

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-05-20

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Gasiba, T. E., Lechner, U., Albuquerque, M. P. & Mendez, D. (2021). Is secure coding education in the
industry needed? An investigation through a large scale survey. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET). (pp.
241-252). Madrid: IEEE.

Further information on publisher's website:
10.1109/ICSE-SEET52601.2021.00034

Publisher's copyright statement:
This is the peer reviewed version of the following article: Gasiba, T. E., Lechner, U., Albuquerque, M.
P. & Mendez, D. (2021). Is secure coding education in the industry needed? An investigation through
a large scale survey. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET). (pp. 241-252). Madrid: IEEE., which has
been published in final form at https://dx.doi.org/10.1109/ICSE-SEET52601.2021.00034. This article
may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions
for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ICSE-SEET52601.2021.00034

Is Secure Coding Education in the Industry Needed?
An Investigation Through a Large Scale Survey

Tiago Espinha Gasiba
Siemens AG

Munich, Germany
tiago.gasiba@siemens.com

Ulrike Lechner
Universität der Bundeswehr

München
Munich, Germany

ulrike.lechner@unibw.de

Maria Pinto-Albuquerque
Instituto Universitário de

Lisboa (ISCTE-IUL), ISTAR-IUL
Lisboa, Portugal

maria.albuquerque@iscte-iul.pt

Daniel Mendez
Blekinge Institute of Technology

and fortiss GmbH
Karlskrona, Sweden

daniel.mendez@bth.se

Abstract—The Department of Homeland Security in the United
States estimates that 90% of software vulnerabilities can be
traced back to defects in design and software coding. The
financial impact of these vulnerabilities has been shown to
exceed 380 million USD in industrial control systems alone.
Since software developers write software, they also introduce
these vulnerabilities into the source code. However, secure coding
guidelines exist to prevent software developers from writing
vulnerable code. This study focuses on the human factor, the
software developer, and secure coding, in particular secure coding
guidelines. We want to understand the software developers’
awareness and compliance to secure coding guidelines and why,
if at all, they aren’t compliant or aware. We base our results on
a large-scale survey on secure coding guidelines, with more than
190 industrial software developers. Our work’s main contribution
motivates the need to educate industrial software developers on
secure coding guidelines, and it gives a list of fifteen actionable
items to be used by practitioners in the industry. We also make
our raw data openly available for further research.

Index Terms—education, training, industry, secure coding
guidelines, software developers, awareness, survey

I. INTRODUCTION

According to a Kaspersky [1] report, businesses spent an
average of 380 million USD in 2017 to recover and deal with
the consequences of Industrial Control Systems (ICS) inci-
dents, and this value is still increasing. Gartner’s 2019 report
predicts that the financial impact of attacks on Cyberphysical
Systems will exceed 50 billion USD in 2023. The United
States Department of Homeland Security estimates that the
vast majority of security incidents can be attributed to defects
in software design and code [2].

To deliver secure software-based products and services, we
must consider security while producing software. To become
certified and able to conduct business in the critical infrastruc-
ture sector, companies must comply with several standards.
Among these standards, IT Security standards such as the
ISO 27k [3] and IEC 62.443 [4] mandate, among others, the
establishment of a secure software development lifecycle (S-
SDLC). The S-SDLC includes the usage of secure coding
guidelines (SCG) and the checking of code quality (ISO
25k [5]) against these guidelines.

Secure coding, secure software development, and secure
coding guidelines are no easy subjects. Some of the vastly
known and adopted SCG include Carnegie Mellon’s Software

Engineering Institute C, C++, and Java secure coding guide-
lines standars [6] (also known as SEI-CERT), the Motor In-
dustry Software Reliability Association standard (MISRA) [7],
[8], and the Open Web Application Security Project Top
10 (OWASP standard) [9]. However, SCG do not exist for
all existing programming languages. In addition to SCG,
to address the importance of secure code and the need to
develop secure products, several companies united to form
the SAFEcode [10]. This alliance promotes secure coding and
industrial secure coding best practices.

Automatic tools such as Static Application Security Testing
(SAST) [11] can be used to automate and improve code
quality. These tools scan the code basis for existing vulnera-
bilities, which must be fixed by software developers. However,
previous research shows that their reliability is not good
enough [12], in particular they exhibit a large amount of
false positives and false negatives. Also, these tools cannot
automatically fix the code – software developers must do this.

In this work, we focus on the human factor, i.e. the software
developer. We justify this focus since it is the software
developer who writes the code, who interprets the output
of SAST tools, and who will ultimately be the person that
introduces software weaknesses into the code basis. It will
be the software developer as well that will have to correct
the vulnerabilities in code. This study is embedded in our
investigation on the usage of serious games as a means to raise
secure coding awareness of software developers in the industry
[13]–[21]. Our primary motivation to conduct the present
work is to motivate awareness training by answering the
question ”is secure coding education in the industry needed?”.
Our study focuses particularly on the education of secure
coding guidelines. We approach this question by looking at
the perspective of software developers’ compliance to secure
coding guidelines.

Due to a lack of previous work exploring the relationship
between secure coding guidelines and software developers’
intention to comply with them, we have developed a survey
to address this issue. Our previous publication details the
overall research method underlying this survey and is available
in [14]. However, this previous publication focuses on the
survey creation and only presents limited results from the
survey pilot, i.e. it does not present any results of a large-scale

ar
X

iv
:2

10
2.

05
34

3v
1

 [
cs

.S
E

]
 1

0
Fe

b
20

21

deployment of the survey. This work at hands closes this gap
and presents an extensive analysis of a large-scale deployment.
We base our results on 194 answers from participants working
in different industries, collected over a period of seven months.
Our analysis of these results addresses the following research
questions:
RQ1: Which factors lead industrial software developers to

comply with or ignore secure coding guidelines?
RQ2: To what degree are software developers aware of

secure coding guidelines?
RQ3: To what extent is secure coding education in the

industry needed?
Through the large-scale survey, our contribution to scientific

knowledge comprises:
1) openly available data from a large-scale survey, for other

researchers to explore,
2) the presentation and interpretation of results from the

analysis of the survey, and
3) a list of actionable items for practitioners and industrial

cybersecurity educators.
This paper is organized as follows. Section II, briefly

discusses previous and related work. Section III gives a very
brief overview of the survey and its theoretical constructs.
In section IV, we present a comprehensive overview of the
most important results from the analysis of the survey, derive
actionable items, and discuss the threats to the validity. This
section, which constitutes the core of the paper, provides
herein our main contribution. Finally, section V concludes this
paper with an overview of the study, and an outline of further
work.

II. RELATED WORK

Based on a large-scale study by Patel et al. [22], Bruce
Schneier, a well-known security researcher, has stated that less
than 50% of software developers can spot security vulnera-
bilities in software [23]. Also, an estimation by the United
States Department of Homeland Security, about 90% of the
reported security incidents result from exploits against defects
in the design or code of software [2]. Adding to these facts,
software is becoming more complex and larger: a recent
study by Sourcegraph [24], with more than 500 software
developers, shows that more than 80% of software developers
are nowadays dealing with 20 times more code than ten years
before.

An additional motivating factor for our work is Fisher
et al. [25], which shows that typical online platforms that
software developers use to clarify development questions can
be considered harmful. The reason for not being a good
source of information is that the answers present in these
platforms are not curated in secure coding correctness. Their
work indicates that severe problems can arise if software
developers use these references and are not aware of secure
coding practices. Furthermore, Acar et al. [26] extensively
analysed existing online resources that software developers can
access to search about secure programming issues. They dis-
covered that these platforms provide low-quality information

in terms of cybersecurity. In particular, they found outdated
information, wrong information, and no concrete examples or
exercises.

While many studies focus on several different aspects of
secure software development, very few empirical results exist
on why software developers do not comply with secure coding
practices. In particular, to the best of our knowledge, we
have found no previous study addressing the aspects that
lead industrial software developers to comply or not comply
with secure coding guidelines in their daily work. In a recent
study Assal et al. [27] analyzed how software developers are
influenced and influence the secure coding processes. They
concluded that software developers are not the weakest link,
and are very motivated towards software security. However,
they did not cover the reasons why this is so. In 2011, Xie et
al. [28] interviewed 15 senior professional software developers
in the industry with an average of 12 years of experience. Their
study shows a disconnect between software security concepts
and the knowledge that the participants have in their jobs.
However, this study also does not focus on compliance to
secure coding guidelines.

