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ABSTRACT

This thesis focuses on forecasting realized volatility (RV) and implied volatility (IV) on

equity markets, a subject of major importance for volatility traders. The accuracy of IV and

GARCH-type models to predict RV has been researched extensively. However, little work

has been done to model IV.

We test the accuracy of GARCH-type models (GARCH, GJR and FCGARCH) to forecast,

one-day ahead, the VIX index (the chosen IV measure) and the S&P500 index's daily realized

volatility. While futures on equity's IV are widely available, futures on RV appeared recently

on foreign exchange markets. Yet, expansion to equity markets is expectable. Thus, this

study is a �rst step on developing a RV and IV futures trading strategy.

From 2001 to 2010 the models were estimated based on daily data. Forecasts evalua-

tion is based on the mean absolute error criteria and Diebold-Mariano test. We found the

GJR/FCGARCH models to have the best performance on both RV and IV. From the re-

sults, one can also infer that GARCH-type models are more suitable to foresee IV than RV.

A plausible deduction is that past returns and past variance have a higher impact on IV.

Keywords: Forecasting, Realized volatility, Implied volatility, GARCH models, Multiple

regimes
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RESUMO

Esta tese centra-se na previsão de volatilidade realizada e volatilidade implícita nos mer-

cados de capitais, um assunto de grande importância para os �traders� de volatilidade. A

precisão de modelos GARCH para prever a volatilidade realizada tem sido estudada exten-

sivamente. No entanto, pouco tem sido feito para modelar volatilidade implícita.

Nós testámos a precisão de modelos GARCH (GARCH, GJR e FCGARCH) para prever,

com um dia de antecedência, o índice VIX (a medida de volatilidade implícita escolhida)

e a volatilidade diária do S&P500. Apesar de futuros sobre volatilidade implícita estarem

amplamente disponíveis, os futuros sobre volatilidade realizada só apareceram recentemente

nos mercados cambiais. No entanto, a expansão para os mercados de capitais é expectável.

Assim, este estudo é um primeiro passo no desenvolvimento de uma estratégia de �trading�

de futuros sobre volatilidade realizada e volatilidade implícita.

De 2001 a 2010, os modelos foram estimados com base em dados diários. A avaliação

das previsões é baseada no critério do erro médio absoluto e no teste Diebold-Mariano. A

conclusão é que os modelos GJR / FCGARCH prevêem melhor quer a volatilidade realizada

quer a volatilidade implícita. A partir dos resultados, pode-se, também, inferir que os modelos

de tipo GARCH são mais adequados para prever volatilidade implícita do que volatilidade

realizada. Uma dedução plausível é que os retornos passados e a variância passada têm um

maior impacto sobre volatilidade implícita.

Palavras-chave: Previsão, Volatilidade realizada, Volatilidade implícita, Modelos GARCH,

Múltiplos regimes.

JEL: C22, C52, C53
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� La détermination de ces mouvements (la Bourse) se subordonne à un nombre ini�ni de

facteurs: il est dès lors impossible d'en espérer la prévision mathématique. (...)

Mais il est possible d'étudier mathématiquement l'état statique du marché à un instant

donné (...) le coe�cient d'instabilité ou de nervosité de la valeur, c'est lui qui mesure son

état statique. Sa tension indique un état d'inquiétude; sa faiblesse, au contraire, est l'indice

d'un état de calme.�

Louis Bachelier (1990), Theorie de la Speculation, probably the �rst seeking to de�ne

volatility

1 INTRODUCTION

Stepping back in time, Louis Bachilier - probably the �rst one attempting to de�ne volatil-

ity in �nance - referred in 1990 the impossibility to predict stock returns. In the recent

decades, probably due to the severe impact of �nancial turmoils, both the academy and the

industry started to disregard the forecastability of asset returns while the interest on market

risk and uncertainty expanded (Curto et al., 2009). Thus, the importance of market risk, i.e.,

uncertainty about the market price of a �nancial asset, sharpened the research on modeling

and forecasting volatility.

It is widely agreed that �nancial volatility is critical to �nance in areas such as asset

pricing, asset allocation and risk analysis. �The price of essentially every derivative security

is a�ected by swings in volatility� and �risk management models used by �nancial institutions

and required by regulators take time-varying volatility as a key input� (Brownlees et al., 2010,

p. 2). The concept of le coe�cient d'instabilité ou de nevorsité �rst discussed by Bachelier

(1990), now de�ned as volatility, became a cornerstone of �nance.

Using as reference Majmudar and Banerjee (2004), volatility in the �eld of �nance can

be grouped into three categories: realized volatility (RV): the standard deviation of asset

returns; implied/market volatility: deduced from market prices of derivatives such as options.

