

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-04-08

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Farinha, J. & Ramos, P. (2015). Extending UML templates towards computability. In Slimane
Hammoudi, Luis Ferreira Pires, Philippe Desfray, Joaquim Filipe (Ed.), Proceedings of the 3rd
International Conference on Model-Driven Engineering and Software Development. Angers:
SCITEPRESS.

Further information on publisher's website:
10.5220/0005257101220133

Publisher's copyright statement:
This is the peer reviewed version of the following article: Farinha, J. & Ramos, P. (2015). Extending
UML templates towards computability. In Slimane Hammoudi, Luis Ferreira Pires, Philippe Desfray,
Joaquim Filipe (Ed.), Proceedings of the 3rd International Conference on Model-Driven Engineering
and Software Development. Angers: SCITEPRESS., which has been published in final form at
https://dx.doi.org/10.5220/0005257101220133. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.5220/0005257101220133

Page 1 / 12

Extending UML Templates towards Computability

José Farinha1 and Pedro Ramos2
1ISTAR, ISCTE-IUL, Av. Forças Armadas, Lisbon, Portugal
1IT-IUL, ISCTE-IUL, Av. Forças Armadas, Lisbon, Portugal

{jose.farinha, pedro.ramos}@iscte.pt

Keywords: UML, Templates, Verification, Computability.

Abstract: UML templates allow the specification of generic model elements that can be reproduced in domain models

by means of the Bind relationship. Binding to a template encompasses the substitution of that template’s

parameters by compatible domain elements. The requirement of compatibility, however, is checked over by

UML in a very permissive way. As a consequence, binding to a template can result in badly-formed models

and non-computable expressions. Such option in the design of UML was certainly intentional and meant to

allow for richer semantics for the Bind relationship, as the specialization of the concept is advised at several

points of the standard. This paper proposes one such specialization. One that guarantees well-formedness

and computability for elements bound to a template. This is achieved by introducing the concept of

Functional Conformance, which is imposed between every template’s parameter and its application domain

substitute. Functional conformance is defined in terms of well-formedness rules, expressed as OCL

constraints on top of OMG’s UML metamodel.

1 INTRODUCTION

Through the concept of Template, UML allows the

definition of generic solutions to recurring problems.

An UML template is a model element embodying a

patterned solution that can be reproduced within any

domain model where the addressed problem is

observed. This is achieved by binding a model

element of that domain to the template, through a

Bind relationship. In order to have a template

reproduction contextualized to the target (domain)

model, a template is a parameterised element. A

template parameter marks an element participating

in the template’s specification that, in a reproduction

of that template, must be substituted by an actual

element in the target model. Only when all of the

template’s parameters are substituted, it becomes an

actual, fully integrated solution in the target model.

Aiming at getting consistent specifications out of

a template reproduction, UML enforces a set of

constraints to template parameter substitutions. One

such constraint imposes that a substitute element

must be of the same metaclass as the parametered

element: an attribute must be replaced by an

attribute, an operation by an operation, etc. Another

constraint ensures that if a parameter exposes a

typed element, its substitute must have a type that

conforms to that parametered element’s type.

Yet, the set of validations falls short in

guaranteeing the well-formedness of the element

resulting from the template. For instance, UML

allows an operation Op1 be substituted by an

operation Op2 whose signature is not compatible

with the former’s. If Op1 is substituted by Op2,

every call to Op1 in the template’s code will be

reproduced as a call to Op2…but with a set of

arguments aligned to Op1’s signature, which makes

such call to Op2 badly-formed. Furthermore, UML

allows the specification of a set of substitutions that

are not mutually consistent. For instance, having a

class and one of its attributes exposed as parameters

in a template, UML allows the former being

replaced by a class C’ and the latter by an attribute

that is not a member of C’. Merely considering the

semantics and constraints that UML declares for the

concept of template, according to version 2.1.4 of

the standard (OMG 2012), it seems the language

greatly relies on the modeller’s skills and prudence.

In spite of the permissive set of validations, a bad

substitution will generally be prevented by some

well-formedness rule, associated to some element

within the bound element that will try to use the bad

substitute. In the example above, the substitution of

Op1 by Op2 will generate errors raising from the

calls to Op2, which will actually prevent the

substitution. However, the error that will be reported

Page 2 / 12

will be detuned from the real source of the problem.

The problem will be reported somewhat like

“Arguments to Op2 do not match that operation’s

signature”. But the cause of the problem is the

substitution of Op1 by Op2. Hence, although UML

is not really trusting in the prudence of the

developer, it certainly trusts in his/her ability to

diagnose.

This paper proposes an additional set of

constraints for the concept of Template, aiming at

removing the aforementioned disadvantages. The set

of constraints was designed with the following

purposes: (1) Guaranteeing the well-formedness and

computability of any element resulting from the

application of a template; (2) Reporting problems

resulting from incorrect usages of a template to their

real causes, i.e., to inadequate bindings and/or

substitutions.