To address this issue, we have formally developed a survey
[14] to investigate software developers’ compliance to secure
coding guidelines. This survey is based on the adaptation of
four distinct theories to the software developer context: IT
Security Policy Compliance theory (PC), IT Security Neu-
tralization theory (NT), Security-Related Stress theory (SRS),
and IT Security Awareness (AW). The work from Bulgurcu
et al. [29] and Moody et al. [30]) synthesizes the current
research on IT security policy compliance. Their work details
the possible reasons that serve as factors for individuals to
comply with IT security policies. Their constructs include,
among others, the intention to comply and the knowledge of
the policies. Neutralization Theory is is discussed in [31],
by Siponen et al., who address the possible reasons why
subjects might find reasons to disregard IT security policies.
Their constructs include, among others, the metaphor of the
ledger, denial of injury, denial of responsibility, and appeal to
higher loyalties. D’Arcy et al. in [32], discuss Security-Related
Stress theory which uses coping theory to explore stress as
a cause of deliberate IT security policy violations. Their
constructs include, among others, the lack of understanding,
higher workload, and constant changes. Finally, Hänsch et
al. provide a literature review on IT-security awareness [33].
Their conceptualization of IT Security Awareness comprises
three distinct constructs: Perception, Protection, and Behavior.
Perception relates to knowing existing threats, Protection re-
lates to knowing existing mechanisms, and Behavior relates
to actual behavior. Finally, in this work, we use the recent
results from WhiteSource [34], which present the top three
vulnerabilities of the C, C++, Java, and Python programming
languages.

III. SURVEY ON SECURE CODING GUIDELINES

To investigate the possible reasons why vulnerabilities end
up in final products, we have created a survey, described

in [14], that focuses on industrial software developers. This
survey is based on the four established theories: policy com-
pliance (PC, [29], [30]), neutralization theory (NT, [31]),
security-related stress (SRS, [32]), and awareness (AW, [35]).
Furthermore, the survey contains additional questions based
on the industry experience by the first author. These questions
are grouped by company background (CBG) and participant
background knowledge (BGK). Table I shows the questions
present in the survey, along with the different theories and
constructs in which it is based.

The questionnaire comprises the following four sections:
1) demographic data, 2) secure coding awareness, 3) secure
coding compliance, and 4) deterrents to compliance. The
first part of the questionnaire includes general demographic
questions on work experience, previous training on secure
coding, the primary programming language used at work,
used secure coding processes in the company, and software
development method. The second section of the questionnaire
deals with awareness for secure coding. This part is indi-
vidualized according to the primary programming language
selected in the first section. In this section, the participant
is asked four questions related to high-impact vulnerabilities,
according to [34]. These vulnerabilities are presented by the
corresponding CWE [36] description and number, The four
questions in this group correspond to Per1, Prot1, Be1 and
BgK45, as shown in Table I. The answers to these (and
only these) questions are based on a 3-point Likert scale:
Yes, Uncertain and No. The third section of the questionnaire
presents questions to measure the intent to comply to secure
coding guidelines. These are the questions marked with PC
in Table I. Finally, the fourth section contains questions
about the factors that influence compliance with secure coding
guidelines. These questions are based on neutralization theory
and security-related stress, which are marked with NT and
SRS in Table I, respectively.

The answers to the questions are based on a 5-point Likert
scale, which include the following: strongly disagree (SD),
disagree (D), neutral (N), agree (A) and strongly agree (SA).
The following mapping is used in our results: SD↔1, D↔2,
N↔3, S↔4, SA↔5. In the previous publication, we presented
the rationale and details on how the survey was scientifically
constructed. However, the preliminary results from the survey
pilot available in this previous work only included a minimal
subset of the survey questions, leading to very limited con-
clusions. For more details on the survey’ questions and the
design of the survey, we refer the reader to [14].

A. A Large Scale Survey

A large scale deployment of the survey was performed
between March and September of 2020, resulting in a total
running time of seven months. The survey was announced
through several different channels, in particular:

1) Professional Contacts: Linked-In, direct contacts by
the authors at several different companies, Münchener
Sicherheitsnetzwerk (Munich Security Network Forum)

2) Social Media: Twitter, Facebook, Reddit
3) Other: University contacts, survey exchange platform

(SurveySwap), advertisement in university website
The survey was constructed using the open-source survey

platform LimeSurvey [37] Version 3.17.0+190402 and de-
ployed in Amazon Web Services. At the beginning of the
survey, it was clearly stated: the purpose of the research, con-
tact details, and the mandatory requirement that the participant
must be a software developer from the industry. Over the
seven months, the survey was accessed 363 times resulting
in 196 complete answers. Two answers were rejected due
to irregularities found in the collected data. The full set of
captured data is available under the following link [38]. All
the data was anonymously collected; however, a cookie was
activated to prevent participants from submitting twice their
answers.

Figure 1 shows the different background industries captured
by this data set. The demographics in terms of participants’
programming languages are the following: C++ 50 (26%), Java
38 (20%), Python 37 (19%), Other 36 (18%), C 33 (17%).
The survey was anonymous, and geographical, education and
gender aspects were not captured.

Fig. 1. Survey demographics in terms of industry

31

15

32

14

31
28

13

3
6

36

46

4
7

16
14

26

6
3

8

0

5

10

Energy

Manufactu
rin

g

Health
ca

re

Finance

Te
leco

mmunica
tio

ns

Automotive

IT Secu
rity

Public
Tra

nsp
orta

tio
n

Public
Secto

r

e−Commerce

Secu
rity

Logisti
cs

Enterta
inment

Human Reso
urce

s

Avio
nics

e−Gove
rnment

Insu
rance

Agric
ultu

re

Enterpris
e Reso

urce
 Planning

P
er

ce
nt

ag
e

In the next section, an extensive discussion of the results of
the survey data analysis will be presented.

IV. RESULTS

This section presents the survey results, categorized by the
different theories in which it is based: CBG, BGK, PC, NT,
SRS, and AW. The section concludes with the main practical
take-aways from the analysis and discusses the threats to the
results’ validity.

A. Company Background

Table II shows the results for the company background
constructs CBg1, CBg2, and CBg8. From these results, we
observe that, in general, compliance to secure coding guide-
lines is not being checked in the industry, and that software
developers are not sure about the secure software development

TABLE I
SURVEY QUESTIONS, THEORIES AND CONSTRUCTS

Theory Ref. Construct Survey Question

CBG —

CBg1 In your company compliance to secure code guidelines is being checked in projects you work in
CBg2 You know the secure software development lifecycle in your company
CBg3 To which extent do you work with the secure coding standard?
CBg4 Could you explain why you use secure coding guidelines when writing code for the product you currently develop?
CBg5 Could you tell us why you do not use secure coding guidelines?
CBg6 Why is compliance to secure coding guidelines not actively being checked in the projects you work in?
CBg7 How is the compliance to secure coding guidelines checked in your current project?
CBg8 In your company you use a well established secure software development life-cycle

BGK —

BgK1 Compliance to secure coding guidelines is an important part of the development of company’s products
BgK2 Which of the following secure coding standards and best practices do you know?
BgK3 You are aware of negative consequences resulting from exploiting vulnerabilities in the products you work for
BgK4 What other weaknesses do you pay attention to in developing software for the product you currently work for?
BgK5* You know about this weakness

PC

[29]

ISPA You know that your company has a policy that mandates the usage of secure coding guidelines in software development
ITC You intend to always comply with secure coding guidelines
GISA You are aware of the existing security threats to the products of your company
SE-C1 In your opinion, to write secure code, you have the necessary skills
SE-C2 In your opinion, to write secure code, you have the necessary knowledge
SE-C3 In your opinion, to write secure code, you have the necessary competency

[30] FacCond5 Support is available if you experience difficulties in complying with secure coding guidelines
RespCost4 Secure coding guidelines make the task of writing software more difficult

—

PC-Conf Complying to SCG makes you feel more confident about the security of the code that you write
PC-NT In your opinion, to write secure code, you have the necessary time
PC-NR In your opinion, to write secure code, you have the necessary resources
PC-NF In your opinion, to write secure code, you have the necessary freedom

NT
[31]

N-DON3 It is OK to disregard secure coding guidelines when this means that you deliver your work-packages faster
N-ATHL1 It is OK to disregard secure coding guidelines when you would otherwise not get your job done
N-DOI1 It is OK to disregard secure coding guidelines when this would result in no harm to the customer
N-DOI2 It is OK to disregard secure coding guidelines if no damage is done to the company you work for
N-DOR3 It is OK to disregard secure coding guidelines if you do not understand them
N-COC1 It is not as wrong to ignore secure coding guidelines that are not reasonable
N-COC2 It is not as wrong to ignore secure coding guidelines that require too much time to comply with
N-MOTL1 You feel that your general adherence to secure coding guidelines compensates for occasionally ignoring them

