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Abstract

This paper looks at the extraction of trends of household electrical seasonal
consumption via load disaggregation. With the proviso that data for the sev-
eral home devices can be embedded in a tensor, non-negative multi-way array
factorization is performed in order to extract the most relevant components.
First, in the decomposition step the decomposed signals are incorporated in
the test signal consisting of the whole-home measured consumption. Second,
the disaggregated data corresponding to each electrical device is obtained
by factorizing the associated matrix through the learned model. Finally, we
evaluate the performance of load disaggregation by the supervised method
and study the trends along several years and across seasons. Towards this
end, computational experiments were yielded using real-world data from a
household electrical consumption measurements along several years. While
breaking down the whole house energy consumption into appliance level gives
less accurate estimates in the late years, we empirically show the adequacy of
the method for handling the earlier years and the estimates of the underlying
seasonal trend-cycle.

1. Introduction

Energy disaggregation of the total household electrical consumption into
each appliance’s demand has recently received increased attention due to
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energy efficiency concerns which gave rise to the advent of smart grids. Spe-
cific information on each home appliance plays an important role for energy-
context awareness of the consumers about their behavior towards energy ef-
ficiency [1] as well as for activitymodelling either for ambient assisted living
environments [2] as for response demand energy efficiency since the discrim-
ination of electricity consumption routines for individual households may be
useful for electricity service companies [3]. However, existent commercial
electricity meters report only aggregated load data. Thus a tool to provide
detailed information to the end-user or service utilities at virtually no cost
is needed.

This study explores and evaluates the performance of a supervised single-
channel source separation approach based on multi-way array (tensor) factor-
ization for electrical source modeling regarding load disaggregation at long-
term using a real dataset from an household. Multi-way arrays are a natural
representation for multi-dimensional data and have been widely used in a
variety of applications ranging from signal analysis neuroscience to source
separation [4, 5, 6]. In a previous work, [7], we proposed a method for energy
disaggregation STMF (Source Separation via Tensor and Matrix Factoriza-
tion) where the data source model is obtained via non-negative factorization
of a tensor composed by the collected consumption data of each electrical de-
vice for a given house (prior measurements). The learned source models are
used to predict the power consumption of each device over a period of time
where only the whole-home electrical consumption signal (aggregated signal)
is measured. The number of active appliances in a household depends on the
time of day, weekday and season as wells as on personal needs, since every
person has different routine habits concerning appliances’ usage. Although
the electrical demand of appliances changes in accordance to consumer’s be-
havior, user’s electrical consumption is strongly related to the type of the
season of the year. Hence, as STMF is a supervised method, i.e. prior data
is required to train the source models, its assessment on how to achieve load
disaggregation for different seasons is relevant to be explored. The perfor-
mance evaluation in [7] considers a real-world dataset comprising data for
several households gathered during a few months. In this work instead we
look at the seasonal trends in electrical consumption analysing data from
only one household over a longer period of time.

The remainder of this paper is organized as follows: Section 2 reviews
recent related work. Section 3 introduces the necessary background and de-
scribes the load disaggregation problem as single-channel source separation
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problem. Section 4 briefly presents the Source Separation via Tensor and Ma-
trix Factorization (STMF) approach, further explaining how the multi-way
arrays are used to define the source models and lately used to disaggregate
unseen whole-home measurements. Section 5 describes the computational
experiments including the dataset, the experimental setup and the perfor-
mance metrics. Section 6 evaluates the STMF approach to deal with the
seasonal trends on a real dataset of an anonymous real household. Section 7
concludes the paper and discusses potential extensions for future work.