In (1), ‘well-formedness’ means that none of the

components of an element resulting from the

template will violate any constraint imposed by the

UML metamodel. ‘Computability’ means that every

expression within the template or within the bound

element can be processed and evaluated to a value

(including Null), i.e., the expression successfully

compiles in the scope of the model it belongs to. For

simplicity, in this text, the term ‘computability’ will

be used meaning ‘well-formedness’ as well.

To accomplish (2), the proposed constraints

establish conformance criteria between every

parametered element and its substitute. The way a

parametered element is used by the template does

not participate in the criteria. In that way, any error

may be reported exclusively in terms of the

adequacy of a substitute to a parameter, in the

context of a specific binding to the template.

The constraints put forth in this text formulate a

concept named Functional Conformance, a term

aiming to denote the equivalence between two

elements, from a third-party, client perspective. An

element (the substitute) conforms functionally to

another element (the parameter) if its characteristics

and scope allow it being used instead of the latter.

Functional Conformance is presented through its

definition and several illustrating examples, which

should provide an intuitive perception of its

effectiveness as a guarantee of computability. A

formal demonstration of that effectiveness is

postponed to a future paper, due to lack of space.

The structure of the paper is as follows:

 Section 2 provides a brief introduction to

the concept of Template in UML;

 Section 3 points out some problems in

assuring that elements resulting from

templates are well-formed and computable;

 Section 4 proposes the concept of

Functional Conformance to ensure

computability;

 Section 5 presents related work;

 Section 6 draws some conclusions on an

empirical evaluation of functional

conformance and outlines some prospective

benefits of the concept;

 The appendix includes a set of OCL

constraints that assess functional

conformance.

2 AN INTRODUCTION TO UML

TEMPLATES

In UML, a template is a parameterised model

element that can be replicated and have its replicas

contextualised to the models they are put into.

Model elements of several kinds may be qualified as

templates. For instance, classes, packages and

operations are allowed to be declared as templates

and, therefore, be reproduced as concrete classes,

packages and operations, respectively.

The complete set of model element types that

can be declared as templates – called templateable

elements – is comprehended by the following

metaclasses: Classifier, Package, Operation and

StringExpression. Classifier encompasses all kinds

of element that may have instances: Class, Datatype,

Association, Use Case, Activity, etc. Package

templates should be used when a model fragment

encompassing two or more classifiers is meant to

form a single template and be replicated as a whole.

Operation templates lack of graphical notation but

are supported by the UML metamodel. Finally,

StringExpression templates are used to derive

concrete element names or literal strings by

concatenating the values of a template’s parameters.

StringExpression templates do not pose

computability problems; therefore, they will not be

referred from now on.

In this paper, the term “target” is used to refer to

a model, package or class that gives context to a

replica of a template.

Figure 1 and Figure 2 show a class and a

package template, respectively. A template element

is recognized graphically through the dashed

Page 3 / 12

rectangle on the top-right corner, whose purpose is

to declare the template’s parameters.

Template parameters declare some of the

elements participating in the specification of the

template as parametered. Such elements are said

exposed as parameters. When applying a template,

its parametered elements must be replaced by

elements of the target model in order to obtain a

fully functional and contextualized reproduction of

the template. If any of the parametered elements is

not replaced, the reproduction of the template is also

a template – this allows the incremental definition of

templates.

In this text, for clarity reasons, parametered

element will sometimes be referred simply as

parameter. However, it should be noted this is use of

“parameter” in the broad sense, since there is a strict

difference in UML between the parameter and the

element it exposes: the parameter is a “mark”

superimposed to the element, which qualifies it as

replaceable when applying the template, and it can

supply a default in case such element is not

explicitly replaced.

Figure 1: Example of class template.

Figure 2: Example of package template.

The UML concept for assigning a target element

to a template parameter is Substitution. It is said that

the target element substitutes the parameter. The

former is often called actual parameter and the latter

formal parameter. In this text, for simplicity, an

actual parameter will be referred as the substitute.

In Figure 1, class Array is a template with two

parameters, T e k. T’s kind is Class, meaning it must

be substituted by a class. k’s kind is

IntegerExpression and therefore must be substituted

by such expressions, including one with a plain

literal value. In Figure 2, the package

StockManagement is a template with three

parameters – Warehouse, Product, and Stock – all of

them exposing classes. When applied to a target

package, its parameters require picking three target

classes as substitutes. These substituting classes will

receive the specifications of their respective

parametered classes, and any relationships between

these.