—
NT-MArc It is OK to disregard secure coding practices when this would lead to major architectural changes
NT-CH It is OK to disregard secure coding guidelines when this means that it makes your company’s customers happy
NT-SC It is OK to disregard secure coding guidelines if the software is not safety critical

SRS [32]

CX2 You find that new employees often know more about secure coding than you do
CX4 You often find it difficult to understand your organization’s security coding guidelines
OL1 Complying to secure coding guidelines forces you to do more work than you can handle
OL4 You are forced to change your work habits to adapt to your organization’s secure coding guidelines
UC1 There are constant changes in secure coding guidelines your organization
UC4 There are constant changes in security-related technologies in your organization

AW [33]
Per1* You can recognize code that contains this weakness
Be1* You know how to write code that does not contain this weakness
Prot1* You understand the possible consequences that can result from exploiting this weakness

RQ.: Research Question, CBG: Company Background, BGK: Participant Background Knowledge, PC: Policy Compliance Theory, NT: Neutralization Theory,
SRS: Security-Related-Stress Theory, AW: Awareness, Note: constructs marked with * are specific for different programming languages

TABLE II
COMPANY BACKGROUND (CBG) AND BACKGROUND KNOWLEDGE(BGK)

CBg1 CBg2 CBg8 BgK1 BgK3
Average 2,57 2,93 2,42 2,36 3,87
Standard Deviation 1,29 1,14 1,22 1,28 0,90

CBG BGK

life-cycle (S-SDLC) used in their company. This observation
is corroborated by the CBg8 results.

Table III shows the results for CBg4, CBg5, and CBg6.
Here we observe that about 50% of the participants (out of
the 23 that mentioned security being or not a requirement)
claim that in their industry, implementation of security during
product development is a requirement, while the other half
state that this is not the case. In terms of factors why

SCG are not used (CBg5), we found the following important
factors: 1) lack of awareness (focus on products and not on
security, and limited knowledge), 2) relying on SAST tools,
3) because the participants had no previous experience with
issues, and 4) limited or lack of management commitment, and
resources devoted to security. The main factor not to check
compliance to SCG (CBg6) is the fact that SCG is not used,
and the industry focuses on products, not on security. Another
important factor was the (perceived) lack of automatic tools
to assist in the compliance checks and especially the lack of
awareness.

Figure 2 shows the results of CBg3: to which extent are
standard secure coding guidelines used in the industry. For all
the secure coding standards that the survey has covered, all
the results show that they are not really used in practice.

TABLE III
RESULTS FOR COMPANY BACKGROUND: CBG4, CBG5, AND CBG6

Why use secure coding guidelines? No. Why not use secure coding guidelines? No. Why is compliance to SCG not being checked? No.
Security is a requirement 11 Not a requirement 12 Not using secure coding guidelines 4
Because of compliance checks 5 Focus on products, not security 9 Focus on products, not security 4
Makes code resistant to attaks 4 Limited knowledge 4 Not required by customer 3
Code is safe and reliable 3 Takes too much time 2 Lack of resources 2
Due to quality and data protection 3 Rely on SAST tools 2 Products are not safety-critical 2
Imposed by project quality gates 2 Due to real-time constraints 2 Lack of automatic tools to assist in compliance checks 1
Ensure code quality 2 Software deployed in secure environment 2 Not enough higher management commitment 1
It's software development best practices 1 Customers do not "see" the feature 2 Nobody in the projects thinks about security 1
Comfortable with security 1 Security is added afterwards 2 Lack of time 1
To avoid bugs 1 Due to usage of proprietary software tools 1 Small company 1
To reduce security risks 1 Old code-base (e.g. >10 years) 1 Security is an add-on 1

Use open-source software 1 Cost saving 1
Cost saving reasons 1 Not in our software development process 1

Legend: Until now we had no issues 1 Lack of awareness 1
 SCG: Secure Coding Guidelines Time pressure 1 Security is not understood by software developers 1

CBg4 CBg5 CBg6

Fig. 2. CBg3: To which extent use secure coding standard

2 1 1

15 9 1 3 2

5 2 3 4

13 6 7 1 5

11 4 3 5 1

BSI 5.21

OWASP Top 10

C11 Annex J

MISRA

SEI−CERT

0 25 50 75 100
Percentage

Very Frequently Frequently Occasionally Rarely Very Rarely

For the participants who answered that SCG are checked
in their company, fig. 3 shows how they are being checked.
This figure shows that 70.7% check SCG during code review,
62,2% using automated tools, and 46.3% by a manual process.
This figure also shows that 15.8% of the checks are done
using automated tools exclusively, 12.2% using code review
exclusively, and 10.9% through a manual process. Employing
two different methods (Automated Tools and Code Review)
lead to 25.6% of the results. About 18.3% claim that the three
methods are used simultaneously.

Fig. 3. CBg7: How are secure coding guidelines checked?

Code
Review
70,7%

2,4%

18,3%

14,6%25,6%

15,8% 10,9%

12,2%

Automated
Tools
62,2%

Manually
46,3%

B. Participant Background Knowledge

Table II shows that compliance to secure coding guidelines
(BgK1) is not considered an essential part of the development
of products, with an average agreement of 2.36. However,
the survey participants have indicated to be aware (3.87
average agreement) of the negative consequences of exploiting
software vulnerabilities (BgK3). We attribute this observation
to the large amount of advertisement, e.g., social media, on
these negative consequences.

Fig. 4. BgK2: Knowledge of SCG standard

41.4%

28.9%

65.3%

38.6%
35.9%

16.9%

52.6%

40.0%

50.0%

5.3%

0

20

40

60

SEI−CERT MISRA C11 Annex J OWASP BSI 5.21
Standard

P
er

ce
nt

ag
e

Condition

By Language

By Total

Figure 4 shows the extent to which survey participants know
the different secure coding standards. The blue bars represent
the ”percentage of the total survey population that knows
the given SCG standard”. The red bars show the ”percentage
of the population that should know the standard, given their
chosen programming language”. For the SEI-CERT standard,
this corresponds to the population who answered C or C++
as a programming language. For the MISRA and C11 Annex
J the results correspond to C programmers. The OWASP and
BSI standards capture Java, Python and programmers of Other
languages.

General knowledge about SCG is low (below 65.3%).
Comparing the blue to the red bars, these results show that

