
University Institute of Lisbon

Department of Information Science and Technology

Intentional Control of Invasive
Mobile Wireless Systems

João Pedro de Castro Ponte

A Dissertation presented in partial fulfillment of the Requirements
for the Degree of

Master in Telecommunications and Computer Engineering

Supervisor

Dr. Francisco António Bucho Cercas, Tenured Professor
ISCTE-IUL

Co-Supervisor

Dr. Pedro Joaquim Amaro Sebastião, Assistant Professor
ISCTE-IUL

December 2019

Resumo

Recentemente, drones operados remotamente ou de funcionamento autónomo
têm surgido no domínio dos produtos eletrónicos para consumidores e começam a
popular o espaço aéreo das áreas populacionais. Como tal, o número de incidentes
envolvendo estes dispositivos tem sofrido um aumento acentuado.

Neste sentido, o presente trabalho visa explorar um método que permita a fal-
sificação dos sinais Global Positioning System (GPS) utilizados por muitos destes
dispositivos para navegar, com o intuito de desenvolver uma forma de alterar a
sua rota para longe das áreas desejadas.

A hipótese em estudo é a de que, alterando os parâmetros usados pelos recetores
GPS para corrigir erros de relógio nos sistemas de navegação, é possível alterar a
posição calculada pelo dispositivo de uma forma mensurável e facilmente replicável.

Para testar esta hipótese, foi desenvolvido um simulador que permite testar
diferentes desvios aplicados aos valores dos coeficientes de correção do relógio pre-
sentes nas mensagens de navegação GPS. As posições resultantes de cálculos de-
pendentes destes parâmetros foram depois traçadas num mapa da área circundante
e analisadas. Como esperado, as posições são eficaz e previsivelmente alteradas de
acordo com os desvios aplicados.

Por forma a validar os resultados das simulações, foram realizados testes físicos
usando uma plataforma de Software Defined Radio (SDR) e um gerador de sinais
GPS open source que foi modificado para gerar sinais com base nos dados alterados
das simulações. Estes testes sustentam a hipótese de que os sinais falsificados são
capazes de provocar, consistentemente, a deteção errónea de posições por parte
dos recetores de forma análoga à das simulações.

Palavras-chave: GPS (Global Positioning System), GNSS (Global Naviga-
tion Satellite Systems), SDR (Software Defined Radio), UAV (Unmanned Aerial
Vehicle), Spoofing.

iii

Abstract

Within recent years, remotely operated or autonomous drones have been en-
croaching on the realm of consumer electronics and are beginning to crowd the
airspace in populated areas. As such, the number of incidents involving drones
has seen a sharp increase and concerns are being raised.

In this sense, the current work aims to explore a method which enables spoofing
of the Global Positioning System (GPS) many of these devices use to navigate,
and thus provide a way to shift them off course and away from the intended areas.

The proposed hypothesis is that, by altering the parameters by which GPS
receivers correct for clock errors in the navigation systems, it is possible to shift
the device’s perceived position in a measurable and easily replicable way.

To test this hypothesis, a simulator was developed to test different offsets
applied to the clock correction coefficients of a GPS navigation message. The
positions resulting from calculations using these altered parameters were then
plotted on a map of the surrounding area and analysed. As expected, the positions
are effectively and predictably altered according to the offsets applied.

In order to validate the results from the simulations, real world tests were
conducted using a Software Defined Radio (SDR) platform and an open source
GPS Signal Generator which was modified to generate a signal based on the altered
data from the simulations. With these tests it was asserted that the spoofed signals
were able to consistently cause receivers to miscalculate their positions analogously
to the simulations.

Keywords: GPS (Global Positioning System), GNSS (Global Navigation
Satellite Systems), SDR (Software Defined Radio), UAV (Unmanned Aerial Vehi-
cle), Spoofing.

v

Acknowledgements

I would first like to thank my Supervisor, Prof. Francisco Cercas for helping
define the subject of this dissertation, for all his continued guidance and support
throughout the course of the project and for pushing me to explore further. I
would also like to acknowledge my Co-Supervisor, Prof. Pedro Sebastião.

A special thank you to Prof. José Sanguino for lending his expertise on the
subject and for advising me and clarifying my doubts.

I would also like to thank my colleague and friend Rui Dias, for all the work
we’ve done together during our Master’s Degrees and at the helm of the IEEE
ISCTE-IUL Student Branch.

To all the friends I’ve made in these last few years, a big thank you for all the
moments shared and for being part of this pivotal, formative stage in my life, with
a special cheers to my closest friends from home who shared with me their own
paths to becoming engineers.

To Rita, for standing by me at all times and making dull moments vanish,
thank you, with all my love.

Last, but certainly not least, I have my family to thank, especially my parents,
who always pushed me to strive for excellence, who taught me the value of integrity
and perseverance, and for their unwavering support and confidence, my deepest,
heartfelt thank you.

vii

Contents

Resumo iii

Abstract v

Acknowledgements vii

List of Figures xiii

Abbreviations xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Research Questions . 3
1.4 Goals . 3
1.5 Contributions . 4

2 State of The Art 5
2.1 Global Navigation Satellite Systems 5
2.2 Global Positioning System . 7
2.3 GPS Ranging Signals . 7
2.4 C/A Codes . 11
2.5 GPS Receiver Arquitecture . 11
2.6 Unmanned Aerial Vehicles . 12
2.7 Radio Frequency Interference . 13
2.8 GNSS Spoofing . 13
2.9 Spoofing Detection Strategies . 15

2.9.1 J/N Monitoring . 15
2.9.2 Innovations Testing . 15
2.9.3 Drift Monitoring . 16
2.9.4 Signal-Geometry-Based-Defences 16

2.10 Software Defined Radio . 17
2.11 Universal Software Radio Peripherals 17
2.12 Receiver Independent Exchange . 18

2.12.1 RINEX Navigation Message Files 20
2.12.2 RINEX Observation Data files 21

ix

Contents

3 Simulator Implementation 23
3.1 Polynomial Coefficients for Satellite Clock Correction 23
3.2 Basic Algorithm Functionality . 29
3.3 Simulator Experimentation . 41

3.3.1 Experimentation With Offsets in the SV Clock Bias Correc-
tion Coefficient(af0) . 41

3.3.2 Experimentation With Offsets in the SV Clock Drift Cor-
rection Coefficient(af1) . 46

3.3.3 Experimentation With Offsets in the SV Drift Rate Correc-
tion Coefficient(af2) . 48

3.3.4 Experimentation With Offsets in Multiple Parameters 49

4 Real World Test Scenarios 53
4.1 Experimental Setup . 53

4.1.1 Experimentation With Offsets in the SV Clock Bias Correc-
tion Coefficient (af0) . 61

4.1.2 Experimentation With Offsets in the SV Clock Drift Cor-
rection Coefficient (af1) . 64

4.1.3 Experimentation With Offsets in both the SV Clock Bias
Correction Coefficient (af0) and the SV Clock Drift Correc-
tion Coefficient (af1) . 66

4.2 Analysis of Results . 68

5 Conclusions 71
5.1 Summary . 71
5.2 Future Work . 74

Appendices 79

A Matlab Algorithms 79
A.1 Least Squares Position Calculation 79
A.2 RINEX Navigation and Observation File Parser 83
A.3 Ephemerides data alteration in the data structure used during sim-

ulation . 89
A.4 Haversines formula calculation of Great Circle distance between two

sets of coordinates . 90

B C Algorithms 91
B.1 Least Squares Position Calculation 91
B.2 RINEX Observation File Parser . 95

C Python Algorithms 99
C.1 Script for RINEX Navigation File Modification 99

x

Contents

Bibliography 103

xi

List of Figures

2.1 GNSS user position trilateration using four satellites 6
2.2 Satellite code reception delay representation 8
2.3 User position vector representation in ECEF Cartesian System . . . 9
2.4 GPS Receiver Block Diagram . 12
2.5 Ettus Research N210 USRP . 18
2.6 Example of the data in a RINEX 2.11 navigation message ASCII file 19
2.7 Example of the data in a RINEX 2.11 observation data ASCII file

(cropped) . 21

3.1 Example of possible spoofed receiver positions when positive offsets
of 1x10−6 seconds and 1x10−6 sec/sec are applied to both af0 and
af1 parameters respectively for each satellite within line of sight of
the receiver . 25

3.2 Example of possible spoofed receiver positions when positive offsets
of 1x10−6 seconds and 1x10−6 sec/sec are applied to both af0 and
af1 parameters for satellites numbers 6 and 7 26

3.3 Example of possible spoofed receiver positions if either positive or
negative offsets of 1x10−6 seconds and 1x10−6 sec/sec are applied
to both af0 and af1 parameters respectively for satellites numbers
6 and 7 . 27

3.4 WinTEQC interface showing a RINEX observation file and the data
to be trimmed . 28

3.5 Representation of the grid created by the position calculation algo-
rithm . 31

3.6 The Sagnac effect . 32
3.7 Example of the difference between calculated position (unmarked)

and actual receiver position (marked with red pin) measured and
plotted on Google maps image . 35

3.8 Calculated receiver position grouping plotted on map around ap-
proximated data capture position of physical GPS Signal receiver . 36

3.9 Calculated receiver position plotted on an accurate satellite image
composition of the surrounding area 37

3.10 Calculated receiver position plotted on an accurate map-like repre-
sentation of the surrounding area 38

3.11 Visual representation of altered positions around the original re-
ceiver position due to alteration of clock correction polynomials for
each satellite within line of sight . 39

xiii

List of Figures

3.12 Basic simulator and experimental system flowchart 40
3.13 Distance of spoofed positions from the original calculated receiver

position in relation to offsets applied to the af 0 correction coefficient 43
3.14 Representation of the variables required for application of a Haver-

sine formula to determine the great circle distance between two
points on s sphere . 45

3.15 Great circle distance between points A and B 46
3.16 Distance of spoofed positions from the original calculated receiver

position in relation to offsets applied to the af1 correction coefficient 48
3.17 Distance of spoofed positions from the original calculated receiver

position in relation to offsets applied to both af0 and af1 correc-
tion coefficients . 50

4.1 Simplified model of the functionality of GPS-SDR-SIM 55
4.2 Simplified model of the functionality of GPS-SDR-SIM with the

proposed modifications . 55
4.3 Experimental hardware setup . 57
4.4 Smartphone receivers during spoofed signal capture 58
4.5 Example of a spoofed position perceived by one of the receivers

(shown in the Google Maps app) 59
4.6 Simulator plot of the area for possible experimental result positions

with visual representation of the impact of applied offset for satel-
lites with SVN 5 and SVN 30 . 60

4.7 Captured experimental spoofed positions for offsets applied to af0 . 61
4.8 Captured experimental spoofed positions for offsets applied to af1 . 65
4.9 Captured experimental spoofed positions for offsets applied to both

af0 and af1 . 67

xiv

List of Tables

2.1 GPS Navigation data parameters parsed from RINEX navigation
data files . 20

3.1 Spoofed pseudorange values for different offset values applied to the
af 0 coefficient of the satellite with SV 6 42

3.2 Spoofed pseudorange values for different offset values applied to the
af 0 coefficient of the satellite with SV 6 42

3.3 Spoofed pseudorange values for different offset values applied to the
af 1 coefficient of the satellite with SV 6 47

3.4 Spoofed pseudorange values for different offset values applied to the
af 1 coefficient of the satellite with SV 7 47

4.1 Maximum distance from original position for each range of offsets
applied to af0 . 62

4.2 Maximum distance from original position for each range of offsets
applied to af1 . 64

4.3 Maximum distance from original position for each range of offsets
applied to both af0 and af1 . 66

xv

Abbreviations

ADS-B Automatic Dependent Surveilance-Broadcast

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASIC Application Specific Integrated Circuit

BPSK Binary Phase Shift Keying

C/A Coarse/Acquisition

DOP Dilution Of Precision

DSP Digital Signal Processor

DSSS Direct Sequence Spread Spectrum

ECEF Earth Centred Earth Fixed

ECI Earth Centered Inertial

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

GDOP Geometric Dilution Of Precision

GLONASS GLObalnaya NAvigatsionnaya Sputnikovaya Sistema

GNSS Global Navigation Satellite System

GPS Global Positioning System

IF Intermediate Frequency

IMU Inertial Measurement Unit

LLH Latitude Longitude Height

LO Local Oscillator

P Precision

PLL Phase Locked Loop

PRN Pseudo Random Noise

xvii

Abbreviations

PV Position Velocity

RF Radio Frequency

RHCP Right Hand Circular Polarized

RINEX Receiver INndependent EXchange

SDK Software Development Kit

SDR Software Defined Radio

SV Space Vehicle

SVN Space Vehicle Number

TEQC Translation Editing Quality Check

TOC Time Of Clock

TOE Time Of Ephemeris

USRP Universal Software Radio Peripheral

xviii

Chapter 1

Introduction

1.1 Motivation

With the advent of affordable consumer model drones there has been a dramatic in-

crease in the number of autonomous mobile wireless systems roaming the airspace

all around the world in the last couple of years [1].

This leads to the unfortunate side effect of drones wandering into areas they

shouldn’t, such as the no-fly zones in and around airports, power lines, highly

populated areas, or simply our own backyards.

Whether the intrusion in these areas is intentional or accidental it will always

have consequences. It can lead to material or personal damage, infringe on people’s

privacy and cause the person responsible for the drone to incur criminal charges.

Devising a system that tricks the drone into switching from its original navi-

gation signal to one developed to make it steer away from the area or perform a

landing provides a non-destructive, safe and effective way to capture it and ensure

that none of the above situations occur.

1

1.2 Context

Many of the most commonly used drones currently rely on Global Navigation

Satellite Systems (GNSS) such as GPS or Galileo to calculate their position and

navigation paths [2], [3]. These systems are widely used and, in the case of GPS,

are the standard in situations where geolocation of a device is required. According

to [2], these systems are commonly used in conjunction with an onboard inertial

measurement unit (IMU) to create a state estimator which enables reliable navi-

gation. Since these GNSS are susceptible to external interference (intentional or

otherwise), the present work will focus on exploiting this shortcoming. The goal

is to attempt to make the drone follow a custom signal which spoofs its current

location rather than the original signal it was using to navigate, allowing it to be

captured.

To achieve this, a radio communication system is devised in order to first jam

the original signal, so the drone locks on to the new one which will then spoof

the location of the vehicle. As described in [2], this first step could be achieved

by ensuring the power advantage of the spoofer (η = Ps/Pa, where Ps is the

received spoofing signal power and Pa is the authentic signal power), is above a

certain threshold. After successful lock on to the spoofing signal, the second stage

is to attempt to send the spoofed location data to the system in order to alter

the navigational estimator in such a way that the drone alters its navigational

parameters without triggering any tampering detection systems.

The most versatile approach to building such a system is to use Software De-

fined Radio (SDR) to test and implement the components of a Radio Emitter

& Receiver System [4], [5], [6], which will interface with a dedicated Universal

Software Radio Peripheral (USRP) platform to send/receive the necessary signals.

This system will serve as a proof of concept of the work pertaining to the disser-

tation and allow us to analyse the data both in a controlled environment and in

real-world scenarios.

2

1.3 Research Questions

After conclusion of the research work, it is expected that the following basic re-

search questions will be answered:

• Is the proposed system an effective tool to spoof the target drone’s location?

• How does the implementation compare to other already available solutions?

• Can the system be designed to work more efficiently and, if so, in what way?

• Can the implementation be further improved upon by adapting it to enable

compatibility with other GNSS besides GPS?

1.4 Goals

The focus of the project is to develop a practical implementation of the GNSS

spoofing system described in the Context Section above, which should be robust

enough to allow for reliable use as a mechanism to control invasive drones and,

in doing so, possibly assert its viability for use as a plug and play, standalone

solution.

To achieve the intended goals, a review of the literature must first be conducted

in order to understand how GNSS systems are used by the drones and how the

different signals can be replicated and subsequently altered to suit the purposes

of our project.

Once a hypothesis on how this is to be achieved has been formulated, the

next step is to design and implement a simulator, to emulate the operation of the

proposed Radio Communication System. This system enables the collection of

some initial data and provides a testbed for current and future research on GNSS

signal modification.