Both the name and the kind of a parameter are

determined by the element the parameter exposes. In

the example in Figure 1, parameter T exposes a class

named ‘T’ (not shown in the figure) and parameter k

exposes an integer expression named ‘k’. Parameters

adopt the names of the elements they expose.

Any model element accessible from a template

may be exposed as a parameter. For instance, in

Figure 3 AlphabeticList is a class-template with one

parameter that exposes another class. The dashed

line labelled “exposes” is merely illustrative; there is

no graphical notation in UML that links a parameter

to the element it exposes.

Figure 3: Definition of a template with a class-parameter.

A template may be used to specify elements

from scratch or to add specifications to elements

having specifications of their own. For instance, a

class-template may be used to create a class as a

replica of itself, as well as to add all its members

(features, constraints, etc.) to an existing class. The

application of a template is specified through a Bind

relationship. A Binding is a directed relationship

from a bound element to a template. By means of the

Bind relationship, everything specified for the

template is also valid for the bound element.

Figure 4 shows a binding to the AlphabeticList

template, by class AlphabeticList<Person> (which

is said anonymous). In that binding, the template

parameter (Item) is substituted by class Person. The

UML notation for a substitution is textual, in the

exposes

Page 4 / 12

form ‘parameter > substitute’, placed next to the

graphical representation of the binding. The figure

also shows (on the right) the semantics of that

binding: class AlphabeticList<Person> receives a

reproduction of AlphabeticList’s specification (of all

its features, behaviours, constraints, etc.) with all

references to Item replaced by references to Person.

It’s worth noting that, among the features inherited

by AlphabeticList<Person>, this class receives a

copy of the association-end connected to Item; such

copy will connect to Person, since this class

substitutes Item. Strictly, the association-end is

reproduced as a property and such property will not

be part of any association. Nevertheless, the

association symbol linking to Person is shown for a

question of clarity.

=

Semantics:

Figure 4: A bind and its semantics, producing an

anonymous class.

Figure 5 shows another bind to the same

template, with a bound class that is not anonymous,

but named Glossary. Strictly according to the

semantics of UML for the Bind relationship, the

binding of Glossary to AlphabeticList is equivalent

to the diagram on the right of that figure. In that

diagram, AlphabeticList<Concept> is a non-

referenceable auxiliary class, whose purpose is

solely the formalisation of the semantics.

=

Semantics:

Figure 5: Another example of binding to a template.

Figure 6 shows a bound class with specifications

of its own. In such cases, the bind merges the

specification of the template with the contents of the

bound class.

= Semantics:

Figure 6: A bound class with contents of its own.

The purpose of the AlphabeticList template is to

maintain a list of items sorted alphabetically. To

perform such ordering, its operations use an attribute

called Name in class Item (the use of Name is not

observable in the figure). Since the code of

AlphabeticList is copied to its bound classes, these

will also use a Name attribute. Being Item

substituted by another class, Name must also exist in

this class. If it doesn’t, the code of the bound class

will not be compilable. (Notice that class Item is not

part of the template; thus, Item’s contents will not be

copied to the substituting class; this class must have

a Name attribute of its own.) The situation is

exemplified in Figure 7: since Document doesn’t

have a Name attribute (but one called ‘Title’,

instead), every expression in the template referring

to Item::Name will not be computable once

reproduced in class Bibliography. For instance,

expressions ‘it.name’ and ‘iter.name’ will not be

computable in Bibliography.

Page 5 / 12

Situations such as in Figure 7 require flexibility

regarding the attribute corresponding to Name, in the

substituting class. This is achieved exposing Name

as another template parameter. The definition of the

template becomes as in Figure 8.

= Semantics:

Figure 7: A bind that produces non-computable code.

Figure 8: Definition of a template with a class parameter

and an attribute parameter.

Since the new parameter in Figure 8 exposes an

attribute, it must be substituted by an attribute in the

target model. For attribute-parameters, UML

establishes also that the type of the substitute must

conform to the type of the parametered attribute.

Thus, Name must be substituted by an attribute

whose type is String or a subtype of it.

Note: although the UML notation for a

substitution is textual, in this paper, for clarity

reasons, sometimes it is shown in a graphical way,

draw as a dashed arrow (similar to a dependency)

linking the parametered element to its substitute and

labelled with “substitution”.

3 SOME LIMITATIONS OF UML

TEMPLATES

Conformance of kind (class, attribute, package, etc.)

and conformance of type (this for typed elements)

are the only restrictions that apply to the substitution

of UML template parameters. Consequently, not

computable specifications such as the one previously

shown in Figure 7 and the one in Figure 9 are

considered valid bindings by UML.

Figure 9: A bind that produces non-computable code.

Since the referred situations lead to badly-

formed elements or non-computable expressions,

some error will be reported. However, that error will

not refer the binding, nor the substitutions it

contains, as the source of the problem. Instead, it

will refer problems within the bound element that

are not immediately recognized as consequences of

an erroneous binding or substitution.