TABLE IV
RESULTS ON PC, NT AND SRS VS INDUSTRY, PROGRAMMING LANGUAGE AND WORK EXPERIENCE

G
IS

A

IT
C

IS
PA

Fa
c

C
on

d5

PC
-C

on
f

PC
-N

T

PC
-N

R

PC
-N

F

SE
-C

1

SE
-C

2

SE
-C

3

R
es

p
C

os
t4

 N
-D

O
I1

 N
-D

O
I2

 N
-D

O
N

3

 N
-A

TH
L1

 N
-D

O
R

3

 N
-C

O
C

1

 N
-C

O
C

2

 N
-M

TO
L1

 N
T-

M
A

rc

 N
T-

C
H

 N
T-

SC

 C
X2

 C
X4

 O
L1

 O
L4

 U
C

1

 U
C

4

AA 3,7 3,8 3,5 3,7 3,7 3,3 3,3 3,6 3,7 3,5 3,5 3,4 3,1 2,9 2,3 2,3 2,4 2,9 2,5 2,7 2,8 2,6 2,9 2,6 2,8 3,0 3,0 2,7 3,3
𝜎 0,7 0,8 1,2 0,9 0,7 0,8 0,8 0,7 0,7 0,8 0,8 0,9 1,0 0,9 1,1 1,0 0,9 1,1 0,8 0,9 0,9 1,0 1,0 0,8 0,9 0,8 0,8 0,9 0,9
AA 3,7 3,6 3,5 3,5 3,5 3,3 3,2 3,5 3,8 3,6 3,6 3,2 2,8 2,4 2,1 2,5 2,1 3,4 2,5 2,8 2,4 2,4 2,6 2,7 2,8 2,9 2,8 2,6 3,2
𝜎 1,0 0,9 1,1 1,1 0,9 1,0 1,0 1,1 1,1 1,0 1,0 1,1 0,9 1,0 1,0 1,1 1,0 1,0 0,9 0,7 1,0 0,9 1,0 0,9 0,9 0,9 0,9 0,9 1,0
AA 3,7 3,7 3,8 3,2 3,6 3,1 3,3 3,2 3,5 3,5 3,5 3,3 2,4 2,0 2,2 2,3 2,1 3,2 2,5 2,8 2,4 2,3 2,4 2,7 3,0 2,8 2,9 2,9 3,2
𝜎 0,8 0,9 0,9 1,0 0,7 1,2 1,0 1,3 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,1 1,1 1,1 1,0 0,8 1,1 1,1 1,2 0,9 1,0 0,9 0,9 0,9 0,9
AA 3,7 3,5 3,3 3,6 3,4 3,6 3,4 3,9 3,5 3,4 3,6 3,2 2,8 2,6 2,1 2,6 2,1 3,3 2,4 2,7 2,7 2,8 3,0 2,8 2,6 2,7 2,4 2,4 3,1
𝜎 1,0 1,1 1,3 1,3 1,0 1,0 1,0 1,0 1,1 1,2 1,0 1,0 1,0 1,0 1,2 1,2 1,2 1,1 0,9 0,9 1,0 1,1 1,2 1,0 0,8 0,8 0,9 1,1 1,0
AA 3,8 3,6 3,5 3,2 3,4 3,5 3,3 3,6 3,4 3,4 3,5 3,4 2,9 2,6 2,3 2,8 2,1 3,2 2,4 2,7 2,6 2,8 2,7 2,8 3,0 2,8 2,8 2,6 3,2
𝜎 0,9 0,9 1,2 1,3 0,9 1,0 0,9 1,1 0,9 0,9 0,9 0,9 1,1 1,1 1,1 1,1 1,1 1,0 1,0 1,0 1,0 1,0 1,2 1,0 0,8 0,9 1,0 1,0 1,1
AA 3,9 3,7 3,8 3,4 3,8 3,3 3,3 3,8 3,8 3,6 3,6 3,4 2,7 2,5 2,2 2,7 2,3 3,1 2,4 2,7 2,6 2,6 2,5 2,7 2,8 2,8 2,8 2,6 3,2
𝜎 0,9 0,8 1,0 1,1 1,0 1,0 0,8 1,0 0,9 0,8 0,8 0,9 1,1 1,1 0,9 1,0 1,2 0,9 0,9 0,9 1,0 1,0 1,0 0,8 0,9 1,0 1,0 1,0 1,1
AA 3,6 3,6 4,0 3,7 3,8 3,0 3,2 3,4 3,5 3,7 3,7 3,3 2,7 2,7 2,3 2,7 2,4 3,3 2,6 2,7 2,7 2,7 2,8 2,9 2,7 2,8 2,8 2,4 3,0
𝜎 0,9 1,0 1,0 1,1 0,8 1,3 1,0 1,2 1,0 1,0 1,0 1,1 1,1 1,2 1,1 1,1 1,0 1,0 1,0 1,0 1,2 1,1 1,3 0,9 1,0 0,9 1,1 0,9 0,9

AA 3,6 3,8 3,6 3,3 3,9 3,4 3,6 3,7 3,8 3,8 3,8 3,2 2,7 2,5 2,2 2,5 2,5 3,0 2,6 2,7 2,8 2,7 2,6 2,8 2,5 2,2 2,7 2,7 3,2
𝜎 0,9 1,0 1,2 1,2 0,6 1,0 0,7 0,9 0,8 0,8 0,8 1,1 1,0 1,0 1,0 1,0 1,3 0,9 0,9 0,9 1,0 1,2 1,0 0,9 1,0 0,7 1,1 0,9 0,9
AA 3,7 3,6 3,5 3,1 3,5 3,0 3,2 3,4 3,6 3,5 3,6 3,3 2,6 2,4 2,3 2,6 2,1 3,0 2,6 2,8 2,6 2,6 2,7 2,8 2,9 2,8 2,7 2,3 2,8
𝜎 1,0 0,9 1,1 1,2 0,9 1,1 0,9 1,0 0,9 0,8 0,8 1,1 1,2 1,1 1,1 1,0 1,1 1,0 1,0 1,0 1,0 1,2 1,2 0,8 1,0 0,9 1,0 0,8 0,9
AA 3,6 3,6 3,2 3,3 3,6 3,0 3,3 3,4 3,3 3,3 3,4 3,4 2,9 2,7 2,3 2,7 2,6 3,1 2,6 2,8 2,8 2,6 2,9 2,6 2,7 3,0 3,1 2,8 3,2
𝜎 1,1 1,1 1,3 1,0 1,0 1,1 1,0 1,1 1,2 1,1 1,0 1,0 1,1 1,0 1,0 1,0 1,1 0,9 1,0 0,9 1,1 1,1 1,1 1,0 0,9 0,9 1,1 1,0 0,8
AA 3,6 3,5 3,6 3,5 3,6 3,3 3,3 3,4 3,4 3,6 3,5 3,4 3,2 3,0 2,7 3,0 2,6 3,2 2,5 2,9 3,0 2,8 2,9 2,9 3,0 3,0 3,1 2,9 3,3
𝜎 0,9 1,0 1,2 1,0 1,0 1,1 0,9 1,1 0,9 0,9 0,9 0,8 1,1 1,0 1,0 1,1 1,2 1,1 1,1 1,0 1,1 1,0 1,1 1,3 1,0 0,9 1,0 1,0 1,2
AA 3,7 3,6 3,6 3,2 3,5 2,7 2,9 3,1 3,3 3,1 3,3 3,3 2,6 2,4 2,2 2,4 2,3 2,9 2,4 2,8 2,5 2,3 2,7 2,8 3,0 3,1 3,0 2,8 3,3
𝜎 0,8 0,9 1,1 1,2 0,9 1,0 1,0 1,1 1,2 1,1 1,1 0,8 1,1 1,2 1,1 1,1 1,1 1,0 0,9 0,9 1,0 1,0 1,2 0,8 0,9 0,9 0,8 0,9 0,9

AA 3,6 3,7 3,4 3,2 3,6 2,7 3,0 3,3 3,2 3,3 3,3 3,4 3,1 2,9 2,6 2,9 2,5 3,2 2,6 2,9 2,9 2,7 3,0 3,0 2,9 3,1 3,1 2,8 3,3
𝜎 1,0 0,9 1,2 1,1 1,0 1,2 1,0 1,2 1,0 1,0 0,9 0,9 1,1 1,1 1,2 1,1 1,0 1,1 1,0 1,0 1,1 1,1 1,1 1,1 0,9 0,9 1,0 1,0 0,9
AA 3,9 3,4 3,5 3,2 3,4 3,4 3,5 3,3 3,4 3,5 3,8 3,6 3,2 2,8 2,7 2,9 2,6 3,0 2,8 3,1 3,1 3,0 3,0 3,0 3,1 3,2 3,4 3,1 3,3
𝜎 0,7 0,9 1,2 1,1 0,8 1,1 0,9 1,1 0,8 0,9 0,9 0,9 1,1 1,0 1,1 1,0 1,2 1,1 1,0 0,9 1,0 1,0 1,1 0,9 0,9 1,0 1,0 1,0 1,0
AA 3,3 3,6 3,3 3,2 3,5 3,3 3,5 3,6 3,5 3,5 3,6 3,1 2,7 2,4 2,2 2,3 2,6 2,9 2,6 2,6 2,6 2,6 2,8 2,7 2,9 2,6 2,8 2,7 3,1
𝜎 1,0 1,0 1,2 1,1 0,8 0,8 0,8 0,9 1,0 1,0 0,9 1,0 1,0 0,9 0,8 0,9 1,2 1,0 1,1 0,9 0,9 1,0 1,0 0,9 1,0 0,9 1,0 0,9 1,0
AA 3,7 3,7 3,7 3,3 3,8 3,1 3,2 3,4 3,7 3,6 3,6 3,3 2,5 2,4 2,1 2,5 2,2 3,0 2,4 2,7 2,5 2,4 2,5 2,5 2,6 2,5 2,6 2,4 2,9
𝜎 0,9 1,0 1,1 1,2 1,0 1,1 1,0 1,1 1,0 1,0 1,0 1,0 1,1 1,2 1,0 1,0 1,2 1,0 0,9 0,9 1,1 1,1 1,2 0,8 0,9 0,8 0,9 0,8 0,9

NOTE: AA - average agreement, based on Likert scale (1⟷SD, 2⟷D, 3⟷N, 4⟷A, 5⟷SA), 𝜎 - variance of average agreement

M
ea
su
re

Policy Compliance Neutralization Theory Security-Related Stress

Finance

Healthcare

In
du

st
ry

IT Security

Pr
og

ra
m

m
in

g
La

ng
ua

ge

C

C++

Java

Python

Other

Telecommunications

Automotive

Manufacturing

Energy

Minimum in Row

W
or

k
Ex

pe
rie

nc
e

less than 3

3 to 5

6 to 10

more than 10

Minimum in ColumnMaximum in Column Maximum in Row

the different standards are known to a larger percent of
general population participants than those in the population
that should know the standard – this is an issue. It means
that the population that should be more aware of these SCG
standards is not aware of them. In particular, from the C and
C++ software developers, only 28.9% know the SEI-CERT
standard, 38.6% know the MISRA standard, and 16.9% know
the Annex J of the C11 standard. For developers using Python
and Java, 40% know the OWASP standard, and 5.3% know
the BSI 5.21 standard. This last result is not surprising, since
the BSI standard is local to Germany only, and the survey was
deployed on a global scale.

