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ABSTRACT 
 
Through this paper, the most commonly used in management and finance 

optimization problems mathematical tools are presented, in a combined coherent 
way. The respective mathematical fundaments are synthetically outlined and the 
resolution methods are briefly described, hopping that this text functions as a manual 
in these matters. 
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INTRODUCTION 
  
It is far from any doubt how interesting the optimization problems are for the 

management activity, particularly in its finance subdomain. Famous examples are 
the classical problems of profits maximization, costs minimization, production 
maximization and, a little more recently, risks minimization and reliability 
maximization. They are a privileged matter in the Operations Research courses and 
considered very deeply at the Mathematical Analysis courses.  

This work goal is to give an organized vision of the various kinds of problems 
that rise in this field, from the mathematical point of view and, simultaneously, to 
describe in a summarized way the respective resolution methods. 

To deal with this subject in a complete way was not the intention. On the 
contrary, the target is to make an inventory of the most recurrent problems, in 
order that this text serves as a manual in this area.  

A small bibliography is presented in the end of trying to supply to the reader 
quick deeper information on this matter.  

 
OPTIMIZATION PROBLEMS 
 
Usually, in a optimization problem it is intended to determine the extreme 

points-maximums and minimums-of a function  
 

푦 = 푓 푥 ,푥 ,, … ,푥  
called objective function. 
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The independent variables 푥 ,푥 , … , 푥  may be connected for one or more 
restrictions with the form 

푔(푥 ,푥 , … ,푥 ) = 푏, 휖ℝ. 
 
This form for the restrictions is quite general and allows the consideration of 

inequality restrictions. In fact they can be transformed in equality restrictions 
adding new variables designated lack variables. 

In the sequence of this work, some optimization problems will be presented 
together with the description of the techniques that make their resolution possible, 
that is: the determination of the points - the values of 푥 ,푥 , … , 푥  - that, 
simultaneously, satisfy the restrictions and make y to assume a maximum or 
minimum value. 

 
FREE OPTIMUM PROBLEMS  
  
Restrictions are not considered now. To solve these problems, there are 

mainly three kinds of methods that follow in the sequence. 
 
ANALYTICAL METHODS  
 
Their bases are the two following results: 
 
Theorem 1 
In order that a differentiable function 푓:퐷 ⊂ ℝ → ℝ has a local extreme in 

an interior point 푎 , 푎 ,, … ,푎  a necessary condition is that 
 

푓 ´
( , ,…, )

= 0 
 

푓 ´
( , ,…, )

= 0 
  . 
  . 
  . 

 푓 ´
( , ,…, )

= 0.∎ 
 
The points that satisfy this condition are called the f stationary points. Note 

that this condition may be written in the form:  
  

푔푟푎푑푓⃗ 푎 ,푎 ,, … ,푎 = 0 
 
Theorem 2 
Being 푎 ,푎 ,, … , 푎  a stationary point of 푓:퐷 ⊂ ℝ → ℝ, belonging to the 

interior of D, and 푘 > 1 the order of the first f directed derivative identically non-
null at 푎 ,푎 ,, … ,푎 : 
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- 푓 푎 ,푎 ,, … ,푎  is a minimum (maximum) if k is even and 푓→
( ) 푎 ,푎 ,, … ,푎  is a 

positive (negative) defined form. 
- 푓 푎 , 푎 ,, … , 푎  is neither a maximum nor a minimum if: 
 
a) k is odd, 
b) k is even and 푓→

( ) 푎 ,푎 ,, … ,푎  is an undefined form, 

c) k is even and 푓→
( ) 푎 ,푎 ,, … ,푎  is a semi-defined form, since either there 

is a singular direction for which the first non-null directed derivative is 
odd or, being even, has a sign opposite to the one of  푓→

( ) 푎 ,푎 ,, … , 푎  
outside the singular directions. 

