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Abstract

Long memory and volatility clustering are two stylized facts frequently related to
financial markets. Traditionally, these phenomena have been studied based on con-
ditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH,
inter alia. One advantage of these models is their ability to capture nonlinear dy-
namics. Another interesting manner to study the volatility phenomena is by using
measures based on the concept of entropy. In this paper we investigate the long
memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 in-
dexes in order to compare the US and European Markets. Additionally, we compare
the results from conditionally heteroscedastic models with those from the entropy
measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis
entropy. The results corroborate the previous evidence of nonlinear dynamics in the
time series considered.

Key words: Long memory, volatility clustering, ARCH type models, nonlinear
dynamics, entropy

Introduction

The study of stock market volatility and the reasons that lie beyond price
movements have always played a central role in financial theory, given rise to
an intense debate in which long memory and volatility clustering have proven
to be particularly significant. Since long memory reflects long run dependencies
between stock market returns, and volatility clustering describes the tendency
of large changes in asset prices to follow large changes and small changes to
follow small changes, these concepts are interrelated and frequently studied in
complementarity. Several models based on heteroscedastic conditionally vari-
ance have been proposed to capture their properties. This constitutes what
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we consider the traditional approach. It includes the autoregressive condition-
ally heteroscedastic model (ARCH) proposed by Engle [1], the Generalized
ARCH (GARCH) due to Bollerslev [2] and Taylor [3], the Integrated GARCH
(IGARCH) derived by Engle and Bollerslev [4] and the Fractionally Inte-
grated GARCH (FIGARCH) introduced by Baillie et al. [5]. These models
account for nonlinear dynamics, which are shown by the seasonal or cyclical
behavior of many stock market returns and constitute their main advantage.
However, they are not fully satisfactory, especially when modeling volatility
of intra-daily financial returns. For a comprehensive debate on this matter see
Bordignon et al. [6].

In this paper we propose an alternative way to study stock market volatility
based on econophysics models. The application of concepts of physics to ex-
plain economic phenomena is relatively recent and started when some regular-
ities between economic/financial and physical data were found in a consistent
way (see e.g [7] and [8]). In this sense, one concept of physics that can be
helpful to measure the nonlinear volatility of stock markets is the concept of
entropy. Regarding this, we discuss three different measures: Shannon entropy,
Renyi entropy and Tsallis entropy, and compare the main results.

The plan for the remainder of the paper is as follows: Section 2 puts together
the ARCH/GARCH type models and the entropy models. Next, in Section 3
we describe the empirical findings. Finally, Section 4 presents the conclusions.

1 Traditional Volatility Models versus Econophysics Models

According to the traditional approach the presence of conditionally heteroscedas-
tic variance in stock market returns gives support to the use of ARCH/GARCH
models when studying stock market volatility. Although there are other econo-
metric models to seek for long memory and volatility clustering the most com-
mon ones are the GARCH (p, q) model and their derivations - IGARCH (p, q)
and FIGARCH (p, d, q) - which are summarized below.

Consider a time series yt with the associated error

et = yt − Et−1yt, (1)

where Et−1 is the expectation operator conditioned on time t− 1. A GARCH
model where

et = ztσt, zt ∼ N (0, 1) (2)

was developed such as
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σ2

t = ω + α (L) ε2

t + β (L) σ2

t , (3)

where ω > 0, and α (L) and β (L) are polynomials in the lag operator L
(Lixi = xt−i) of order q and p, respectively. Expression (3) can be rewritten
as the infinite-order ARCH (p) process,

Φ (L) e2

t = ω + [1 − β (L)] υt, (4)

where υt ≡ e2

t − σ2

t and Φ (L) = [1 − α (L) − β (L)]. Even though this process
is frequently used to describe volatility clustering, it shows some limitations
when dealing with long memory since it assumes that shocks decay at a fast
geometric rate allowing only for short term persistence. To overcome this draw-
back Engle and Bollerslev [4] developed the IGARCH specification given by

Φ (L) (1 − L) e2

t = ω + [1 − β (L)] υt. (5)

Motivated by the presence of apparent long memory in the autocorrelations
of squared or absolute returns of several financial assets, Baillie et al. [5]
introduced the FIGARCH model defined as

Φ (L) (1 − L)d e2

t = ω + [1 − β (L)] υt, (6)

where 0 ≤ d ≤ 1 is the fractional difference parameter. An interesting feature
of this model is that it nests both the GARCH model for d = 0 and IGARCH
for d = 1. Alternatively, for 0 < d < 1 the FIGARCH model implies a long
memory behavior, i.e., a slow decay of the impact of a volatility shock. Also, we
shall note that this type of processes is not covariance stationary but instead
strictly stationary and ergodic for d ∈ [0, 1] .