For instance, the problem with Figure 7 is that

template AlphabeticList, as defined in there, is not

applicable to classes Bibliography and Document.

An error message should report that and, more

specifically, it could mention that the substitution of

Item by Document cannot be done. Instead, the error

that will be raised is about variables it and iter being

unable to access an attribute called ‘Name’.

Similarly, the error raised in Figure 9 will

mention that variables it and iter can’t access an

attribute (Code), instead of the real cause: the

incorrect substitution of the attribute Name of Item

by an attribute not pertaining to the substitute of

Item (Person). The rule that would signal correctly

Notice

Page 6 / 12

the problem would be: considering two parametered

elements Pchild and Pparent being both substituted in a

binding, if Pchild belongs to Pparent then the substitute

of Pchild must belong to the substitute of Pparent. Such

rule should be a constraint to substitutions or to

bindings, but no such constraint exists in UML.

Similar problems will arise if a single-valued

property is substituted by a multivalued one, or if an

operation is substituted by another with

incompatible signature.

The examples given so far show that there are

some reasonable constraints missing in UML

templates. Although not strictly necessary to prevent

badly-formed elements resulting from a template,

their absence increases the risk of ill-specified binds

and causes error-reporting dyslexia. Next section

proposes a set of constraints that would remove

these shortcomings of UML templates while

ensuring the computability of bound elements.

4 FUNCTIONAL

CONFORMANCE

The concept of Functional Conformance between

two model elements is used to express that if one is

used successfully by a template the other will also be

used successfully in a reproduction of that template,

if used in the same circumstances and with the same

goals. Taking an example from a domain other than

computer science, it can be said that a piano is

functionally conformant to a clavichord, for the

purpose of playing a classical piece of music. The

piano may be used in today’s reproductions of a

Mozart piece, substituting the long ago used

clavichord. Providing that it is used to play the

keyboard line of the piece (it won’t be functional to

play the strings’ part), it will produce the same

results as the clavichord (or even better results). If

the analogy is allowed with template-based software

development, the parametered element in a template

is the original “device” to which its substitute is

expected to be conformant.

In the scope of a particular binding, an element

of the target space functionally conforms to an

element of the template space if it conforms to the

former regarding type, multiplicity, contents, and

staticity, and if it is visible from the bound element.

The following subsections define these requirements

for conformance.

Note: in some figures of this paper conformance

is shown graphically as a dashed arrow, from the

parametered element to its substitute, meaning that

the latter conforms to the former. This graphical

representation uses the reversed direction of that of

the phrase “conforms to” for the sake of consistency

with the direction of the UML notation for

substitution (parametered –> substitute).

4.1 Type Conformance

Type conformance applies to every typed element:

properties, expressions, constants, operation

parameters, action pins, etc. This conformity

criterion is partially enforced by UML, which states

that the type of a substituting element must be the

same or a subtype of that of the parametered

element. However, the UML rule is incomplete, for

two reasons: (1) UML only applies it to properties

and value specifications (expressions and constants),

(see constraints of TemplateParameterSubstitution

and operation isCompatibleTo(), in (OMG 2012));

(2) this rule should be applied only if the type of the

parametered element is not substituted.

Full type conformance should be: (1) imposed on

all typed elements; (2) formulated considering two

different scenarios:

 If parametered element eP has a type that is

not substituted: element e conforms in type

to eP if its type is the same or a subtype of

eP’s. This is the original UML constraint.

 If eP’s type is substituted: element e

conforms in type to eP if its type is the same or

a subtype of the substitute of eP’s type.

The second scenario is exemplified in Figure 10.

Figure 10: Type conformance when the type is substituted.

Page 7 / 12

4.2 Multiplicity Conformance

UML imposes no constraints on template parameter

substitution regarding the multiplicity of the

involved elements. We propose the criteria of

multiplicity conformance. This rule checks if two

elements involved in a substitution are both single

valued (upper multiplicity = 1) or both multivalued

(upper multiplicity > 1) and, for the second case,

both elements must have the same kind of ordering

(ordered/not-ordered).

The single/multiple valued is important for

computability because code that uses a multivalued

element does it through flow control structures and

operations that act upon collections of values (e.g.:

foreach x in obj.feature, obj.feature.size(), etc.),

while code using a single-valued element accesses it

directly. Therefore, a computable piece of code that

uses a single-valued element, becomes non-

computable if that element is replaced by a

multivalued one, and vice versa.

For multivalued elements, the ordered/not-

ordered nature may also impact computability. On

ordered elements one can apply operations that

assume an ordering of values, such as the OCL

operations first (), last (), and at ().Calls to such

operations will not compute if the ordered element is

replaced by a non-ordered one. Similarly, some

operations on non-ordered elements are not

applicable to ordered ones, e.g. the OCL operation

intersection ().