- Nothing may be concluded, through the directed derivatives, when k is even, 
푓→

( ) 푎 , 푎 , , … , 푎  is semi-defined and in every singular direction, the first non-
null directed derivatives are of even order and assume values with the same sign 
as  푓→

( ) 푎 , 푎 ,, … , 푎  outside the singular directions.∎ 
 
Notes: 

- Theorem 1 allows identifying the point’s candidates to maximum points 
or minimum points: the stationary points, 

- In Theorem 2 inconclusive situations, a function behavior study in the 
neighborhood of the stationary point allows, often, to conclude 
something about the nature of the point. That is the so called local study. 

- To apply Theorem 2 it is necessary to suppose that f has continuous 
derivatives, in the stationary point neighborhood, till a convenient order. 

 
If 푛 = 1 the situation is a little simpler: 
 

- a is a stationary point if 푓 ´(푎) = 0. 
- Being f a function k times differentiable in a neighborhood of a – with 
푘 ≥ 2- and 푓( )the first of the non-null derivatives in a, if 푓( ) is 
continuous in a: 

  
a) f has neither maximum nor minimum in a if k is odd, 
b) If k is even 푓(푎) is a local maximum or minimum as 푓( )(푎) < 0 

or 푓( )(푎) > 0.∎ 
 
Theorem 3 
In the case of real functions of real variable note that, frequently, the study of 

the first derivative signal allows conclusions about the stationary point’s nature: 
 

- In points at which the function is not differentiable, evidently, it may 
assume extreme values, concretely: 
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a) If 푓 ´(푎) ≥ 0 and 푓 ´(푎) ≤ 0, 푓(푎) is a maximum, 
b) If 푓 ´(푎) ≤ 0 and 푓 ´(푎) ≥ 0, 푓(푎) is a minimum.∎ 
 
Note: 
- It is important to refer here the variational calculus methods. Evidently they 

are also analytical methods, but now the target is the optimization of a functional 
and not of a function. For instance consider the problem of minimizing the 
functional  

퐹[푦] = 푓 푥, 푦(푥),푦 ´(푥) 푑푥. 

 
That is, the objective is to determine the function y(x) that minimizes 퐹[푦]. 

The equation 

푓 푥, 푦,푦 ´ −
푑
푑푥

푓 ´
´ 푥, 푦,푦 ´ = 0, 

 
called Euler-Lagrange equation supplies the solution for the problem.∎ 
 
Quasi-analytical Methods 
Only a short reference to the most commonly used: 
 
- Gradient Method 
This method is based on that the f gradient vector “points” to the direction 

along which the function grows quicker. 
So, begin calculating a value the 푓 푥 ,푥 ,, … ,푥  gradient in an initial 

point 푎 ,푎 ,, … ,푎 . Then it is executed an h amplitude movement in the direction 
of the gradient and it is computed the value of the objective function, in the 
obtained point. If this value is greater than the obtained for f in the initial point go 
on moving in the same direction. If not, compute a new gradient vector and follow 
a new direction. 

Go on this process till the whole gradient vector components are null, having 
so got the maximum. 

If the target is to minimize the objective function, follow the gradient 
opposite direction and proceed exactly in the same way.∎ 

 
Steepest Ascent Method 
Such as in the former method, the objective function gradient is computed in 

an initial point. But, the direction of the movement is determined by the greatest 
gradient component. Only the variable corresponding to this component is 
changed; the whole others remain unchanged. The changing variable is increased 
or decreased according to the partial derivative signal. After a new point is 
obtained, the process is repeated till attaining the optimum with the desired 
approximation.∎ 



 
 

Acta Scientiae et Intellectus      ISSN: 2410-9738 

www.actaint.com Vol.2. No.2 (2016)  49 
 

 

Heuristic Methods 
These methods are applied when the problem does not lead to an evident 

mathematical quantification. Here are two examples: 
 
- Bolzano Search Method 
It is useful when a function f(x), that is not explicitly known, but may be 

formulated experimentally, is supposed to be convex and admit continuous 
derivatives in the [푎, 푏] interval. 

