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Abstract—Non-invasive crowding detection in quasi-real-time
is required for a number of use cases, such as for mitigating
tourism overcrowding. The present goal is a low-cost crowding
detection technique combining personal trace elements obtained
from heterogeneous wireless technologies (4G, 3G, GSM, Wi-
Fi and Bluetooth) supported by mobile devices carried by
most people. This work proposes detection nodes containing
Raspberry-Pi boards equipped with several off-the-shelf Software
Defined Radio (SDR) dongles. Those nodes perform spectrum
analysis on the bands corresponding to the aforementioned
wireless technologies, based on several open source software
components. The outcome of this edge computing, performed
in each node, is integrated in a cloud server using a Long
Range Wide Area Network (LoRaWAN), a recent technology
developed for IoT applications. Our preliminary results show
that is possible to determine the number of mobile devices in the
vicinity of each node, by combining information from several
wireless technologies, each with its own detection range and
precision.

Index Terms—Crowding Detection, 4G, 3G, GSM, Wi-Fi,
Bluetooth, SDR, LoRaWAN

I. INTRODUCTION

According to [1], smartphones penetration in most western
European countries during 2018 was in the range of 75%
to 85% of the population. In these countries, the number of
smartphones in a given area is, therefore, a good surrogate
of the actual number of people in that area. Smartphones
(and wearables, despite being still much less used) have a
wireless footprint since, in their normal usage, they irradiate
information due to the communication protocols they support.
Even when that information is encrypted, it still can be
used for crowding detection. In fact, we are not interested
in the exchanged contents (voice or data) since we want
to guarantee user privacy and anonymity, but solely on the
detection of wireless trace elements that allow us to infer
that a mobile device is operating in the vicinity. Those trace
elements are generated by wireless protocols (4G, 3G, GSM,
Wi-Fi and Bluetooth), each operating in specific bands of the
electromagnetic spectrum. We detect the activity in each of
those bands using off-the-shelf SDR dongles connected to a
Raspberry Pi, where several spectrum analysis techniques are
executed, based upon open-source software components. This
corresponds to the edge computing phase of our distributed de-
tection solution, bringing computation and data storage closer
to the location where it is needed, to improve response times

and save communication bandwidth. The cloud computing
phase, performed in a cloud server, concerns how the detection
data from multiple detection nodes is combined to provide a
picture of the crowding distribution in the geographical area
under observation.
The application domain that motivated our research was in
tourism, where smart solutions are sought for mitigating
the pressure felt, both by residents and visitants, due to
overcrowding of some historic neighborhoods [2]. We are
developing an alternative routing recommendation system for
tourists that mitigates overcrowding trough their dispersion,
while promoting the visitation of sustainable points of interest.
Our solution innovates by having a crowding detection ap-
proach that combines trace data from heterogeneous wireless
technologies, collected in real-time with off-the-shelf equip-
ment and open source hardware and software.
This paper is organized as follows: section II describes related
work in crowding detection; section III introduces the archi-
tecture of our solution; section IV describes the hardware and
software used in our proposal; section V presents our valida-
tion and section VI addresses conclusions; finally, section VII
presents ongoing and future work.

II. RELATED WORK

Crowd detection can be addressed using several approaches,
such as image capturing, social networks, mobile operators
data, and wireless spectrum analysis, with different capabilities
in terms of range, precision and timeliness of detection 1. As
for the latter, we consider a rough ordinal scale: “near real-time
processing" (wireless spectrum analysis and sound capturing),
“delayed results" (image capturing and mobile operators cell
tower trace data, both requiring intensive computation, not
amenable to produce immediate results) and “post facto anal-
ysis" (e.g. social networks based data analysis where, due to
data capture delays and post processing of big data, results
may take long hours, or even several days, to be produced).

Near real-time approaches are a prerequisite when imme-
diate action is required. For retrospective analysis of the
crowding phenomenon, all alternatives are acceptable, so only
the range and precision aspects should be a concern. A brief
review of each approach follows.

1) Image capturing approach: This approach may use a
dedicated or existent network of cameras, usually required for



Figure 1. Quadrant analysis of the different approaches

security purposes in major cities (aka video-surveillance), to
detect the number of individuals and their behaviour in the
view range of cameras. Image processing and analysis is then
performed using several techniques [3–5].
Besides requiring good quality cameras, this is a compute-
wise demanding procedure, not amenable for edge computing.
Communication costs between the sensor nodes and image
processing servers (e.g. in the cloud) may be significant.
Furthermore, this approach raises serious privacy concerns,
requiring complex authorization procedures, since captured
images of individuals can be used for identification purposes,
either directly or indirectly (i.e. combined with other pieces
of information).