2. Related Work

Non-intrusive Load Monitoring (NILM) systems [8, 9] provide the re-
quired detailed consumption by disaggregating the whole-home electrical de-
mand signal acquired at a single point (aggregated/mixed data). A NILM
method that uses a single point of power measurement requires both hard-
ware and software components: an electricity load sensor and signal process-
ing algorithms. As an example Figure 1 illustrates a disaggregation of the
whole-home signal into the main house network circuit devices’ consumption
(this specific example was drawn from the data that was analysed in the
following work experiment). From a complete NILM process, we are able to
access the individual appliance/circuit loads for diverse end-use applications.
From the beginning of NILM, it was clear that, although simple hardware
was employed, complex software was needed [8], turning NILM into a very
challenging problem. Most of the related research (e.g. [10, 11, 12]) followed
initial Hart’s framework based on appliances signatures which require: (i)
acquisition of signals from the aggregate consumption of an electrical net-
work; (ii) extraction of features of important events, such as changes in the
electrical power measurements (known as steady-state changes) or character-
istics; and (iii) identification of these events. These steady-state changes in
signals (which can be obtained from real and reactive power reading samples
for instance) are characterized by their magnitude and sign, corresponding
to the turning on or off of each appliance in the network circuit. These sig-
natures can be used to identify appliances such as heat pumps, dishwashers
and refrigerators by recognizing the initial spikes in the power readings [10]
or to identify the major end-uses with only the changes in the real power
[13]. On the other hand, another type of electrical IDs, the transient signa-
tures, that are composed by features extracted during the period bounded
by two steady-states could provide a more accurate description of a given de-
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vice. Nevertheless, these transient signatures demand a very high-sampling
rates as referred in [11]. Consequently, transients are being mainly applied
to monitor loads in commercial and industrial buildings [14]. Yet the electric
noise occurring in the signal when an appliance is plugged into the socket,
an example of transient signature, was investigated for the identification of
household devices using a specially contrived device as the sensor meter [11].
However, this signature is highly conditioned by the electrical system of the
household, mostly leading to incorrect identifications wherever a device is
plugged into a different socket.

Notwithstanding the significant progress that has been made in the iden-
tification of the appliances’s signatures [15], recent approaches presenting
diverse and interesting perspectives have appeared [16]. By reinterpreting
the load disaggregation problem, Kolter et al. proposed a formulation where
load disaggregation corresponds to the separation of the aggregated energy
consumption into the electrical demand of each device or component circuit
in the household network. The energy disaggregation problem can thus be
cast into a single-channel source separation problem. In this context, ap-
proaches that learn data-adaptive representations, usually applied to source
separation problems, as sparse coding and Non-negative Matrix Factoriza-
tion (NMF) have been shown to be suitable to estimate the individual appli-
ance/circuit’s consumptions based solely on the whole-home electrical on-site
measurements.

Since the electrical consumption is always a non-negative quantity, either
non-negative restrictions may be imposed or specific non-negative methods
can be used. In such approaches, non-negative representations of electri-
cal consumption for each device in the network are learned, which can be
enriched with information supplied by the whole-home signal, and disag-
gregation is then achieved for a set of unknown aggregated signals. Given
that the existence of prior information about the individual consumptions re-
quired to define the representations of electrical consumption at device level
is assumed, these methods are supervised. This paper emphasizes the the
need and importance of this kind of approaches by empirically showing the
methodology applied to a real-world dataset of a French household where
on-site measurements were acquired during a fixed setup period. Without
needing source models’s readjustment, the method here proposed is able to
yield load disaggregation forecasts for a couple of years ahead.
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Figure 1: Total power load (top) and by appliance (bottom) for a time slice of 24hr
corresponding to the electrical household consumption in December 2006.

3. Non-Intrusive Load Disaggregation

Non-Intrusive Load Disaggregation (NILM) aims to identify (or disam-
biguate) appliances (or groups of appliances) based in the appliance’s power
characteristics using only aggregated load measurements. The procedure al-
lows to detail electrical consumption of diverse equipments which, in turn,
can either be used to lead to energy savings due to potential consumer be-
havior change or to apply in assisted living environments. The specific in-
formation [8] is obtained through feature extraction from the acquired signal
by classification based on each distinctive appliance power characteristics.
Load disaggregation regarded as a classification problem is a widely studied
approach in NILM related research [15, 17]. Alternatively, since the goal
is to recover the electrical consumption of each device/circuit (source sig-
nals) from the aggregated signal, approaches such as signal-channel source
separation are also feasible.