3

In order to validate the results obtained from experimentation using the simu-

lator developed, the final goal of the current work is to set up a physical implemen-

tation of the proposed system for spoofed signal transmission directly to the target

receiver, using Universal Software Radio Peripheral (USRP) boards and Software

defined Radio (SDR). This implementation will serve as a test platform to assess

the proposed hypothesis’ validity and observe the impact of the generated spoofed

signal on GPS receivers.

1.5 Contributions

As a means to test the hypothesis proposed, a Matlab simulator was developed

to calculate a GPS receiver position using data parsed from Receiver Indepen-

dent Exchange (RINEX) Navigation and Observation files and test the effects on

calculated positions of alterations to the navigation data. This simulator also al-

lows plotting of the different positions on either satellite imagery or Google Maps

renditions of the surrounding area.

Part of the algorithms developed for the simulator were also converted from

Matlab code to C, in order to enable their use in an already existing open source

GPS signal generator.

As part of the research for the present work, an article entitled: "GPS Data

Alteration for Use in a Position Spoofing System" was submitted and presented

at the 11th Conference on Telecommunications - ConfTele 2019:

• Ponte, J., Cercas, F., Sebastião, P., Sanguino, J., Dias, R, "GPS Data Alter-

ation for Use in a Position Spoofing System", 11th Conference on Telecom-

munications - ConfTele 2019, Lisbon, June 28th, 2019.

4

Chapter 2

State of The Art

2.1 Global Navigation Satellite Systems

Global Navigation Satellite Systems are satellite navigation systems that enable

geolocation of a device on a global scale by using constellations of satellites to

transmit position and timing data to specific receivers. These systems include but

are not limited to: GPS, Galileo and GLONASS [7].

On a base level, all GNSS use trilateration to calculate a device’s position. The

device receives its distance d relative to four or more satellites and by intersecting

the four spheres of radius d centred on each satellite the resulting intersection

point corresponds to where the device is located in relation to the satellites. Even

though at least four satellites are needed, using only three satellites to calculate the

receiver’s position, the spheres would still intersect, regardless of how incorrect the

measurements are. This is due to the fact that the receiver calculates the distances

to each satellite using its internal clock to measure the time it takes to transmit

the signal, so all of them will be proportionally incorrect. The fourth satellite is,

thus, used to ensure that the measured distances are correct, since the intersection

of four spheres is only possible if all the distances have been correctly measured

[7], [8].

5

Chapter 2. State of The Art

Figure 2.1: GNSS user position trilateration using four satellites [9]

Many of the most commonly used drones currently rely on GNSS to calculate

their position and navigation paths, [2], [3]. These systems are widely used and,

in the case of GPS, are the standard in situations where geolocation of a device is

required. According to [2], these systems are generally used in conjunction with

an onboard inertial measurement unit (IMU) to create a state estimator which

enables reliable navigation. As stated previously these GNSS are susceptible to

external interference (intentional or otherwise), as such, they present a weak link

in the system which will be exploited in order to trick the drone into navigating

using the spoofed navigation data rather than the genuine GPS signal.

6

Chapter 2. State of The Art

2.2 Global Positioning System

The Global Positioning System (GPS) is the American GNSS which has seen

widespread adoption worldwide. The system is maintained by the United States

Government and is free to use with the caveat that the US Military can degrade

or otherwise block the signal at any time if deemed necessary [7].

GPS signals use three types of Pseudorandom Noise (PRN) ranging codes: the

publicly available Coarse/Acquisition or C/A code, the restricted Precision (P)

and its Y-code variant for anti-spoofing mode. Since the latter are reserved for

military applications and are therefore not widely adopted by the mobile devices

in study, the present paper will focus exclusively on the C/A ranging codes [7],

[8].

PRN codes present spectral properties analogous to random binary sequences

and may look just like a random sequence of binary bits, but they are, in fact,

known combinations of bits, of which there are 37 unique variants [8].

2.3 GPS Ranging Signals

GPS signal transmissions rely on direct sequence spread spectrum (DSSS) mod-

ulation of a carrier wave to enable the transmission of ranging signals as well as

navigation data. The ranging signals are PRN codes that are multiplied by the

binary phase shift keyed (BPSK) satellite carrier signal frequencies. The carrier

wave frequencies used are 1575.42 MHz (L1) and 1227.60 MHz (L2). C/A code is

transmitted on the L1 frequency while P(Y) code uses both L1 and L2. This use

of two different frequencies to transmit the code is what provides P(Y) code with

increased resistance to jamming as well as other benefits such as providing redun-

dancy and allowing for the measurement and subsequent correction for ionospheric

delay [7], [8].

7

Chapter 2. State of The Art

PRN codes follow a predictable pattern and can thus be replicated. When

determining the geometric range r from the satellite to the user, the receiver will

generate a replica of the code and time shift it by ∆t in order to achieve correlation

with the code received from the satellite. Here ∆t is the difference between the

moment TU when the code was received by the user and the moment TS when the

code was sent from the satellite. Multiplying ∆t by the speed of light c, returns

the geometric range r:

r = c∆t = c (TU − TS) (2.1)

Figure 2.2: Satellite code reception delay representation [7]

Considering the Earth centred Earth fixed (ECEF) Cartesian coordinate sys-

tem shown in Figure 2.3, the magnitude of the range vector r is given by:

~r = ||~s− ~u|| (2.2)

8

Chapter 2. State of The Art

Figure 2.3: User position vector representation in ECEF Cartesian System [7]

This calculation assumes that both the satellite’s and the receiver’s internal

clocks are perfectly synchronized, however, this is not the case in most real-world

scenarios. As such, to get an accurate value of the distance from satellite to receiver

the pseudorange ρ must be considered [7]. The pseudorange can be determined

using the following equation, where tu is the offset of the receiver clock from system

time and δt is the offset of the satellite clock from system time [8]:

ρ = c[(TU − tu)− (TS − δt)] (2.3)

which can be simplified to:

ρ = c (TU − TS) + c(tu− δt) (2.4)

= r + c(tu− δt)

Substituting r in equation 2.2:

9

Chapter 2. State of The Art

ρ− c (tu − δt) = ||s− u|| (2.5)

The receiver’s three-dimensional position (x,y,z) can now be calculated using

the measurements of the pseudorange ρ and offset tu from each of the four satellites

connected to the receiver. Since the offset δt is compensated for on the user side

it can effectively be removed from the equation and the system of equations that

must be solved to get the user position becomes:

ρj = c (tu) + ||sj − u||, j = 1, 2, 3, 4, (. . .) (2.6)

where j denotes the jth satellite (1 to N), ρj is the calculated pseudorange for

the jth satellite, c is the physical constant for the speed of light, tu is the offset

of the receiver clock from system time, sj is the jth satellite’s position and u is

the user (receiver) position. Both sj and u are in Earth Centered Earth Fixed

(ECEF) (x,y,z) coordinates [7].

The equation system in its expanded form can have up to N equations de-

pending on the number of satellites present but, effectively, only four satellites are

needed to have enough data to solve for the (x,y,z) position u in (2.6) so for most

cases (2.6) can be expanded as:



ρ1 =
√

(x1 − xu)2 + (y1 − yu)2+ (z1 − zu)2 + ctu

ρ2 =
√

(x2 − xu)2 + (y2 − yu)2+(z2 − zu)2 + ctu

ρ3 =
√

(x3 − xu)2 + (y3 − yu)2+ (z3 − zu)2 + ctu

ρ4 =
√

(x4 − xu)2 + (y4 − yu)2+(z4 − zu)2 + ctu

(2.7)

The solution to this equation can be obtained by closed-form solutions, Kalman

Filtering or iterative techniques based on linearization, such as Least Squares

iterative methods [7].

10

Chapter 2. State of The Art

2.4 C/A Codes

GPS Coarse/Acquisition (C/A) ranging codes are Gold codes with a duration of 1

millisecond and 1023 kbps chipping rate. These codes are generated by a modulo-

2 addition of two 1023 chip long linear pattern sub-sequences, G1 and G2, each

generated by a 10-bit shift register [8].

The different C/A codes are obtained by delaying the G2 sub-sequence relative

to G1, the delay is unique to each satellite so each PRN number will have a

different associated delay which eliminates the need for a delay register. PRN

codes 1 through 32 are reserved for the space segment and PRN codes 33 through

37 are meant for other uses such as ground transmitters [7], [8].

These civil ranging codes are easy to predict and their documentation is pub-

licly available, which makes them exceptionally vulnerable to signal spoofing [2],

[7] [10].

2.5 GPS Receiver Arquitecture

In this section, the basic components of an SDR GPS receiver will be presented.

To aid in detailing each component’s function a generic GPS receiver block dia-

gram is shown in Figure 2.4. The GPS Radio Frequency (RF) signals from all the

satellites in view of the receiver are received by a right hand circular polarized

(RHCP) antenna with near hemispherical gain coverage. These signals are then

amplified by a low noise preamplifier to set the base noise figure and down con-

verted to intermediate frequency (IF) using mixing frequencies obtained from local

oscilators (LO). Mixing with the LO signal produces upper and lower sidebands

of the satellite signal, so in order to select the lower sideband and discard the rest

of the signals a bandpass filter is used. Finally, the IF signal goes through analog

to digital (A/D) conversion as well as an automatic gain control process.

11

Chapter 2. State of The Art

Figure 2.4: GPS Receiver Block Diagram[7]

The resulting IF signals from the process so far are now ready to be fed into

the digital receiver channels where the actual demodulation will take place. These

N channels are typically implemented using application specific integrated circuits

(ASICs) or field programmable gate arrays (FPGAs) [7].

The signals are then demodulated and, following the conversion to baseband

and code-stripping, they undergo an integration and dump process to allow for

filtering and resampling and are then ready to be handled by the receiver processor

[7], [8].

The receiver takes the processed signal and uses the data contained therein to

calculate the necessary variables for position estimation in relation to the satellite

which transmitted the signal. This process is done for each of the satellites within

line of sight of the receiver.

2.6 Unmanned Aerial Vehicles

Unmanned Aerial Vehicles (UAV), more commonly known as drones, are aircraft

which are controlled remotely and can therefore function without a human pilot

12

Chapter 2. State of The Art

onboard. They are one of the components of Unmanned Aerial Systems (UAS),

these systems are, in their most basic configuration, the combination of a UAV,

a ground based controller and the communications system between the two [11].

UAS may also include GNSS receivers for autonomous UAV navigation and geolo-

cation.

The most prevalent UAV navigation systems are based on using a state esti-

mator which relies on an Inertial Measurement Unit (IMU) and a GPS Receiver

to gather positional and geolocation data [2], [3].

2.7 Radio Frequency Interference

Since GNSS receivers rely on Radio Frequency (RF) signals, they are particu-

larly vulnerable to RF Interference whether it is unintentional, like intersystem

interference between GPS and Galileo, or intentional, as is the case with jamming.

While jamming aims to completely block or degrade the received signal in order

to disable geolocation entirely, which is essentially a denial of service approach to

the interference, spoofing consists in the creation of an interfering signal that

mimics a genuine GNSS signal but contains information which generates a false

position [2], [7], [10], [12].

2.8 GNSS Spoofing

The transmission of false GNSS signals in order to produce a false position in the

receiver is known as spoofing [7].

GNSS signal spoofing can be accomplished through a variety of methods which

have varying degrees of complexity, from simple meaconing attacks which replay

captured GNSS signals, to more advanced solutions which generate an entirely

new signal [13], [14], [15]. These methods usually follow one of two different

strategies: overt spoofing [2], in which the spoofer does not take into consideration

13

Chapter 2. State of The Art

any spoofing detection systems the target GNSS receiver may have; and covert

spoofing [2], which considers the aforementioned detection systems and attempts

to evade detection and, in doing so, circumvent any defensive measures which rely

on spoofing attempt detection to activate [16].

An overt spoofing attempt will consist, in its most basic form, of increasing

the spoofer’s power advantage η above a certain threshold in order to force the

receiver to lock on to the spoofed signal [2], [10], [16].

A successful covert spoofing attack, however, entails the capture of both the

GPS receiver tracking loop and the navigational state estimator. Firstly, it must

be ensured that no frequency unlock is detected in any of the Phase-Locked Loops

(PLL), this is achieved by aligning the spoofed signals as closely as possible with

the genuine signals in code phase τ(t) as well as Doppler frequency fD(t). If these

conditions have been met, the spoofed signals’ power can theoretically be raised

above the genuine signals’ power without raising alarm and thus capture the GPS

tracking loop [2].

Secondly, to capture the navigation state estimator, the spoofer must evade

innovations testing within the navigation state estimator. This is a complex and

computationally costly procedure as it requires a degree of accuracy in calculating

the Position Velocity (PV) estimate far greater than required for the previous

step. The most effective way to obtain such accurate estimations is to intercept

the device’s Automatic Dependent Surveillance-Broadcast (ADS-B). These contain

accurate position and velocity data which, when compared to the calculated PV

estimate values of the navigation state estimator, will not trigger an alarm due to

being very similar. This is particularly apparent when considering that innovations

testing will have inflated thresholds to account for false positives due to multipath

or poor satellite visibility [2], [17], [10], [15].

14

Chapter 2. State of The Art

2.9 Spoofing Detection Strategies

A myriad of spoofing detection strategies has been proven to be effective in de-

tecting spoofing attempts on UAVs and a successful covert spoofing attack must

be designed to circumvent them. Some of the most common strategies are detailed

below:

2.9.1 J/N Monitoring

J/N Monitoring is based on measuring the received power in the GPS receiver and

if it exceeds that of the system in the same bandwidth under quiescent conditions

(i.e., the voltages and current levels of the inputs and components of the circuit

are fixed), then an alarm is triggered. This, by itself, can mean a spoofing attempt

has been made, but to be thorough, it should be considered that if the alarm has

been triggered due to the received power exceeding the threshold and the receiver

continues to track GPS signals even though the signal appears to be jammed, then

it is likely that a spoofing attempt is underway. This can effectively prevent an

attack in which the GPS Signal is jammed to force the receiver to lock on to the

spoofed signal. In order to bypass this strategy, [2] states that, for certain tested

scenarios, maintaining the spoofer power advantage η ≤ 12dB is enough to avoid

triggering the alarm [2].

2.9.2 Innovations Testing

Innovations Testing measures the PV output from the GPS receiver and compares

it with the PV estimate given by the onboard navigation state estimator. If both

don’t match then, most likely, the device is being spoofed [2].

15

Chapter 2. State of The Art

2.9.3 Drift Monitoring

Drift Monitoring consists of monitoring the receiver’s position and clock fix for

unusually quick changes in the reported values. For instance, if the clock error

changes too quickly, the receiver might detect that such an alteration will produce

an abnormally high rate of clock drift for the type of oscillator used [17].

2.9.4 Signal-Geometry-Based-Defences

Signal-Geometry-Based-Defences considers the direction of arrival of the GPS sig-

nals by monitoring the received beat carrier phase, modelled by:

λφi

2π
= pi0 + (p̂i)

T
∆d+ c

(
δr − δi

)
+
λβi

2π
(2.8)

where p̂i is the unit vector pointing from satellite to receiver and ∆d is the

displacement of the receiving antenna from the nominal receiver location [17].

Using interferometry (i.e., the superimposition of electromagnetic waves to in-

tentionally cause interference in order to measure differences in said waves) the

receiver can measure the direction-of-arrival vector p̂i of three satellites with dif-

ferent ∆d offsets. In a non-spoofed scenario, the p̂i vectors will be spread out

across the sky but in most spoofing scenarios, since a single emitter is used, the

signals will be broadcast from the same spot and the p̂i vectors will all have the

same direction [17],[18].

The strategies described above are not, by any means, foolproof and, as such,

are often used in parallel with other solutions so as to complement each other

and provide a more robust spoofing detection system. They are also not the only

available methods, in fact, [19] provides a different set of recommended strategies

(with some in common with those on the list above) and [14] suggests usage of

countermeasures based on message authentication.

16

Chapter 2. State of The Art

2.10 Software Defined Radio

Software Defined Radio is an approach to building radio communication systems

using software to emulate the functionality of traditional hardware components

such as amplifiers, filters and modulators. It provides an easy, cost-effective and

versatile way to design, build and test radio systems [4].

According to [7], “Most modern GPS receiver designs are digital receivers.

