
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2019-01-10

 
Deposited version:
Post-print

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Esser, A. & Serrão, C. (2018). Wi-Fi network testing using an integrated Evil-Twin framework. In The
Fifth International Conference on Internet of Things: Systems, Management and Security, IoTSMS
2018. (pp. 216-221). Valencia: IEEE.

 
Further information on publisher's website:
10.1109/IoTSMS.2018.8554388

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Esser, A. & Serrão, C. (2018). Wi-Fi network
testing using an integrated Evil-Twin framework. In The Fifth International Conference on Internet of
Things: Systems, Management and Security, IoTSMS 2018. (pp. 216-221). Valencia: IEEE., which
has been published in final form at https://dx.doi.org/10.1109/IoTSMS.2018.8554388. This article
may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions
for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/IoTSMS.2018.8554388


Wi-Fi network testing using an integrated Evil-Twin
framework

André Esser, Carlos Serrão
Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal

Information Sciences, Technologies and Architecture Research Center (ISTAR-IUL)
Lisboa, Portugal

Andre Esser@iscte-iul.pt, carlos.serrao@iscte-iul.pt

Abstract—This work intends to present a newly developed Wi-
Fi vulnerability analysis and exploitation framework with the
objective of increasing Wi-Fi security. The developed framework
focuses primarily on client-side vulnerabilities, currently a weak-
ness on Wi-Fi connections, but can be extended to support any
type of Wi-Fi attack. The framework was designed and is in-
tended to be used by security auditors when performing intrusion
tests on Wi-Fi networks. It can also be used as a proof-of-concept
tool meant to teach and raise awareness of the risks involved
when using Wi-Fi technologies. The developed framework is
based on open-source software and is also available as open-
source software, allowing developers to extend its functionality.

Index Terms—Wi-Fi, security, evil-twin, attacks, pentesting,
auditing

I. INTRODUCTION

Currently, there is a proliferation of mobile devices that
communicate with external services and among each other
using wireless communication. Freedom offered by these wire-
less communication devices are unmatched. However, the data
airwaves exchanged by the different mobile devices are filled
with sensitive data, and face important security challenges [1].

In IEEE 802.11 wireless networks [2], there is a set security
measures necessary to provide the security requirements for
secure wireless communication [1], both on the access point
site and on the end user device side.

The popularity and widespread of wireless communication
technologies makes its deployment and usage a challenge for
users without a minimum security criteria. This implies that
weak security measures are deployed (or no security measures
at all), weak security protocols are used and default router
administration accounts and default security keys are used as
well. This is far from an ideal security scenario and affects not
only the security of the network infra-structure and services
but also user devices security [1].

Although existing Wi-Fi security mechanisms are primarily
focused on the protection of the network, the client side of
this technology has been fairly neglected. Attacks such as the
”Evil-Twin”, where an attacker impersonates an access point,
are still feasible and pose increased risk on Wi-Fi clients [3].
These attacks used to be somewhat complex to perform and re-
quired deep technical understanding. Now there are many free
and open-source solutions that make them possible to exploit
by attackers with little experience. The major vulnerability lies

in the behavior of Wi-Fi clients where they actively search for
access-points to connect to and without user interaction with
the device [4]. This vulnerability, although discovered in 2004
[5], has not yet been effectively patched [6]. Even though there
are proposed mitigations [7] [8] [9] [10], these have not been
implemented in commercial products and do not solve the
problem entirely.

Organizations conduct internal or external technical security
audits. These audits, carried by information security experts,
identify security flaws that affect organization - this is usually
conducted at different levels, such as the network and system
level. The phases involved on a Wi-Fi penetration test [11]
include a set of pre-engagement interactions, intelligence
gathering and threat modeling as well as vulnerability analysis,
exploitation and post-exploitation and finally reporting [11],
[12]. During the exploitation phase, auditors perform attacks
on the Wi-Fi network according to the previously found
vulnerabilities, this may include attacks on Wi-Fi clients as
well. The post-exploitation mostly refers to attacks done inside
the network once access is granted and also exploits on Wi-Fi
client devices up to a persistent infection. Conducting an audit
or penetration test on a Wi-Fi network can be a cumbersome
job for the auditor. It requires the usage of a multiplicity of
different tools with different purposes to test for the existence
of serious vulnerabilities. This requires time and skills that can
increase the duration of the audit and increase its costs. The
need to run multiple tools that only serve a single purpose
concurrently, unnecessarily increases the complexity of the
penetration test and consequently decreases its efficiency.