Formally, the disaggregation of whole-home electrical consumption into
the electricity demand associated with each appliance in the network can be
described as follows. Given an aggregated signal

x̄ = [x̄ (1) , x̄ (2) , . . . , x̄ (T )]T , (1)
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corresponding to the aggregated electrical consumption during a period of
time T we can rewrite it as the outcome of a mixing process f of sources
xi, i = 1, . . . , k, i.e. the signals associated with the electrical consumption of
each device or circuit i,

xi = [xi (1) , xi (2) , . . . , xi (T )]T . (2)

In this case f is assumed as the linear mixing process thereby x̄ is a linear
combination of the xi:

x̄ (t) =
k∑

i=1

xi (t). (3)

For a set of m daily observed signals, each column of X̄ ∈ IRT×m represents
the m-th aggregated consumption over the m-th day and each column of
Xi ∈ IRT×m the m-th daily consumption signal associated with the device i.
Thus, the aggregated consumption verifies

X̄ =
k∑

i=1

Xi. (4)

In a source separation based approach, data source models can be learned
if training data is available by extracting properties of xi. This modeling
can be accomplished using matrix factorization for which a source xi at a
particular instant t is the a combination of bases, collecting the main charac-
teristics of the source and the correspondent activations [18]. Formally, given
Xi ∈ IRT×m the goal is to represent Xi by a factorization BiAi, such that
Bi ∈ IRT×r is a matrix of r bases and Ai ∈ IRr×m is an m-dimensional set of
activations. The factorization BiAi must be computed “as close” as possible
of Xi. Moreover, the energy consumption is a non-negative quantity which
means that not only the data but also the factor matrices are composed by
non-negative elements thus needing non negative methods to keep the data
meaningful. These restrictions make it evident that the use of Non-Negative
Matrix Factorization (NMF) [19] is the most adequate method.

In terms of the overall machine learning system, note that X̄ and Xi

are solely available for training and a set of m′ different aggregated signals,
X̄ ′ ∈ IRT×m′

are used at the test step. At this point, we want to decompose
X̄ ′ into X ′i, i = 1, . . . , k, i.e. into the signals associated with each device (or
group of devices).
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Figure 2: (a) PARAFAC decomposition method for a 3-order tensor (b) Tensor of power
demand X in the 3 dimensions (Time-Minutes, Time-Days and Devices) [7].

4. Energy Disaggregation via Tensor and Matrix Factorizations

A tensor Y ∈ IRI1×I2×···×In is a multi-way array also known as N -way
tensor where N corresponds to the number of involved dimensions, and each
element (i1, i2, . . . , iN) is denoted by yi1,i2,...,iN . Analogously to columns and
rows of matrices, one-dimensional and two-dimensional sections of tensors
can be defined. The one-dimensional sets are obtained by fixing every tensor
index excluding one. Likewise two-dimensional slices result from fixing every
tensor index except two of them. A particular example of the latter for a
3-order tensor is the frontal slice Y:,:,i3 .

The idea and the respective illustration of using multi-way arrays and
associated non-negative factorization for load disaggregation was proposed
in [7]. In order to integrate all the important and dependent energetic fea-
tures for circuit/appliance load disaggregation, we define a 3-order tensor
X ∈ IRT×m×k by considering that each frontal slice of the tensor is a matrix
Xi representing the electrical consumption of device i during m days using
T samples a day (see Figure 4).

This multi-dimensional representation allows for the exploration across
the three different domains (T-minutes of a day, days sampling and devices)
and therefore the models resulting from the factorization of X still incorpo-
rate this information. Recalling that electrical consumption is a non-negative
quantity and, as explained in [7], this approach uses the PARAFAC method
with non-negativity constraints to, given R ∈ IN, decompose X into factors
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A ∈ IRT×R
+ , B ∈ IRm×R

+ and C ∈ IRk×R
+ , (corresponding the each one of the

dimensions as represented in Figure 2) such that

X ≈
R∑
l=1

al ◦ bl ◦ cl, (5)

where al ∈ IRT
+, bl ∈ IRm

+ , cl ∈ IRk
+ for l = 1, . . . , R, and ◦ represents the outer

product.
Then the i-th frontal slice of X can be approximated by

X̃i = ADiB
T , (6)

where Di is a diagonal matrix based on the i-th row of C. The columns of
X̃i correspond to the reconstructed consumption signals for the appliance i.
As a consequence, note that

X̄ ≡
k∑

i=1

Xi ≈
k∑

i=1

X̃i =
k∑

i=1

(
ADiB

T
)