These receiver designs have evolved rapidly towards higher and higher levels of

digital component integration (. . .) Also, microprocessors and their specialized

cousins DSPs, are becoming so powerful and cost effective that software defined

radio receivers (SDRs) are being developed that use no custom digital compo-

nents.”.

One of the most popular SDR Software Development Toolkits (SDK) is GNU

Radio [20], an open source toolkit that enables development of radio systems

using a graphical interface based on signal processing blocks which can be linked

to compatible external radio hardware [21]. The systems implemented using this

SDK can effectively perform the functions of a GNSS receiver, as well as all the

other required functionalities of the proposed GNSS signal generator.

Another commonly used SDK for SDR is Matlab’s Simulink graphical block

diagramming toolkit, which was proven by [4], [22] to be an effective tool for

developing SDR based GNSS Systems.

2.11 Universal Software Radio Peripherals

Universal Software Radio Peripherals (USRP) are software defined radios which

connect to a computer and provide the necessary hardware so that the emulated

components can send and receive radio signals. They are a cost effective and

versatile option when compared to traditional radio components.

17

Chapter 2. State of The Art

For this project an Ettus Research USRP N210 USRP was used. These boards

have a robust set of features ideally suited to this project, most notably a large

FPGA, high bandwidth connectivity to the host pc and a selection of daughter-

boards which can be installed for different applications [23].

Figure 2.5: Ettus Research N210 USRP [24]

2.12 Receiver Independent Exchange

The Receiver Independent Exchange format (RINEX) [25] is an ASCII text based

format for GNSS data designed to be the standard for GNSS data storage and

exchange, facilitating inter-operability of different systems, independent of receiver

type or manufacturer. The format was developed hinging on the notion that most

receivers use a well-defined set of observables, most notable of which are: carrier-

phase measurement, pseudorange code measurement and the observation time

[25], [26]. Consequently, most programs that use the receivers require only these

observables along with some station-related information to perform their intended

function such that the data stored can, in effect, be summarized to the essentials

for each type required.

RINEX version 2.11 is the most widely used by the GNSS community at the

time of writing, as such, this version will be the main one used for the purposes of

this research throughout. This version of RINEX consists of seven different ASCII

file types [25] pertaining to different sets of data gathered from the satellites,

namely:

18

Chapter 2. State of The Art

• 1. Observation Data File

• 2. Navigation Message File

• 3. Meteorological Data File

• 4. GLONASS Navigation Message File

• 5. GEO Navigation Message File

• 6. Satellite and Receiver Clock Date File

• 7. SBAS Broadcast Data File

Each of the files is comprised of a header section and a data section. The latter

contains the data itself, while the former provides a description of the parameters

contained within the data section and will thus be used to determine what data

to look for when parsing the files.

The data required for the purposes of the present work is available, in its

entirety, within the navigation message files and the observational data files, so the

RINEX files employed either in simulations or experimental tests will be limited

to these two types of file.

Figure 2.6: Example of the data in a RINEX 2.11 navigation message ASCII
file [27]

19

Chapter 2. State of The Art

2.12.1 RINEX Navigation Message Files

RINEX navigation data files contain the GPS satellite ephemerides data required

to calculate each satellite’s position at the time of data capture. This time might

range from a single instance (though this is not a common occurrence when gather-

ing data for generation of a navigation file) to several hours’ worth of data capture

in individual instances, usually limited to 24h cycles, at least as far as the files pub-

licly available from NASA [28] are concerned. The data parsed by the simulator

software developed for the present research is detailed in Table 2.1.

Table 2.1: GPS Navigation data parameters parsed from RINEX navigation
data files

20

Chapter 2. State of The Art

2.12.2 RINEX Observation Data files

RINEX observation files contain, among other assorted data relative to measure-

ments taken by the receiver, the aforementioned observables: time, pseudo-range

and phase. According to the standard format in [25], these are “(. . .) three fun-

damental quantities that need to be defined”.

Time is considered the time measured by the receiver at the moment of each

signal reception expressed in GPS time. It is identical for the phase and range

measurements, as well as for all satellites at the same epoch [25].

Pseudo-range is defined as the distance in meters from the receiver antenna to

the satellite antenna including offsets for both receiver and satellite clocks as well

as any biases introduced in the signal transmission process [25].

Phase is the carrier wave phase measured in whole cycles [25].

Figure 2.7: Example of the data in a RINEX 2.11 observation data ASCII file
(cropped) [29]

These observables are not corrected for external effects and any adjustment

made by software on either the receiver or the transmitter end must be applied in

such a way as to maintain the consistency of the 3 quantities described above [25].

21

Chapter 3

Simulator Implementation

3.1 Polynomial Coefficients for Satellite Clock Cor-

rection

According to [7], [8], in order to accurately calculate user position, the receiver

must determine the effective Space Vehicle (SV) PRN code phase time offset refer-

enced to the phase centre of the antennas (∆tsv) with respect to GPS system time

(t) at the time of data transmission. So, the receiver must correct the effective SV

PRN code phase time at message transmission time received from the SV (tsv)

using the following equation:

t = tsv −∆tsv (3.1)

with ∆tsv given by:

∆tsv = af 0 + af 1 (t− toc) + af 2(t− toc)
2 + ∆tr (3.2)

Where af 0, af 1 and af 2 are the polynomial correction coefficients for the satellite

clock bias, clock drift and clock drift rate, respectively, toc is the clock data

reference time in seconds and ∆tr is the relativistic correction term given by:

∆tr = Fe
√
A sin(Ek) (3.3)

23

Chapter 3. Simulator Implementation

∆tr can be calculated entirely from data contained in the GPS navigation mes-

sage [7], [8]. The satellite’s orbital parameters of eccentricity (e), square root of

the semi-major axis (
√
A) are contained in subframes 2 and 3 of the GPS nav-

igation message, while the eccentric anomaly (Ek) can be computed by solving

Kepler’s equation for eccentric anomaly using iteration. F is a constant, equal to

− 4.442807633 (10)−10 sec√
meter

[7], [8], [30].

The main polynomials chosen to be altered in this case are the clock bias

(af0) and clock drift (af1) which are used to correct the satellite clock values

when calculating pseudorange. By altering these values for each of the satellites

being used to calculate receiver position, the perceived position can be shifted

according to the bias now introduced in calculated pseudorange values for each

of the satellites. Thus, it becomes possible to, effectively, control the direction in

which the perceived position drifts relative to the actual position of the receiver.

Clock Drift Rate (af2) was often 0 in tested instances. A choice was therefore

made not to rely too much on altering this parameter for future experiments since

it would be very easy for a receiver that is closely monitoring navigation message

values to detect the new position as a spoofing attempt. Furthermore, of the three

coefficients (af0, af1 and af2) in study, altering this last one seemed to produce

the smallest variation in the calculated position.

For each of the experiments conducted, the polynomial coefficients were altered

by adding either a positive or negative offset between 1x10−7 and 1x10−5 to the

parameter in study. Applying this offset equally to all the satellites within line of

sight of the receiver will result in a different position being calculated for each of

the SV data chosen to solve the user position equation.

To assess the impact in calculated position for each satellite, all the possible

shifted positions consequence of altering the polynomials by a certain offset for

each satellite are plotted on an accurate satellite image of the area surrounding

the receiver as shown in Figure 3.1. This allows for visual assessment of where

exactly on the map the position can be shifted to, by applying the offset to a given

SV or even a combination of multiple SVs. By doing this, it becomes apparent

24

Chapter 3. Simulator Implementation

that choosing a combination of any 2 SVs to alter effectively allows placement of

the spoofed position anywhere in the surface defined by the 2 vectors created by

plotting a straight line from the original receiver position to the position calculated

using an offset applied to the satellite in question.

Figure 3.1: Example of possible spoofed receiver positions when positive offsets
of 1x10−6 seconds and 1x10−6 sec/sec are applied to both af0 and af1 parameters

respectively for each satellite within line of sight of the receiver

To allow for easier visualisation of the area where the spoofed position can

be placed, the satellites chosen for the experiments are, for the most part, those

whose vectors are as close to orthogonal between them as possible.

The orthogonality between the vectors is evaluated visually from preliminary

renderings of possible offsets such as Figure 3.1, meaning that there is an associated

imprecision to determining how orthogonal the vectors actually are, but for the

purposes of the experiments pertaining to the present work, the vectors don’t

have to be precisely orthogonal, just close enough that they form as close to a

90 degree angle between them as possible. Using this approach allows for two

dimensional control over the spoofed position, since each of the offsets applied

25

Chapter 3. Simulator Implementation

shifts the position in a different direction and it is essentially possible to treat the

two vectors as axes in a Cartesian reference system for increased ease of use and

better perception of possible position shifts.

Once this has been established, defining the spoofed position becomes as

straightforward as inputting the right offset value combination for the polyno-

mial correction coefficients into their corresponding values for each of the chosen

satellites. This is done on a trial and error basis, manually altering the offset val-

ues and then recalculating the receiver position to assert its placement until the

intended position has been successfully set.

As an example, by altering the polynomial correction coefficient for the satel-

lites with numbers 6 and 7 from the example in Figure 3.1, it is apparent that the

lines plotted between the receiver’s original position and the positions affected by

the introduction of positive offset values to the clock correction coefficients form

a near 90 degree angle between them (Figure 3.2).

Furthermore, additionally considering the positions affected by negative offsets

of equal magnitude and plotting the lines between them and the original receiver

position, the aforementioned Cartesian-like chart begins to form (Figure 3.3).

Figure 3.2: Example of possible spoofed receiver positions when positive offsets
of 1x10−6 seconds and 1x10−6 sec/sec are applied to both af0 and af1 parameters

for satellites numbers 6 and 7

26

Chapter 3. Simulator Implementation

Figure 3.3: Example of possible spoofed receiver positions if either positive or
negative offsets of 1x10−6 seconds and 1x10−6 sec/sec are applied to both af0

and af1 parameters respectively for satellites numbers 6 and 7

With a selection of satellites such as the one shown in Figure 3.3, it is essentially

possible to place the location of the spoofed position anywhere within the surface

defined by the plotted lines by applying negative or positive offsets to create a

bias in a certain direction. For instance, if the intended spoofed position in this

particular instance were to be east of the receiver, the offsets applied to each

of the satellites would both have to be negative. The magnitude of the applied

offsets will, in turn, define the spoofed position’s distance from the actual receiver

position, with greater magnitudes corresponding to greater distances as will be

discussed in the following sections 3.3.1 through 3.3.4.

The approach detailed above should, in theory, allow for flexible experimenta-

tion possibilities with different polynomial coefficient offsets as a means to alter

the GPS receiver’s perceived position in a predictable and replicable manner.

For the experimental examples detailed in the following sections, the RINEX

navigation and observation files used were downloaded from NASA’s FTP server

[28] and were generated from GPS Signals captured in the campus of Universidade

dos Açores in São Miguel, Azores Islands on the 20th of June 2019.

27

Chapter 3. Simulator Implementation

Prior to starting the simulation, the RINEX observation files are trimmed

using the WinTEQC editor, a graphical interface developed for use with Unavco’s

Translation Editing Quality Check (TEQC) GNSS data toolkit. This is done to

remove GLONASS and Galileo observational data, as well as any GPS observation

types not required for the experimental procedures. By doing so, the simulator’s

scope can be simplified as it is no longer necessary to redesign the simulator’s file

parsing algorithm to account for data irrelevant to the present work.

The editor parses the RINEX observation file’s header to determine which

satellite types are present and what observational data was captured to the file. By

comparing this information to the input provided of what observation data is to be

kept, the editor can parse the remainder of the file to eliminate all the unnecessary

data from each epoch. Since most RINEX observation files used for this work are

several thousand lines long, employing this editor significantly reduces the time

required to trim the file and ensures that no information is wrongly eliminated.

In the case of future research aiming to apply the present approach to GNSS

other than GPS, the files may be used unaltered, providing that the simulator’s

parser is adapted to recognize the remaining observational data required.

Figure 3.4: WinTEQC interface showing a RINEX observation file and the
data to be trimmed

28

Chapter 3. Simulator Implementation

3.2 Basic Algorithm Functionality

For the purposes of testing the hypothesis of altering GPS navigation data param-

eters in order to produce an altered perceived position differing from the receiver’s

actual position, a Matlab simulator was developed. The main components of the

code discussed in the present section are available in appendices A and C.

The program reads and parses RINEX navigation message and observation

data files (Appendix A.2) in order to obtain the necessary satellite ephemerides

and pseudorange data required to calculate a GPS receiver’s position by using

a least-squares iteration method (Appendix A.1). Sections of the code in [31],

[32] were used to develop the simulator components which deal with parsing the

RINEX files and calculating the actual receiver position from the data contained

within. The required files are sourced from a publicly accessible FTP server hosted

by NASA [28] and providing RINEX files of all different types introduced in section

2.12, which are compiled daily from receivers in locations across the globe. This

variety of files allows selection from a variety of different locations and times to

simulate a receiver position.

The simulator starts by parsing the RINEX navigation file line by line and

storing the ephemerides data for each of the N satellites present in the file in a

21xN matrix where each line corresponds to a different parameter of the satellite

ephemerides. The navigation data stored in this matrix is detailed in Table 2.1.

Next, the RINEX observation file for the corresponding location and time range

is parsed to obtain the data observed by the receiver, namely, observation types,

antenna delta, pseudorange and GPS time.

Using the data from these two files, there is now enough information to estimate

the receiver position using an iterative least squares method. With the pseudor-

ange and ephemerides data from four or more of the satellites available it becomes

possible to solve the system of equations described in Section 2.3, equations 2.6

and 2.7.

29

Chapter 3. Simulator Implementation

To solve for the correct estimated receiver position, the aforementioned least

squares iteration method is employed, starting by assuming the receiver’s approx-

imate position is (0,0,0) which corresponds to the Earth’s centre in an ECEF

system, then iterating through possible positions to calculate the offset of the

true position relative to each of these approximated positions by a displacement,

coming closer to the actual receiver position with each iteration [33], [34].

The basics steps for each cycle of the iterative least squares algorithm used to

calculate the receiver are detailed in the following paragraphs.

Before starting the actual calculation of the position, some variables must be

calculated. First, each satellite’s time of clock (TOC) is checked for over or under-

flow according to half the duration of a week in seconds. This time is then corrected

for clock errors and relativistic effects, as described in section 3.1. With this cor-

rected time, each satellite’s position is then calculated, using the ephemerides data

obtained from the RINEX navigation files.

Having all the necessary variables, the algorithm can now begin the iterative

process to determine an approximation of the receiver position as close as possible

to the actual position.

First, the latitude and longitude coordinates are converted from degrees to ra-

dian. In the first iteration these coordinates will each be, as previously mentioned,

zero and for each subsequent iteration run they will be updated to the most recent

output coordinates obtained from the previous iteration.

The next step is creating a grid of possible positions around the globe for

each latitude and longitude, which is achieved by calculating the azimuth between

the current position and a series of regularly spaced latitudes around the Earth

every 20 degrees until a full rotation has been achieved and repeating this process

for each of the 90 degrees of possible longitude (for both North and South) also

divided in 20 degree intervals. Each of the azimuths in this grid will then be used

to compute a selection of coordinates which span the surface of the Earth. A

visual representation of the created grid is shown in Figure 3.5, where each point

30

Chapter 3. Simulator Implementation

of intersection between latitude and longitude lines represents one of the positions

mentioned above.

Figure 3.5: Representation of the grid created by the position calculation
algorithm

Each of these coordinates will serve as an approximated starting point to check

which of them is closest to the actual receiver position. The algorithm will then

compute the distance from each of these positions to every one of the satellites

within line of sight, which have been previously identified from the RINEX Obser-

vation file and whose positions relative to the Earth have been calculated before

the beginning of the cycle:

distance = ||Xs −Xr|| (3.4)

For this equation, Xs represents each satellite’s cartesian coordinates and Xr

represents the cartesian coordinates of the receiver’s approximated position.

Due to rotation of the Earth during the signal transmission time, a relativistic

error known as the Sagnac effect would be introduced to any positions calculated

considering an ECEF coordinate system [7], [30]. Since this effect is not present

31

Chapter 3. Simulator Implementation

when computing in an ECI (Earth Centered Inertial) coordinate systems and the

receiver position is the same in both systems at the signal reception time, the

solution is to convert satellite coordinates to the ECI system and use them to

compute the receiver position [7]. This relativistic effect is illustrated in Figure

3.6.