This article presents a newly developed open-source Python-
based framework [13] aimed to tackle the difficulties and prob-
lems involved with Wi-Fi networks auditing and penetration
testing. The ”Evil-Twin Framework” (the framework’s name)
increases the efficiency of a Wi-Fi penetration audit by coop-
eratively integrating the various features necessary to conduct
the test into one single tool and place. The framework was
developed having into consideration aspects such as third-party
contribution, customization and extensibility. By providing an
extensible platform with access to all core features of Wi-
Fi communications it is possible to implement virtually every
type of Wi-Fi attack on top of it. This eliminates the need for
excessive amounts of tools running concurrently and hours
of configurations as well as having to create new tools from



scratch.

II. WI-FI SECURITY THREATS AND ATTACKS

There are a variety of vulnerabilities affecting the different
protection types used in Wi-Fi. It is important to notice
that the vulnerabilities are present on different levels of the
security protocol. For example, in WEP most vulnerabilities
are introduced by using a weak encryption scheme while
in WPA(2)-PSK it is the authentication mechanism that in-
troduces one important vulnerability in the Wi-Fi security
protocols. Therefore, throughout the history of Wi-Fi, there
have been some moments where vulnerabilities affected the
security of Wi-Fi users.

Evil-Twin and Karma are attack examples on known vul-
nerabilities that can best be described as a form of Wi-Fi
phishing. They work by launching wireless hotspots that look
and behave identically to trusted ones, luring regular users
into connecting to them [10]. However, these hotspots do not
connect to the network they mimic, they are mostly used
in order to sniff the users traffic in order to get sensitive
information such as credentials provided to websites [7], [10].
This is one of the main reasons why client-side Wi-Fi needs
to be properly audited as well, and the developed Evil-Twin
Framework, presented in the next section, can present an
important added-value to the increase of the Wi-Fi security.

III. EVIL-TWIN FRAMEWORK (ETF)
Wi-Fi security is a complex security issue, in particular on

what concerns the end-user equipment. There are currently a
significant number of tools that can be used to conduct Wi-
Fi security audits however, such tools are sparse and suffer
from lack of integration. From a security auditor perspective,
in order to test different attack scenarios, it would require
multiple different tools for each of them. Therefore, in order to
facilitate the Wi-Fi auditing processes, and offer the possibility
for the auditor to experience multiple scenarios and integrate
multiple tools, a new Wi-Fi auditing framework was developed
- the ”Evil-Twin Framework” (ETF) - that primarily focus on
the analysis of vulnerabilities on the client-side.

A. Architecture
ETF was entirely developed using the Python (version 2)

programming language [13]. Python was chosen as the devel-
opment language since it is very easy to read and therefore to
contribute. In addition to that many useful libraries used on
similar auditing tools, such as ”scapy”, were developed for
Python and only support version Python version 2.

The ETF architecture (Figure 1) is composed by a set of
different modules that interact with each other. The frame-
work’s settings are all configured on a single configuration
file. The user can verify and edit the settings through the user
interface via the ”ConfigurationManager” module. All
other modules can only read these settings and b executed
according to them.

The ETF is prepared to offer multiple user interfaces
that enable the auditor interaction with the framework. Cur-
rently, only an interactive console interface similar to the

”Metasploit” framework is present. A graphical user in-
terface and a command line interface are currently under
development. These interfaces are being developed for desktop
use, however mobile interfaces could also be developed in the
future. The user can edit the settings in the configuration file
by using either the interactive console or the future Graphical
User Interface (GUI). The user interfaces can interact with
every other module of the framework.

AirInjector

User Interface

AirHost

AirScanner

Configuration
File

Configuration

Manager

BeefSpawner

SpawnManager

MITMSpawner

EttercapSpawner

SSLStripSpawner

ETFITM
(man-in-middle web Proxy)

Plugin 1 Plugin 2

MITMPlugins

AirInjector

AirCommunicator

AirScanner

AirHost

AirCracker

Plugin 1 Plugin 2

Plugins

Fig. 1. Architecture overview of Evil-Twin Framework.