Assuming that market prices correctly re�ect agents' expectations, implied volatility (IV)

represents the market prediction about future price �uctuations. The measure of IV used in

this work is the VIX index; model volatility: estimated by the theoretical volatility models

such as GARCH - Generalized Autoregressive Conditional Heteroskedasticity - and Stochastic

volatility. These are latent volatility models because volatility is not directly observable;

though they can be estimated with the aim of predicting future volatility.

Each of these types of volatility can be calibrated according to periodicity (daily, monthly,

etc.) and to sample period. Both RV and IV can be backwards looking (based on past returns

or market prices) or forward looking (the ones to be foreseen).
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In the recent decades, a vast literature has been developed in the �eld of forecasting RV.

The pervasive volatilities across and within asset classes during turmoils and the emergence

of volatility as an asset class reinforced the need to improve the forecasting tools triggering

a vast group of GARCH (discrete-time) and Stochastic (continuous-time) type models.

The forecasting engines that we have decided to apply are GARCH-type models, letting

the application of other models for future research. Therefore, GARCH volatility deserves a

brief presentation.

Until the eighties of the last century, the variance of the error - the terms error, innovation,

disturbance, shock and news will be used interchangeably - in regression �nancial models

was assumed to be constant (homoskedasticity). The idea of �nancial time series volatility

that vary with time, �rst presented by Mandelbrot (1963), was concretized by the ARCH

- Autoregressive Conditional Heteroskedasticity - model proposed in Engle (1982). The

ARCH model allowed a time-dependent heteroskedasticity distribution for the asset returns.

It tries to capture two stylized facts in �nance, i.e., characteristic features of �nancial series,

namely: changing volatility, volatility clustering - the terms volatility clustering, dynamics

and persistence will be used interchangeably - and . Volatility persistence is ubiquitous in

�nancial asset returns due to the clear evidence of contiguous periods of high or low volatility.

The model proposed by Engle introduced a stationary - assumes that unconditional volatility

remains unchanged through time -, parametric and conditional approach to forecast the

second moment of the �nancial asset returns distribution based on the size of past error

terms. Bollerslev (1986) introduced the GARCH model, which is a more parsimonious model

as it reduces the memory needed.

Although these models are widely used to forecast conditional variances, they are unable to

incorporate another stylized fact of returns: the �leverage e�ect� on volatility; an asymmetric

news impact curve that Black (1976) �rst observed, i.e., a sequence of unexpected bad news

or negative innovations is expected to have a higher impact on volatility than a sequence of

positive news with the same size. Among many others, GJR - Glosten, Jagannathan, Runkle

- (1993) have managed to include asymmetric e�ects on stock returns' volatility.

Later, model speci�cations with multiple variance regimes were de�ned to accurate volatil-

ity forecasts, i.e., news of di�erent magnitudes and not only of di�erent signal are expected

to have di�erent marginal impacts on future volatility. One of the latest developments was

brought by Medeiros and Veiga (2009), that presented the FCGARCH - Flexible Coe�cient

GARCH - in which a smooth transition variable triggers the change of volatility regimes. In

this model each regime the impact of past volatility and past innovations is di�erent, whereas

GJR only di�erentiates the impact of past shocks. The advantages of this model are later

explained. To sum up, the GARCH, GJR and FCGARCH are the models employed in this

study to forecast volatility.
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Not only latent volatility models have been used to predict RV. For instance, IV values

have been extensively applied on modeling RV. Yet, Cristensen and Prabhala (1998), among

others, found these forecasts to be biased.

So far, we have focused on the topic of forecasting RV, which is crucial in asset allocation

and risk analysis. RV is also an underlying asset on futures, which are, for the moment, only

available on foreign exchange markets. These futures deliver on maturity the squared returns

of the period de�ned ex-ante.

However IV, the one referred as a biased forecast of RV, is of major importance in derivative

pricing. Instead of only focusing on GARCH-type models to forecast RV, we should also use

these models to predict IV.

Forecasting RV through GARCH-type models and IV values has been subject of a vast

study. Whereas this topic has been developed on many studies, forecasting IV has been

disregarded. This is a considerable gap in the existing literature given the increasing impor-

tance of IV. One should remember that option traders when making investment decisions

are interested not only on the underlying asset price movements but also on the IV derived

by an option's market price. Moreover, IV is a tradable asset not only by trading vega but,

also, through futures and options on IV measures such as the VIX index.