Strictly, computability would be compromised

only if the code of the template includes any of these

operations depending on ordered/not-ordered. This

aspect opens the possibility for establishing two

levels of conformity enforcement – say, strict and

flexible – a subject for future discussion.

It is also worth explaining that the reason why

this conformance criteria doesn’t take into account

concrete values of multiplicity, other than 1 and *, is

because it is considered a matter of semantic

equivalence, not a requisite for computability. Albeit

a legitimate concern, it is also postponed for future

discussion.

4.3 Contents Conformance

This conformance criterion applies to template

parameters that expose namespaces – namely:

classes, associations, operations, packages, and all

other constructs subclassifying Namespace in the

UML metamodel (see (OMG 2012)). This rule is

meant to certify that a substituting element (e.g., a

class) contains substituting elements (e.g., member

attributes) to all members that the template assumes

there are in the parametered element. For instance, if

a template has a parameter-class and uses the

attributes a1 and a2 of that class, then every

substitute must also be a class with attributes a1 and

a2 or some substitutes for these. For instance,

recalling the template shown in Figure 3, the class

substituting Item must have an attribute Name.

The definition of this criterion requires the

definition of another concept: Implicit Substitution.

In the context of a bind, an element implicitly

substitutes another if they are homonymous,

functionally conform and the namespace of the

former substitutes the namespace of the latter. In this

definition, “homonymous” refers to having the same

proper name, i.e., the elements have the same

identification within the corresponding namespaces.

For example, attributes Item::Name and

Person::Name are properly homonymous. The same

is true between the operations Item::setName

(String) and Person::setName (String). But not

between ::setName (String) and ::setName (String,

String), because in UML an operation is identified

by its name and signature. If two properly

homonymous elements eT and e are also

conformant in type, multiplicity, etc. (note the

recursive definition) and the namespace of eT is

substituted by the namespace of e, then eT is

substituted implicitly by e. Notice that this

definition is assuming that, even if the bind under

consideration doesn’t include an explicit substitution

of eT by e, such substitution will be made. For

example, recalling Figure 5, previous statement

implies that, even though the modeller doesn’t

specify the substitution of Item::Name by

Concept::Name, such substitution is done. Thus, the

concept of implicit substitution is an assumption

regarding the semantics of the Bind relationship,

regarding an aspect that UML’s official

documentation omits. Such assumption certainly

deserves further discussion, yet postponed for

another text. For the current purpose, implicit

substitutions are assumed, just on the basis that the

automatic substitution of an element by another with

the same characteristics and name (or signature) is a

reasonable option.

Thus, Contents Conformance is defined as: in

the context of a template binding, namespace NS

conforms in contents to a namespace NST if every

element in NST referenced by the template is

substituted, explicitly or implicitly, by elements in

NS.

Page 8 / 12

This rule would detect problems such as the one

previously shown in Figure 7. The substitution of

Item by Document would be refused because those

elements do not have conforming contents, since

Item::Name is neither substituted nor homonymous

of any attribute in Document (Figure 11).

Figure 11: A violation of contents conformance.

The contents conformance requirement assumes

two particular forms:

 A corollary named Membership Conformance,

preferable to the general rule in certain, well-

known situations;

 A specialisation applicable to operations,

named Signature Conformance;

These more specific rules are analysed in the

following subsections.

4.3.1 Membership Conformance

Erroneous binds such has the one previously show in

Figure 9 would be prevented by the contents

conformance rule. In that figure, Person will not be

accepted as a substitute for Item because its contents

don’t fully substitute those of Item used by the

template. Yet, the inadequacy of Person would be

reported in a more specific way rephrasing that

violation of contents conformance as: the

substitution of Item by Person is not possible

because one of Item’s attributes, Name, is not

substituted by an attribute of Person. Or the problem

could be imputed to the substitution of Name by

Code: Code cannot substitute Name because its

owning class does not substitute Name’s owning

class. This last report exemplifies the application of

the corollary Membership Conformance, defined as:

An element e conforms in membership to an

element eT if at least one of its namespaces

substitutes one of eT’s namespaces, either explicitly

or implicitly.

Membership conformance is a sub-rule of (part

of) contents conformance. It assesses the adequacy

of a namespace’s member instead of the adequacy of

the namespace as a whole.

In the definition, the use of the plural

“namespaces” is because an element may be

inherited or imported and, consequently, be a

member of several namespaces. Membership

conformance is satisfied if the namespace

substitution required by the rule occurs for any of

these multiple namespaces, a detail that is not so

apparent in the general rule (contents conformance).

This is explained bellow.