C. Policy Compliance, Neutralization Theory, and Security-
Related Stress

Table IV shows the overall results for each theory (policy
compliance, neutralization theory, and security-related-stress)

for each theory construct, grouped by industry, programming
language, and by work experience. The minimum and max-
imum values are highlighted in this table, with the colors
red and green, respectively. For a given group, the minimum
and maximum in a column (i.e., per theory construct) is
highlighted by a thicker border, while the minimum and
maximum in a row is highlighted with a background color
(red and green respectively).

In terms of policy compliance, we observe that the highest
amount of agreement across all twelve constructs is obtained
for the C programming language, while the highest amount of
disagreement is obtained for other programming languages and
participants with less than three years of industry experience.
We attribute the latter observation to the fact that newer em-
ployees need to accommodate to the job and might, therefore,
not be yet fully integrated into the daily working life. The
construct that was rated with the lowest agreement across all

the different groups is PC-NT (i.e. lack of time), This result
is to be expected due to the need to fulfill project deadlines
in an industrial environment.

In terms of neutralization theory, the construct N-DON3
sees the largest amount of disagreement, i.e., software devel-
opers do not think that secure coding guidelines should be
ignored to deliver work-packages faster. However, there is a
general agreement across all groups (industry, programming
languages, and work experience) that ignoring unreasonable
secure coding guidelines is acceptable. This result is surprising
since, according to the first author’s experience, it is not
the software developers’ job to question the secure coding
guidelines but comply with their policies when developing
software.

Another surprising factor is that participants in the telecom-
munications industry find fewer reasons not to comply with se-
cure coding guidelines. According to the first author’s experi-
ence, this might be because engineers working in this industry
are used to developing software under tight constraints (e.g.,
real-time) and follow established coding guidelines to achieve
this goal. However, the IT security and finance department find
more reasons not to comply with secure coding guidelines than
other industries. This fact is also surprising, especially for the
IT security industry. We think that, since the developers work-
ing in this industry face security topics daily, they might be
more inclined to bend the established rules. Another surprising
factor is that, compared to the other programming languages,
Python developers tend to find more reasons not to comply
with secure coding guidelines. We attribute this observation to
the fact that Python is a prototyping language, where software
developers might be more used to writing ”quick and dirty”
code, other than in the other cases. Also, surprisingly, is the
fact that software developers using programming languages
other than C, C++, Java, or Python find fewer reasons not
to comply with secure coding guidelines. In terms of work
experience, senior employees (more than ten years experience)
tend to follow the established rules, while employees working
for three to five years in the industry find more reasons to
discard SCG. Another result from this table is that, across all
the groups, software developers also tend to ignore SCG that
they do not understand.

Finally, in terms of security-related-stress, there is a general
agreement on the construct UC4, i.e., the participants to the
survey have observed constant changes in security-related
technologies. This observation might be related to the large
and growing amount of different software development frame-
works and changing (agile) software development methodol-
ogy. However, there is also a general disagreement on UC1,
i.e., that secure coding guidelines are not continually changing.
We find this last observation positive since constantly changing
secure coding guidelines can lead to unnecessary stress at
work.

D. Awareness

For each of the programming languages, the participants
were asked to answer Yes, Unsure, and No on how they agree

with each of the awareness constructs (Per1, Prot1, Be1), and
also on BgK5. Additionally, each of these questions was asked
in relation to a top-3 CWEs (Common Weakness Enumeration)
that affects the programming language, according to the study
by WhiteSource [34]. Table V shows the survey results for
these constructs, for each programming language and each
CWE. We note that each of the CWE is related to one or
more secure coding guideline [18]. In this table, an ”unsure”
answer was considered a negative aspect, therefore combined
with ”no” results.

The survey participants report high levels of awareness for
BgK5 (knowing the vulnerability), and for the construct Prot1
(understanding the consequences of exploiting vulnerabilities).
However, for Per1 (ability to recognize vulnerable code)
and Be1 (knowing how to write secure code), the levels of
awareness are low (less than 51%). The first result is in line
with the study by Patel et al. [22], however, the second result
is new in this study. For the construct Per1, we also observe
that the programming languages ”Other”, Python and C are
especially at risk since the awareness level is low for their
ranked vulnerabilities.

Considering all the constructs together, we observe an over-
estimation (60% vs 40%) of the participants’ awareness level,
since real-world data shows that the number of incidents is
increasing. We attribute this to optimism bias [39], which is a
well-known effect in risk perception that occurs when someone
overestimates or underestimates risk while remaining ignorant
about their poor assessment [40]. Our results indicate an
overestimation bias, which is corroborated with the industry’s
experience from the first author.

Since the participants were only asked to rank the top-3
CWE, in BgK4 we asked the participants to optionally name
additional weaknesses that they pay attention to while develop-
ing software. The participants’ answers were coded to separate
the correctly identified weaknesses from the vulnerabilities and
general issues not related to secure coding. Table VI shows
the result of the codification of the answers given by the
participants.

From all the additional survey answers, 63.2% are software
weaknesses, 33.3% are general coding issues, and 3.5% of
the answers are from unsure participants. Python has the
highest amount of correctly identified weaknesses and, sur-
prisingly, C++ the least amount. The reason for the last
observation might be due to the complexity of the C++
language. In terms of correctly identified issues, Authenti-
cation and Authorization, Information leakage, Memory Is-
sues, Weak Cryptography, and Buffer Overflow are in the
top-5. Surprisingly, the survey participants have considered
general bugs, performance issues, and security breaches as
secure coding weaknesses. Denial-of-service is generally not
considered a coding issue but a deployment issue (solved
with e.g., load balancing). However, it was also considered
a software vulnerability, ranking in the top-5 of the general
issues category. Surprisingly, also considered as secure coding
issues have been: infrastructure issues, safety aspects, and
code smells, personal identifiable information, and lack of

TABLE V
AWARENESS RESULTS VS PROGRAMMING LANGUAGE

Yes Unsure No Yes Unsure No Yes Unsure No Yes Unsure No
17 (52%) 30 (91%) 23 (70%) 29 (88%)
22 (67%) 29 (88%) 26 (79%) 30 (91%)
15 (45%) 24 (73%) 16 (48%) 25 (76%)
54 (55%) 83 (84%) 65 (66%) 84 (85%)

29 (58%) 43 (86%) 27 (54%) 44 (88%)
35 (70%) 42 (84%) 34 (68%) 42 (84%)
22 (44%) 34 (68%) 24 (48%) 38 (76%)
86 (57%) 119 (79%) 85 (57%) 124 (83%)

23 (61%) 28 (74%) 21 (55%) 24 (63%)
19 (50%) 28 (74%) 20 (53%) 29 (76%)
15 (39%) 21 (55%) 15 (39%) 24 (63%)
57 (50%) 77 (68%) 56 (49%) 77 (68%)

18 (49%) 26 (70%) 16 (43%) 24 (65%)
20 (54%) 24 (65%) 17 (46%) 12 (32%)
11 (30%) 17 (46%) 12 (32%) 20 (54%)
49 (44%) 67 (60%) 45 (41%) 56 (50%)

12 (33%) 19 (53%) 13 (36%) 21 (58%)
14 (39%) 27 (75%) 15 (42%) 28 (78%)
14 (39%) 24 (67%) 11 (31%) 24 (67%)
40 (37%) 70 (65%) 39 (36%) 73 (68%)

286 233 63 416 116 50 290 218 74 414 126 42
49% 71% 50% 71%

1406 693 229 W. Avg.
60% CWE

Note:
Legend

from 55% to 100%
from 45% to 55%
from 0% to 45%

Weighted Average
Common Weakness Enumeration
CWEs sorted by incidence ranking, according to WhiteSource study

Average

Average 47/22 (64%) 26/9 (32%)

6/2 (22%)
11/4 (42%)

O
th

er 1) CWE 1211
2) CWE 137
3) CWE 200 0,63

W.Avg.