To apply the method it is necessary to know푓 ´(푥 ) = 푓 ´ . Then calling 푥  
the minimum point wanted: 
 

a) If 푓 ´(푥 ) > 0, search 푎 ≤ 푥 ≤ 푥 , 
b) If 푓 ´(푥 ) < 0, search 푥 ≤ 푥 ≤ 푏, 
c) If 푓 ´(푥 ) = 0, search 푥 = 푥 . 

 
In each iteration the search interval amplitude is half reduced. After N steps, 

the search interval amplitude is reduced of a  factor.∎ 
 
- Fibonacci Search Method 
It is useful when a function f(x), which form is not explicitly known, is 

supposed to be continuous and concave in the [푎, 푏] interval. And the maximum 
point 푓(푥 ) is such that 푥 ∈ [푎, 푏]. Begin computing 푓(푥 ) = 푓 푎 + 퐹 (푏 −
푎)  and 푓(푥 ) = 푓 푎 + 퐹 (푏 − 푎)  where 퐹 = .38 and 퐹 = .62 are the Fibonacci 
numbers. So, 

 
a) If 푓(푥 ) < 푓(푥 ), 푥 ∈ [푥 , 푏], 

b) If 푓(푥 ) > 푓(푥 ), 푥 ∈ [푎, 푥 ], 

c) If 푓(푥 ) = 푓(푥 ), 푒ither 푥 ∈ [푎,푥 ] or 푥 ∈ [푥 ,푏]. 

  
After N iterations the amplitude of the original interval is reduced of a 

(. 62)  factor.∎ 
 
Any of the methods, in its specific field of application, allows obtaining 푥  as 

closely as desired. 
 
CONSTRAINED OPTIMUM PROBLEMS 
 
The target in this kind of problems is the optimization of a n variables 

function,  
푓 푥 , 푥 ,, … , 푥 , constrained to m equality restrictions, m<n, 푔 푥 , 푥 ,, … , 푥 = 푏 , 
푏 ∈ ℝ, 푖 = 1, 2, … ,푚.  

To solve this problems is indicated the 
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Lagrange Method (undetermined multipliers) 
Begin to build the Lagrangean function 
 

ℒ(푥 ,푥 , … , 푥 ,휆 ,휆 , … ,휆 ) = 푓 푥 ,푥 ,, … ,푥 + 휆 푏 − 푔 푥 ,푥 ,, … ,푥  

 
where the 휆 ′푠 are the Lagrange multipliers. It is usual to call 푥 ,푥 ,, … , 푥  

decision variables and 휆 , 휆 , … ,휆  auxiliary variables. The next step is to 
determine the ℒ stationary points, candidates to maximums or minimums that 
result from the resolution of the system constituted by the equations. 

 
∂ℒ
∂x =

∂f
∂x − λ

∂g
∂x = 0, j = 1, 2, … , n

and
푔 푥 ,푥 ,, … ,푥 = 푏 , 푖 = 1, 2, … ,푚.

 

 
Finally, for each stationary point it is necessary to decide if it is a maximum 

or a minimum. For that build the bordered Hessian: 
 

퐻(푥 ,푥 , … ,푥 ,휆 ,휆 , … , 휆 ) =

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

⎣
⎢
⎢
⎢
⎡
휕푔
휕푥 ⋯

휕푔
휕푥

⋮ ⋱ ⋮
휕푔
휕푥 ⋯

휕푔
휕푥 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
휕푔
휕푥 ⋯

휕푔
휕푥

⋮ ⋱ ⋮
휕푔
휕푥 ⋯

휕푔
휕푥 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡ 휕 ℒ
휕푥 ⋯

휕 ℒ
휕푥 휕푥

⋮ ⋱ ⋮
휕 ℒ

휕푥 휕푥 ⋯
휕 ℒ
휕푥 ⎦

⎥
⎥
⎥
⎥
⎤

 

 
and consider the n – m principal minors obtained suppressing the last lines 

and columns of 퐻. Order these minors, 퐻 ,퐻 , … ,퐻 , being 퐻  the one of lesser 
order and 퐻 = 퐻 the greatest order one. So,  

 
a) The stationary point will be a minimum if 
  

i. m is even and H > 0, i = 1, 2, … , n − m, 
ii. m is odd and H < 0, i = 1, 2, … , n− m. 