Figure 3.6: The Sagnac effect [7]

The longitude of the ascending node is subsequently determined to convert the

calculated distances and positions from the ECEF coordinates to ECI coordinates.

To do so, the right ascension of the reference meridian (represented by Ω (t) in

equation 3.5) is required to build the rotational matrix Rotz(−Ω (t)) used for the

conversion. This Ω (t) is obtained thusly:

Ω (t) = Ω (t0)− Ω̇ · (t− t0) (3.5)

where t0 is the time at the start of the signal transmission, t is the time of signal

reception by the receiver, Ω (t0) is the right ascension of the reference meridian at

32

Chapter 3. Simulator Implementation

the moment of signal transmission and Ω̇ is the rotation rate of the Earth, which

is a constant of value 7.292115147x10−5 rad/s [7], [8].

This equation can be simplified by substituting (t− t0) for the previously

calculated Euclidean distance between satellite and approximated receiver position

from Equation 3.4, divided by the speed of light c, to become the span of time

between the moment of signal reception and the moment it was sent. When also

considering Ω (t0) to be null, the simplified equation becomes:

Ω (t) = −Ω̇ · distance
c

(3.6)

As mentioned previously, this will be used to build the rotational matrix:

Rotz (−Ω (t)) =


cos (Ω (t)) sin (Ω (t)) 0

−sin (Ω (t)) cos (Ω (t)) 0

0 0 1

 (3.7)

Which, in turn, will allow us to compute the coordinates on the ECI frame

(x
ECI

, y
ECI

, z
ECI

) from the coordinates on the ECEF frame (x
ECEF

, y
ECEF

, z
ECEF

):


x

ECI

y
ECI

z
ECI

 =


x

ECEF

y
ECEF

z
ECEF

 · Rotz (3.8)

From the converted set of coordinates (X ′s), the distance from satellite to re-

ceiver is recalculated for each satellite, just as before

distance′ = ||X ′s −Xr|| (3.9)

And, taking this new distance, along with the signal travel time corrected for clock

errors multiplied by the speed of light c, as well as the pseudorange for each of

33

Chapter 3. Simulator Implementation

the SVs in use, the corrected distance to the satellites (distanceres) to be used in

calculating the residuals is given by the equation:

distanceres = pseudorange− distance′ + corrected travel time · c (3.10)

Finally, the residual distances are calculated by subtracting this corrected dis-

tance from the distance calculated from the rotational matrix conversion and mul-

tiplying the matrix of said residuals by its own transposed matrix.

residuals = distance′ − distanceRes

Since this calculation is performed for each satellite, the residuals are stored in a

1xN array, where N is the number of satellites within line of sight. So the final

calculation is between a line matrix and a column matrix, resulting in the sum of

all the residuals for each satellite squared:

Sum of residuals squared = residuals · residuals′ =

= [residual(SV 1) residual (SV 2) · · · residual(SV N)] ·


residual (SV 1)

residual (SV 2)
...

residual (SV N)

 (3.11)

Sum of residuals squared =
N∑

n=1

residual(SV n)2 (3.12)

Having this value, the algorithm simply checks to see if the new sum of the

squared residuals is lower than the previous one (which starts with an initial value

of 1x1020 in the first iteration). If such is the case, then the position computed

for the set of coordinates Xr determined in this iteration is closer to the actual

34

Chapter 3. Simulator Implementation

receiver position than before and the coordinates for the next iteration become

the current set; otherwise, the position is farther from, or at equal distance to the

actual position, so the coordinates for the next iteration remain unchanged.

The cycle is repeated for a set number of iterations, once all have been com-

pleted, the coordinates stored at the end of the cycle are considered the closest

approximation to the actual receiver position as computed by the least squares

algorithm.

The final calculated position is returned in ECEF cartesian (x,y,z) as well as

geographical (latitude, longitude, height) forms. Validation of the accuracy of

the position calculated is achieved by comparing it to the approximate (x, y, z)

coordinates stated in the comments of the RINEX observation file, in the line which

ends with the tag: “APPROX POSITION XYZ”. These coordinates correspond

to the actual position of the GPS receiver used to generate the RINEX file, so,

by comparing this given position with the one calculated using the algorithm it is

possible to assert how accurate the calculation is relative to the known position.

Figure 3.7: Example of the difference between calculated position (unmarked)
and actual receiver position (marked with red pin) measured and plotted on

Google maps image

Throughout the experimental procedures it was determined that the calculated

position was usually within a distance of under 30 m from the approximated

position stated in the observation file, with a few exceptions going as far as 66

35

Chapter 3. Simulator Implementation

m in cases where global, non-location specific, RINEX navigation files were used

to obtain satellite ephemerides data, but never above this value. Many of the

calculated positions, when overlaid on the map, were close enough to be separated

by less than a meter, which made them essentially overlap each other for virtually

all map scales used when plotting the positions.

An example of common grouping of calculated receiver positions for multiple

RINEX observation files as seen in tested scenarios is shown in Figure 3.8, for this

particular case, the observation files used to calculate receiver position were all

taken from the same physical location (at the University of the Azores’ campus)

and the navigation files where an even split of 50% location specific files with

respect to the indicated position and 50% global, non-location specific, navigation

data files. All files were created from data taken during the current year of 2019,

ranging from the months of February to July, and spanning periods of exactly 24

hours each.

Figure 3.8: Calculated receiver position grouping plotted on map around ap-
proximated data capture position of physical GPS Signal receiver

36

Chapter 3. Simulator Implementation

These observations suggest that the system is capable of estimated receiver

position calculation with acceptable accuracy for the intended purposes of the

research and above average precision between runs with different observation files.

Given that the navigation and observation files are always paired by date for

every experiment run, the difference in calculated position for each of these pairs

does not affect simulations and only constitutes a factor to be accounted for during

the procedure should the date vary greatly from the actual date/time of day at

which the physical part of the experiment is being conducted. Throughout the

experimental stages of the research, it was found that using old files whose date

and time don’t not match the actual time at which the experiments are being

run for real world testing seemingly decreased attack success probabilities since it

hinders the chance of receivers locking on to the spoofed signal.

Figure 3.9: Calculated receiver position plotted on an accurate satellite image
composition of the surrounding area

Having successfully calculated the receiver’s position using the GPS navigation

data, the aforementioned position is then plotted on a graphical representation of

the area around it. The background image of this plot can be either a composition

of satellite imagery (as shown in Figure 3.9) or a Google Maps representation of

the area (as shown in Figure 3.10). Generation of these images is achieved by

37

Chapter 3. Simulator Implementation

using a set of Matlab scripts which take the position in Longitude/Latitude coor-

dinates of the receiver’s position and, using calls to the Google Maps application

programming interface (API), overlay the plot’s data on an accurate portrayal of

the surrounding area [35].

Figure 3.10: Calculated receiver position plotted on an accurate map-like
representation of the surrounding area

These enhanced plots present the possibility of manipulating the viewport be-

ing displayed, which essentially enables scrolling through the map and zooming in

and out while updating the displayed area and scale on-the-fly in a user experience

akin to browsing for a specific location on Google Maps.

Plotting the position on the map makes it easier to visualise where on the

globe the receiver that gathered the GPS navigation data is situated and also

facilitates detection of any subsequent alterations to this position produced by the

experimental results of the spoofing attempts.

The next step in the simulation is to perform alterations to the GPS navigation

data, as described in greater detail in section 3.1, and to plot all variations of the

altered position in relation to the original, unaltered, position previously calculated

(Appendix A.3). This is done for the data of each of the satellites within line of

38

Chapter 3. Simulator Implementation

sight of the receiver. An example is shown in Figure 3.11 where each new position

is plotted around the original calculated position and represented alongside the

space vehicle number (SVN) of the satellite whose data was altered to produce the

position.

Figure 3.11: Visual representation of altered positions around the original re-
ceiver position due to alteration of clock correction polynomials for each satellite

within line of sight

Alterations to the position can now be manually inspected and evaluated.

Once evaluation is concluded, and a final spoofed position has been chosen for

the experiment, the data is saved in .txt files to be parsed by an external python

script, which concludes the Matlab simulator’s part of the experimental workflow.

The experiment up to this point allows us to assert the validity of proposed

hypotheses regarding alteration of GPS navigation data as a means to alter a

GPS receiver’s perceived position in a controlled and simulated environment. To

further test these hypotheses and assert their validity in a real-world scenario, the

altered data must be used to generate a valid GPS signal, which, in turn, will be

transmitted to actual GPS receivers for analysis and position calculation.

39

Chapter 3. Simulator Implementation

At this stage the altered navigation data to be transmitted is now ready to be

rewritten into new RINEX Navigation files to be used in generating a spoofed GPS

signal. This is achieved by using a python script to parse this data, along with

the original RINEX files used to generate it and alter the latter to reflect any and

all changes done during the course of the simulation (Appendix C.1). Once the

new RINEX files have been produced, they are used as an input to a GPS signal

simulator (GPS-SDR-SIM) [36]. This generated GPS signal is then transmitted

using an Ettus Research N210 USRP SDR peripheral [23].

Figure 3.12: Basic simulator and experimental system flowchart

40

Chapter 3. Simulator Implementation

3.3 Simulator Experimentation

The main hypothesis in study for the current dissertation is that by altering how a

GPS receiver corrects for the delay in the transmission of GPS satellite ephemerides

data messages, the pseudoranges used to calculate user position will be impacted,

effectively causing the perceived position to be shifted from its actual location.

In order to assert the impact of altering GPS ephemerides data on the receiver’s

perceived position, several tests were conducted with different parameters being

altered for each of these tests. The parameters in question are all, in some way,

part of the equations used to calculate receiver position in relation to the satellites.

3.3.1 Experimentation With Offsets in the SV Clock Bias

Correction Coefficient(af0)

The results described in this section refer to the experiments in which only the af0

coefficient was altered by the addition of an offset. The offset values used were in

the order of 1x10−5, 1x10−6 and 1x10−7 seconds.

As a first analysis, the values of altered pseudoranges can be compared to the

original, untampered, values of the pseudoranges calculated from each SV to the

receiver. Examining tables 3.1 and 3.2, it is clear that, for small offsets applied to

the coefficients, the difference between these values is almost indistinguishable at

a first glance. One would have to actively be looking for unexpected alterations in

the pseudoranges and still, it would, most likely, be attributed to minor variations

due to expected, normal error in measurement or due to corrections applied on

the receiver end.

If the difference in these values were to vary greatly from the initial value, such

as if the first applied offset was in the order of 1x10−5 seconds, for instance, then

it would, most certainly, be noticeable. Yet, the perceived position would, most

certainly, have shifted from the original location so suddenly that this alteration

in and of itself would raise suspicions far quicker than in the case of monitoring

41

Chapter 3. Simulator Implementation

pseudorange values, making it a moot point to try and account for very sudden

and large-scale changes in the coefficients.

So, while the difference in meters between pseudoranges is kept to a minimum,

providing that the chosen offsets do not exceed a few microseconds (in theory

meaning the range to work with for successful covert spoofing should be below

1x10−6 s in magnitude), these small changes to the pseudoranges seem to be enough

to shift the perceived position by a distance ranging from a few meters to several

hundred meters depending on the magnitude of the offset applied, as evidenced in

figure 3.13.

Table 3.1: Spoofed pseudorange values for different offset values applied to the
af0 coefficient of the satellite with SV 6

Table 3.2: Spoofed pseudorange values for different offset values applied to the
af0 coefficient of the satellite with SV 7

Comparing the original position with the spoofed positions for different offset

values, it is clear that the distance between these two points increases proportion-

ally to the applied offsets, which is to say, the greater the offset, the greater the

distance of the spoofed position from the original location.

42

Chapter 3. Simulator Implementation

Separating the offsets into different plots based on their order of magnitude

(which in this case will produce three different plots for offsets within the 1x10−5

s, 1x10−6 s and 1x10−7 s ranges) illustrates the fact that each order of magnitude

produces a different range of distances from the original position (Figure 3.13).

Offsets within the 1x10−5 s range allow for spoofed positions over 1km away from

the original while smaller offset values, such as 1x10−7 s only allow for distances

up to 10m and offsets in the 1x10−6 s ranges stand in a sort of middle ground with

distances ranging between 10m to 100m.

Since the distance varies proportionately to the applied offset, each range of

offsets presents a different possible range to work with: larger offsets can be applied

for sheer distance from the position and then smaller offsets can be applied to fine

tune the position depending on the desired distance range.

Figure 3.13: Distance of spoofed positions from the original calculated receiver
position in relation to offsets applied to the af0 correction coefficient

When considering the fact that a spoofing operation should, in most scenarios,

be carried out covertly (depending on the purpose and conditions of course), it

should be noted that it is in the best interest of the spoofer not to raise any

43

Chapter 3. Simulator Implementation

suspicion concerning neither the shifting position of the drone nor the varying

parameters of the navigation message being received. So, bearing this in mind,

larger offset values which produce massive variations in distance from the actual

position should be used in moderation. A better approach would be to gradually

and moderately adjust the applied offset in order to slowly shift the position, rather

than doing so in a single instant. While it is advantageous from the perspective of

a spoofer which is mindful of the possibility that the receiver can detect shifts in

the navigation message parameters, to try and produce a different position without

noticeably altering a great number of the numerals in a given parameter, it should

be noted that a large shift in the perceived position will, arguably, be much more

noticeable even by an unsuspecting receiver.

The distances presented in Figure 3.13, and in subsequent figures representing

distance from this point forward, are calculated using a Haversine formula [37]

to determine the distance over the surface of the Earth between the original,

unaltered, position and each subsequent spoofed position. This allows accurate

calculation of the distance on a spherical representation of the Earth between two

points using their respective latitude and longitude values.

A Haversine (or half-versed sine) can be defined by the squared sine of half the

angle in question:

haversine (θ) = sin2(θ/2) (3.13)

Taking this formula, it is possible to rework it in order to obtain the square of half

the chord length between the points (a = (l
2
)2) from their respective latitude (ϕ)

and longitude (λ) coordinates:

a = sin2

(
ϕB − ϕA

2

)
+ cos (ϕA) · cos (ϕB) · sin2

(
λB − λA

2

)
(3.14)

In this case, A denotes the original receiver position while B represents the spoofed

position to where the distance is being calculated (Figure 3.14).

44

Chapter 3. Simulator Implementation

Figure 3.14: Representation of the variables required for application of a
Haversine formula to determine the great circle distance between two points

on a sphere

Having the value of (a), it becomes possible to calculate the angular distance in

radians between the two points (c) by using the two-argument arctangent (atan2)

to determine the angle in the Euclidean plane between
√
a and

√
(1− a). Or,

equivalently, for broader use in case the atan2 function is not available, the arcsin

of
√
a, with a maximum value of 1.

c = 2 · atan2
(√

a,
√

(1− a)
)

= 2 · arcsin
(
min(1,

√
a)
)

(3.15)

Multiplying c by the radius of the Earth (R) returns the great-circle (or or-

thodrome) distance between the two positions in question (d), which is to say,

the distance between the two positions, along the shortest arc of the circle result-

ing from the intersection of the spherical representation of the Earth and a plane

which passes through the centre point of this sphere, dividing it into two equal

hemispheres [38], as illustrated in Figure 3.15. This distance is also commonly

referred to as: “as the crow flies”.

45

Chapter 3. Simulator Implementation

Figure 3.15: Great circle distance between points A and B

d = R · c (3.16)

Any distances corresponding to spoofed positions from this point forward will also

be calculated using this method.

3.3.2 Experimentation With Offsets in the SV Clock Drift

Correction Coefficient(af1)

The results described in this section refer to the experiments in which only the af1

coefficient was altered by the addition of an offset. The offset values used were in

the orders of 1x10−5, 1x10−6 and 1x10−7 seconds per second.

For these experiments, the offsets used were in the same order of magnitude as

those used in the experiments with af0. This was done in order to enable direct

comparison of the results from simulations and real-world testing alike.

Comparing the spoofed pseudoranges with the original pseudoranges for each

satellite it is, once again, clear that the higher the offset applied, the greater the

gap between pseudoranges. While not as pronounced as the changes derived from

46

Chapter 3. Simulator Implementation

alteration of the af0 coefficient, altering af1 also has a measurable impact on

the pseudorange measurements and, consequently, perceived receiver position, as

shown in Figure 3.16.