30/14 (40%)

30/7 (32%)

19/12 (21%) 53/12 (43%)

41/17 (51%)

49/17 (59%) 39/16 (50%)

31/6 (32%)

18/8 (17%)

12/3 (15%)

0,91
0,89
0,86

0,80
0,87
0,76

0,78
0,55

28/6 (34%)

0,740,89
0,89
0,79

0,87
0,83
0,72

0,81
0,78

21/5 (52%)

14/3 (45%)
12/6 (47%)
15/8 (61%)

16/5 (57%)
16/4 (54%)

5/3 (16%)
3/3 (12%)

0,80
0,69

0,74
0,68
0,59

0,65

23/5 (56%)

12/3 (39%)
13/6 (50%)
19/4 (61%)

16/3 (51%)
14/3 (46%)

12/5 (46%)
17/8 (68%)
10/3 (35%)

10/4 (37%)
8/1 (24%)
13/1 (37%)

10/2 (24%)

0,68

0,67

0,76
0,67
0,64

0,70
0,73
0,55

0,56
0,65

BgK5Perception (Per1) Protection (Prot1) Behavior (Be1)

0,92 0,80
W.Avg. W.Avg. W.Avg.

0,9414/2 (48%)
0,94
0,82

0,89
0,70

0,94
0,85

7/0 (21%) 2/1 (9%)
6/2 (24%)

4/0 (12%)

16/5 (42%)
11/4 (30%)

20/3 (46%)
12/4 (32%)C

++

1) CWE 119
2) CWE 20
3) CWE 200

3/4 (14%)
5/3 (16%)
11/5 (32%)

0,74
0,81

Ja
va

1) CWE 20
2) CWE 200
3) CWE 79

Average

10/0 (26%)
7/3 (26%)
13/4 (45%)

50/14 (43%)

Average

Py
th

on 1) CWE 20
2) CWE 264
3) CWE 79 0,5519/7 (70%)

8/3 (30%)
10/3 (35%)
12/8 (54%)

44/13 (50%)

17/8 (68%)0,62 0,70

0,83
0,78

0,58
0,61
0,54

49/13 (56%)

16/8 (67%)
19/3 (61%)

12/5 (47%)
6/3 (25%)

16/7 (64%)
14/7 (58%)

0,69 0,74
0,86
0,79

Total Average 51% 29% 50% 29%

Overall Average 40%

17/5 (61%) 8/4 (33%) 17/8 (69%) 9/3 (33%)
52/16 (63%) 26/12 (35%)

1) CWE 119
2) CWE 20
3) CWE 399

C

Average

4/0 (12%)
6/3 (27%)

1/2 (9%) 7/3 (30%)
11/0 (33%)
13/5 (55%)
38/7 (45%)

0,73
0,83
0,65 14/3 (52%)

11/5 (16%)

TABLE VI
BGK4: ADDITIONAL KNOWLEDGE ON CODING WEAKNESSES

C C
++

Ja
va

Py
th

on

O
th

er

C C
++

Ja
va

Py
th

on

O
th

er

61% 52% 65% 78% 56% 39% 40% 35% 22% 33%
Authentication and authorization Issues 1 2 5 2 10 8,8% General bugs 3 2 3 2 10 8,8%
Information leakage 1 3 3 2 9 7,9% Performance issues (e.g. real-time constraints) 1 3 4 3,5%
Memory issues (e.g. dynamic memory) 3 2 1 2 8 7,0% Security breaches 1 1 1 1 4 3,5%
Weak cryptography 1 2 1 5 9 7,9% Denial-of-service 1 1 1 3 2,6%
Buffer overflow 1 2 2 1 6 5,3% Credentials management 1 1 2 1,8%
Injection (e.g. SQL) 1 2 2 5 4,4% Infrastructure issues 1 1 2 1,8%
Integer problems 3 2 5 4,4% Malware 1 1 2 1,8%
Cross-site request forgery 3 1 4 3,5% Privilege escalation 1 1 2 1,8%
3rd party components and libraries 1 1 1 3 2,6% Remote or arbitrary code execution 1 1 2 1,8%
Logic and exception problems 2 1 3 2,6% Safety aspects 1 1 2 1,8%
Input validation 1 1 1 3 2,6% Insufficient testing 1 1 2 1,8%
Insecure default configuration 1 1 1 3 2,6% Data loss 1 1 0,9%
Data integrity 2 2 1,8% Existence of Personal Identifiable Information 1 1 0,9%
Cross-site scripting 2 2 1,8% Code smells 1 1 0,9%

Unsure Answers: C++ (8%), Others (11,1%)

Correctly identified weaknesses Vulnerabilities and general coding issues

To
ta

l

To
ta

l i
n

(%
)

W
ea

kn
es

se
s.

 (6
3,

2%
)

G
en

er
al

 Is
su

es
 (3

3,
3%

)

To
ta

l

To
ta

l i
n

(%
)

testing. In particular, code smells, which are symptoms of
poor design and implementation choices that may hinder code
comprehensibility and maintainability [41], have been shown
to be generally dissociated from security vulnerabilities [42].
The consideration of these factors as secure coding weaknesses
leads us to notice the lack of awareness of secure coding
guidelines.

E. Actionable Items for Industrial Practitioners

In the following, we present the main actionable items (AI)
we infer from the current work, i.e. from the analysis of the
survey results but also from our experiences surrounding this
topic in industrial application. These actionable items should
be taken into consideration by practitioners. We split them
into two main categories: general issues and secure coding

guidelines. The AIs under the general issues category are not
directly related to secure coding guidelines and include:

1) Need to involve management: without management
understanding and approval, it is not possible to establish
secure coding practices in a company

2) Need to improve knowledge on company’s internal
S-SDLC and secure coding policies: the survey has
shown that software developers are not always aware
of the company’s internal policies and about the S-
SDLC; therefore, specialized internal campaigns should
be started to raise awareness of these issues

3) Raise awareness of the difference between secure
coding and other aspects, e.g. safety and performance:
the survey has shown that software developers tend to

confuse these topics. When training software developers,
the difference between these aspects should be made
clear, as also possible opposing recommendations

4) Consider security in the requirements phase: it is
no surprise that security should be considered early in
the software development phases; rarely will customers
”ask for security”; however, they will expect secure
products. Therefore, company policies should be adapted
to cover security from early stages, and software devel-
opers should be aware of the necessary steps to take
(e.g., threat and risk analysis, secure architecture, security
requirements).

Furthermore, software developers must be made aware of
the difference between security weakness and security vulner-
ability. In particular, security weaknesses are coding errors that
might lead to a vulnerability, while (according to ENISA [43],
definition G52), a security vulnerability is the existence of a
security weakness that can lead to a security breach. In terms
of secure coding guidelines, we conclude the following key
AIs for practitioners:

1) Include SCG as an integral part of S-SDLC: SCG
should be lived as a process and should be second nature
to software developers; daily practice and usage has the
potential to have long-lasting and beneficial effects.

2) Build a secure coding community: promote secure
coding practices inside the company. Some possible ways
to implement this it to join larger communities which also
promote secure coding practices, e.g., SAFEcode [44],
have monthly or weekly presentations or discussions on
a secure coding topic, promote and use secure coding
gamification (e.g., best secure coder of the month).

3) Define a responsible person: have a point-of-contact
for secure coding issues; the job of this person includes
making sure that software developers are trained, and
motivated.

4) Implement awareness training on SCG: a substantial
amount of software developers needs training on SCG; as
such, awareness training events should be promoted and
held regularly.

5) Implement hands-on awareness training: motivated by
the observed optimism bias, and also experience from the
industry, we think that an effective way to raise awareness
is to challenge the knowledge of software developers
on secure coding topics; while desired training methods
was not captured through the survey, our experience
has shown that after being challenged on these topics,
many developers tend to re-evaluate their knowledge and
seek more information. A good way to achieve this
is by the usage of Capture-the-Flag events, which are
specially designed to raise awareness of secure coding
for software developers in the industry; these exercises
should mainly focus on the defensive perspective but
also cover offensive aspects; furthermore, these exercises
should provide a good motivation on why certain SCG
exist – this way, software developers can develop a better

knowledge of SCG and understanding on why they should
comply to them.