The Wi-Fi module (”AirCommunicator”) was built
in order to support a wide range of Wi-Fi capabilities
and attacks, therefore the framework identifies three ba-
sic pillars of Wi-Fi communication. The three pillars are
packet sniffing, custom packet injection and access point
creation. Therefore, the three main Wi-Fi communication mod-
ules are ”AirScanner” (packet sniffing), ”AirInjector”
(packet injection) and ”AirHost” (access point creation).
The three modules are wrapped inside the main Wi-Fi module
”AirCommunicator” which reads the configuration file
before starting the services. Any type of Wi-Fi attack can be
built using one or a combination of these core features. The
ETF was specifically designed to be extended by third party
developers, so it would be easy to improve its functionalities.



Since an important part of attacking the Wi-Fi client is per-
forming Man-In-The-Middle (MITM) attacks [14] the frame-
work also has an integrated MITM module called ”ETFITM”
(Evil-Twin Framework-in-the-middle). Using this module, the
security auditor can easily create a web proxy capable of
intercepting and manipulating any HTTP/HTTPS traffic.

There are many existing tools that can take advantage of a
MITM position or other features of the ETF but, for differ-
ent reasons, cannot be natively integrated in the framework.
Therefore, the ETF includes support for interaction with other
tools, without having to integrate them inside the framework.
Instead of having to call them separately it is possible to
add whatever program to the framework by extending the
”Spawner” class. Using this functionality a security auditor
can call the program with a preconfigured argument string
from within the framework, therefore taking advantage of the
framework itself but at the same time augmenting its core
functionalities.

The other two main ways of extending the framework are
through the usage of plugins. The plugins can be divided in
two categories, ”Wi-Fi plugins” and ”MITM plugins”.
The ”MITM plugins” are scripts that run while the MITM
proxy is active. The proxy passes the HTTP(S) requests
and responses through the plugins’ code where they can be
logged or manipulated. The ”Wi-Fi plugins” follow a
more complex flow of execution but still expose a fairly simple
API to a contributor to develop and use their own plugins. Wi-
Fi plugins can be further divided into three categories, one for
each of the core Wi-Fi communication modules. Each of the
core modules have certain events that trigger the execution of
a plugin. For instance, the ”AirScanner” has three defined
events to which a response can be programmed. The events
usually correspond to a setup phase before the service starts
running, mid-execution phase while the service is running and
a teardown or cleanup phase after a service finishes running.
Since Python allows for multiple inheritance there can be a
single plugin that subclasses more than one of the base plugin
classes.

The presented diagram displays a summary of the
framework’s architecture. Lines pointing away from the
”ConfigurationManager” mean that these modules read
information from it, lines pointing towards it mean that these
modules can write/edit configurations.

B. Using and testing the ETF

In order to demonstrate the ETF usefulness and relevance
and, at the same time, test it, some specific use-cases were
defined. Three different test scenarios with a specific security
goal in mind have been designed. Every test will be completed
using both ETF and also a combination of other existing open-
source Wi-Fi hacking tools. The same Wi-Fi cards were used
for every tool on every test. The evaluation criteria will take
into consideration the efficiency and the difficulty level to
perform the test. Also, a well-defined start and finish time
for the tests was also take into consideration. The finish time
was considered as a main indicator of efficiency. The easiness

TABLE I
RESULTS FROM THE FIRST USE-CASE

Evil-Twin Framework Other tools
Successful de-
authentication attacks 5/5 5/5

WPA handshakes caught 5/5 5/5
Number of open terminals 1 2
Number of setup commands 6 2

of use evaluation considers the amount and complexity of
the needed configurations, number of executed commands
and the number of open terminals (or foreground programs)
needed to finish the task at hand for the security auditor.
In this description, the setup commands will include some
abbreviations for the access point SSID (APS), access point
BSSID (APB), access point channel (APC) and the client
MAC address (CM).

For the tests, the three following use cases were consid-
ered: a) the capture of a WPA 4-way handshake after a
de-authentication attack, b) launching an ARP replay attack
and cracking a WEP network and c) launching a catch-all
honeypot.

1) Capturing a WPA 4-way handshake after a de-
authentication attack: This use-case considers two main
aspects: the de-authentication attack and catching a 4-way
WPA handshake. It starts with a running WPA/WPA2 enabled
access point with one connected client device. The goal is
to de-authenticate the client with a general de-authentication
attack and then capture the WPA handshake once he tries to
reconnect. The reconnection will be done manually right after
the device being de-authenticated.