Figure 12 shows a situation of membership

conformance, involving inheritance. Since Person

inherits Name, this attribute is member of Entity and

Person, its namespaces. It is required that any of

these classes substitutes Item in order to have

membership conformance between Att and Name. It

is so indeed (Person substitutes Item).

Figure 12: Membership conformance and inheritance.

An element that is member of a template also

acquires namespaces by means of bind relationships.

This is due to the fact that the semantics of the bind

relationship includes a generalization (see Figure 5).

Consequently, every element bound to a template

becomes namespace of any non-private member of

that template. Figure 13 shows a situation where

membership conformance verifies, involving a bind.

In that case, Aged::Date may substitute Item::Att

because that attribute is member of Person and this

class substitutes Item.

Figure 13: Membership conformance and binding.

!!! Attribute Name

is not substituted,

neither explicitly

 nor implicitly.

Classes ‘Item’

and ‘Document’

do not have

conforming

contents!

Error!

Page 9 / 12

As a guideline to choose whether a problem

should be reported by contents or by membership

conformance, it should be checked whether contents

conformance doesn’t hold due to a missing

substitution or due to an incorrect substitution. For

instance, in Figure 14 att may not be substituted by

wage because that would lead to PersonList sorting

Person objects by wage, while not every object of

Person has a wage attribute. This problem will be

detected by the contents conformance requirement

(the contents of Person do not fully substitute those

of Item) as well as by membership conformance

(none of the namespaces of att is substituted by a

namespace of wage). This problem would be more

appropriately reported as a membership problem:

wage cannot substitute att because the class it

belongs to (Employee) doesn’t substitute the class

Att belongs to (Item). In this situation contents

conformance doesn’t hold due to a bad substitution.

Figure 14: A situation where reporting by membership

conformance is better than by contents conformance.

When contents conformance is not observed due

to a missing substitution, explicit or implicit, of

members of the parameter-namespace, then the

problem is be better reported by the general rule

(contents conformance). For instance, Figure 15

would raise an error message such as: Person cannot

substitute Item because their contents do not

conform. The problem could be further diagnosed,

more specifically: att is not substituted. But this is

not a violation of membership conformance. Such

corollary is not even evaluable in the situation, since

there is no prospective substitution for att.

Figure 15: A situation where reporting by contents

conformance is preferable to membership conformance.

4.3.2 Signature Conformance

In UML, an operation is a special case of

namespace. The members of an operation are its

parameters. Thus, contents conformance converts to

signature conformance when it comes to operations.

Signature conformance checking is intended to

assure that, when an operation fooA (pA1, …) is

substituted by another fooB (pB1, …), the

computability of calls ‘fooA (argA1, …, argAn)’ in a

template is preserved when such calls are replaced

by ‘fooB (argB1, …, argBn)’ in the bound element.

Since UML doesn’t consider the concept of

substitution between operation parameters, only

implicit substitutions occur between elements of

such kind. When fooA (pA1, …) is substituted by

fooB (pB1, …), pA1 is implicitly substituted by pB1.

The definition of implicit substitution also

assumes a particular form, derived from the way

operation calls in UML identify parameters when

passing arguments: by their position in the signature

of the operation. Therefore, for operation

parameters, the definition of implicit substitution

instead of saying “homonymous” says “in the same

position in the signature”.

Finally, conforming operations must have the

same number of parameters. Indeed, while for other

types of namespaces having more members than

those that will participate in the substitution doesn’t

spoil computability, that isn’t true for operations. In

Figure 16, attribute a3 in class Cs does not affect the

conformance of Cs to Cp. On the contrary,

parameter p3 makes OPs non-conformant to OPp.

Figure 16: The number of operation parameters is relevant

for functional conformance.

Since operation parameters are elements with

type and multiplicity, conformance regarding those

aspects is required. Additionally, to have two

parameters functionally equivalent, they must have

the same direction (in/out/inout/return), a third

condition for conformance among such elements.

4.4 Staticity Conformance

Since static features are executed by the classifier

and non-static by instances of the classifier, staticity

clearly affects computability. Therefore, functional

conformance between two features requires they are

both static or both non-static.

conforms to

<< doesn't

conform to

<X<

Page 10 / 12

4.5 Visibility Requirement

Finally, there is a requirement relevant to

computability that doesn’t involve the pair

substitute/substituted, but rather the pair

substitute/bound element. That’s why it is not called

“conformance”.

An element may substitute a parameter only if

that element is visible from the bound element.

This requirement is easily understood since the

substitutions are done in the code of the bound

element: since the bound element will refer to

substitute elements, it needs visibility of such

elements.

4.6 Computability Assurance

An element bound to a template is computable if the

template itself is computable and if, for every

parameter substitution, the substitute functionally

conforms to the parametered element.