2) Sound capturing approach: Another approach, already
tested in some cities [6], uses a network of distributed sound
sensors. Sensors gather ambience sounds including those
emitted by people, cars, trains, etc. That information is then
processed in the cloud, to generate heat maps. Preliminary
analysis may be performed to isolate different sound sources
[7] and then further processing takes place to determine people
or cars density, in the sensor’s range [8]. Compared to image
processing, this approach is less demanding regarding com-
putational power and network bandwidth. However, achieved
precision and detection range is much lower (see Fig. 1) and it
also raises similar privacy problems, since conversations may
be recorded and transmitted to the cloud. A combination of
image and sound processing has also been considered [3].

3) Using social networks activity: This approach uses in-
formation published in social networks [9–11]. Geo-location
data of photos, tweets or other social media contents can be
used to infer the number of individuals present in target areas.
Instagram, for instance, is an interesting source of data used
by researchers, because photos are usually posted along with
location data. One of these kind of studies gathered info from
posts in New York city in real-time and tried to aggregate them
in clusters to analyze the flow of people in the city [11].
Another study combined, almost in real time, information
gathered from Twitter and Instagram, using low-cost process-
ing procedures [10], in order to analyzed it, using several
filters, in the generation of several metrics for user distribution.
This approach is dependent on data published by social media

users. The fact that only a fraction of that data has public
access permission, and not all of it is tagged with geo-location
info, are strong validity threats regarding the representative-
ness of the actual crowding in target areas.

4) Using mobile operators’ data: Mobile operators have
at their disposal huge amounts of data regarding the usage
of their networks, but the challenge presented in this type of
approach is to generate relevant metrics using those big data
sets. The real problem is to generate real time data that could,
for example, detect crowds in confined areas.
Spanish’s Telefonica [12] has invested in processing historical
data, namely for prediction of future movement patterns. Voda-
fone Analytics1 is a well-known example of this exploration
of data and provides a set of metrics and their evolution
over time. The metrics are usually presented in geo-referenced
maps, where spacial-temporal evolution analysis is possible.
Portuguese’s operator NOS used data from roaming devices
to build a Tourist Information Portal2 that offers several
indicators to allow business owners to identify potential target
areas and municipalities across the country to analyze how to
allocate resources more efficiently.

5) Using wireless spectrum analysis: Early works, such as
[13], have analyzed the architecture of different indoor posi-
tioning systems and discussed the properties and drawbacks
of solutions supported by smartphones. Most solutions used
an active positioning approach and require willing users to
install an app. Alternatively, passive monitoring is possible
by the owner of the communication platform (see previous
section). However, when that is not the case, third parties
have resort to wireless spectrum and protocol analysis. The
evolution and increasing affordability of SDR and open source
hardware and compatible open source software has allowed
for a more flexible spectrum and protocol analysis and has
speed up research on wireless eavesdrop and active detection
approaches. These approaches usually explore protocol charac-
teristics and/or small security leaks of information. Previous
research works were usually focused on a specific wireless
technology, with its inherent trade-offs between range and
precision. In our case we aim at mitigating those trade-offs,
by combining several technologies, whose use for presence
detection is thoroughly discussed in [14].
A few examples of the weaknesses, that can be exploited in
some wireless technologies, will now be described.

GSM and 3G: In GSM, an attack may opportunistically take
advantage of the lack of authentication of the base stations
on the user equipment (UE) and IMSI3 catchers or man-in-
the-middle attacks are then possible [15]. Additionally, the
communication may not be fully encrypted. The UE has to
periodically transmit the current location, and this can be used
to track and record usage and position [16]. In 3G, active
attacks may also be performed by downgrading the connection
to an insecure GSM link, and then explore its flaws.

1https://geographica.com/en/showcase/vodafone-analytics/
2http://customers.microsoft.com/en-us/story/nos-spgs-media-telco-azure-

sql-r-server-portugal
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4G/LTE/5G: In 4G/LTE, the most interesting non-active
exploit is a location leakage that occurs when the network has
to respond to a paging request and decrypted information of
users’ location is exposed. Other active and passive attacks on
4G networks are also possible, as described in [17]. Although
security features in 5G have been enhanced to prevent known
protocol attacks, it is still possible to apply pre-authentication
message-based exploits and to leverage Radio Network Tem-
porary Identifier (RNTI) for user tracking [18].