This test is mostly about reliability, and the goal is to find
out if the tools are always able to capture the WPA handshake.
The test will be performed five times with each tool in order
to check its reliability when capturing the WPA handshake.
This test will compare the ETF against the combination of the
tools ”airodump-ng” and ”aireplay-ng”.

There is more than one way to capture a WPA handshake
using the Evil-Twin Framework. It is possible either to use a
combination of the ”AirScanner” and ”AirInjector”
modules or simply use the ”AirInjector” with the
”CredentialSniffer” plugin. For this test, the com-
bination of both modules will be used. ETF launches the
”AirScanner” module and analyzes the IEEE 802.11
frames to find a WPA handshake. In succession, the
”AirInjector” can be used to launch a de-authentication
attack to force a reconnection.

In the case (Table I) of the other tools, this attack requires
at least two open terminals. One terminal has to run the
”airodump-ng” script which continuously captures packets.
”Aireplay-ng” launches the de-authentication attack on
another terminal.

The ETF was able to perform an efficient and successful de-
authentication attack on every test run. The ETF was also able
to capture the WPA handshake on every test run. However,
it is important to note that this test was performed in an



environment with a medium level of Wi-Fi traffic. It is known
that ”scapy” may miss packets when there is more traffic,
this means one cannot be sure if this efficiency holds up in
environments with more traffic.

Using the ”airodump-ng” and the ”aireplay-ng”
tools, the de-authentication attack and the consequent WPA
handshake capture were 100% successful on every test.

In conclusion, the attack was performed with 100% success
by both tools. However, since the ”aircrack-ng” suite
is written in the C programming language it is much more
efficient in reading packets which probably makes it a better
choice for scenarios with high volume of traffic. On the other
hand, the ETF configuration commands are very simple and
the tool seems to be just as efficient as the ”aircrack-ng”
tools.

2) Launching an ARP replay attack and cracking a WEP
network: This second use-case focus on the efficiency of the
ARP replay attack and the speed of capturing the WEP data
packets containing the initialization vectors (IVs). The same
network may require a different number of caught IVs to be
cracked so for this test the limit is 50,000 (fifty thousand)
IVs. If during the first test the network is cracked with less
than the limit of 50,000 IVs then that number will be the new
limit for the second test. The cracking tool to be used will
be ”aircrack-ng”. The test scenario starts with an access
point using WEP encryption and an offline client that knows
the key - the key is ’12345’. Once the client connects to the
WEP access point it will send out a gratuitous ARP packet,
this is the packet meant to be captured and replayed. The
test ends once the limit of packets containing IVs is captured
(Table II).

The time starts when the client starts connecting with the
WEP access point, this will be done through user interaction.
The time stops once the network key is cracked or once the
limit of captured packets is reached. This test will again com-
pare the ETF against the combination of ”airodump-ng”
and ”aireplay-ng” tools.

The Evil-Twin Framework uses the Python’s ”scapy”
library for packet sniffing and injection which is rather slow.
With some tweaks and usage of lower level ”scapy” libraries
it was possible to speed up packet injection significantly.
For this specific scenario, the ETF uses ”tcpdump” as a
background process instead of ”scapy” for more efficient
packet sniffing. However, ”scapy” is still used to identify
the encrypted ARP packet.

The whole ”aircrack-ng” suite is written in C, this
makes it very efficient for packet injection and sniffing.
This attack requires at least two open terminals. On one
terminal one has to run the ”airodump-ng” script which
continuously captures packets and another terminal running
”aireplay-ng” to look for the encrypted ARP packet and
replay it.

The ETF correctly identified the encrypted ARP packet
and then successfully performed an ARP replay attack which
resulted in cracking the network.

TABLE II
RESULTS FROM THE SECOND USE-CASE

Evil-Twin Framework Other tools
Captured IVs 9958 10000
Execution time 62.2 sec. 36.6 sec.
Number of open terminals 1 2
Number of setup commands 6 2

With the ”aircrack-ng” tools the attack was also suc-
cessful. However, the results show that the tools are more
efficient since the time it took it to capture the same amount
of traffic was less than the one of the ETF.