6) Implement SCG quality gates: secure code is also high-
quality code; practitioners should consider adding the re-
quirement of checking secure coding guidelines to typical
project quality gates; some ways this can be achieved
include using specialized tools that are configured to
check secure coding guidelines, keeping track of code
reviews including review of secure coding guidelines, and
status monitoring of software security testing results.

7) Do not use SAST as a replacement for SCG: some
participants to the survey have mentioned the usage of
SAST tools as a replacement for a formal training or
consideration of secure coding guidelines; we consider
this an important hidden danger – previous studies [45],
[46] have reported on the poor quality of SAST tools;
therefore, we conclude that the human factor cannot be
taken out of the loop and SAST tools should only be used
in a supportive role.

8) Monitor the quality of SAST tools: since the quality
of the output of these tools might be poor, strategies to
address their quality needs to be considered; in particular,
the secure coding champion needs to implement a process
to verify the quality of the tools being deployed and to
replace them when outdated; additionally, if possible, it
should be considered to use several tools in parallel, in
order to compare the different results.

9) Training on SCG should focus on concepts, not specific
cases or instances: the results of the survey indicate
constant changes in security technologies; this might
be related to the vast amount of existing frameworks
and booming IT security field; these changes can cause
unnecessary stress to software developers; as such, when
dealing with secure coding guidelines, software devel-
opers should be trained on concepts and not so much
on particular instances of SCG, in particular, software
developers should understand the underlying reason for
the SCG and not just assume the rule without further
consideration.

10) Keep up-to-date with the latest technology: software
developers should be informed about the latest security
technologies, when necessary, especially when starting
new projects; this should be done taking into consider-
ation that too much information can cause stress, while
too little information can mean that important news are
missed; for this reason, we propose that the secure coding
champion should constantly monitor new technologies
and decide on their importance and introduction on
running projects.

11) Adapt SCG, only when necessary: similar to keep-
ing up-to-date with the latest technology, secure coding
guidelines should be updated regularly; however, without
interfering with ongoing projects; updates of SCG should
be timed together with other SCG awareness campaigns,
e.g., awareness training.

F. Threats to Validity

In this work, we present the analysis of a large scale
anonymous survey on the usage of secure coding guidelines
in the industry, including a total number of 194 participants
distributed across the globe. Since the survey took place in
an online format, and the collected data is anonymized, it
is impossible to control the respondents’ true background.
However, we have counter-acted this possible bias in two
different ways: by making sure that the channels where the
survey was announced included a rich set of industrial soft-
ware developers and that this requirement was clearly stated
at the start of the survey (in particular with the following
sentence in the beginning of the survey: ”this survey is for
software developers working in the industry”). Geographi-
cal background was not captured, which might impact our
conclusions. Additionally, the different industry sectors are
not equally represented, which might introduce bias to our
conclusions. Our conclusions result from an interpretation of
the data in light of the first author’s own experience in the
industry. However, these results have been discussed with three
additional security experts, whereby the conclusions hereby
presented have been confirmed by all. We observe that the
survey results display optimism bias. To counterbalance this
effect, we focus our results, not on absolute values, but on
a relative comparison between different values. Finally, the
results on knowledge of the BSI standard might have a strong
bias, since this is a local standard to Germany, and geographic
results are not available.

G. Impact of this work

The results presented in this work provide an impact both
in the academic community but also in the industry. It is
not always easy to obtain a large volume of survey data
from participants from the industry. In this work, we have
collected the survey answers from over 190 industrial software
developers. This means that we can assume that our results
have a strong supportive basis. Also, the survey that was
administered to the participants underwent an extensive design
cycle, to make sure that it is based on well established
scientific theories. As a result of the analysis of the survey
data, fifteen key take-away messages were derived, which
serve both as guidance for future scientific work but also as
valuable information for industry practitioners. Our work not
only addresses the awareness of software developers on the
topic of secure coding guidelines, but it also raises awareness
in the scientific community on this difficult topic. Additionally,
we provide the raw survey data, as a means to contribute to
further research on the topic.

V. CONCLUSIONS

Cybersecurity is becoming ever more important nowadays.
Ignoring cybersecurity can lead to severe financial penalties
or even loss of certification, together with loss of business
or even loss of life, in critical infrastructures. However, the
last years have seen an increase in cybersecurity incidents.
According to an estimate by the United States Department of

Homeland Security, the root cause of about 90% of security
incidents can be traced back to software design and coding
weaknesses. Secure coding guidelines exist to make software
secure – compliance to them increases the security and quality
of code. Additionally, Static Application Security Test tools
also exist to reduce software vulnerabilities; however, previous
studies have shown that these tools exhibit many false positives
and false negatives. These facts lead us to the following
questions: 1) how aware are software developers of secure
coding guidelines, 2) is secure coding education in the industry
needed, and which factors lead software developers to comply
or ignore secure coding guidelines.

In this work, we address these questions through a large-
scale survey on software developers in the industry. The survey
design, which is a complicated endeavor by itself, is addressed
in a separate publication, while this focuses on the analysis of
the results and practical aspects and advice for practitioners
and cybersecurity educators in the industry. Our measurement
of policy compliance is based on three established theories:
policy compliance theory by Bulgurcu et al. and Moody et
al.; neutralization theory by Siponen et al.; and security-related
stress theory by D’Arcy et al. Our measurement of awareness
is based on the three dimensions, as defined by Hänsch et al.:
perception, protection, and behavior.

Our results indicate that a large amount of software develop-
ers are not aware of secure coding guidelines. Previous studies
argue that increasing awareness leads to increased compliance.
Therefore, we conclude that a method to address this lack of
awareness is through education on secure coding. Based on our
results and experience, we also infer a set of fifteen actionable
items for practitioners and industrial cybersecurity educators.
A further contribution herein is the raw survey results, which
we make openly available for further research. In future work,
we would like to practice the derived actionable items and
investigate novel methodologies for secure coding education of
industrial software developers. We want to use these actionable
items to improve our ongoing action-design research in the
industry.

SUPPORTING DATA

The raw data collected in the survey is openly available
in Zenodo [38]. The raw survey data is provided in Comma
Separated Values (CSV) format. Researchers are encouraged
to make use of this data for further work.

ACKNOWLEDGEMENTS

The authors would like to thank the participants of the
survey for their constribution. Also, the authors would like
to thank Kristian Beckers and Thomas Diefenbach for their
helpful, insightful, and constructive comments and discussions.

This work is financed by portuguese national funds through
FCT - Fundação para a Ciência e Tecnologia, I.P., under the
project FCT UIDB/04466/2020. Furthermore, the third author
thanks the Instituto Universitário de Lisboa and ISTAR-IUL,
for their support.

REFERENCES

[1] Kaspersky, “The State of Industrial Cybersecurity – 2017,” 2017.
[Online]. Available: https://tinyurl.com/y7dfppak

[2] Department of Homeland Security, US-CERT, “Software Assurance,”
Sep. 2020. [Online]. Available: https://tinyurl.com/y6pr9v42

[3] ISO 27001, “Information technology – Security techniques – Infor-
mation security management systems – Requirements,” International
Standard Organization, Geneva, CH, Standard, Oct. 2013.

[4] IEC 62443-4-1, “Security for industrial automation and control systems
- part 4-1: Secure product development lifecycle requirements,” Interna-
tional Electrotechnical Commission, Standard, Jan 2018.

[5] ISO, “ISO 250xx Series,” International Organization for
Standardization, Geneva, CH, Standard, 2005. [Online]. Available:
http://iso25000.com/index.php/en/iso-25000-standards

[6] Carnegie Mellon University, “SEI-CERT Coding Standards.” [Online].
Available: https://wiki.sei.cmu.edu/confluence/display/seccode

[7] –, “Guidelines for the use of the C language in critical systems,” Motor
Industry Software Reliability Association, Nuneaton, Warwickshire, UK,
Standard, Mar 2012.

[8] ——, “Additional security guidelines for MISRA C:2012,” Motor In-
dustry Software Reliability Association, Nuneaton, Warwickshire, UK,
Standard, Mar 2016.

[9] “OWASP Top 10,” Jul. 2017. [Online]. Available:
https://tinyurl.com/yyb8wcv9

[10] SAFECode Charter Members, “SAFECode - Software Assurance Forum
for Excellence in Code,” accessed Mar. 2020. [Online]. Available:
https://safecode.org

[11] M. Rodriguez, M. Piattini, and C. Ebert, “Software verification and
validation technologies and tools,” IEEE Software, vol. 36, no. 2, pp.
13–24, 2019.