An alternative way to study stock market volatility is by applying concepts
of physics which significant literature has already proven to be helpful in de-
scribing financial or economic problems. One measure that can be applied to
describe the nonlinear dynamics of long memory and volatility clustering is the
concept of entropy. This concept was originally introduced in 1865 by Clausius
to explain the tendency of temperature, pressure, density and chemical gradi-
ents to flatten out and gradually disappear over time. Based on this Clausius
developed the Second Law of Thermodynamics which postulates that the en-
tropy of an isolated system tends to increase continuously until it reaches its
equilibrium state. Although there are many different understandings of this
concept the most commonly used in literature is as a measure of ignorance, dis-
order, uncertainty or even lack of information (see [9]). Later, in a subsequent
investigation Shannon [10] provided a new insight on this matter showing that
entropy wasn’t only restricted to thermodynamics but could be applied in any
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context where probabilities can be defined. In fact, thermodynamic entropy
can be viewed as a special case of the Shannon entropy since it measures prob-
abilities in the full state space. Based on the Hartley’s [11] formula, Shannon
derived his entropy measure and established the foundations of information
theory.

For the probability distribution pi ≡ p (X = i), (i = 1, ..., n) of a given random
variable X, Shannon entropy S(X) for the discrete case, can be defined as

S (X) = −
n
∑

i=1

pi ln pi, (7)

with the conventions 0 ln (0/z) = 0 for z ≥ 0 and z ln (z/0) = ∞.

As a measure of uncertainty the properties of entropy are well established in
literature (see [12]). For the non-trivial case where the probability of an event
is less than one, the logarithm is negative and the entropy has a positive sign.
If the system only generates one event, there is no uncertainty and the entropy
is equal to zero. By the same token, as the number of likely events duplicates
the entropy increases one unit. Similarly, it attains its maximum value when
all likely events have the same probability of occurrence. On the other hand,
the entropy of a continuous random variable may be negative. The scale of
measurements sets an arbitrary zero corresponding to a uniform distribution
over a unit volume. A distribution which is more confined than this has less
entropy and will be negative.

By replacing linear averaging in Shannon entropy with the Kolmogorov-Nagumo
average or quasi-linear mean and further imposing the additivity constraints,
Renyi [13] proposed the first formal generalization of the Shannon entropy.
The need for a new information measure was due to the fact that there were a
number of situations that couldn’t be explained by Shannon entropy. As Jizba
and Arimitsu [14] pointed out Shannon’s information measure represents mere
idealized information appearing only in situations when the storage capacity
of a transmitting channel is finite.

Using this formalism Renyi [13] developed his information measure, known as
Renyi entropy or Renyi information measure of α order, Sα(X). For discrete
variables it comes

Sα(X) =
1

1 − α
ln

(

n
∑

i=1

pα
k

)

, (8)

for α > 0 and α 6= 1. In the limit α → 1, Renyi entropy reduces to Shannon en-
tropy and can be viewed as a special case of the latter. Additionally, evidence
was found that Renyi’s entropies of order greater than 2 are related to search
problems (see for example [15]). Even though this measure can be used in a
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variety of problems, empirical evidence has shown that it has a built-in pre-
disposition to account for self-similar systems and, so, it naturally aspires to
be an effective tool to describe equilibrium and non-equilibrium phase transi-
tions (see [16] and [14]). Despite its relevance, Renyi entropy didn’t experience
the same success of its predecessor’s which can be explained basically by two
factors: ambiguous renormalization of Renyi’s entropy for non-discrete distri-
butions and little insight into the meaning of Renyi’s α index (see [16]). A
new insight into this matter was brought by Csiszár [17], who has identified
the α index as the β cutoff rate for hypothesis testing problems.

With the aim of studying physical systems that entail long-range interaction,
long-term memories and multi-fractal structures, Tsallis [18] derived a new
generalized form of entropy, known as Tsallis entropy. Although this mea-
sure was first introduced by Havrda and Charvát [19] in cybernetics and late
improved by Daróczy [20], it was Tsallis [18] who really developed it in the con-
text of physical statistics and, therefore, it is also known as Havrda-Charvát-
Daróczy-Tsallis entropy.

For any nonnegative real number q and considering the probability distribution
pi ≡ p (X = i), i = 1, ..., n of a given random variable X, Tsallis entropy
denoted by Sq (X), is defined as

Sq (X) =
1 −

n
∑

i=1

pq
i

q − 1
. (9)

As q → 1, Sq recovers Sq (X) because the q-logarithm uniformly converges
to a natural logarithm as q → 1. This index may be thought as a biasing
parameter since q < 1 privileges rare events and q > 1 privileges common
events (see [21]). A concrete consequence of this is that while Shannon entropy
yields exponential equilibrium distributions, Tsallis entropy yields power-law
distributions. As Tatsuaki and Takeshi [22] have already pointed out the index
q plays a similar role as the light velocity c in special relativity or Planck’s
constant ~ in quantum mechanics in the sense of a one-parameter extension
of classical mechanics, but unlike c or ~, q does not seem to be a universal
constant. Further, we shall also mention that for applications of finite variance
q must lie within the range 1 ≤ q < 5/3.