Table 3.3: Spoofed pseudorange values for different offset values applied to the
af1 coefficient of the satellite with SV 6

Table 3.4: Spoofed pseudorange values for different offset values applied to the
af1 coefficient of the satellite with SV 7

Much like the previous experiments with offsets in af 0, the distance of spoofed

positions from the original increases proportionally with the increase in the values

of applied offsets but the rate of this increase is vastly inferior to the previous cases.

For offsets in the 1x10−7 seconds/sec range the maximum distance is under 1 meter

and changes in the order of 1x10−5 seconds/sec will only produce a spoofed position

up to around 80 meters from the original. Furthermore, the direction in which the

position has been shifted is opposite the direction that was observed in the previous

section, as evidenced by the negative value of the pseudorange difference in Table

3.3. This indicates that for the same satellite, different polynomial correction

47

Chapter 3. Simulator Implementation

coefficients will have similar effects on the perceived receiver position but with

some variation in regard to distance and direction of the position shift.

Figure 3.16: Distance of spoofed positions from the original calculated receiver
position in relation to offsets applied to the af1 correction coefficient

The preliminary results from these experiments suggest that, while altering

the af0 coefficient produces more noticeable and more effective changes to the

calculated receiver position, altering af1 may prove to be useful in situations

where the position is not meant to be shifted so drastically and may even be

the more sensible approach in such a scenario, since it may allow for greater

control over the smaller distances of the position shift without altering the values

in navigation files in an easily perceptible way.

3.3.3 Experimentation With Offsets in the SV Drift Rate

Correction Coefficient(af2)

As previously mentioned, altering af2 produced very minimal variation in the

calculated receiver position and the value for this coefficient was, in fact, null

48

Chapter 3. Simulator Implementation

for many of the Ephemerides in the RINEX files used for the simulations. This

essentially resulted in simulations where the spoofed positions were almost im-

perceptibly shifted from the actual position, even though the coefficient had,

very noticeably, been altered in the RINEX file, since stored the value shifted

from "0.000000000000D+00" prior to the spoofing attempt, to anywhere between

"0.000000010000D+00" and "0.000001000000D+00" post spoofing.

As such, alterations to the af2 coefficient were not taken into account when

testing the hypothesis considering real world scenarios.

3.3.4 Experimentation With Offsets in Multiple Parameters

The offsets applied to individual parameters can, naturally, also be applied to

multiple parameters simultaneously, so some experiments were conducted using

offsets for both clock bias and clock drift correction coefficients to determine if the

effects were, in any way, different, or if the cumulative effects of the alterations

were a sum of the effects described in sections 3.3.1 and 3.3.2, as expected. What

was determined was that the latter option proved to be correct and this approach

does, in fact, produce changes in position analogous to the previous experiments,

but with the final position being determined by a sum of both of the applied

offsets’ effects.

While one might argue that altering both parameters at once presents no imme-

diately apparent benefit over altering a single parameter and adjusting the offset

value to achieve the same result, there are two major reasons why this may be

advantageous.

Firstly, altering more than one parameter may allow for smaller offsets being

applied to each of the parameters, making variations between genuine and spoofed

signal harder to detect, while still keeping the end result essentially the same. This

may prove to be more beneficial than inputting a larger offset to a single parameter

in a scenario where the receiver is actively monitoring the data in GPS signals,

either as a means of detecting a spoofing attempt or otherwise.

49

Chapter 3. Simulator Implementation

Secondly, if the receiver is actively correcting for these kinds of alterations,

altering more than one parameter may serve to further increase the robustness of

the spoofing attempt by exploiting shortcomings in the correction algorithm. If

the receiver fails to correct for all the alterations in the spoofed signal, then those

not accounted for might just be enough to conduct a successful spoofing attempt

regardless, albeit with negative impact on the efficiency of the spoofing procedure.

Figure 3.17: Distance of spoofed positions from the original calculated receiver
position in relation to offsets applied to both af0 and af1 correction coefficients

As evidenced in Figure 3.17, the distance of the spoofed positions from the

original unaltered one is impacted in a similar way to that of previous scenarios

where only af0, ranging from variations of a few meters for offsets of magnitude

1x10−7 to several hundred meters for larger offsets of 1x10−5 of magnitude.

The similarity between these two different experimental scenarios is due to the

fact that, as outlined in the previous sections, af0 has a much greater impact

on the final spoofed position than af1 so, naturally, when using both parameters

in conjunction and applying the same offset to each to produce variations in the

50

Chapter 3. Simulator Implementation

receiver position, af0 will produce the most noticeable effects on the spoofed

position.

In this particular scenario, with af1 actually producing a drift in calculated

position in the opposite direction of that produced by af0, the combination of

offsets in the two parameters in question creates a minor shortening effect in the

distance from the actual position.

51

Chapter 4

Real World Test Scenarios

4.1 Experimental Setup

In this section, an overview of the hardware and software used for the experimental

procedures of the real world test scenarios will be made, along with an explanation

of the process itself. The main components of the code described in the present

section are available in Appendices B and C.

The experimental procedure begins with running the simulator described in the

previous sections. Once the RINEX navigation file containing the altered clock

correction coefficients has been altered, it can be used to produce a spoofed GPS

signal.

The altered RINEX file is generated by taking the offsets used for the final

position in the simulation and adding them to the corresponding parameters of

the satellites used. Since the RINEX files are ASCII text based, altering the

data on them can be accomplished by simple text manipulation between two files,

parsing the information to find the correct location for the values on one file and

then replacing them with the new data from the other.

To do so, a python script was produced to parse the original RINEX navigation

file used to perform the simulation and search for values to be altered in accordance

53

Chapter 4. Real World Test Scenarios

to simulation results (Appendix C.1). The new values for the altered data are

obtained from a .txt file created upon simulator runtime completion, they are

formatted to conform to the standards of the data in the navigation file and then

copied into the position of the data they are to replace.

Having made the required alterations to the RINEX files, the spoofed GPS

signal can be generated by using the GPS-SDR-SIM GPS signal generator. Using

the data from the altered navigation file, this open source software is able to accu-

rately determine satellite ephemerides, from which it can compute the pseudorange

measurements required to effectively place a GPS receiver’s perceived position on

a given set of coordinates. These coordinates are provided to the software, either

as a single stationary point or a set of coordinates which change over the course

of the generated signal’s time span. The latter option essentially mimics a moving

user, so a stationary receiver would perceive its position to be shifting as if it were

moving, but for the purposes of validating the results obtained from the Matlab

simulation, the spoofed position for each scenario should be static, therefore the

spoofed signal will be generated with a single position.

GPS-SDR-SIM was built with the purpose of simulating a valid GPS signal

for a given position, as such, the core functionality of its underlying algorithms is

built upon the assumption that the creation of data which will be measured by the

target receiver should be done using the provided position. When determining the

pseudorange values, which will effectively simulate what a receiver might perceive

for the specified position, rather than performing the calculations as described in

section 3.2, the software will, instead, take advantage of the fact that the receiver

position is no longer an unknown variable but in fact a known set of ECEF (x,

y, z) coordinates and directly compute the Euclidean distance between this posi-

tion and the SV positions determined using the provided RINEX navigation file

(Figure 4.1). While this is advantageous when trying to reduce the complexity of

the computations and thus allow for faster spoofed signal generation, it essentially

bypasses most of the calculations dependent on the polynomial clock correction

coefficients in study. These are still taken into account for satellite position calcu-

lations, which will produce some observable difference in the calculated position,

54

Chapter 4. Real World Test Scenarios

but not as much as if the entire process of receiver position determination was

conducted.

Figure 4.1: Simplified model of the functionality of GPS-SDR-SIM

This fundamental design decision means that for the purposes of the experi-

ments conducted to validate the present work’s hypothesis, some modifications had

to be done to the software since the altered parameters would, otherwise, not be

considered. These alterations were made to ensure the software takes into account

the altered clock correction coefficients during signal generation, thus allowing the

calculation of the spoofed position to be affected by the altered RINEX files and

enabling evaluation of the impact of the proposed hypothesis in a real-world test

scenario.

The solution was to take part of the algorithm that calculates the receiver

position for the Matlab simulator, refactoring to convert it from Matlab code to

C so it can be run within the signal generator software during its normal runtime

operation and inserting the calculated position where the static, provided position

would have been on the original signal generator (Figure 4.2).

Figure 4.2: Simplified model of the functionality of GPS-SDR-SIM with the
proposed modifications

55

Chapter 4. Real World Test Scenarios

This approach uses some data which is already being either parsed or calculated

by the program, but two major algorithms must be added to the code, namely, the

least squares iteration method to properly determine the position (Appendix B.1),

and a RINEX observation data file parser to obtain the calculated pseudoranges

to each of the SVs as measured from the target location (Appendix B.2).

As detailed in 3.2, to determine the receiver position using a least squares

iterative method, pseudoranges to each of the satellites being used must be cal-

culated and these must be corrected using the satellite clock correction equations

3.1, 3.2. The software already parses the provided RINEX navigation file, so clock

correction coefficients, as well as any other ephemerides data required, are already

present and readily accessible without needing to alter the generator’s source code.

As for obtaining the necessary pseudorange values for each of the satellites within

line of sight, the aforementioned RINEX observation data parser was developed.

This algorithm takes the file in question as an input, parses through it to deter-

mine which satellites are within line of sight and the values of their respective

pseudoranges to the receiver.

Having collected all the necessary data for position calculation, focus then

shifts to the least squares iteration algorithm which is, as far as possible, a one to

one replication of the code used in the Matlab simulation described in section 3.2,

converted to C. Upon completion of the iterative calculation process, the resulting

calculated position is passed to the main signal generator operation as if it were

the static position to be simulated.

By doing so, it is ensured that the coefficients in study are taken into account

during signal generation and, consequently, that the positions perceived by re-

ceivers using this signal as a basis to calculate their location will accurately reflect

the impact altering the coefficients has on said calculations. The generated signal

is stored in a .bin file with approximately 3Gb, which is essentially a 300s long

simulation of all the data GPS satellites would transmit to a receiver located at

the intended spoofed position. This file can be “played back” and transmitted,

second by second, using a variety of SDR peripherals.

56

Chapter 4. Real World Test Scenarios

For the following test scenarios, the signal was transmitted using an ETTUS

N210 USRP platform, connected via ethernet to a laptop running the script which

enables the replay of the generated signal file, the antenna chosen for this experi-

ment was a passive, omnidirectional antenna.

Figure 4.3: Experimental hardware setup

Once the signal is transmitted using the hardware detailed above, it can then

be received by any commercially available GPS receiver. For the purposes of the

current work, two android smartphones running the GPS Test app [39] were used

to validate the effectiveness of the spoofing signal. This app shows, in real time,

all the data pertaining to the device’s GPS receiver which includes, but is not

limited to: the device’s perceived coordinates, heading and speed; the satellites

within line of sight, their respective received signal power and the GPS time as

perceived from the received signals.

This experimental setup forms the test suite used for the experiments detailed

in the following sections. For each scenario tested, the process is as follows:

• 1) Run the Matlab simulator to assert the required alterations to the RINEX

files and generate the data;

57

Chapter 4. Real World Test Scenarios

• 2) Run the python script to alter the RINEX navigation file based on gen-

erated data from the simulator;

• 3) Produce the spoofed GPS signal using the RINEX navigation file men-

tioned above and its corresponding observation file as input for the signal

generator;

• 4) Run the python script to playback the signal and transmit it using the

USRP N210;

• 5) Capture the signal using the two aforementioned smartphones, paying

close attention to the position coordinates, accuracy and detected satellite

constellation;

• 6) Verify the position by using the Google Maps app to assert that the

device’s position has been changed to that of the intended spoofed position.

Figure 4.4: Smartphone receivers during spoofed signal capture

As a way to facilitate data analysis, all the positions of the captured signals

are then plotted on a map of the surrounding area using a modified version of the

Matlab algorithm described in section 3.2.

Since the laboratory where the experiments were conducted is effectively iso-

lated from outside interference, the generated signal easily overpowers any legiti-

mate GPS signal received by the smartphones.

58

Chapter 4. Real World Test Scenarios

Figure 4.5: Example of a spoofed position perceived by one of the receivers
(shown in the Google Maps app)

In the early stages of testing, all mobile data, Wi-Fi and cellular connections

on the smartphones were also disabled to prevent position prediction based on

network services or base station triangulation but it soon became apparent that

the spoofed signal was effective enough to trick the device even with the auxil-

iary position calculation methods provided by these services enabled. Since no

discernible interference to the results was detected, both Wi-Fi and cellular data

connections were left enabled for the remainder of the experiments, providing an

environment closer to a real world scenario where the drone’s receiver will, in all

likelihood, have more than one way to determine its position.

The data used for these experiments was downloaded from NASA’s FTP server

and consists of RINEX navigation and observation files generated from GPS Sig-

nals captured in Universidade dos Açores’ Campus in São Miguel, Azores Islands

on the 27th of May 2019. The data contained in these files spans a 24h period

from midnight of the 27th to midnight of the 28th.

The satellites chosen to illustrate the effect on perceived receiver position

59

Chapter 4. Real World Test Scenarios

Figure 4.6: Simulator plot of the area for possible experimental result positions
with visual representation of the impact of applied offset for satellites with SVN

5 and SVN 30

of altering the clock correction coefficients for this scenario were SVs 5 and 30,

since they present the ideal conditions for spoofing the receiver position using the

methodology proposed in chapter 3.1. The vectors created by plotting a line from

the original position to the spoofed position generated by each of the SVs present

almost the same length, meaning that the impact of applied offsets will be equiv-

alent for both satellites, and the angle between them is very close to 90o, which

makes it so that the spoofed position can be moved freely within the surface de-

fined by these two vectors by considering the offset applied to each satellite’s data

as a shift in a given direction.

60

Chapter 4. Real World Test Scenarios

4.1.1 Experimentation With Offsets in the SV Clock Bias

Correction Coefficient (af0)

The results described in this section refer to the experiments in which only the af0

coefficient was altered by the addition of an offset. The offset values used were in

the ranges of 1x10−5, 1x10−6 and 1x10−7 seconds.

Figure 4.7: Captured experimental spoofed positions for offsets applied to af0

In general terms, the effect of altering polynomial coefficients used for clock

correction seems to be analogous to the results observed in Matlab simulations

with similar parameters.

Comparing the maximum distances of the spoofed positions relative to the

actual position, the results seem to follow what was observed in section 3.3.1.

61

Chapter 4. Real World Test Scenarios

Table 4.1: Maximum distance from original position for each range of offsets
applied to af0

Larger offsets will produce a spoofed position farther away from the original cal-

culated receiver positions, while smaller offsets lead to spoofed positions closer to

the original. As presented in Table 4.1, offsets in the 1x10−5 s gamut are able

to produce shifts in perceived position up to approximately 830m away from the

actual position, while offsets of magnitude 1x10−7 present shifts of only a couple

of meters.

The maximum distances are a bit shorter than observed in the simulations

presented as examples in section 3.3.1, but still within the margin of error expected.

These values are susceptible to change due to factors inherent to each scenario and

variation of up to 30% was observed not only between experimental scenarios, but

also within the same scenario, when selecting a different pair of satellites for the

experiment, even in simulations.

As observed in Figure 4.7, the captured positions from real world test scenarios

fall, for the most part, very close to their simulated counterparts, which seems to

validate, on a physical level, the results previously observed in the simulations.

Some anomalous results are present though, such as the values for applied

offsets of range 1x10−7 being closer to the expected position for offsets of range

1x10−6. This was a common occurrence for most of the experiments run, and there

are a few options worth exploring to attempt to find the cause.

Since the position is wrongly shifted in equal measures for both receivers rather

than just one, a device malfunction is very unlikely to be the cause of these anoma-

lous results and can therefore be ruled out as a hypothesis.

62

Chapter 4. Real World Test Scenarios

Analysing the accuracy reported on the measurements taken from each device,

the mean accuracy is approximately 5m with a few instances of greater inaccuracy

but not very far from this value. While this certainly contributes to the inaccuracy

of the perceived position, it is not enough to be the sole cause of the issue.