Wi-Fi: UE with enabled Wi-Fi, periodically send messages,
even when not attached to a network. These probe requests
are an active mechanism to accelerate the connection process.
This has been widely exploited to track user activities, using
low-cost equipment, such as wireless-cards supporting monitor
mode [19; 20]. Modern UE still continue to be very talkative
regarding probe requests [21], although efforts have been made
to develop privacy-preserving enhancements. One such initia-
tive, whose adoption is not universal, is that probe requests are
sent out with a randomized pseudonym identification that is
changed periodically. This MAC address randomization also
has some flaws [22] that can be exploited.

Bluetooth: With this technology, a variety of device discov-
ery and fingerprinting techniques are possible [23]. Bluetooth
classic is nowadays less viable for tracking UE. Nevertheless,
it is still possible to track wearables using Bluetooth Low
Energy (BLE). When compared to Wi-Fi, similar challenges
regarding addresses randomization exist. Nonetheless, it is
frequent to have a correlation between Wi-Fi and Bluetooth
addresses, which may facilitate the merging of detections in
counting people, our main objective.

III. ARCHITECTURE OF PROPOSED SOLUTION

The development of this approach was driven by the
tourism overcrowding problem faced by many historical
neighbourhoods worldwide. The nature of these areas dictates
the options that are most appropriate for the architecture. In
particular, we need to: (i) have small-sized and non-intrusive
detection nodes; (ii) deploy a large number of nodes, and so
cost per node must be low; (iii) edge computing is required
to merge and anonymize data from several radio sensors; (iv)
keep communication costs low, by just sending the number
of detected people every few minutes.

Figure 2. Component Diagram of Overall Architecture

Considering the above requirements, we propose the archi-
tecture of Fig 2, where light edge computing nodes com-
municate with the cloud server using LoRaWAN, a low
management network with a very wide coverage, that reduces
dramatically the cost of communications because its usage is
free. Since the information to be passed on to the cloud server

is small and the required sampling rate is low (consecutive
messages will typically be a few minutes apart from each
other), the low bandwidth characteristics of a LoRaWAN
network is not a limitation for our architecture. Wi-Fi was
not an option, because is not freely available in all areas of
interest.
Each detection node, equipped with an IoT LoRa board and
antenna, will upload data to a LoRaWAN gateway that, in its
turn, will route the detection information to a cloud server, via
a LoRaWAN server, for further processing and visualization of
the crowding metrics generated in each node. Each detection
node in the proposed architecture (Fig 3) contains a Raspberry-
Pi based processing unit, with a set of connected sensors, such
as a Wi-Fi dongle in monitor mode, a Bluetooth dongle or a
GSM/3G/4G SDR dongle. Those USB dongles are responsible
for capturing data in their respective technology, while the
processing unit analyses and integrates locally all the captures,
to compute one metric to estimate how crowded is the envi-
ronment surrounding the node. A more detailed description
of the solutions adopted for obtaining trace elements for each
technology follows.

Figure 3. Component Diagram of Detection Node

IV. TRACKING WIRELESS TECHNOLOGIES

Wireless technologies used by UE may have different lim-
itations, but also potential, regarding detection. We advocate
that detection nodes have to scrutinize several technologies
simultaneously, to maximize detection opportunities. For in-
stance, transmission power and frequency band (see Tab I)
determines the potential range of detection. Low power and
high-frequency such as Bluetooth has a low range detection,
but a potentially higher precision when compared to GSM.

Table I
OPERATION FREQUENCY SPECTRUM OF USED TECHNOLOGIES

Technologies List
GSM 3G 4G LTE Wi-Fi Bluetooth

900 MHz 900 and
2100 MHz

900, 1800 and
2600 MHz

2400 and
5000 MHz 2400 MHz

Additionally, different technologies have different security
weaknesses that can be explored. In the next subsections we
review the solutions adopted in each technology, for tracking
and counting detected devices.

1) GSM 3G: GSM is the first digital iteration of the
mobile network. In spite of its security risks, it is still in use,
in particular by roaming tourists. One of those risks is the
lack of authentication and full encryption in key functions of
the communication between UE and the network. This allows
for third parties to listen and get data from the users in the



network. With a SDR USB dongle, such as noolecSmartee4

paired with a GSM receiver tool that explores security flaws,
such as gr_gsm5, it is possible to obtain relevant users’ details.
This type of data can be analyzed with software, such as the
IMSI catcher6 program in Python, to disclose not only the
IMSI, but also to obtain other metrics such as roaming details,
SNR ratio, and received power strength.

