

Security Auditing. ITM Web of Conferences, 7, 03001.

https://doi.org/10.1051/itmconf/20160703001

Wireshark. (2021). Wireshark. https://www.wireshark.org/