A formal demonstration is required to prove such

statement. This can be done by demonstrating that

every computable expression and statement in a

template will be reproduced as a computable

element if all substitutions verify the criteria for

conformance. For lack of space, such demonstration

will be provided in a future paper. Appealing to the

reader’s intuition, the following explanation is

provided:

According to the semantics of the bind

relationship, the template element will be equal to

the bound element except at the points it references a

substituted parameter. At the reproduction of such

points, the bound element will be referencing the

substitute. Let’s call those “points of difference”. If

the template is computable, only at the points of

difference the bound element could be non-

computable. If every substitute functionally

conforms to its parametered element, that substitute

will:

 Be successfully used in contexts that are

reproductions of its parameter’s contexts;

 Respond successfully to services that are

reproductions of its parameter’s services;

 Yield results that are reproductions of its

parameter’s results.

Therefore, if at the points of difference the

substitutes are doing well, the bound element is

computable at those points and, consequently, fully

computable.

5 RELATED WORK

Research aiming at improving the UML Template

model is scarce. (Caron & Carré 2004) and

(Vanwormhoudt et al. 2013) are the pieces of work

most affine to the one presented in this paper.

Like current paper, (Caron & Carré 2004) also

propose a set of well-formedness rules, additional to

that of standard UML, aiming at strengthen the

notion of template as a means to enforce the

correctness of elements bound to a template. (Caron

& Carré 2004) is not very specific on the level

and/or kind of correctness that is ensured by the

proposed set of constraints. If it were to ensure

computability, it overlooks some important aspects,

such as multiplicity, staticity, and visibility. There

are also minor inaccuracies, probably by lapse (for

instance, the imposition that a parametered element

must be owned by the template).

(Vanwormhoudt et al. 2013) proposes the

concept of Aspectual Templates (AT) to enforce

structural conformance between a template and the

model it is applied to. (Vanwormhoudt et al. 2013)

states that ATs have only one parameter, which is a

model, and defines a set of constraints to enforce

structural conformance between the parameter and

its substitute. Generally speaking, structural

conformance has the same goal as functional

conformance in current paper. But our concept is

more complete and comprehensive. More complete

because ATs omit some UML concepts and, by

doing so, become too strict on the one hand and too

indulgent on the other hand. For instance, by

omitting inheritance ATs forbid substitutions by an

inherited feature (too strict). By omitting multiplicity

ATs allow a multivalued property be substituted by

a single-valued one (too indulgent). Our approach is

also more comprehensive because it works for any

kind of templateable and parameterable element in

UML. Finally, the Apply operation proposed by

(Vanwormhoudt et al. 2013) is roughly the same as

binding to a package-template.

Although with a goal different from current

paper’s, (France et al. 2004) also introduces a

technique to validate structural conformance

between a template and its bound elements.

Although the proposed extension to UML put some

added value in terms of expressiveness, the

conformance verification method overlooks several

aspects essential to computability, such as

multiplicity and signature conformance.

Considering the field of Aspect Oriented

Modelling, one can find plenty of methods with the

same goal as current paper: how to obtain concrete,

Page 11 / 12

correct solutions from generic ones. Because those

methods use approaches and formalisms other than

UML templates, the comparison would be somewhat

pointless. The only exception we are aware of is the

Theme/UML approach (Clarke & Walker 2005),

which uses UML package templates to model

crosscutting functionalities. Theme/UML extends

the concept of template to incorporate aspect-

oriented capabilities. Although it supports the

definition of parameters with owner-member

relationships, which resembles contents/membership

conformance in the current paper, it is not clear if

substitute elements (which are also organized in

owner-member relationships) are checked against

parameters. For further exploration of the Aspect-

Oriented Modelling field a good starting point could

be the survey in (Wimmer et al. 2011).

6 CONCLUSIONS AND FUTURE

WORK

The concept of functional conformance proposed in

this paper has been experimentally applied to a

reasonably large set of templates (aprox. 40) and

application domains (12, some of them with

alternative models). Such experiments showed a

success rate of 100%, which provides some

empirical evidence of the effectiveness of the

approach. However, the authors believe that a more

reliable demonstration should be provided. With that

goal, a formal demonstration has been developed, to

be published as soon as possible.

The aforementioned experiments also suggested

that, when sorting out substitutes for a parameter,

taking into account functional conformance may

leverage automatic or semi-automatic substitution.

Therefore, additionally to computability assurance,

automatic binding is a potential benefit of functional

conformance. This is a line of work to develop.

Another perception instilled by these

experiments was that UML templates would better

allow for greater flexibility. For instance, if a

template is designed to work on an association it

would be useful if one could use it on a chain of two

connected associations.

REFERENCES

Caron, O. & Carré, B., 2004. An OCL formulation of

UML2 template binding. In T. Baar et al., eds.

UML’ 2004 — The Unified Modeling Language.