[12] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. S. Cruzes, “Myths and
facts about static application security testing tools: an action research
at Telenor digital,” in International Conference on Agile Software
Development. Springer, Cham, 2018, pp. 86–103.

[13] T. Gasiba, K. Beckers, S. Suppan, and F. Rezabek, “On the
Requirements for Serious Games geared towards Software Developers
in the Industry,” in Conference on Requirements Engineering
Conference, D. E. Damian, A. Perini, and S. Lee, Eds. Jeju,
South Korea: IEEE, Sep. 2019, pp. 286–296. [Online]. Available:
https://ieeexplore.ieee.org/xpl/conhome/8910334/proceeding

[14] T. Gasiba, U. Lechner, M. Pinto-Albuquerque, and D. M. Fernandez,
“Awareness of Secure Coding Guidelines in the Industry - A first data
analysis,” in TrustCom 2020: International Conference on Trust, Security
and Privacy in Computing and Communications. Guangzhou, China:
IEEE, Dec. 2020.

[15] T. Gasiba, U. Lechner, M. Pinto-Albuquerque, and A. Zouitni, “Design
of Secure Coding Challenges for Cybersecurity Education in the Indus-
try,” 13th International Conference on the Quality of Information and
Communications Technology, QUATIC, pp. 223–237, 09 2020.

[16] T. Gasiba, U. Lechner, M. Pinto-Albuquerque, and A. Porwal, “Cyberse-
curity Awareness Platform with Virtual Coach and Automated Challenge
Assessment,” in 6th Workshop On The Security Of Industrial Control
Systems & Of Cyber-Physical Systems (CyberICPS). Online: Springer,
Cham, 12 2020, pp. 67–83.

[17] T. Gasiba, U. Lechner, and M. Pinto-Albuquerque, “Sifu - A CyberSe-
curity Awareness Platform with Challenge Assessment and Intelligent
Coach,” in Cybersecurity Journal, Special Issue on Cyber-Physical
System Security. SpringerOpen, 12 2020, pp. 1–23.

[18] T. Gasiba, U. Lechner, J. Cuellar, and A. Zouitni, “Ranking Secure
Coding Guidelines for Software Developer Awareness Training in the
Industry,” in First International Computer Programming Education Con-
ference (ICPEC 2020), ser. OpenAccess Series in Informatics (OASIcs),
R. Queirós, F. Portela, M. Pinto, and A. Simões, Eds., vol. 81. Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020, pp.
11:1–11:11.

[19] T. Gasiba and U. Lechner, “Raising Secure Coding Awareness for
Software Developers in the Industry,” in 2019 IEEE 27th International
Requirements Engineering Conference Workshops (REW). Jeju, South
Korea: IEEE, Sep. 2019, pp. 141–143.

[20] T. Gasiba, U. Lechner, F. Rezabek, and M. Pinto-Albuquerque, “Cy-
bersecurity Games for Secure Programming Education in the Industry:
Gameplay Analysis,” in First International Computer Programming

Education Conference (ICPEC 2020), ser. OpenAccess Series in In-
formatics (OASIcs), R. Queirós, F. Portela, M. Pinto, and A. Simões,
Eds., vol. 81. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, 2020, pp. 10:1–10:11.

[21] T. Gasiba, U. Lechner, and M. Pinto-Albuquerque, “CyberSecurity Chal-
lenges: Serious Games for Awareness Training in Industrial Environ-
ments,” 2 2021, in Bundesamt für Sicherheit in der Informationstechnik
(Hg.): Deutschland. Digital. Sicher. 30 Jahre BSI – Tagungsband zum
17. Deutschen IT-Sicherheitskongress.

[22] S. Patel, “2019 Global Developer Report: DevSecOps finds
security roadblocks divide teams,” Jul. 2020. [Online]. Available:
https://tinyurl.com/y6oypsh3

[23] B. Schneier, “Software Developers and Security,” Online, Jul. 2020,
https://www.schneier.com/blog/archives/2019/07/software develo.html.

[24] Sourcegraph, “The Emergence of Big Code – A 2020
Survey of Software Professionals,” Oct 2020. [Online]. Available:
https://tinyurl.com/y5yfprn8

[25] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and
S. Fahl, “Stack overflow considered harmful? the impact of copy&paste
on android application security,” in 2017 IEEE Symposium on Security
and Privacy (SP), IEEE. an Jose, CA: IEEE, 2017, pp. 121–136.

[26] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers need support, too: A survey of security advice
for software developers,” in 2017 IEEE Cybersecurity Development
(SecDev). Cambridge, MA, USA: IEEE, Sep. 2017, pp. 22–26.

[27] H. Assal and S. Chiasson, “’Think secure from the beginning’ A Survey
with Software Developers,” in Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 1–13.

[28] J. Xie, H. R. Lipford, and B. Chu, “Why do Programmers Make Security
Errors?” 2011 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 161–164, Sep. 2011.

[29] B. Bulgurcu, H. Cavusoglu, and I. Benbasat, “Information Security
Policy Compliance: An Empirical Study of Rationality-Based Beliefs
and Information Security Awareness,” MIS quarterly, vol. 34, no. 3, pp.
523–548, 2010.

[30] G. D. Moody, M. Siponen, and S. Pahnila, “Toward a Unified Model of
Information Security Policy Compliance,” MIS quarterly, vol. 42, no. 1,
pp. 1–50, 2018.

[31] M. Siponen and A. Vance, “Neutralization: New Insights into the
Problem of Employee Information Systems Security Policy Violations,”
MIS quarterly, vol. 34, no. 3, pp. 487–502, 2010.

[32] J. D’Arcy, T. Herath, and M. K. Shoss, “Understanding Employee
Responses to Stressful Information Security Requirements: A Coping
Perspective,” Journal of management information systems, vol. 31, no. 2,
pp. 285–318, 2014.

[33] N. Haensch and Z. Benenson, “Specifying IT security awareness,” in
25th International Workshop on Database and Expert Systems Appli-
cations, Munich, Germany. Munich, Germany: IEEE, Sep 2014, pp.
326–330.

[34] WhiteSource, “What are the Most Secure Programming Languages?”
Mar. 2019, https://tinyurl.com/y2rmfhn7.

[35] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What
happens when software developers are (un)happy,” Journal of Systems
and Software, vol. 140, pp. 32–47, 2017.

[36] MITRE-Corporation, “Common weaknesses enumeration,” 2019.
[Online]. Available: https://cwe.mitre.org/

[37] C. Schmitz, “LimeSurvey v3.17.0,” Apr. 2020. [Online]. Available:
https://www.limesurvey.org

[38] Raw Results for the Preliminary Survey on Awareness of Secure Coding
Guidelines in the Industry. Zenodo, Oct. 2020. [Online]. Available:
https://zenodo.org/record/4075282

[39] R. Thaler and C. Sunstein, Nudge: Improving Decisions About Health,
Wealth, and Happiness. Yale University Press, 2008.

[40] U. Lechner, “IT-Security in Critical Infrastructures Experiences, Results
and Research Directions,” in International Conference on Distributed
Computing and Internet Technology. Springer, 2019, pp. 42–59.

[41] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “On the Diffuseness and the Impact on Maintainability
of Code Smells: A Large Scale Empirical Investigation,” Empirical
Software Engineering, vol. 23, no. 3, pp. 1188–1221, 2018.

[42] A. A. Elkhail and T. Cerny, “On Relating Code Smells to Security
Vulnerabilities,” in 2019 IEEE 5th Intl Conference on Big Data Security
on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance

and Smart Computing,(HPSC) and IEEE Intl Conference on Intelligent
Data and Security (IDS). IEEE, 2019, pp. 7–12.

[43] European Union Agency for Cybersecurity (ENISA), “Risk Management
Glossary,” Oct. 2020. [Online]. Available: https://tinyurl.com/y329vqmb

[44] Software Assurance Forum for Excellence in Code, “SAFECode -
Fundamental Practices for Secure Software Development - Essential
Elements of a Secure Development Life-cycle Program, 3rd Ed.” 03
2018. [Online]. Available: https://tinyurl.com/y44etrs7

[45] B. Aloraini, M. Nagappan, D. M. German, S. Hayashi, and Y. Higo, “An
Empirical Study of Security Warnings From Static Application Security
Testing Tools,” Journal of Systems and Software, 2019.

[46] J. Li, “Vulnerabilities Mapping based on OWASP-SANS: A Survey
for Static Application Security Testing (SAST),” Annals of Emerging
Technologies in Computing, 2020.