 
b) The stationary point will be a maximum if 
 

i) m is even and (−1) 퐻 > 0, 푖 = 1, 2, … ,푛 −푚, 
ii) m is odd and (−1) 퐻 < 0, 푖 = 1, 2, … ,푛 −푚.∎ 

Notes: 
- Note that there is a guarantee that any obtained solution will be optimal 

if it can be found an ℒ(. ) optimum. 
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- If 푛 = 푚 + 1 these problems may be solved transforming them in free 
optimum problems with n = 1, because, after the restrictions, it is 
possible to write m variables as functions of only one that will be the 
problem independent variable. It is the so called explicit method. There is 
an inconvenient: the Lagrange multipliers are not considered and its 
interpretation, for management purposes, is important. 

- The difference n – m gives the problem degrees of freedom that, as it is 
logical, is coincident with the number of principal minors to be 
considered.∎ 

An evident application of this tool is the problem of maximization of a 
production function constrained by a budget. 

 
MATHEMATICAL PROGRAMING PROBLEMS 
 
For this kind of problems inequality restrictions may be considered and it is 

imposed that 푥 ≥ 0, 푖 = 1, 2, … ,푛. Contrarily to what happened in the constrained 
optimum problems there is no bound for the restrictions number, since they define 
a set of solutions – also called opportunities set – non empty.  

A class of convex programming problems, at which it is intended to minimize 
convex functionals subject to convex inequalities, is outlined now. Begin 
presenting a basic result that characterizes the minimum point of a convex 
functional subject to convex inequalities. Note that it is not necessary to impose 
any continuity conditions. Only geometric conditions are important. 

 
Theorem 4 (Kuhn-Tucker) 
 Be f(x), 푓 (푥), 푖 = 1, … , 푛, convex functionals defined in a convex subset C of a 

Hilbert space. Consider the problem min ∈ 푓(푥), 푠푢푏. : 푓 (푥) ≤ 0, 푖 = 1, …. Be 푥  a 
point where the minimum, supposed finite, is reached. Suppose also that for each 
vector u in 퐸 , Euclidean space with dimension n, non-null and such that 푢 ≥ 0, 
there is a point x in C such that ∑ 푢 푓 (푥) < 0,designating 푢  the components of u. 
So, 

i) There is a vector v, with non-negative components {푣 }, such that  
 

min
∈

푓(푥) + 푣 푓 (푥) = 푓(푥 ) + 푣 푓 (푥 ) = 푓(푥 ) , 

 
ii) For every vector u in 퐸  with non-negative components, that is: 

belonging to  
the positive cone of 퐸  , 
 

푓(푥) + 푣 푓 (푥) ≥ 푓(푥 ) + 푣 푓 (푥 ) ≥ 푓(푥 ) + 푢 푓 (푥 ) .∎ 

Corollary 4 (Lagrange duality) 
In the conditions of Theorem 4푓(푥 ) = sup inf ∈ 푓(푥) + ∑ 푢 푓 (푥).∎  
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Notes: 
- -This corollary is useful supplying a process to determine the problem 

optimal solution, 
- -If the whole 푣  in expression at i) are positive, 푥  is a point that belongs 

to the border of the convex set defined by the inequalities, 
- -If the whole 푣 are zero, the inequalities do not influence the problem, 

that is: the minimum is equal to the one of the restrictions free 
problem.∎ 

Considering non-finite inequalities:  
 
Theorem 5 (Kuhn-Tucker in infinite dimension) 
Be C a convex subset of a Hilbert space H and f (x) a real convex functional 

defined in C. Be I a Hilbert space with a closed convex cone 퓅, with non-empty 
interior, and F(x) a convex transformation from H to I (convex in relation to the 
order introduced by cone 퓅: if 푥, 푦 ∈ 퓅, 푥 ≥ 푦 푖푓 푥 − 푦 ∈ 퓅). Be 푥  a f (x) 
minimizing in C subjected to the inequality 퐹(푥) ≤ 0.Consider 퓅∗ = 푥: [푥, 푝] ≥