2) 4G/LTE: The 4G iteration of the cellular network tech-
nology focused not only on data transfer at greater speeds,
but also enhanced security, improving user authentication
and anonymity. Nevertheless, as previously stated, security
flaws that can be exploited remain. In particular, there is
a location leak that allow for the interception of decrypted
paging messages that disclose the presence of users in the
network. With a broadband SDR USB dongle, such as Lime-
SRD7, and a free and open-source LTE software suite, such
as srsLTE8, it is possible to analyze those paging requests.

3) Wi-Fi: Wi-Fi is widely used and enabled in UE in public
areas, where they are usually more talkative[21] due to more
frequent handovers or connection drops. In particular, clear
probes are regularly sent to identify both the network and
users. The probes containing MAC address can be intercepted
and analyzed by a wireless USB dongle, configured in monitor
mode. For this it is possible to use a Wi-Fi security auditing
tools suite, such as aircrack-ng9, to sniff probes and count how
many UEs are present in an area. Presently, some devices use
MAC address randomization for protecting their identity, but
that randomization can be analyzed and by pattern detection
it is possible to infer that a series of MAC addresses belong
to just one device.

4) Bluetooth: Bluetooth uses a different architecture, when
compared to Wi-Fi, but has a lot of similarities, and shares
the same mechanism of probe request. These probes can
also be intercepted with any appropriate sniffing USB dongle,
specific for listening devices in undiscoverable mode, such as
the open-source Bluetooth hardware Ubertooth One10. This
can be paired with an open-source software11 supported on
the Kismet wireless network and device detector framework,
and then it is possible to use the Ubertooth-Scan tool in
conjunction with BlueZ, to detect the Bluetooth devices, either
in undiscoverable or discoverable modes.

5) Combining trace elements: Our solution uses all of the
aforementioned protocols and aims to unify all scavenged data
into a relevant local crowding metric. Using this approach,
we explored opportunities offered by security risks of those
protocols. However, we guarantee users’ privacy by only using
passive techniques and anonymizing all sensible information
that could identify a single user. A challenge for this solution

4https://www.nooelec.com/store/sdr/sdr-receivers/nesdr-smartee.html
5https://github.com/ptrkrysik/gr-gsm
6https://github.com/Oros42/IMSI-catcher
7https://myriadrf.org/projects/component/limesdr/
8https://github.com/srsLTE/srsLTE
9https://github.com/aircrack-ng/aircrack-ng
10https://greatscottgadgets.com/ubertoothone/
11https://github.com/greatscottgadgets/ubertooth

is the calibration of each detection device, which depends
on its local context, namely the topology of the surrounding
environment. Each node will then require a learning period
to calibrate how relevant is each technology to the crowding
metric.

V. VALIDATION

In order to validate our proposal, through preliminary field
tests, we have developed a prototype of a detection node. Its
case was designed to withstand harsh environmental condi-
tions, including high temperatures and water splashes, such as
rain. In its interior, several wireless sensor USB dongles, with
their antennas, are connected to a processor board (see Fig 4).

Figure 4. Open (left) and closed (right) case of detection node prototype

The hardware used in this prototype is described in Table
II.

Table II
COMPONENTS USED IN THE DETECTION NODES

COMPONENT FUNCTION
Raspberry-Pi Coordinate and Compute
Ubertooth One Detect Bluetooth Devices
Alfa Network awus036ac Detect Wi-Fi Devices
Nooelec NESDR SMArTee Detect GSM/3G Devices
Lime-SDR Detect 4G Devices

We foresee that the crowd sensor will be deployed in areas
with different characteristics, and that a calibration period will
be required. For this reason, we have opted for tests in typical
usage scenarios, such as outdoor and indoor environments, in
areas with high flow (narrow passages) and low flow (open
spaces) of people. During these tests, we have measured the
number of detections using different wireless technologies and
compared it with direct observation of the number of people
in the vicinity of the sensor.
This method allows to infer the effectiveness of our detection
approach, but also presents some validation threats, such as
human errors during counting (e.g. false negatives due to not
being able to count people that is not in the line of sight).
The results in figure 5 were obtained with the sensor placed
in a narrow passage with a high flow of people, in an indoor
environment.