= A

(
k∑

i=1

Di

)
BT , (7)

since X̄ ≡
∑k

i=1Xi and Xi ≈ X̃i.
To achieve the separation of m′ aggregated signals previously unseen,

X̄ ′ ∈ IRT×m′

+ , into the consumption of each device X̂ ′1, . . . , X̂
′
k ∈ IRT×m′

+ , we
need to decompose it accordingly. Since X̄ ′ is the only measured consump-
tion at this point, non-negative matrix factorization techniques are the most
suitable. Non-negative matrices W ∈ IRT×R

+ and H ∈ IRR×m′

+ are computed
in order to minimize the reconstruction error between WH and X̄ ′. Usu-
ally, this error is quantified by the Euclidean distance or alternatively by the
divergence of X̄ ′ from WH as proposed by Lee and Seung [19].

The non-negative factorization of X̄ ′ must include the model learned in
the previous steps, in particular, contains the characteristics associated with
the time and device domains, i.e., matrices A and C and the correspondent
matrices Di, i = 1, . . . , k to achieve X̂ ′i, i = 1, . . . , k. Thereby, the factorisa-
tion of the new signal matrix must be computed such that

X̄ ′ ≈ W̃

(
k∑

i=1

Di

)
H̃, (8)
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where W̃ and H̃ are, respectively, initialized as matrix A and as a random
matrix with positive values. The associated optimization problem then con-
sists in solving

minE ′
(
W̃ , H̃

)
= min

∥∥∥∥∥X̄ ′ − W̃
(

k∑
i=1

Di

)
H̃

∥∥∥∥∥
2

, (9)

with respect to W̃ and H̃, subject to W̃ , H̃ ≥ 0. Note that this is a diffi-
cult optimization problem since it is not convex for both W̃ and H̃. One
possible strategy is that of using an alternated optimization method: while

optimizing over W̃ , the factor
(∑k

i=1Di

)
H̃ remains fixed and repeat by

fixing the other matrix in turns. Considering Equations 7 and 8 both W̃
and A comprise time-domain information and the same observation can be
made for H̃ and BT . To keep W̃ and H̃ similar to A and BT in terms of
sparseness, constraints were added to the problem and non-negative matrix
factorization updates presented in [20] were used to solve the problem. The
Source Separation via Tensor and Matrix Factorization (STMF) approach is
summarized in Algorithm 1.

5. Computational Experiments

This section describes the dataset, the experimental setup and the per-
formance metrics used in the study.

5.1. Individual Household Electric Power Consumption Dataset

The Individual Household Electric Power Consumption Dataset (IHEPCD)
is an energy consumption dataset available at the UCI Machine Learning
Repository [21] that reports data measured in a real environment. The ag-
gregated and circuit/device specific electricity minute-averaged consumption
measurements were gathered during 47 months between December 2006 and
November 2010. For defining the training set we decided to use only the
measurements made in the household during the period of 15 days in De-
cember 2006. The remainder data, the daily signals for the years 2007, 2008,
2009 and 2010 (1425 daily signals) were then considered to be the test set.
Figure 3 ilustrates the average daily consumption of electricity for each year
in the dataset with the exception of the training set data. With respect to
seasonality, we decided to take a binary perspective on it. The months of
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Algorithm 1 The STMF algorithm [7]

Data: Xi ∈ IRT×m
+ , i = 1, . . . , k, X̄ ∈ IRT×m

+ , X̄ ′ ∈ IRT×m′

+ , R ∈ IN, ε ∈ IR+

Result: X̂ ′i ∈ IRT×m′

+ , i = 1, . . . , k
1 Let X ← Tensor(Xi, i = 1, . . . , k)
2 Use the non-negative PARAFAC model X and compute A, B and C
3 Let Di, i = 1, . . . , k be the diagonal matrix based on the i-th row of C

4 Initialize H̃ with random positive values

5 W̃ ← A

6 v0 ←
∥∥∥X̄ ′ − W̃ (∑k

i=1Di

)
H̃
∥∥∥

7 j ← 0
8 repeat

9 W ← W̃

(
k∑

i=1

Di

)
10 H̃ ← argminH̃≥0

∥∥∥X̄ ′ −WH̃
∥∥∥

11 H ←

(
k∑

i=1

Di

)
H̃

12 W̃ ← argminW̃≥0

∥∥∥X̄ ′ − W̃H
∥∥∥

13 vj =
∥∥∥X̄ ′ − W̃ (∑k

i=1Di

)
H̃
∥∥∥

14 j ← j + 1

15 until |vj − vj−1| < ε;

16 Predict X̂ ′i = W̃DiH̃

May, June, July, August, and September show an average daily demand lower
than 1.1kW across all the years in analysis. Therefore, we considered this
period to represent the Summer season while the Winter season comprises
the remaining months.