0, ∀
푥 ∈ 퓅  (dual cone). Admit that given any 푢 ∈ 퓅∗ it is possible to determine x in C 

such that [푢,퐹(푥)] < 0. So, there is an element v in the dual cone 퓅∗, such that for x 
in C 푓(푥) + [푣,퐹(푥)] ≥ 푓(푥 ) + [푣,퐹(푥 )] ≥ 푓(푥 ) + [푢,퐹(푥 )], being u any 
element of 퓅∗.∎ 

 
Corollary 5 (Lagrange duality in infinite dimension) 
푓(푥 ) = sup ∈퓅∗ inf ∈ (푓(푥) + [푣,퐹(푥)]) in the conditions of Theorem 5.∎ 
 
Theorem 4 and Theorem 5 describe the Kuhn-Tucker Method that can be 

operationalized as follows:  
 
Kuhn-Tucker Method 
It is an extension of Lagrange method seen above. Be an objective function 

푓 푥 , 푥 ,, … ,푥  constrained by m restrictions: k of the form 푔 푥 ,푥 ,, … , 푥 ≤
푏 , 푖 = 1, 2, … ,푘, and m – k of the form 푔 푥 ,푥 ,, … ,푥 ≥ 푏 , 푖 = 푘 + 1, … ,푚. Now 
the Lagrangean has the form 

 
ℒ(푥 , … , 푥 , 휆 , … , 휆 , 휇 , … ,휇 ) = 

 
= 푓(푥 , … , 푥 )− ∑ 휆 [푏 − 푔 (푥 , … ,푥 )]− ∑ 휇 [푏 − 푔 (푥 , … , 푥 )]. 
 
The conditions to be satisfied for a candidate to an optimum are  
 



 
 

Acta Scientiae et Intellectus      ISSN: 2410-9738 

www.actaint.com Vol.2. No.2 (2016)  53 
 

 

∂ℒ
∂x

=
∂f
∂x

+ λ
∂g
∂x

+ μ
∂g
∂x

= 0 , j = 1, 2, … , n

 
휆 [푏 − 푔 (푥 , … , 푥 )] = 0, 푖 = 1, 2, . . , 푘

휇 [푏 − 푔 (푥 , … , 푥 )] = 0, 푖 = 푘 + 1, … ,푚 
 

 

 
푔 (푥 , … , 푥 ) ≤ 푏 , 푖 = 1, 2, … , 푘

and
푔 (푥 , … , 푥 ) ≥ 푏 , 푖 = 푘 + 1, … ,푚

∎ 

 
Generally, the Kuhn-Tucker conditions supply a set of necessary conditions for 

a point to be an optimum point. 
A point that satisfies the Kuhn-Tucker conditions may be a global optimum, a 

local optimum or neither one nor other, depending on the objective function and 
restrictions convexity or concavity. But, if 푓 푥 ,푥 ,, … , 푥  is concave (convex) and 
the restrictions define a convex (concave) set, the Kuhn-Tucker theory establishes 
that any point satisfying the necessary conditions seen before is a local optimum. 

 
Notes: 

- A mathematical programming problem is linear if 푓 푥 ,푥 ,, … , 푥  and 
푔 푥 ,푥 ,, … ,푥 , 푖 = 1, 2, … ,푚 are linear functions of the respective 
arguments. A method to solve this kind of problems is the Simplex 
Method, at which it is used a methodology identical to the one of the 
Steepest Ascent Method. 

- An integer programming problem is a linear programming problem at 
which the values of the variables are integer numbers. Among the useful 
algorithms to solve this kind of problem are branch and bound and cut 
algorithms. From these last ones the most used is Gomory algorithm. 