Modeling Languages and Applications. Lecture

Notes in Computer Science. Springer Berlin
Heidelberg, pp. 27–40.

Clarke, S. & Walker, R.J., 2005. Generic Aspect-Oriented

Design with Theme/UML. In Aspecto-Oriented

Software Development. Addison-Wesley, pp. 425–

458.

France, R.B. et al., 2004. A UML-based pattern

specification technique. IEEE Transactions on
Software Engineering, 30(3), pp.193–206.

OMG, 2012. OMG Unified Modeling Language (UML),

Superstructure, v2.4.1. Available at:

http://www.omg.org/spec/UML/2.4.1/ [Accessed

April 27, 2012].

Vanwormhoudt, G., Caron, O. & Carré, B., 2013.

Aspectual Templates in UML, Available at:
http://hal.archives-ouvertes.fr/hal-00846060.

Wimmer, M. et al., 2011. A survey on UML-based aspect-

oriented design modeling. ACM Computing

Surveys, 43(4), pp.1–33.

APPENDIX: OCL FORMULATION

OF FUNCTIONAL

CONFORMANCE

Auxiliary definitions

context TemplateBinding

def: substituteOf (p: ParameterableElement)

 : ParameterableElement

 = self.parameterSubstitution

 .any (formal

 .parameteredElement = p)

 .actual

Type conformance

context TypedElement

def: typeConformsTo

 (p: ParameterableElement,

 b: TemplateBinding) : Bool

 = let allTypes = p.type.allParents()

 .including (p.type)

 in

 allTypes.forAll (tp |

 let tpSubs = b.substituteOf (tp)

 in

 if tpSubs = null then

 self.type.conformsTo (tp)

 else

 self.type.conformsTo (tpSubs))

Page 12 / 12

Multiplicity conformance

context MultiplicityElement

def: multiplicityConformsTo

 (p: MultiplicityElement) : Bool

 = self.upper = 1 and p.upper = 1

 or

 (self.upper > 1 and p.upper > 1 and

 self.isOrdered = p.isOrdered)

Contents conformance

context TemplateBinding

def: implicitSubstituteOf

 (p: NamedElement) : NamedElement

 = let subsNs

 = p.elementNamespaces

 ->collect (ns| self.substituteOf (ns))

 ->union (p.elementNamespaces

 ->collect (ns |

 self.implicitSubstituteOf (ns)))

 ->asSet()->excluding (e | e = null)

 in

 if subsNs.isEmpty() then

 implicitSubstituteOf = null

 else

 subsNs.collect (members)->any (

 not isDistinguishableFrom (p, ns))

context Namespace

def: contentConformsTo

 (p: Namespace,

 b: TemplateBinding) : Bool

 = let elemsNotSubstituted

 = p.member

 ->intersection

 (b.signature.template

 .usedElements)

 ->excluding (p |

 b.substituteOf (p) <> null)

 ->excluding (p |

 b.implicitSubstituteOf (p)

 <> null)

 in

 elemsNotSubstituted->isEmpty()

Membership conformance

context ParameterableElement

def: membershipConformsTo

 (p: ParameterableElement,

 b: TemplateBinding) : Bool

 = p.memberNamespace

 ->collect (ns | b.substituteOf (ns))

 ->intersects (self.memberNamespace)

Signature conformance

context Operation

def: signatureConformsTo

 (p: Operation,

 b: TemplateBinding) : Bool

 = (self.parameter->size

 = p.parameter->size) and

 Sequence {1..self.parameter->size}

 ->forAll (i |

 self.parameter->at(i)

 .conformsTo (

 p.parameter->at(i), b))

context Parameter

 def: conformsTo

 (p: Parameter,

 b: TemplateBinding) : Bool

 = self.typeConformsTo (p, b) and

 self.multiplicityConformsTo (p) and

 self.direction = p.direction

Staticity conformance

context Feature

def: staticityConformsTo

 (f: Feature) : Bool

 = self.isStatic = f.isStatic

Visibility requirement

context TemplateableElement

def: hasVisibilityOf

 (e: NamedElement) : Bool

 = self.allNamespaces()

 ->first().hasVisibilityOf (e)

-- By default, an element forwards

-- the query to its closest namespace,

-- until it gets a namespace that

-- redefines this operation.

context Classifier

def: hasVisibilityOf

 (e: NamedElement) : Bool

 = if e = self then

 hasVisibilityOf = true

 elseif self.allParents().member

 ->includes (e) then

 hasVisibilityOf =

 (e.visibility <> #private)

 else

 hasVisibilityOf =

 (e.visibility = #public)

context Package

def: hasVisibilityOf

 (e: NamedElement) : Bool

 = if e = self or

 self.allOwnedMembers()->includes (e)

 then hasVisibilityOf = true

 else hasVisibilityOf =

 (e.visibility = #public)