There is also the possibility of external interference from other signals whether

they are being actively being used by the receiver to correct the position or they

are simply interfering with the spoofed signal’s transmission. The first hypothesis

was debunked by re-running the experiments with all the device’s communication

systems disabled, save for the GPS receiver, to be met with the same exact results

as previously observed. The second hypothesis was ruled out by the fact that the

testing environment is very efficiently isolated from outside interference, as stated

previously.

Another possibility for the anomalous results is Dilution of Precision (DOP),

which is a term used to evaluate the propagation of errors when calculating re-

ceiver position. Geometric Dilution of Precision (GDOP), in particular, is greatly

affected by the positions of satellites relative to the receiver. For satellites in close

proximity to each other, the overlapping areas for possible receiver locations are

greater and thus the GDOP will also be greater, leading to errors in the position

calculation [40].

Since each spoofed position is, as previously detailed, a combination of shifts in

a given direction by altering the data for a set of satellites, and since these shifted

positions are so close to each other, the approximation of the receiver position as

well as each satellite’s position relative to the receiver are being impacted. As such,

the geometry of the satellites-receiver system may become less ideal, increasing

GDOP and the error associated with position calculation, meaning that DOP

might account for some of the offset between calculated and captured positions.

The most likely cause of this miscalculation, however, seems to be an issue

with the generated signal itself, which suggests some fault in the algorithm’s code.

During the development of the position calculator segment of this algorithm, it

was discovered that the precision of calculated positions was, in some instances,

63

Chapter 4. Real World Test Scenarios

not as good as that of the Matlab simulations. After tinkering with the data for-

mats used, this fault was mitigated for most situations, but some combinations

of variables seemed to present higher inaccuracies than others, and dealing with

Latitude Longitude Height (LLH) coordinates, a shift of 0.0001o in the final calcu-

lated position coordinates is enough to shift the position by up to a few hundred

meters relative to the correct position. The root cause of why exactly only some

combinations of values produced errors of this magnitude was not conclusively de-

termined, yet they seem to mostly affect the latitude coordinates and occur mostly

with offsets in the 1x10−6 range. Of the previously mentioned, this seems to be

the most probable hypothesis for the errors observed in the experiments detailed

in this chapter, as seen in figures 4.7, 4.8 and 4.9.

4.1.2 Experimentation With Offsets in the SV Clock Drift

Correction Coefficient (af1)

The results described in this section refer to the experiments in which only the af1

coefficient was altered by the addition of an offset. The offset values used were in

the ranges of 1x10−5, 1x10−6 and 1x10−7 seconds/second.

Comparing the maximum distances of spoofed positions for each offset with

the values obtained from the corresponding simulations, it is apparent that these

distances vary, much in the same way for both cases.

Table 4.2: Maximum distance from original position for each range of offsets
applied to af1

As in the previous experiment with offsets in af0, the maximum values for the

distances are lower than those found in simulations but, once again, this is due to

expected variations in the test conditions.

64

Chapter 4. Real World Test Scenarios

Figure 4.8: Captured experimental spoofed positions for offsets applied to af1

Similarly to what was observed in the simulations detailed in section 3.3.2,

exclusively altering the af1 coefficient produces a shift in position in the direction

opposite that of scenarios with offsets being applied only to the af0 coefficient.

Furthermore, the impact on the distance is, similarly, lessened to approximately

a tenth of the maximum distance observed for offsets in af0, with higher offsets

of 1x10−5 magnitude producing a maximum position shift distance of around 65m

versus 830m and lower offsets in the 1x10−7 range producing less than a half meter

shift versus over 8m in the previous scenario.

These results are very similar to what was observed in the simulations, where

altering af0 similarly had a much more noticeable impact on the calculated position

than altering af1.

As observed in figure 4.8, the positions, once again fall very close to the ex-

pected, simulated positions, with the exception of those produced by offsets in

65

Chapter 4. Real World Test Scenarios

the 1x10−6 range which seem to have been erroneously shifted to a higher lati-

tude than expected, in all likelihood, due to position calculation imprecision in

the signal generation code, as previously discussed.

To an extent, the results of this experiment seem to validate their simulated

counterparts, with positions shifting in the predicted direction and with variations

in range analogous to those observed in the simulations.

4.1.3 Experimentation With Offsets in both the SV Clock

Bias Correction Coefficient (af0) and the SV Clock

Drift Correction Coefficient (af1)

In this section, both of the coefficients discussed in previous sections were altered

simultaneously to assess whether this approach brings any advantage to the pur-

poses of position spoofing versus altering only one of the coefficients. The offsets

tested were in the range of 1x10−5, 1x10−6 and 1x10−7 (seconds for the af0 coef-

ficient and seconds/second for the af1 coefficient respectively).

As expected, the results are, much like in the simulations, a conjunction of the

results from altering each of the considered coefficients individually.

Table 4.3: Maximum distance from original position for each range of offsets
applied to both af0 and af1

Greater offset ranges once again present the greatest shift in distance from the

original position and the maximum values are stunted by the fact that now each

coefficient will pull the position in an opposite direction. Despite this, since the af0

coefficient has a much greater impact on the position calculation than af1, all the

values for this experiment present a clear bias towards the results of section 4.1.1,

66

Chapter 4. Real World Test Scenarios

Figure 4.9: Captured experimental spoofed positions for offsets applied to
both af0 and af1

as was the case with the simulator experiments of the same conditions presented

in section 3.3.4, whose results were heavily biased towards those obtained in 3.3.2.

As was noted in the previous experiments, the latitude for the positions with

offset 1x10−6 is wrongly shifted North by a few hundred meters but the remaining

captured positions are very close to the simulated positions for the corresponding

offset values, with an average accuracy of approximately 5m.

Confirming the results obtained in section 3.3.4, altering both coefficients si-

multaneously presents no immediately perceptible advantage over altering only

af0, although, as previously detailed in the same section, there may be some ben-

efits in situations where offsets are being monitored. Since this approach allows

67

Chapter 5. Analysis of Results

for similar results to altering af0 but with smaller offsets across two different co-

efficients, rather than one large offset applied to a single coefficent, it may prove

more difficult to detect, making this approach more robust against some spoofing

detection measures.

4.2 Analysis of Results

The results in chapters 3 and 4 seem to confirm the hypothesis that altering the

clock correction parameters by which GPS receivers account for the difference

between their internal clock and the reported time from GPS satellites does, in

effect, cause the receiver to miscalculate its position, as intended. Furthermore,

from the tests conducted, it is apparent that both the distance of spoofed positions

from the original position and the direction of these positions’ shift are easily and

predictably calculated on a case by case basis. This allows for reliable replication of

the results and thus enables straightforward selection of the intended final position

to be calculated by the receiver.

As discussed in section 3, different orders of magnitude for the offset values

applied to each parameter will produce a different gamut of distances from the

actual receiver position. These ranges will vary slightly based not only on the

choice of which satellites’ data to alter during the course of the simulation but also

what RINEX navigation files were used to obtain the original ephemerides data,

as will the direction of the shift in position from actual to spoofed. The variations

in results, consequence of using different RINEX files, are due to differences in the

date, geographical location and duration of the capture of GPS signals used to

produce the files, which, subsequently, determines which satellites are within line

of sight of the receiver and their position relative to it.

During the experimental procedures, it was determined that, in order to ensure

the accuracy of the results obtained, RINEX observation files should be paired with

the corresponding navigation file, regarding position, as well as date.

68

Chapter 5. Analysis of Results

As far as matching the positon is concerned, it is possible to use an observation

file captured in a certain location (for instance a pdel0560.19o which corresponds

to data captured on the 56th day of 2019 in Ponta Delgada, Azores) paired with

a brdc RINEX navigation file (such as brdc0560.19n), which essentially contains

satellite ephemerides data for all satellites across the globe, since the program

will check which satellites are within line of sight and use only the data related to

these. Using a file concerning a different location altogether, however, will result in

incorrect position calculation, since, unless the location is geographically very near

the matching position for the corresponding observation file, the set of satellites

described in one file will not match those observed in the other.

Attempting to use a pair of files whose dates do not match up presents a

similar problem. While it may be possible that the satellite data described in each

file matches up by chance, since they are from the same location, most likely the

satellites over a certain area will be different depending on date and time of day, in

which case the position calculations will not be correct since the data from both

files does not match up. When moving from simulation to physical, real world

experimentation, further considerations to this variable should be made regarding

not only if both files pertain to the same date but also if said date matches as

closely as possible with the actual time of the experiment. Using out of date

files for the experiments proved to result in greatly diminished probability of the

receivers locking on to the spoofed signal, furthermore, when lock on was achieved,

the satellites detected were frequently different from those detected from genuine

GPS navigation signals.

As evidenced by the results from the experiments in Chapter 4, the simulator’s

results are able to be replicated in real world test scenarios. Most of the positions

captured during the physical test scenario experiments fall very close to the loca-

tions calculated in the simulator experiments, so the results are within the realm

of outcomes expected, based on the previously obtained simulation results. Some

errors were found to occur under some testing conditions, causing some positions’

latitude coordinates to be miscalculated. The most probable cause for these errors

69

Chapter 5. Analysis of Results

was narrowed down to precision errors in the calculation of the spoofed position

during signal generation.

Even though each situation and its correspondent simulation and/or physical

transmission study must be analysed on a case-by-case basis to precisely assess

the impact of the alterations to the navigation messages, the experiments present

consistently comparable results, suggesting that they are replicable and usable as

a solution for GPS location spoofing. Moreover, the few situations which produced

anomalous or invalid results in the physical testing stages were motly due to lim-

itations of the GPS signal generation tool used and can, therefore, be mitigated

by using a different tool or taking advantage of the open source nature of this

software to adapt it to suit the intended purpose. In each experiment conducted

with successful outcomes, it was also found that the signal generated with the

spoofed data was able to deceive all the receivers used in testing.

70

Chapter 5

Conclusions

5.1 Summary

Having established that the results from sections 3 and 4 confirm the main hy-

pothesis of the current work, comparisons can be made between the effectiveness

of each of the polynomial coefficients altered for a given experimental procedure,

and, to a certain extent, the results allow for conjecture on the detectability of

each.

Of the three parameters in question from the clock correction equations 3.1 and

3.2, the drift rate correction coefficient (af2) seems to be the only one unable to

produce the intended results on a regular basis, let alone with guaranteed efficacy

as is the case for the clock bias and clock drift correction coefficients (af0 and

af1 respectively).

Comparing these two coefficients, the results unequivocally show that the clock

bias correction coefficient has a much greater impact on the receiver’s position

while still allowing a comprehensive degree of control over how the final spoofed

position intended to be calculated by the receiver.

As for the clock drift correction coefficient parameter, altering it produces sim-

ilar results with greatly diminished efficiency and should, therefore, be considered

71

Chapter 5. Conclusions

only in situations where altering af0 is not a viable option due to risk of detection

or when greater granularity of control over the spoofed position is required.

It should be noted that if (t− toc), as described in equation 3.2, were to equal

zero at any moment, the impact of altering either af1 or af2 would essentially be

negated for that instant, meaning af0 is the only coefficient of the three to have

a guaranteed impact on perceived time even in situations with no apparent offset

between the receiver’s and the satellites’ clocks.

The results also indicate that very minor changes in either of these clock cor-

rection coefficients are able to produce variations in the corresponding satellite’s

pseudorange up to several hundred meters, which in turn translates to even greater

shifts in the receiver’s calculated position. This establishes that although the

spoofed data is, in essence, unnoticeably different from normal variation expected

in the values throughout the process of data acquisition by the receiver, the conse-

quences of altering said data can be quite effective and produce a very wide range

of spoofed positions from the actual receiver position. Thus, the proposed method

for position alteration could prove to be very well suited for use in a GPS position

spoofing tool.

Bearing the above conclusions in mind and, considering that the results of both

simulation and experimental work seem to validate the viability of the hypothesis

as a mechanism for a spoofing tool, a few conditions for the successful use of the

functionalities required of such a tool can be outlined.

First and foremost, a solution based on the proposed hypothesis should pre-

sume that the spoofing device will be stationary and is intended to produce an area

where invasive drones will be much more likely to lock on to a false, spoofed signal

than to genuine GPS navigation signals. This will serve as a means to ensure that

the GPS navigation data required to generate the spoofed signal pertains to a set,

known area and is readily available as soon as a spoofing attempt is required to

deter an invader.

72

Chapter 5. Conclusions

The satellite ephemerides data required should also be captured as close to

possible to the actual time used for the spoofed signals and should be transmitted

in the same time intervals as genuine GPS navigation messages to ensure both

lower chances of detection and increased efficacy of the solution.

In addition, the drone’s position should also be used as an input parameter to

ensure greater accuracy in the final spoofed position. This can be achieved using

ranging detection techniques such as radar or laser-based distance measurements

to determine the drone’s position relative to the spoofing device’s position and

thus correct the expected initial location for use in the calculation of the shifted

position. The importance of this step is due to the intrinsic functionality of the

position calculation itself. During the course of the experiments, all analysis was

conducted with the precondition that the initial, actual, target position is known,

and all spoofed positions are obtained as a transformation of this initial position,

as detailed throughout section 3.2.

Finally, it should be noted that the underlying mechanisms of this proposed

tool are effective as long as the transmitted signal strength is enough to overpower

genuine GPS signals in the intended area. This should not be hard given that GPS

signals are very low power signals in actuality, yet it does mean some precautions

should be taken in order to avoid self-interference from the transmitter’s own

spoofed signal.

As soon as the drone leaves the area of effect of the device, since normal

operation of GPS geolocation relies on regular recalculation of position based on

available signals, the drone will most likely be able to re-acquire a genuine signal

lock and recalculate their perceived position to their actual position in relation

to the satellites. Before the drones have a chance to leave the area of effect, the

spoofer should aim to direct the invader to an location within this area where it

might be captured or disabled, otherwise an autonomous drone or a drone operator

will, most likely, be able to detect the spoofing attempt and try to compensate for

it.

73

Chapter 5. Conclusions

5.2 Future Work

Regarding future work, a number of potential improvements to the current system

have been identified. These stem from either intended functionalities which were

not implemented due to time constraints or conjectures elicited by preliminary

results which point towards interesting new possibilities for research hinging on

the results of the current hypothesis.

As far as improvements to the system are concerned, the most relevant involve

automation and general streamlining of the simulation/position calculation pro-

cess. The proposed improvements start with developing the simulator from scratch

to increase efficiency and decrease runtimes. The current Matlab implementation

is extremely useful for research purposes since all variable monitoring and graphics

generation are perfectly integrated into the core functionality of the software, but

this comes at a cost of requiring greater computing power overhead which could

be reduced if not almost entirely eliminated.

Having a purpose built solution would allow for further modifications to the

software and eliminate the need for parameter adjusting through code manipula-

tion, a graphical interface could be developed to show the map around the intended

area and with a click on the location for the intended spoofing position, the code

could be rewritten to calculate pseudoranges from said position to the satellites,

evaluate which satellites would produce the greatest difference when altering the

parameters and determine the offset necessary to the clock correction parameters

required to produce the shift from the actual position. These changes would, es-

sentially, remove any sort of guesswork from the workflow and make it so that the

simulation has to be run only once to produce an accurate, altered navigation file

to be used for spoofed signal generation.

Still on the subject of building the software from the ground up, the signal

generator should also be constructed with the specified purpose in mind, during

the course of the research, adaptations were made to the open source generator

74

Chapter 5. Conclusions

used but the efficiency of such modifications is below what could be achieved with

a custom solution.

Although some of the process required to build this custom solution has been

started in the present work, in the form of the position calculator algorithm con-

version to C and its subsequent implementation into the source code of GPS-SDR

SIM (as detailed in chapter 4.1), further modifications are required to the signal

generator in order to streamline the process and there is still a great number of

Matlab scripts which must be converted to C in order to remake the simulator.

Adding this to the changes proposed above means that building the proposed tool

will take more time than initially anticipated. As mentioned, the Matlab imple-

mentation is still ideal for research but for practical application of the explored

concepts as a solution, the tool should be custom built for the task at hand.