5.2. Experimental Setup

Three main circuits, for which the highest consuming appliances have
been identified, were monitored and discriminated as: the Kitchen circuit; the
Laundry circuit; and the WH-AC circuit. A fourth specification, which we
called Others, corresponds to the active power consumed in the household by
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Figure 3: Average daily consumption of electricity along the years 2007 to 2010 for the
dataset in analysis. Each column represents the week of the month while the rows corre-
spond to the day of the week (the first row corresponds to Sunday).

electrical devices that were not sub-measured. The complete characterisation
of the three main sub-metered circuits is:

(i) Kitchen circuit - containing mainly a dishwasher, an oven and a mi-
crowave without the hot plates since these are gas powered;

(ii) Laundry circuit - laundry room, containing a washing-machine, a tumble-
drier, a refrigerator and a light;

(iii) WH-AC circuit - electric water-heater and an air-conditioner;

(iv) Others - remnant active power consumed.

The dataset comprises the aggregated active power and the household
global reactive power, both measured in kW, the household global minute-
averaged current intensity (A), and the active energy for the three main
circuits of the house measured in Wh. However, there data missing repre-
senting 1.25% of the total of the signals. For the computational experiment,
using only active consumption measures, a preprocessing phase was carried
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out. First, data was transformed accordingly so as to represent the active
power in Watts. Second, for treating the missing data, a single imputation
of a period of zero-consumption was assumed. Third, the active power con-
sumed by electrical devices that was not sub-metered was calculated. The
latter comprises the fourth group in analysis (Others) as referred above. In
addition, the signals were normalized using the aggregated time series norm
to preserve the relative importance of each group. The measurements corre-
sponding to the period of 15 days in December 2006 comprise the training set.
In Figure 1 we illustrate the total power load and the load by each appliance
for a time slice of 24hr corresponding to the electrical household consumption
in December 2006 after completing the preprocessing mentioned above.

For the purpose of this work, we studied the performance of the STMF
method for forecasting seasonal electrical energy consumption in the house-
hold used in the IHEPCD dataset. The STMF was implemented using MAT-
LAB and the N-way Toolbox [22]. The source models were obtained through
the load disaggregation procedure over the training data. For testing, the
data was partitioned into years and, for each, the aggregated signals were
separated based on the model learned. The maximum number of iterations
was set to 1000 and the error threshold ε to 0.00001 (see Algorithm 1).

5.3. Performance Metrics

Within NILM context the performance is usually assessed according to
the specific method designed to solve the problem. If the load disaggregation
is solved as a classification problem metrics such as accuracy, precision and
recall are well-suited [17]. On the other hand, since our the approach is that
of to solve load disaggregation as a single channel source separation problem,
other performance metrics are required. One of the most useful ones is to
measure the performance of the STMF in terms of the disaggregation error∑k

i=1
1
2

∥∥∥Xi − X̂i

∥∥∥2

F
where Xi is the matrix of measured signals for equip-

ment i, X̂i is its predicted version and ‖•‖F is the Frobenius norm. Clearly,
this metric provides a global measure of the distance between the prediction
and the measured consumption [16]. However, and because the disaggrega-
tion error is not normalised, we have also resort to use another metric, the
root-mean-square error (RMSE), which measures the difference between the
predicted values and the truly observed amount. The RMSE is directly inter-
pretable in terms of measurement units and so is a better measure of goodness
of fit than a correlation coefficient. The RMSE was computed regarding (i)
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an overview of the error concerning the m days in study (d = 1, . . . ,m for
training and d = 1, . . . ,m′ for test) and (ii) a detailed error assessment by
appliance. For the former, the RMSE associated to both the aggregated