1.1 Objectives

We propose to forecast both RV and IV using the GARCH-type models referred. During

a period of ten years, the models are estimated on a daily basis and 1-day ahead volatility

forecasts are compared with the daily RV and with the IV by the end of the day.

Consider the set of GARCH-type models

M = {1, 2, 3} = {GARCH, GJR, FCGARCH}.

Let h
(m)

t|t−1 be the volatility forecast for period t, provided by model m and based on all

the available information at time t− 1. We consider these volatility forecasts as IV and RV

predictions:

R̂V t = h
(m)

t|t−1, (1)

ˆIVt = h
(m)

t|t−1. (2)

Our objective is to assess which model best predicts RV and the foremost model on

inferring IV. Our �ndings are of highly importance for investment and hedging strategies on

RV and IV. In fact, we consider this thesis to be a preliminary step on developing a successful
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trading strategy on futures on RV and IV. Moreover, we appraise if GARCH-type models are

more e�ective on predicting RV or IV. Hence, this thesis is an empirical analysis with fruitful

conclusions for both the academy and the industry. We intend to arrive at the theoretical

framework that superiorly suits �nancial markets' volatility mechanisms.

The study is organized in several steps. On section two, the methodology applied is

presented, namely the models applied, the use of rolling window on the estimation process and

the employment of Diebold-Mariano test to assess the models' predictive accuracy. Section

three brie�y describes the sample used and section four presents the empirical results. Finally,

section �ve presents our concluding remarks.
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2 METHODOLOGY

We �rst describe the GARCH-type models used, the variables to be forecasted (RV and

IV) and, afterwards, the necessary steps to forecast volatility with these models and the

process applied to rank them.

2.1 GARCH (1,1)

The discussion about dynamic volatility models must start by recalling the pioneer work

of Engle (1982). Let Ft−1represent all the available information at time t − 1 and assume

µt|t−1to be the �true� conditional mean at time t. As aforementioned, before the path breaking

ARCH model, volatility was considered to be constant (homoskedasticity), i.e.,

rt = E(rt|Ft−1) + εt = µt|t−1 + σzt, εt ∼ WN(0, σ), zt ∼ WN(0, 1) (3)

Returns' movements are described by an expected conditional mean and an innovation, εt.

The conditional mean, µt|t−1, derives from a combination of endogenous or/and exogenous

variables, i.e., a set of information included in Ft−1. The shock is described as a white noise

process1 with mean zero and scaled by a constant volatility.

Allowing conditional mean dynamics and no conditional variance dynamics was incoher-

ent with the studies of Mandelbrot (1963)2 and Fama (1965), which showed evidence of

changing volatility and volatility clustering. However, heteroskedasticity was viewed as a

cross-sectional phenomenon and, on the other hand, cross-sectional heteroskedasticity mod-

els were barely suited for dynamics environment (Andersen et al., 2006).

Let's see how did Engle (1982) solved this problem. Consider the discretely sample return

process, {rt}Tt=1, but assume that there is a conditional second moment, i.e., the innovation,

εt, is scaled by the time-varying conditional volatility. Assume σt|t−1 to be the �true� standard

deviation at time t. Thus,

rt = E(rt|Ft−1) + εt = µt|t−1 + σt|t−1zt, zt ∼ i.i.d., E(zt) = 0, V ar(zt) = 1. (4)

To consider conditional heteroskedasticity, Engle (1982) brought the following solution,

the ARCH(q) model:

σ2
t|t−1 = f(εt−1, ..., εt−q) = α0 + α1ε

2
t−1 + ...+ αqε

2
t−q = α0 +

q∑
i=1

αiε
2
t−i. (5)

1A sequence of independent and identically distributed (iid) random variables with constant
mean and variance.

2Mandelbrot (1963): �Large changes tend to be followed by large changes of either sign.�
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To guarantee that both unconditional and conditional variances are positive two conditions

are straightforward to observe: α0 > 0 and αi ≥ 0, iε[1, q].

With this model, the estimated conditional variance can change in time and it is a linear

function of past shocks. Even though both conditional mean and conditional variance are

time-varying, the unconditional mean and the unconditional variance must be constant to

impose covariance stationary - the probability distribution does not change through time.

For this,
∑q

i=1 αi < 1(see proof in Greene, 2002, p. 239).

As found by Mandelbrot (1963), asset returns' variance is a long memory process. It

would be possible to capture this stylized fact with an ARCH(q), where q is high.