- As integer programming problems particular cases there are 
transportation problems and allocation problems. In the resolution of the 
first ones it is used the transportation algorithm. The allocation problems 
may also be formalized as transportation problems. But it is not usual to 
make such a procedure and instead it is used in its resolution the method 
known as the Hungarian Method.  

- A quadratic programming problem is a mathematical programming 
problem at which the whole restrictions are linear and the objective 
function has the form 

 

푓 푥 , 푥 ,, … , 푥 = 푐 푥 푥 + 푑 푥  

 

being 푐  and 푑  known constants. For its resolution may be applied the Kuhn-
Tucker method, as in the whole problems that are being inventoried, but the most 
used is the Frank and Wolfe Method, typical of these problems. ∎ 



 
 

Acta Scientiae et Intellectus      ISSN: 2410-9738 

54  Vol.2. No.2 (2016) www.actaint.com 
 
 

Quadratic programming is applied in portfolios management. 
When presenting the Bolzano and Fibonacci search methods, solutions for 

the optimization problem of 푓(푥) being 푎 ≤ 푥 ≤ 푏 were looked for. It may be said 
that a programming problem, nonlinear, mono-variable was being solved. 

 
Zener-Duffin Method 
Usually it is briefly described as a geometric programming method. It is 

applied in the optimization of functions with the form 
 

푓 푥 ,푥 ,, … , 푥 = 푇  

where  

푇 = 푎 푥  

 
being 푎  and 푏  real numbers. 
 
Zener established that if 푚 = 푛 + 1, to optimize f is necessary to find 

adequate constants, 푐 , such that 
 

푇 = 퐾,퐾 constant 

and 

푐 = 1. 

 
So, the optimal value is given by 
 

푓 =
퐾

∏ 푐 .∎ 

 
Duffin extended the work of Zener in the way not to be necessarily m = n +1. 

In that case it is obtained a lower bound and an upper bound for 푓 . 
 
Dynamic Programming 
Its objective is the optimization of functions in the form 
 

푓 푥 , 푥 ,, … , 푥 = 푓 (푥 ) with 푥 = 퐾,퐾 ∈ ℝ 
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The dynamic programming is based on Bellman principle:  
 
- So that a politic is optimal it is necessary that anyone the initial state is and 

anyone the initial decision taken is, each following decision must be optimal 
when related to the resulting state of the decision taken immediately before.  

 
Using the dynamic programming it is possible to transform the initial 

problem in a sequence of n problems, in the form of a recursive relation:  
 

푚 (퐾) = opt {푓 (푥)}

푚 (퐾) = opt 푓 (푥) + 푚 (퐾 + 푥) , 푗 = 푛 − 1,푛 − 2, … , 1
 

 
The optimum so obtained may be maximum or minimum according to the 

nature of the functions 푓 .∎ 
 
MINIMAX THEOREM 
 
Consider then the zero-sum two players games formulation: 

- Be 휙(푥, 푦) a real function of two real variables 푥, 푦 ∈ 퐻 (real Hilbert 
space), 

- Be A and B two convex sets in H, 
- One of the players chooses strategies (points) in A, in order to maximize 
휙(푥, 푦) (or to minimize (−1)휙(푥,푦)): it is the maximizing player,  

- The other player chooses strategies (points) in B, in order to minimize 
휙(푥, 푦) (or to maximize (−1)휙(푥, 푦)): it is the minimizing player.  

- 휙(푥, 푦) is the payoff function. The value 휙(푥 ,푦 ) represents, 
simultaneously, the maximizing player earning and the minimizing 
player loss in a move at which they chose, respectively, the strategies 푥  
and 푦 . 

 This game has a value G if 
 
 sup ∈ inf ∈ 휙(푥, 푦) = 퐺 = inf ∈ sup ∈ 휙(푥, 푦) .  
 
 If for some (푥 ,푦 ), 휙(푥 ,푦 ) = 퐺, (푥 ,푦 ) is a pair of optimal strategies. It is 

also a saddle point if  
 

휙(푥,푦 ) ≤  휙(푥 ,푦 ) ≤ 휙(푥 ,푦),푥 ∈ 퐴, 푦 ∈ 퐵. 
 