signal X̄ and its predicted version ˆ̄X, was calculated by RMSE(X̄, ˆ̄X) =√
sumT

t=1

∑m
d=1

(
X̄ − ˆ̄X

)2

/T ∗m. For the latter, the RMSE corresponding

to each device i between the measured signal Xi and its predicted version
X̂i, i = 1, . . . , k, the same formula with the necessary adjustments was used.
Additionally, we calculated the percentage of electrical energy associated with

the load demand of each device by %Xi =
∑T

t=1

∑m
d=1 Xi∑T

t=1

∑m
d=1 X̄

×100%. In this way, it

was possible to compose the electricity consumption profiles and thus to eval-
uate the STMF performance both in the long-term (i.e., across the years from
2007 - 2010) and in the seasonal trends (i.e., across Winter and Summer).

6. Results and Discussion

We begin by noticing that the STMF requires the previous setup of R,
the number of bases for the tensor decomposition. Therefore, the impact
of the variation of the number R on the disaggregation performance of the
method was studied. Figure 4 presents the results of the RMSE mean value
for all the yearly data under analysis. As it can be observed, the number
of bases for achieving the best value decomposition is R = 30. Thus, the
parameter R was set 30 since it yielded the best performance in regard of
the major metric considered in this work.

In the following, representative results using the metrics described are
presented. The STMF performance analysis is focused in three distinct di-
rections: observable trends across the years, season changes and performance
for each circuit. Firstly, an effectiveness analysis relating to the disaggrega-
tion error and the overall RMSE of both seasons is presented. Secondly, the
RMSE associated with each main sub-metered circuit for assessment of the
estimated consumption is estimated. Finally, the consumption profiles in
terms of percentage of load of energy are examined.

Figure 5 presents the average disaggregation error and the RMSE com-
puted over 30 runs with respect to each assigned season and corresponding
year as well as the overall yearly metrics performance. In general, the dis-
aggregation of Winter signals shows a higher disaggregation error than for
Summer. It is interesting to notice this particular occurrence since the source
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Figure 4: RMSE for R number of basis decomposition discriminated season and circuit
from years 2007 and 2010. 15



models are derived from a training signal consisting of 15 days of Winter
loads. In fact, the error resulting from the estimation of cold season loads,
although being small, corresponds to more than half of the values associ-
ated with Summer. Note also that the computed performance measure is a
global assessment and, in this experiment, the Winter test set comprises seven
months while the Summer consists of five months in each year. Thereby, the
number of entries in the error matrix for each appliances’ circuit associated
with Winter is clearly larger than for Summer. As a consequence, if these
are non-zero entries then they must necessarily influence the error values.
With regard on how accurate the disaggregate estimates are Figure 5also
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Figure 5: Mean Disaggregation Error and RMSE for the STMF results by year, season,
all the overall yearly metrics.

reports the overall yearly RMSE. It is noticeable that virtually no variation
on the RMSE values associated with the estimated total power consumption
was observed for the Winter season across all the years. A similar remark
can be drawn for the results achieved for the hot season. The relative error
between both seasons is at most of 0.0003, i.e., the error for Winter is 33%
higher than for the Summer, which reinforces the fact that the aggregated
estimated consumption for Summer days is more accurate than for Winter.

As previously stated, the optimization problem which is solved in the
test phase includes the learned source models from the Winter training data
(see Equation 9). The load disaggregation takes a single channel source
separation approach of the aggregated signal. To proceed with a throughout
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Figure 6: Mean RMSE for each major circuit across the years and seasons: other perspec-
tive.

analysis of the disaggregation estimates provided by the method, the circuits’
performance must also be analysed.

In Figure 6 the mean RMSE for the forecast of each main circuit across
the four years is presented. The previous observation of higher precision es-
timates for Summer when compared to Winter seasons remains valid, as it
should be expected. However, a closer look into these differences points out
that this trend is more evident in the group “Others”, where the RMSE in
Winter of 2007 is 80% higher than for the corresponding Summer. Although
decreasing in 2010 it keeps the observed trend as it turns out to be still 53%
higher.