As for further research, three topics stood out as interesting possibilities: ex-

ploration of the hypothesis as a means to spoof GPS time for applications which

rely on GPS to set device times or otherwise synchronize clocks; application of

machine learning algorithms to parse location data and determine the most effi-

cient and least detectable alterations to the clock correction coefficients able to

produce equivalent results to the manually selected ones; and, finally, exploring

the viability of applying a similar sort of time correction spoofing mechanism to

other GNSS systems as a way to circumvent anti-spoofing measures relying on

shifting to other systems once GPS is found to have been compromised.

75

Appendices

77

Appendix A

Matlab Algorithms

A.1 Least Squares Position Calculation

function [PositionCart,PositionECEF, clkOffset] = calcRecPos(P,prns,time,Eph)

%calcRecPos Least-squares searching for receiver position.

% Given 4 or more pseudoranges and ephemerides.

% Adapted from Kai Borre’s code, returns position in ECEF and LLH

% coordinates

vlight = 299792458; % vacuum speed of light in m/s

Omegae_dot = 7.292115147e-5; % rotation rate of the earth in rad/s

dtr = pi/180;

P

[m,n] = size(P);

sv = prns;

for t = 1:m

icol = find_eph(Eph,sv(t),time);

% if icol == 0, continue;

79

Appendix . Matlab Algorithms

% end

tx_RAW = time-P(t,1)/vlight;

TOC = Eph(21,icol);

dt = check_t(tx_RAW-TOC);

tcorr(t) = (Eph(2,icol)*dt + Eph(20,icol))*dt + Eph(19,icol)%%;

tx_GPS = tx_RAW-tcorr(t);

XS(:,t) = satpos(tx_GPS, Eph(:,icol));

[phi(t),lambda(t),h(t)] = togeod(6378137,298.257223563,...

XS(1,t),XS(2,t),XS(3,t));

end

clkOffset = tcorr;

% close all

% Satellite positions are now known in the ECEF system in form of

% Cartesian (X,Y,Z) and geographical (phi,lambda).

% First guess for receiver’s position is (phi_old,lambda_old)

phi;

lambda;

phi_old = mean(phi) ;

lambda_old = mean(lambda) ;

scale = 900;

acc_p = [];

acc_l = [];

Old_Sum = 10^20;

tic

phi_old = 0;

80

Appendix . Matlab Algorithms

lambda_old = 0;

for iter = 1:8 % You may find a nicer upper bound for "iter"

scale = scale/10;

sin_phi0 = sin(phi_old*dtr);

cos_phi0 = cos(phi_old*dtr);

ndiv = 8;

for b = 0:ndiv

psi = b*scale/ndiv; % distance

sin_psi = sin(psi*dtr);

cos_psi = cos(psi*dtr);

for alpha = 0:20:340 % azimuth

sin_phi2 = sin_phi0*cos_psi...

+cos_phi0*sin_psi*cos(alpha*dtr);

phi2 = asin(sin_phi2)/dtr;

if cos(phi2) == 0

sin_dlambda = 0;

else

sin_dlambda = sin(alpha*dtr)*sin_psi/cos(phi2*dtr);

end;

dlambda = asin(sin_dlambda)/dtr;

lambda2 = lambda_old + dlambda;

[XR(1,1),XR(2,1),XR(3,1)] = frgeod(6378137,...

298.257223563, phi2, lambda2, 0);

for t = 1:m

cal_one_way(1,t) = norm(XS(:,t)-XR);

sat_clock(t) = tcorr(t)*vlight;

omegatau = Omegae_dot*cal_one_way(1,t)/vlight;

R3 = [cos(omegatau) sin(omegatau) 0;

-sin(omegatau) cos(omegatau) 0;

0 0 1];

81

Appendix . Matlab Algorithms

X_ECF(:,t) = R3*XS(:,t);

cal_one_way(1,t) = norm(X_ECF(:,t)- XR);

one_way_res(1,t) = ...

P(t,1)-cal_one_way(1,t)+sat_clock(t);

end;

resid_t = one_way_res(1,:)-one_way_res(1,1);

New_Sum = resid_t*resid_t’;

b=resid_t’;

if New_Sum < Old_Sum

Old_Sum = New_Sum;

phi_save = phi2;

lambda_save = lambda2;

acc_p = [acc_p phi2];

acc_l = [acc_l lambda2];

end;

end %alpha

end %b

fprintf(’Sum of residuals squared: %6g\n’, Old_Sum);

phi_old = phi_save

lambda_old = lambda_save

end %iter

fprintf(’Final value for latitude %10.6f\n’, phi_old);

fprintf(’Final value for longitude %9.6f\n’, lambda_old);

%%Conversion to cartesian coord

% [X,Y,Z] = geodetic2ecef(phi_old,lambda_old,48.4,wgs84Ellipsoid(’kilometer’));

% PositionCart= lla2ecef([phi_old lambda_old 48.4]);

PositionCart=XR;

PositionECEF=[phi_old lambda_old];

82

Appendix . Matlab Algorithms

X=XR(1)*.001;

Y=XR(2)*.001;

Z=XR(3)*.001;

fprintf(’Cartesian Coordinates are:\n’);

fprintf(’X= %f\n’, X);

fprintf(’Y= %f\n’, Y);

fprintf(’Z= %f\n’, Z);

%%%%%%%% end recpos.m %%%%%%%%%%%%%%%%%%%%%

A.2 RINEXNavigation and Observation File Parser

%%Read RINEX Navigation file

rinexe(’pdel1470.19n’,’eph.dat’);

Eph = get_eph(’eph.dat’);

obsFile=’pdel1470_alt.19o’;

file = fopen(obsFile, ’rt’);

% Parse Header for Observation types and antenna delta

eof = 0;

ifound_types = 0;

Obs_types = [];

ant_delta = [];

time = 0;

dt = 0;

83

Appendix . Matlab Algorithms

sats = [];

NoSv = 0;

eof = 0;

while 1

line = fgetl(file);

% Find End of HEADER

ans = findstr(line, ’END OF HEADER’);

if ~isempty(ans), break;end;

if (line == -1), eof = 1; break; end;

ans = findstr(line,’ANTENNA: DELTA H/E/N’);

if ~isempty(ans)

for i=1:3

[delta, line] = strtok(line);

del = str2num(delta);

ant_delta = [ant_delta del];

end;

end

answer = findstr(line,’# / TYPES OF OBSERV’);

if ~isempty(answer)

[NObs, line] = strtok(line);

NoObs = str2num(NObs);

for k = 1:NoObs

[ot, line] = strtok(line);

Obs_types = [Obs_types ot];

end;

ifound_types = 1;

end;

end;

% eof

84

Appendix . Matlab Algorithms

% ifound_types

% Obs_types

% ant_delta

% Parse epochs with flag 0 to get time and number of SVs

while 1

line = fgets(file);

% Skip comment lines

ans = findstr(line, ’COMMENT’);

if ~isempty(ans);

line = fgetl(file);

end;

% Check if end of file has been reached

if (feof(file) == 1);

eof = 1;

break

end;

% If epoch has flag different from 0, break

if ((strcmp(line(29),’0’) == 0) & (size(deblank(line),2) == 29))

eof = 1;

break

end;

% Grab data from each epoch with flag 0

if ((strcmp(line(2),’0’) == 1)||((strcmp(line(2),’1’) == 1)) &...

(strcmp(line(29),’0’) == 1))

85

Appendix . Matlab Algorithms

ll = length(line)-2;

if ll > 60, ll = 60; end;

linp = line(1:ll);

%fprintf(’%60s\n’,linp);

[year, line] = strtok(line);

year

[month, line] = strtok(line);

month

[day, line] = strtok(line);

day

[hour, line] = strtok(line);

hour

[minute, line] = strtok(line);

minute

[second, line] = strtok(line);

second

[OK_flag, line] = strtok(line);

h = str2num(hour)+str2num(minute)/60+str2num(second)/3600;

jd = julday(str2num(year)+2000, str2num(month), str2num(day), h);

[week, sec_of_week] = gps_time(jd);

%jd;

time = sec_of_week;

[NoSv, line] = strtok(line,’G’);

for k = 1:str2num(NoSv)

sat=[];

if contains(line, ’G’)

[sat, line] = strtok(line,’G’);

end

86

Appendix . Matlab Algorithms

if isempty(sat)==0

prn(k) = str2num(sat)

end

%Check to see if any sat numbers are in next line

if (isempty(sat)) && (str2num(NoSv)>12)

line = deblank(fgetl(file))

lineF = deblank(line(end:-1:1));

line = lineF(end:-1:1);

if contains(line, ’G’)

[sat, line] = strtok(line,’G’);

if contains(sat, ’R’)

sat = strtok(sat,’R’);

end

end

end

if isempty(sat)==0

prn(k) = str2num(sat)

end

end

% prn(end)=[];

sats = prn(:);

dT = strtok(line);

if isempty(dT) == 0

dt = str2num(dT);

end

break

end

end;

87

Appendix . Matlab Algorithms

datee=[str2num(year) str2num(month) str2num(day) str2num(hour)...

str2num(minute) str2num(second)]

NoSv = size(sats,1);

NoObs = size(Obs_types,2)/2

% Read observations of all NoSV

Obs = zeros(NoSv, NoObs);

if NoObs <= 5 % This will typical be Turbo SII data

for u = 1:NoSv

lin = fgetl(file);

for k = 1:NoObs

Obs(u,k) = str2num(lin(2+16*(k-1):16*k-2));

end

end

else % This will typical be Z12 data

Obs = Obs(:,[1 2 3 4 5]); % We cancel the last two columns 6 and 7

NoObs = 5;

for u = 1:NoSv

lin = fgetl(file);

lin_doppler = fgetl(file);

for k = 1:NoObs %%-1

if size(lin,2)>=78 && isempty(str2num(lin(1+16*(k-1):16*k-2))) == 1,...

Obs(u,k) = nan;

else %

if size(lin,2) < 78, lin = fgetl(file);

else

Obs(u,k) = str2num(lin(1+16*(k-1):16*k-2));

88

Appendix . Matlab Algorithms

end

end

% Obs(u,NoObs) = str2num(lin(65:78));

end

end

end

Obs;

%NoSvs = size(sats,1)

fclose(file);

A.3 Ephemerides data alteration in the data struc-

ture used during simulation

function [Eph] = alterEph(ephemData, offset0, offset1, index);

ephemerisData = ephemData;

svprn = ephemerisData(1,:);

af0 = ephemerisData(19,:);

af1 = ephemerisData(20,:);

ephemerisData(19,index) = af0(index)+offset0;

ephemerisData(20,index) = af1(index)+offset1;

Eph=ephemerisData;

89

Appendix . Matlab Algorithms

A.4 Haversines formula calculation of Great Circle

distance between two sets of coordinates

%Haversine Formula for great circle distance calculation between two coordinates

%Distance returned in m

function [distance]=distanceCalc(coordA, coordB)

%Radius of the Earth

R = 6371E3;

phi_1 = deg2rad(coordA(1));

phi_2 = deg2rad(coordB(1));

deltaPhi = deg2rad(coordB(1)-coordA(1));

deltaLambda = deg2rad(coordB(2)-coordA(2));

%square of half the chord length between the points

a = sin(deltaPhi/2)^2 + cos(phi_1) * cos(phi_2) * sin(deltaLambda/2)^2;

%angular distance in radians

c = 2 * asin(min(1,sqrt(a)));

%Distance in m

distance=R*c;

90

Appendix B

C Algorithms

B.1 Least Squares Position Calculation

void calcRecPos(double *pseudoranges, double *pos, double *vel, double *clk,

double *recPosXYZ){

double tcorr[MAX_SAT];

double sat_clock[MAX_SAT];

double tx_GPS=0;

double recPosLLH[3]={0,0,0};

//SV within LoS HAVE to be rewritten for every RINEX file,

// cross-reference with Matlab Simulation

int satList[9] = {1,4,5,6,8,16,18,22,29};

for(int j = 0; j < 9; j++){

int i = satList[j];

91

Appendix B. C Algorithms

double tx_RAW=eph[0][i].toc.sec - pseudoranges[j]/vlight;

double dt = tx_RAW-eph[0][i].toc.sec; //check_t removido

tcorr[j]=((eph[0][i].af2*dt + eph[0][i].af1)*dt + eph[0][i].af0);

tx_GPS = tx_RAW-tcorr[i];

}

double XS[MAX_SAT][3];

for(int j = 0; j<numsats; j++){

int i =satList[j];

// grx = incGpsTime(eph[0][i].toc, 0.0);

grx.week=0;

grx.sec=tx_GPS;

satpos(eph[0][i], grx, pos, vel, clk);

// printf("Sat %d Position= %f, %f, %f \n", i, pos[0], pos[1],pos[2]);

XS[j][0]=pos[0];

XS[j][1]=pos[1];

XS[j][2]=pos[2];

// printf("Sat %d Position in Array= %f, %f, %f \n", i, XS[i][0], XS[i][1],XS[i][2]);

}

long double resid_t[MAX_SAT];

long double phi2=0;

long double lambda2=0;

long double phi_save =0;

long double lambda_save =0;

// double acc_p=0;

// double acc_l=0;

long double old_sum = pow(10,20);

92

Appendix B. C Algorithms

long double one_way_res[MAX_SAT];

long double X_ECF[MAX_SAT][3];

long double cal_one_way[32];

double XR[3] ={0,0,0};

long double scale = 900;

dtr = M_PI/180;

double phi_old=0;

double lambda_old=0;

for (int iter=0; iter<9; iter++){

scale = scale/10;

long double sin_phi0=sin(phi_old*dtr);

long double cos_phi0=cos(phi_old*dtr);

long double ndiv=8;

for (int b = 0; b<=ndiv; b++){

long double psi = b*scale/ndiv; //Distance

long double sin_psi = sin(psi*dtr);

long double cos_psi = cos(psi*dtr);

for(int alpha=0; alpha<341; alpha+=20){ //azimuth

long double sin_phi2 = sin_phi0*cos_phi0+cos_phi0*sin_psi*cos(alpha*dtr);

phi2 = asin(sin_phi2)/dtr;

long double sin_dlambda;

if (cos(phi2)==0){

sin_dlambda = 0;

}else{

sin_dlambda = sin(alpha*dtr)*sin_psi/cos(phi2*dtr);

}

long double dlambda = asin(sin_dlambda)/dtr;

lambda2 = lambda_old+dlambda;

93

Appendix B. C Algorithms

frgeod(6378137,298.257223563, phi2, lambda2, 0, XR);

for(int t=0; t<numsats; t++){

cal_one_way[t]=sqrt((XS[t][0]-XR[0])*(XS[t][0]-XR[0]) +

(XS[t][1]-XR[1])*(XS[t][1]-XR[1]) + (XS[t][2]-XR[2])*(XS[t][2]-XR[2]));

sat_clock[t] = tcorr[t]*vlight;

long double omegatau=Omegae_dot*cal_one_way[t]/vlight;

long double R3[3][3];

R3[0][0]= cos(omegatau); R3[0][1]=sin(omegatau); R3[0][2]=0;

R3[1][0]=-sin(omegatau); R3[1][1]=cos(omegatau); R3[1][2]=0;

R3[2][0]=0 ; R3[2][1]=0 ; R3[2][2]=1;

// X_ECF[t] = R3*XS[t];

X_ECF[t][0]= R3[0][0]*XS[t][0]+R3[0][1]*XS[t][1];

X_ECF[t][1]= R3[1][0]*XS[t][0]+R3[1][1]*XS[t][1];

X_ECF[t][2]= XS[t][2];

cal_one_way[t] = sqrt((X_ECF[t][0]-XR[0])*(X_ECF[t][0]-XR[0]) +

(X_ECF[t][1]-XR[1])*(X_ECF[t][1]-XR[1]) + (X_ECF[t][2]-XR[2])*(X_ECF[t][2]-XR[2]));

one_way_res[t]=pseudoranges[t]-cal_one_way[t]+sat_clock[t];

}

for(int i = 0; i<=MAX_SAT;i++){

resid_t[i]= one_way_res[i]-one_way_res[0];

}

}

recPosLLH[0]=phi_old;

recPosLLH[1]=lambda_old;

recPosLLH[2]=0;

long double new_sum = 0;

94

Appendix B. C Algorithms

for (int i=0; i<numsats; i++){

new_sum += resid_t[i]*resid_t[i];

}

if(new_sum<old_sum){

old_sum = new_sum;

phi_save = phi2;

lambda_save = lambda2;