The plot of this graph uses a sliding window approach,
where each data point represents how many people has passed
in the capturing range of our sensor in the last 15 minutes.
This sliding window approach was also used for plotting the
graphs in figures 6, 7 and 8.
Results show that by merely capturing Wi-Fi data from devices



Figure 5. # of detected Wi-Fi vs manual detection in high flow

it is already possible to obtain a good relationship between de-
tected users and direct observations. The surplus in automatic
detection face to the human (manual) counting, may be due
to the ‘noise’ produced by random MAC generation; we plan
to mitigate this problem in future work. The next two tests
where both performed in an open space area, with a low flow
of people, for indoor (Fig 6) and outdoor (Fig 7) environments.
It is important to learn how our solution behaves in this type
of scenarios, as it will be common in overcrowded situations,
where people will to move slower or have longer periods of
stay.
Fig 6 shows that the sensor takes some time to reach the
number of devices present in the room. This is mostly due to
how talkative are the devices in the sensor vicinity. After this
initial period, detections follow closely the data observed via a
manual counting. This indicates that the sensor, when exposed
to a sudden crowding situation, may take some time to adjust
but, nevertheless, providing a quasi-real-time estimate.

Figure 6. Indoor # of detected Wi-Fi devices vs manual

Fig 7 confirms that detections are a fair estimate for manual
observations. The initial detection increase is also noticeable,
but device detection via Wi-Fi data is higher than manual
count. This difference confirms our suspicions regarding the
characteristics of the outdoor environment used for the test:
a courtyard surrounded by the main building of the campus.
As such, the sensor is counting devices both in line-of-site
(within the courtyard) and hidden (inside the building). Future
iterations of our sensor should consider this during calibration.

Figure 8 shows detections using several technologies simul-
taneously, in an open space area. It is possible to notice that
Wi-Fi detection presents a convincing result when compared
to reality, matching the growth of people in the area. However,
Bluetooth confirms our expectations and shows a much lower

Figure 7. Outdoor # of detected Wi-Fi devices vs manual

detection rate when compare to Wi-Fi. That is explained by
the smaller range of this technology, and devices are detected
only when they are a few meters apart from the sensor. In
order to validate the use of Bluetooth, more tests are required
with a manual count of users within a radius of few meters
from the sensor. By fusing Wi-Fi and Bluetooth data, a sensor
is possible with a significant recall provided by Wi-Fi (few
false negatives), improved with the precision that is possible
with Bluetooth (few false positives).

Figure 8. # of detected devices using several technologies

Due to limitations of hardware, that will be solved in future
iterations of our solution, GSM data collection was done for a
few minutes period in the nearest cell towers by round robin.
The steps presented in the GSM data denote the detection
handover from one cell tower to another and the number of
devices detected during the detection period on each cell. For
this reason, the obtained results are not yet conclusive.

VI. CONCLUSIONS

We conclude that it is possible to build a low-cost device
to estimate crowding in its vicinity, by detecting the operation
of multiple wireless technologies currently used by personal
mobile devices. Based on open source software components
and off-the-shelf hardware, it is possible to gather data si-
multaneously from those technologies and derive the number
of devices in the area, in almost real-time. We recognize
that several factors influence the detection process differently
for each wireless technology under study, such as the space
topology, the flow of people and local propagation character-
istics. Therefore, further work is required to understand that
influence and calibrate our detection algorithms, to guarantee
the reliability of results.
Applications domains other then tourism overcrowding mit-
igation could benefit from our crowd detection technique.



The data we are collecting can be used to identify crowding
patterns in near-real-time, which can be useful for several
purposes, such as quick law enforcement actions (e.g. for
dispersing sudden hostile purpose gatherings) or short-term,
unplanned, urban cleaning actions, due to the arrival of cruise
ships, or other unforeseen manifestations. By analyzing the
geographical and temporal distribution of the crowding pat-
terns, local authorities can also improve their planning and
assign their resources more efficiently, in areas such as secu-
rity patrolling or waste collection, thereby improving urban
management with benefits for both residents and visitors.