This attack is heavily impacted by the packet injection
and capture speed. The Evil-Twin Framework uses ”scapy”
primarily for these tasks which can be disappointingly slow,
although with a few tweaks it ends up giving good perfor-
mance.

The ”aircrack-ng” suite on the other hand is very
efficient when it comes to packet injection and capture. It is
almost twice as fast as ”scapy” in sending out packets.

Regarding the number and complexity of the setup com-
mands, ETF needed more configuration commands than the
other tools. However, these commands are very simple and the
interactive console of ETF provides tab auto-completion and
suggestions for a speedier setup. The ”airodump-ng” and
”aireplay-ng” commands are generally more complex and
require copy and pasting of information to fill out the needed
parameters.

Both tools showed very good performance, stability and
reliability. The ”aircrack-ng” tools are however slightly
more efficient but the ETF makes up for it by making the
setup much easier and just as complete.

3) Launching a catch-all honeypot: This final use-case
(Table III) consists of creating multiple access points with
the same SSID. By launching multiple access points with all
security settings, the client will automatically connect to the
one that matches the security settings of the locally cached
access point information.

ETF configures the ”hostapd” configuration file and then
launches the program in the background. ”Hostapd” supports
launching multiple access points on the same wireless card
by configuring virtual interfaces and since it also supports
all types of security configurations it is possible to set up a
complete catch-all honeypot. For the WEP and WPA(2)-PSK
networks a default password is used, for the WPA(2)-EAP
an ”accept all” policy is configured. This test will again
compare the ETF against ”airbase-ng”.

In order to set up a catch-all honeypot with ”airbase-ng”
it is necessary to create multiple different virtual interfaces on
the same physical card. Then create an access point on each
of the newly created virtual interfaces.

The ETF is capable of launching a complete catch-
all honeypot with all types of security configurations. The
”airbase-ng” script is able to successfully launch access
points on non-managed virtual interfaces. The script however
does not support the creation of WPA(2)-EAP access points.



TABLE III
RESULTS FROM THE THIRD USE-CASE

Evil-Twin Framework Other tools
Number of open terminals 1 4
Number of setup commands 4 8

Both tools are able to set up catch-all honeypots although
”airbase-ng” lacks the support for WPA(2)-EAP networks.
Furthermore, when the ETF launches an access point it auto-
matically launches the DHCP and DNS servers which allow
clients to stay connected and use the internet. To do this with
”airbase-ng” a lot more commands and configurations
would have been necessary. Alternatively, it is possible to use
”hostapd” to set up the catch-all honeypot manually but the
configuration file can be complicated to write, especially when
setting up multiple access points on the same interface.

Ultimately the ETF offers a better, faster and more complete
solution to create catch-all honeypots.

IV. CONCLUSIONS AND FUTURE WORK

ETF was developed as an open-source
project and it is available as a Github project
(https://github.com/Esser420/EvilTwinFramework/).
Therefore, contribution to the development of the framework
is open to the community and continuous improvement is
always present, so more attacks and plugins will be added by
external developers. Results obtained from the tests conducted
validate ETF capabilities of performing well-known attacks
on Wi-Fi networks and clients. The results also validate that
the architecture of the framework enables the development of
new attacks and features on top of it while taking advantage
of the pre-existing capabilities that the platform provides.
This reality will accelerate future development of new Wi-Fi
pentesting tools since a lot of the code is already provided
by the ETF open-source project. Furthermore, the fact that
complementary Wi-Fi technologies are all integrated in
one tool will make Wi-Fi penetration testing simpler, more
efficient and facilitate the job of the security auditor.

Even though the performance of the ETF, in some cases,
was less efficient than the tools it was compared against
on the ”ARP replay attack” test case, it still finished the
test in little over a minute which is still considered to be
very efficient. When taking all the other tests cases into
account, the ETF did not show any drawbacks in efficiency nor
reliability. These tests however are not conclusive since more
experimentation is needed, especially in more demanding and
realistic environments.

The tool does not yet completely replace all the other tools
because some capabilities, such as attacks on WPS, are not yet
implemented. However, this is meant to change in the future,
due to the open nature of the framework, that allows anyone
to implement and contribute with such functionalities.