2 Empirical evidence

This section examines the results obtained from both perspectives. In order
to compare the volatility of the US and European stock market returns we
have collected data from SP 500, NASDAQ 100 and Stoxx 50 indexes and
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constituted a sample spanning over the period June 2002-January 2007. The
values were gathered on a daily basis without considering the re-investment
of dividends. Based on them, we computed the stock market returns given by
the log-ratio of the index values at time t and time t − 1 and performed the
estimates.

Within the traditional approach we have considered the GARCH (1, 1), IGARCH
(1, 1) and FIGARCH (1, d, 1) specifications, whose main results are listed in
Table 1. The conclusions are similar to all the three indexes considered. Specif-
ically, for the GARCH (1, 1) it was found evidence of heteroscedastic condi-
tional variance. Also, the fact that α + β ≃ 1 could denounce the presence
of nonlinear persistence in the log-returns of the stock market indexes led
us to estimate the IGARCH (1, 1) model. However, evidence has shown that
many coefficients were not statistically significant. Then, the next step was to
adjust the FIGARCH specification (1, d, 1) with the restriction d 6= 1 whose
main results corroborate the long memory hypothesis.

In the domain of the econophysics approach we have computed the Shannon,
Renyi and Tsallis entropies which are depicted in Table 2.

All entropies were estimated with histograms based on equidistant cells. For
the calculation of Tsallis entropy we set values at 1.4, 1.45 and 1.5 for the
index q, which is consistent with the finding that when considering financial
data their values lie within the range q ≃ 1.4 − 1.5 (see [21]). The same as-
sumption was made for the Renyi’s index. Since all entropies are positive we
shall conclude that the data show nonlinearities. This phenomenon is partic-
ularly evident for the SP 500 index, which always attained the highest levels
regardless of the method applied in its calculation. As for the others the results
are not conclusive since they vary according to the entropy method adopted.

3 Conclusions

In this paper we have investigated the properties of the realized volatility
for the SP 500, NASDAQ 100 and Stoxx 50 indexes. Our main goal was to
compare two different perspectives: the so-called traditional approach in which
we have considered the GARCH (1, 1), IGARCH (1, 1) and FIGARCH (1, d, 1)
specifications and the econophysics approach based on the concept of entropy.
For our purpose three variants of this notion were chosen: the Shannon, Renyi
and Tsallis measures. The results from both perspectives have shown nonlinear
dynamics in the volatility of SP 500, NASDAQ 100 and Stoxx 50 indexes and
must be understood in complementarity.
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Coef. Indexes GARCH IGARCH FIGARCH

Stoxx 50 1.12E − 06* 0.014544 6.573658**

ω SP 500 3.19E − 07** 0.003906* 0.009144

NASDAQ 100 5.74e − 07* 0.004543 8.749987**

Stoxx 50 0.076581** 0.104788** −0.119727**

α SP 500 0.051592** 0.057835** −0.118990

NASDAQ 100 0.040982** 0.044868** −0.037189**

Stoxx 50 0.913627** 0.895212 0.643566**

β SP 500 0.946445** 0.942165 0.514637*

NASDAQ 100 0.957592** 0.955132 0.700161**

Stoxx 50 - - 0.695285**

d SP 500 - - 0.579649**

NASDAQ 100 - - 0.655988**

Stoxx 50 10.15165** 25.044983 21.850493*

Student SP 500 6.152842** 5.374068** 1219.021742**

NASDAQ 100 11.42494** 11.030880** 335.539275**

Stoxx 50 3812.074 1290.958 1296.348

Log-L SP 500 13891.33 13039.1 1482.22

NASDAQ 100 10775.58 10024.569 1248.274

Table 1
GARCH, IGARCH and FIGARCH models for Stoxx 50, SP 500 and NASDAQ 100
indexes; ** denotes significance at the 1% level, * denotes significance at the 5%
level

We consider that the concept of entropy can be of great help when analyzing
stock market returns since it can capture the uncertainty and disorder of the
time series without imposing any constraints on the theoretical probability
distribution. By contrast, the ARCH/GARCH type models assume that all
variables are independent and identically distributed (i.i.d). However, in order
to capture global serial dependence one should use a specific measure such as,
for example, mutual information. By analyzing the entropy values for different
equally spaced sub-periods we could have a clearer idea about the extent of
volatility clustering and long-memory effects, an issue that will be pursued in
further work.
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Entropies Index (α/q) Stoxx SP 500 NASDAQ 100

Shannon - 3.3624 3.3784 3.2981

1.4 10.2076 10.217 10.2085

Renyi 1.45 10.2065 10.2163 10.2074

1.5 10.2054 10.2155 10.2064

1.4 1.8354 1.8395 1.8102

Tsallis 1.45 1.7204 1.7238 1.6981

1.5 1.6161 1.619 1.5965

Table 2
Shannon, Renyi and Tsallis entropies
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