Theorem 6 
Consider A and B closed convex sets in H, with A bounded. Be 휙(푥, 푦) a real 

functional defined for x in A and y in B such that: 
 
 - 휙(푥, (1 − 휃)푦 + 휃푦 ) ≤ (1 − 휃) 휙(푥, 푦 ) + 휃휙(푥, 푦 ) for x in A and 푦 ,푦  in 

B, 0≤ 휃 ≤ 1, 
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 - 휙 (1 − 휃)푥 + 휃푥 ,푦 ≥ (1 − 휃) 휙(푥 ,푦) + 휃휙(푥 ,푦) for y in B and 푥 ,푥 in 
A, 0≤ 휃 ≤ 1, 

 - 휙(푥,푦) is continuous in x for each y, then the game has a value.∎ 
The Minimax theorem, from von Neumann, is obtained as a corollary of 

Theorem 6, strengthening its hypothesis: 
 
Theorem 7 (Minimax) 
Suppose that the Theorem 6 functional 휙(푥, 푦) is continuous in both 

variables, separately, and is also bounded. Then there is an optimal pair of 
strategies fulfilling the property of being a saddle point. ∎ 

 
Consider a zero-sum two players game. Calling A the maximizing player and B 

the minimizing player, the payoff table when A chooses the strategy i, i = 1, 2, …, m 
and B the strategy j, j = 1, 2, …, n is 

 
푃푙푎푦푒푟 퐵

푃푙푎푦푒푟 퐴 푔 푖 = 1, 2, … ,푚 and 푗 = 1, 2, … ,푛 

 
reading the player A the values as gains and the player B as loses. Of course a 

negative gain is a loss and vice-versa. In the terms of von Neumann Minimax 
Theorem the problem may be solved as a linear programming problem: 

 
For player A 
The target is to maximize G (value of the game) subject to the constraints 

 
푔 푥 + 푔 푥 + … +  푔 푥 ≥ 퐺

⋮
푔 푥 + 푔 푥 + … +  푔 푥 ≥ 퐺

 

 
푥 + 푥 + … + 푥 = 1
푥 ,푥 , … ,푥 ≥ 0  

 
being 푥  the frequency at which the player chooses its i strategy, i = 1, 2, …, m. 

 
For player B 
The target is to minimize H (value of the game) subject to the constraints 

 
푔 푦 + 푔 푦 +  … + 푔 푦 ≤ 퐻

⋮
푔 푦 + 푔 푦 + … +  푔 푦 ≤ 퐻

 

 
푦 + 푦 +  … + 푦 = 1
푦 , 푦 , … ,푦 ≥ 0  

 
 

being 푦  the frequency at which the player chooses its j strategy, j = 1, 2, …, n. 
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When there is a solution G = H. 
 
If  

max min 푔 = min max 푔 , 푖 = 1, 2, … ,푚; 푗 = 1, 2, … ,푛 

 
the common value is the value of the game and the mathematical programs 

presented above are avoidable.∎ 
 

Note:  
- In this kind of problems there is simultaneously a maximization of 

minimums and a minimization of maximums. 
 

NASH THEOREM 
 
For the case of non-zero-sum games involving two or more players in direct 

competition – non-cooperative games – it is not possible to use the Minimax 
theorem as it was shown above. Instead it is useful a Minimax theorem 
generalization from John Nash: 

 
Theorem 8 (Nash) 
Any non-cooperative game of n players, in which each player has a finite 

number of strategies, has at least one set of equilibrium strategies.∎ 
 
Note: 

- -This theorem shows that there can be multiple equilibrium strategies 
- -Despite being non-cooperative games, the theorem shows that players 

earn more if they agree to cooperate. ∎ 
 
Nash Equilibrium 
It is a game theory solution concept of non-cooperative games with two or 

more players, in which each player is assumed to know the other players 
equilibrium strategies, and no player has anything to gain by changing only their 
own strategy.∎ 
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