One of the limitations of Wi-Fi auditing nowadays is the
lack of ability to log important events during the tests. This
makes reporting of the found vulnerabilities a lot more difficult

and also less accurate. The framework could implement a
logger that can be accessed by every class in order to produce
a report of a penetration testing session.

Yet another very useful contribution would be adding a
database to the framework. This database could hold infor-
mation about vulnerabilities in known routers such as default
WPA key and WPS pin generation algorithms. This increases
the chance of discovering hidden Wi-Fi vulnerabilities and
therefore the efficiency of the security testing.

ETF covers many aspects of Wi-Fi testing facilitating the
phases of Wi-Fi reconnaissance, vulnerability discovery and
attack. Also, the tools do not offer any feature that facilitates
the reporting phase. Adding the concept of session and a
session reporting feature, such as the logging of important
events during a session, would greatly increase the value of
the tool for real pentesting scenarios.

Another valuable contribution would be extending the
framework to facilitate Wi-Fi fuzzing. The IEEE 802.11
protocol is very complex and considering there are multiple
implementations of it, both on the client and access point side,
one can safely assume that these implementations contain bugs
and even security flaws. These bugs could be discovered by
fuzzing IEEE 802.11 protocol frames. Since ”scapy” allows
for custom packet creation and injection a fuzzer can be
implemented through it.

V. ACKNOWLEDGEMENTS

The authors would like to acknowledge the FCT Project
UID/MULTI/4466/2016.

REFERENCES

[1] Marco Domenico Aime, Giorgio Calandriello, and Antonio Lioy, “De-
pendability in wireless networks: Can we rely on wifi?”, IEEE Security
& Privacy, vol. 5, no. 1, 2007.

[2] Bernhard H Walke, Stefan Mangold, and Lars Berlemann, IEEE 802
wireless systems: protocols, multi-hop mesh/relaying, performance and
spectrum coexistence, John Wiley & Sons, 2007.

[3] Lisa Phifer, “Anatomy of a wireless” evil twin” attack”, Retrieved July,
vol. 22, 2007.

[4] Sergey Bratus, Cory Cornelius, David Kotz, and Daniel Peebles, “Active
behavioral fingerprinting of wireless devices”, in Proceedings of the first
ACM conference on Wireless network security. ACM, 2008, pp. 56–61.

[5] Charlie Miller, “Mobile attacks and defense”, IEEE Security & Privacy,
vol. 9, no. 4, pp. 68–70, 2011.

[6] Michel Barbeau, Jyanthi Hall, and Evangelos Kranakis, “Detecting
impersonation attacks in future wireless and mobile networks”, in Secure
Mobile Ad-hoc Networks and Sensors, pp. 80–95. Springer, 2006.

[7] Liran Ma, Amin Y Teymorian, and Xiuzhen Cheng, “A hybrid rogue
access point protection framework for commodity wi-fi networks”, in
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE. IEEE, 2008, pp. 1220–1228.

[8] Somayeh Nikbakhsh, Azizah Bt Abdul Manaf, Mazdak Zamani, and
Maziar Janbeglou, “A novel approach for rogue access point detection on
the client-side”, in Advanced Information Networking and Applications
Workshops (WAINA), 2012 26th International Conference on. IEEE,
2012, pp. 684–687.

[9] Ninki Hermaduanti and Imam Riadi, “Automation framework for
rogue access point mitigation in ieee 802.1 x-based wlan”, Journal
of Theoretical and Applied Information Technology, vol. 93, no. 2, pp.
287, 2016.

[10] Songrit Srilasak, Kitti Wongthavarawat, and Anan Phonphoem, “Inte-
grated wireless rogue access point detection and counterattack system”,
in Information Security and Assurance, 2008. ISA 2008. International
Conference on. IEEE, 2008, pp. 326–331.



[11] “The Penetration Testing Execution Standard”, 2012.
[12] Chuck Easttom, “A model for penetration testing”, 2014.
[13] Guido Van Rossum et al., “Python programming language.”, in USENIX

Annual Technical Conference, 2007, vol. 41, p. 36.
[14] Hyunuk Hwang, Gyeok Jung, Kiwook Sohn, and Sangseo Park, “A

study on mitm (man in the middle) vulnerability in wireless network
using 802.1 x and eap”, in Information Science and Security, 2008.
ICISS. International Conference on. IEEE, 2008, pp. 164–170.