VII. ONGOING AND FUTURE WORK

We are now deploying our solution in the university campus
for crowd detection during an extended period of time. The
campus, with circa 9K “inhabitants”, is a good surrogate of a
touristic neighborhood affected by overcrowding, since during
academic working days it has crowded narrow streets with
high pedestrian traffic in some time periods, along with large
open spaces where the occupation pace varies much slower.
Our crowd detectors will be installed in several locations, each
with different characteristics, in terms of space topology (e.g.
passage alleys, leisure and working areas, both indoor and
outdoor), flow of people and local propagation characteristics.
To assess the influence of such diverse factors on the validity
of this measurement approach, namely on its precision and
recall, we will perform people counting by direct observation.
For the calibration of our detection algorithms we plan to
explore supervised machine learning techniques.
We also plan to combine the quasi-real-time data captured by
our network of detectors with geo-referenced forecasts from
surrounding areas, based on past data from other sources (e.g.
mobile phone operators) with the aim of deriving dynamic
heatmaps where crowd density will vary over space and time.

REFERENCES

[1] Newzoo. Global mobile market report 2018.
[2] McKinsey&Company. Coping with success: Managing

overcrowding in tourism destinations. Technical report,
World Travel & Tourism Council, 2017.

[3] M. Andersson et al. Fusion of acoustic and optical sensor
data for automatic fight detection in urban environments.
In 13th Conf. on Information Fusion (FUSION), pp. 1–8.
IEEE, 2010.

[4] P. Peng et al. Robust multiple cameras pedestrian
detection with multi-view Bayesian network. Pattern
Recognition, 48(5):1760–1772, may 2015.

[5] C. Stahlschmidt et al. Applications for a people detec-
tion and tracking algorithm using a time-of-flight cam-
era. Multimedia Tools and Applications, 75(17):10769–
10786, 2016.

[6] J. C. Farrés. Barcelona noise monitoring network. In
EuroNoise Conference, pp. 218–220, 2015.

[7] A. Mesaros et al. Acoustic event detection in real
life recordings. In 18th European Signal Processing
Conference, pp. 1267–1271. IEEE, 2010.

[8] R. Agarwal et al. Algorithms for crowd surveillance
using passive acoustic sensors over a multimodal sensor
network. IEEE Sensors Journal, 15(3):1920–1930, 2015.

[9] C. Anglano. Forensic analysis of WhatsApp Messen-
ger on Android smartphones. Digital Investigation,
11(3):201–213, 2014.

[10] S. B. Ranneries et al. Wisdom of the local crowd. In 8th
Conf. on Web Science (WebSci’16), pp. 352–354. ACM,
2016.

[11] D. R. Domínguez et al. Sensing the city with Instagram:
Clustering geolocated data for outlier detection. Expert
Systems with Applications, 78:319–333, 2017.

[12] S. Park et al. MobInsight: Understanding Urban Mobility
with Crowd-Powered Neighborhood Characterizations.
In Int. Conf. on Data Mining Workshops (ICDMW), pp.
1312–1315. IEEE, 2017.

[13] A. Kashevnik and M. Shchekotov. Comparative analysis
of indoor positioning systems based on communications
supported by smartphones. In 12th Conf. of Open
Innovations Association (FRUCT), pp. 1–6. IEEE, 2012.

[14] Q. Yang and L. Huang. Inside Radio: An Attack and
Defense Guide. Springer, 2018.

[15] D. Fox. IMSI-Catcher. Datenschutz und Datensicherheit
(DuD), 21:539, 1997.

[16] D. Strobel. Imsi catcher. Technical report, Ruhr-
Universitat Bochum, 2007.

[17] A. Shaik et al. Practical Attacks Against Privacy and
Availability in 4G/LTE Mobile Communication Systems.
Technical Report 1510.07563, arXiv, 2016.

[18] R. P. Jover and V. Marojevic. Security and protocol
exploit analysis of the 5G specifications. IEEE Access,
7:24956–24963, 2019.

[19] M. V. Barbera et al. Signals from the crowd. In Internet
Measurement Conf. (IMC’13), pp. 265–276, New York,
USA, 2013. ACM Press.

[20] A. Musa and J. Eriksson. Tracking unmodified smart-
phones using wi-fi monitors. In 10th Conf. on Embedded
Network Sensor Systems, pp. 281–294. ACM, 2012.

[21] J. Freudiger. How talkative is your mobile device?: an
experimental study of wi-fi probe requests. In 8th Conf.
on Security & Privacy in Wireless and Mobile Networks,
pp. 8. ACM, 2015.

[22] J. Martin et al. A Study of MAC Address Random-
ization in Mobile Devices and When it Fails. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs),
2017(4):365–383, 2017.

[23] M. Chernyshev. An overview of bluetooth device discov-
ery and fingerprinting techniques – assessing the local
context. In 13th Australian Digital Forensics Conf.,
Perth, 2015.