Note that there is an increase in RMSE values from Summer 2007 to
2010 across all the appliances’ groups. Note that the RMSE values for the
Summer of 2007 was approximately 0.4 × 10−3 while for 2010 it increased
to 0.6× 10−3 and 0.5× 10−3 regarding the “WH-AC circuit” and the group
“Others”, respectively. We may also observe that for the former circuit the
RMSE values increased by 20% from the Winter of 2007 to 2010. Since the
source models were learned regarding data from Winter 2006, this increase
in the RMSE value may well be a direct result from a change of behaviors in
active appliances usage that could not be foreseen by the models. Indeed, as
it can be observed in Figure 7, the measured electricity consumption of the
WH-AC circuit corresponds to 30% of the total electrical usage in Winter
2007, which increases by 9% in 2010.

The energy profiles for 2007 and 2010 provided by the STMF as well as
the ground truth or measured consumption for each season are compared in
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Figure 7. The information of the profiles of the the ground truth illustrates
that groups “WH-AC circuit” and “Others” represent a predominant slice
of the loads [30%; 43%] and [46%; 57%], respectively. The remaining groups
represent a lower percentage of the consumption (< 10% each). With regard
to the profiles of the estimated consumption by the Source Separation via
Tensor and Matrix Factorization (STMF) method it can be observed that
the “WH-AC circuit” and the “Others” estimated usage is always lower than
the actual consumption. Moreover, the “Kitchen circuit” and the “Laun-
dry circuit” estimated usage is 10% higher than the ground truth while the
estimated usage of “Others” obtained for 2010 was the most accurate.
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Figure 7: Measured and predicted electrical consumption by STMF for years 2007 and
2010 by season and appliance’s circuit.

Towards a more detailed view of the seasonal changes presented by the
method we observed that from the Winter 2007 to the Summer 2007, the
ground truth trends for the several groups were successfully followed by
STMF estimates, excepting group “WH-AC”. Meanwhile, from Winter 2010
to Summer 2010, the trends of the ground truth were favourably tracked
by the STMF estimates for the group “Others”. In addition, from Summer
2007 to 2010 the method STMF originated good estimates of the “Kitchen
circuit” and “Laundry circuit”, following the ground truth trends.

These results are in line with the RMSE by appliance presented in Fig-
ure 6. As explained the whole-home electrical consumption for each year
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was disaggregated on the basis of part of 2006 Winter demand loads. In
the test phase sources may be misrepresented by the model downgrading in
some cases the STMF performance. Nevertheless, the observed failures in
predictions might also be due to personal variances of habits towards active
appliances’ usage across the years.

7. Conclusion

Energy efficiency is a concern of modern societies for environmental and
economic reasons. Electricity represents a considerable segment of the en-
ergy consumed in the residential sector, which is growing in importance. In
order to cut their energy bills households need to identify actions able to
bring the most savings. This can be achieved providing to the consumer
detailed appliance load information so that misuses can be easily identified.
Such information could be computed by breaking down the electrical energy
measure at a single global point, usually the electrical network entrance of
the household, into the loads of the several devices. This problem, known as
electrical energy disaggregation, can be cast into a non-intrusive load moni-
toring system if only the aggregated electrical consumption signal is sampled
without any plug level sensors.

The single-channel source separation approach exploited in this work is a
supervised method based on the use of multi-way arrays and correspondent
decomposition methods for solving the load disaggregation problem. Source
models are learned and then applied to predict the consumption of appli-
ances. Nevertheless, the usage of appliances vary, in particular from season
to season and so does the electrical consumption. Since the approach in study
is supervised, i.e. based on prior information for learning the source models,
the rationale behind this study consists in evaluating the method capability
to handle both seasonal and long-term trends in power demand. Towards this
end a computational experiment was designed using real-world data from a
French household. The source models were learned employing only 15 days
from the 2006 Winter and the whole-home electrical consumption from 2007
to 2010 was yearly disaggregated. A comprehensive performance assessment
of the method across the seasons and years was presented by applying over-
all performance metrics. Moreover, major groups appliance-level evaluation
was also performed. The outcome results uphold seasonal forecasting trend
patterns which demonstrate the adequacy of the method. Notwithstanding,

19



the long-term trends in electrical energy demand have shown to be affected
by the disaggregation performance in the late years.

Future work will focus on improving the optimization method by studying
different metrics for the non-negative tensor factorization procedure when
applied to electrical energy disaggregation. Another line of work is to explore
the seasonal effect in more detail by using several training sets with distinct
weights associated to each group of appliances.
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