}

printf("\n");

printf("++\n");

printf("Sum of residuals squared: %f \n", old_sum);

phi_old=phi_save;

lambda_old =lambda_save;

llh2xyz(recPosLLH,recPosXYZ);

printf("Phi= %f \n", phi_old);

printf("Lambda= %f \n", lambda_old);

printf("**\n");

printf("LLH Coordinates= [%f,%f,%f] \n", recPosLLH[0],recPosLLH[1],

recPosLLH[2]);

printf("ECEF Coordinates= [%f,%f,%f] \n", recPosXYZ[0],recPosXYZ[1],

recPosXYZ[2]);

printf("Google Maps Paste: %f %f \n", phi_old, lambda_old);

}

}

}

B.2 RINEX Observation File Parser

void readObsFile(double *pseudoranges){

// int numSV;

95

Appendix B. C Algorithms

// int SV;

// double pseudos[32];

// double pseudorange;

char line[100];

// int year, month, day, hour, min;

// int sec;

// int flag;

char *satString[8];

FILE *filePointer;

if ((filePointer = fopen("pdel1470_alt.19o", "r")) == NULL) {

printf("Error! No RINEX observation file present!");

// Program exits if file pointer returns NULL.

exit(1);

}

filePointer = fopen("pdel1470_alt.19o", "r");

// while (EOF != fgets(line, 100, filePointer)) {

// while (strstr(line, "END OF HEADER") == NULL) {

// fgets(line, 100, filePointer);

// }

// printf(line);

// }

while (1) {

fgets(line, 100, filePointer);

if (strncmp(line + 60, "END OF HEADER", 13) == 0) {

break;

}

96

Appendix B. C Algorithms

}

fgets(line, 100, filePointer);

// printf("%s", line);

char lineS[100];

strcpy(lineS, line);

char delim[] = " ";

char *ptr = strtok(lineS, delim);

for (int i =0; i<8; i++) {

// printf("’%s’\n", ptr);

satString[i]=ptr;

ptr = strtok(NULL, delim);

}

// printf("satString= %s\n", satString[7]);

char satsList[50];

strcpy(satsList, satString[7]);

// printf("satString2= %s\n", sats);

char delimG[] = "G";

ptr = strtok(satsList, delimG);

int j=0;

numsats=atoi(ptr);

char *sats[MAX_SAT];

97

Appendix B. C Algorithms

while (ptr){

// printf("’%s’\n", ptr);

if (j != 0){

sats[j-1] = ptr;

}else{

numsats=atoi(ptr);

}

j++;

ptr = strtok(NULL, delimG);

}

// printf("%d\n",numsats);

for(int i=0; i<numsats; i++){

fgets(line, 100, filePointer);

double buffer;

sscanf(line, "%lf", &buffer);

// printf("Buffer= %.3f\n", buffer);

pseudoranges[i]=buffer;

printf("Pseudorange %d= %.3f\n", i+1, pseudoranges[i]);

fgets(line, 100, filePointer);

// pseudoranges[i]=atof();

}

fclose(filePointer);

}

98

Appendix C

Python Algorithms

C.1 Script for RINEX Navigation File Modifica-

tion

#!/usr/bin/env python3

import re

print("Reading polynomial coefficient files...")

f=open("af0_values.txt","r")

lines0 = f.readlines()

f.close

f=open("af1_values.txt","r")

lines1 = f.readlines()

f.close

print("All files read")

99

Appendix C. Python Algorithms

print("Reformatting notation...")

f=open("af0_values_Corrected.txt","w+")

for i in lines0:

i=re.sub(’e’,’D’,i)

i=re.sub(’000000000000’,’0.000000000000D+00’,i)

if i[0] != ’-’:

i= ’ ’ + i

#print(i)

f.write(i)

lines0 = f.readlines()

f.close

print("af0 reformated")

f=open("af1_values_Corrected.txt","w+")

for i in lines1:

i=re.sub(’e’,’D’,i)

i=re.sub(’000000000000’,’0.000000000000D+00’,i)

if i[0] != ’-’:

i= ’ ’ + i

#print(i)

f.write(i)

lines1 = f.readlines()

f.close

print("af1 reformated")

#f=open("copy_of_pdel0560.19n", "r")

f=open("pdel1470.19n", "r")

linesN = f.readlines()

f.close

100

Appendix C. Python Algorithms

#Count head lines

headlines=0

for i in linesN:

match = re.search("END OF HEADER",i)

if match:

headlines+=1

#print(headlines)

break

else:

headlines+=1

#print(headlines)

#Find all ephemerides

print("Creating new RINEX Nav file...")

step = 8

noEph = 0

line = 0

f0 = open("af0_values_Corrected.txt","r")

f1 = open("af1_values_Corrected.txt","r")

lines0 = f0.readlines()

lines1 = f1.readlines()

f0.close

f1.close

ff= open("C1_1470.19n", "w+")

for i in linesN:

101

Appendix C. Python Algorithms

#if linesN.index(i)>100:

break

if linesN.index(i) <= (headlines-1):

ff.write(i)

if linesN.index(i)>(headlines-1):

if (linesN.index(i)+(step-headlines))%(step)==0:

s=i[:22] + lines0[line].strip(’\n’) + lines1[line].strip(’\n’) + i[60:]

#print(line)

#print(i)

#print(s)

#print("\n")

ff.write(s)

line+=1

noEph+=1

#print(noEph)

else:

ff.write(i)

ff.close

print("Done")

102

Bibliography

[1] Federal Aviation Administration, “FAA Aerospace Forecast, FY2018-38,”

tech. rep., Record No. 2018 ASI 7504-6, Mar. 15, 2018. [Online]. Available:

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2018-

38_FAA_Aerospace_Forecast.pdf. [Accessed: 2018-11-13].

[2] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned

aircraft capture and control via gps spoofing,” Journal of Field Robotics,

vol. 31, no. 4, pp. 617–636, 2014.

[3] V. Dey, V. Pudi, A. Chattopadhyay, and Y. Elovici, “Security vulnerabilities

of unmanned aerial vehicles and countermeasures: An experimental study,”

in 2018 31st International Conference on VLSI Design and 2018 17th In-

ternational Conference on Embedded Systems (VLSID), pp. 398–403, IEEE,

2018.

[4] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen, A software-

defined GPS and Galileo receiver: a single-frequency approach. Springer Sci-

ence & Business Media, 2007.

[5] K. Wang, S. Chen, and A. Pan, “Time and position spoofing with open source

projects,” Black Hat Europe, vol. 148, 2015.

[6] H. N. Viet, K. R. Kwon, S. K. Kwon, E. J. Lee, S. H. Lee, and C. Y.

Kim, “Implementation of GPS signal simulation for drone security using Mat-

lab/Simulink,” Proceedings of the 2017 IEEE 24th International Congress on

Electronics, Electrical Engineering and Computing, INTERCON 2017, 2017.

103

References

[7] E. Kaplan and C. Hegarty, Understanding GPS: principles and applications.

Artech House, 2005.

[8] Global Positioning System Wing (GPSW) Systems Engineering & Integra-

tion, “NAVSTAR GPS Space Segment/Navigation User Segment L1C Inter-

faces IS-GPS-800, Revision J.” 2018.

[9] N. Van Thang, C. D. Trinh, and T. D. Tan, “Application of street tracking

algorithm in a feedback configuration for an integrated ins/gps navigation

system,” pp. 279–288, 2014.

[10] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On the

requirements for successful gps spoofing attacks,” in Proceedings of the 18th

ACM conference on Computer and communications security, pp. 75–86, ACM,

2011.

[11] International Civil Aviation Organization, “Unmanned Aircraft Systems

(UAS),” Tech. Rep. 1, Cir 328 AN/190, 2011. [Online]. Available:

http://dx.doi.org/10.1016/B978-0-12-374518-7.00016-X. [Accessed: 2018-11-

13].

[12] T. Rosa, “GPS Radio Hacking – What the Hell Time Is It?,” in IS2 - Infor-

mation Security Summit, (Prague), pp. 138–152, 2016.

[13] B. Motella, M. Pini, M. Fantino, P. Mulassano, M. Nicola, J. Fortuny-Guasch,

M. Wildemeersch, and D. Symeonidis, “Performance assessment of low cost

gps receivers under civilian spoofing attacks,” in 2010 5th ESA Workshop on

Satellite Navigation Technologies and European Workshop on GNSS Signals

and Signal Processing (NAVITEC), pp. 1–8, IEEE, 2010.

[14] C. Günther, “A Survey of Spoofing and Counter-Measures,” Navigation, Jour-

nal of the Institute of Navigation, vol. 61, no. 3, pp. 159–177, 2014.

[15] J. R. Van Der Merwe, X. Zubizarreta, I. Lukčin, A. Rügamer, and W. Felber,

“Classification of Spoofing Attack Types,” 2018 European Navigation Confer-

ence, ENC 2018, no. July, pp. 91–99, 2018.

104

References

[16] B. Hermans and L. Gommans, “Targeted GPS spoofing,” M.S. thesis, Uni-

versity of Amsterdam, 2018.

[17] M. L. Psiaki and T. E. Humphreys, “Gnss spoofing and detection,” Proceedings

of the IEEE, vol. 104, no. 6, pp. 1258–1270, 2016.

[18] J. Dampf, T. Pany, W. Bär, J. Winkel, L. Mervart, J. Ávila-Rodríguez,

R. Ioannides, and G. Hein, “Real world spoofing trials and mitigation,” In-

sideGNSS, vol. 12, pp. 55–65, 2017.

[19] T. E. Humphreys, B. M. Ledvina, V. Tech, M. L. Psiaki, B. W. O. Han-

lon, and P. M. Kintner, “Assessing the Spoofing Threat : Development of a

Portable GPS Civilian Spoofer,” Proceedings of the 21st International Tech-

nical Meeting of the Satellite Division of The Institute of Navigation (ION

GNSS 2008) September 16 - 19, 2008 Savannah International Convention

Center Savannah, GA, pp. 2314–2325, 2009.

[20] B. Stewart, K. Barlee, D. Atkinson, and L. Crockett, Software Defined Ra-

dio Workflow Using MATLAB & Simulink and the RTL-SDR. Strathclyde

Academic Media, 2015.

[21] GNU Radio Foundation, “About GNU Radio.”

https://www.gnuradio.org/about/. [Accessed: 2018-12-27].

[22] M. Elhawary, G. Gomah, A. Zekry, and I. Hafez, “Simulation of the e1 and

e6 galileo signals using simulink,” International Journal of Computer Appli-

cations, vol. 975, p. 8887, 2014.

[23] Ettus Research, “USRP N210.” https://www.ettus.com/product/details/

UN210-KIT, 2019. [Accessed: 2019-09-10].

[24] Ettus research, “USRP N210.” http://www.ettus.com/all-products/un210-

kit/, 2019. [Accessed: 2019-09-10].

[25] W. Gurtner, L. Estey, and B. Fields, “RINEX: The Receiver Independent

Exchange Format Version 2.11,” Tech. Rep. June, 2012.

105

References

[26] P. Teunissen and O. Montenbruck, Springer handbook of global navigation

satellite systems. Springer, 2017.

[27] gAGE Research group of Astronomy and GEomatics of the Techni-

cal University of Catalonia, “GPS Navigation RINEX 2.11 Format.”

https://gage.upc.es/sites/default/files/gLAB/HTML/GPS_Navigation_

Rinex_v2.11.html, 2019. [Accessed: 2019-09-10].

[28] NASA, “NASA Daily GNSS Data Files Server.”

ftp://cddis.nasa.gov/gnss/data/daily/2019/. [Accessed: 2019-09-10].

[29] gAGE Research group of Astronomy and GEomatics of the Tech-

nical University of Catalonia, “Observation RINEX 2.11 Format.”

https://gage.upc.es/sites/default/files/gLAB/HTML/Observation_Rinex_

v2.11.html, 2019. [Accessed: 2019-09-10].

[30] R. R. Hatch, “Relativity and gps,” Galilean Electrodynamics, vol. 6, no. 3,

pp. 52–57, 1995.

[31] K. Borre, “The GPS Easy Suite–Matlab code for the GPS newcomer,” GPS

Solutions, vol. 7, no. 1, pp. 47–51, 2003.

[32] K. Borre, “The EASY Suite.” http://kom.aau.dk/ borre/easy/, 1997. [Ac-

cessed: 2019-02-20].

[33] M. Mosavi, S. Azarshahi, I. Emamgholipour, and A. Abedi, “Least squares

techniques for gps receivers positioning filter using pseudo-range and carrier

phase measurements,” Iranian Journal of Electrical and Electronic Engineer-

ing, vol. 10, no. 1, pp. 18–26, 2014.

[34] Y. He and A. Bilgic, “Iterative least squares method for global positioning

system,” Advances in Radio Science, vol. 9, no. C. 5-2, pp. 203–208, 2011.

[35] Z. Bar-Yehuda, “plot_google_map.” https://www.mathworks.com/matlab

central/fileexchange/27627-zoharby-plot_google_map, 2019. [Accessed:

2019-02-11].

106

References

[36] T. Ebinuma, “GPS-SDR-SIM.” https://github.com/osqzss/gps-sdr-sim, 2015.

[Accessed: 2019-02-15].

[37] C. Veness, “Calculate distance, bearing and more between Latitude/Lon-

gitude points.” https://www.movable-type.co.uk/scripts/latlong.html, 2019.

[Accessed: 2019-09-11].

[38] E. W. Weisstein, “"Great Circle.".” From MathWorld–A Wolfram Web Re-

source. http://mathworld.wolfram.com/GreatCircle.html. [Accessed: 2019-

09-11].

[39] Chartcross Limited, “Gps test.” https://play.google.com/store/apps/details?i

d=com.chartcross.gpstest. [Accessed: 2019-09-20].

[40] R. B. Langley et al., “Dilution of precision,” GPS world, vol. 10, no. 5, pp. 52–

59, 1999.

107

	Resumo
	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Context
	1.3 Research Questions
	1.4 Goals
	1.5 Contributions

	2 State of The Art
	2.1 Global Navigation Satellite Systems
	2.2 Global Positioning System
	2.3 GPS Ranging Signals
	2.4 C/A Codes
	2.5 GPS Receiver Arquitecture
	2.6 Unmanned Aerial Vehicles
	2.7 Radio Frequency Interference
	2.8 GNSS Spoofing
	2.9 Spoofing Detection Strategies
	2.9.1 J/N Monitoring
	2.9.2 Innovations Testing
	2.9.3 Drift Monitoring
	2.9.4 Signal-Geometry-Based-Defences

	2.10 Software Defined Radio
	2.11 Universal Software Radio Peripherals
	2.12 Receiver Independent Exchange
	2.12.1 RINEX Navigation Message Files
	2.12.2 RINEX Observation Data files

	3 Simulator Implementation
	3.1 Polynomial Coefficients for Satellite Clock Correction
	3.2 Basic Algorithm Functionality
	3.3 Simulator Experimentation
	3.3.1 Experimentation With Offsets in the SV Clock Bias Correction Coefficient(af0)
	3.3.2 Experimentation With Offsets in the SV Clock Drift Correction Coefficient(af1)
	3.3.3 Experimentation With Offsets in the SV Drift Rate Correction Coefficient(af2)
	3.3.4 Experimentation With Offsets in Multiple Parameters

	4 Real World Test Scenarios
	4.1 Experimental Setup
	4.1.1 Experimentation With Offsets in the SV Clock Bias Correction Coefficient (af0)
	4.1.2 Experimentation With Offsets in the SV Clock Drift Correction Coefficient (af1)
	4.1.3 Experimentation With Offsets in both the SV Clock Bias Correction Coefficient (af0) and the SV Clock Drift Correction Coefficient (af1)

	4.2 Analysis of Results

	5 Conclusions
	5.1 Summary
	5.2 Future Work

	Appendices
	A Matlab Algorithms
	A.1 Least Squares Position Calculation
	A.2 RINEX Navigation and Observation File Parser
	A.3 Ephemerides data alteration in the data structure used during simulation
	A.4 Haversines formula calculation of Great Circle distance between two sets of coordinates

	B C Algorithms
	B.1 Least Squares Position Calculation
	B.2 RINEX Observation File Parser

	C Python Algorithms
	C.1 Script for RINEX Navigation File Modification

	Bibliography