Thus, Bollerslev (1986) brought a more parsimonious speci�cation, the GARCH model,

which is a generalization of the ARCH model. The GARCH (q, p) is represented by:

σ2
t|t−1 = f(εt, ..., εt−q, σ

2
t−1, ..., σ

2
t−p) = α1 +

q∑
i=1

λiε
2
t−i +

p∑
i=1

βiσ
2

t−p. (6)

First, we refer the inequality constraints. To assure that conditional variance is non-

negative, α1 > 0, λi ≥ 0, iε[1, q] and βi ≥ 0, iε[1, p].
∑q

i=1 λi +
∑q

i=1 βi < 1 allows the

process to be covariance stationary (see Nelson and Cao, 1992). As aforementioned, in

�nancial markets contexts, volatility tends to be highly persistent (see Diebold, 1988 and

Bollerslev et al., 1988). This stylized fact asks for an ARCH(∞) model that is infeasible in

practice. The GARCH model solves this infeasibility by including past shocks in the past

estimated volatility.

Consider a GARCH(1,1):

σ2
t|t−1 = α1 + λ1ε

2
t−1 + β1σ

2

t−1. (7)

By recursive substitution is straightforward to express it by an ARCH(∞) model,

σ2
t|t−1 = α1(1− β1)−1 + λ1

∞∑
i=1

βi−11 ε2t−i. (8)

The empirical adequacy and the parsimony of a GARCH(1,1) impelled the academy and

the industry to use it as the main tool in volatility forecasting. For this reason, it is one of

the models applied in this study.

2.2 GJR (1,1)

One of the key features of the GARCH process is its symmetry - the sign of past shocks

does not in�uence future volatility. However, Black (1976) and Christie (1982), among others,

found evidence of the so-called �Leverage E�ect�, i.e., changes in innovations and changes in
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volatility are negatively correlated.

The impact of a negative and a positive innovation of the same magnitude tends to impact

di�erently the volatility. A �very bad news� results in a higher volatility than a �very positive

news�. Many economic reasons have been used the explain the phenomena, some examples

are the �nancial leverage and the volatility feedback (see Andersen et al., 2006). Yet, we

are only focused in modeling this feature. Therefore, among the vast group of asymmetric

GARCH formulations, we selected the GJR (1993), which is probably one of the most used

on the �eld.

The GJR(1,1) mimics the GARCH(1,1) but includes a dummy variable, which takes the

value one whenever the past shock is negative:

σ2
t|t−1 = α1 + (λ1 + γIεt−1<0)ε

2
t−1 + β1σ

2
t−1. (9)

A positive and statistically signi�cant estimate for γ indicates a negative asymmetric

volatility response to positive and negative shocks.

2.3 FCGARCH (1,1,2)

The GJR model, among other models, introduced a class of threshold-type volatility mod-

els. In the case that innovations are positive volatility follows a regime, whereas negative

shocks triggers a change of regime - the di�erence between the regimes concerns the �acti-

vation� of γ. However, Engle and Ng (1993) went farther than allowing for a threshold at

zero. They allowed for multiple �news impact curves� at di�erent locations, i.e., di�erent

volatility regimes for the di�erent ranges of the lagged innovation. Yet, this type of model

lacks smoothness on the transition process. Volatility changes abruptly between regimes.

Hargerud (1997) introduced the smooth transition GARCH (STGARCH) model. He dis-

cusses both the logistic and the exponential STGARCH speci�cations. Based on the logistic

function, the model allows for a smooth transition between regimes depending on the sign of

past returns. With an exponential function, the magnitude of the lagged squared of return

smoothly alters the volatility regime. Many other models, which incorporate both sign and

size asymmetries based on threshold or smooth transition speci�cations, have been developed;

see Medeiros and Veiga (2009, hereafter MV).

MV also present another nonlinear GARCH model, the FCGARCH. It departs from the

logistic STGARCH but allows for both sign and size asymmetries with no �xed values for the

location of regimes. Moreover, MV outline the following advantages of the FCGARCH when

comparing it with the existent literature on nonlinear GARCH models. First, more than two

regimes are possible and are determined by a sequence of tests that avoid the identi�cation

problem in nonlinear time series. Secondly, the stationary condition is satis�ed with weak
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restrictions, allowing for rich dynamics that other GARCH-type models fail to describe.

Thus, the FCGARCH(1,1,m), where m = h+ 1 regimes, is described by:

σ2
t|t−1 = f(εt, σ

2

t−1, st) = α1 + β1σ
2

t−1 + λ1ε
2

t−1 +
m∑
i=2

[αi + βiσ
2

t−1 + λiε
2

t−1]fi(st), (10)

where fi(st) is a logistic function de�ned as:

fi(st) =
1

1 + e
−γi(st−ci)

. (11)

fi(st) plays the role of a nonlinear smooth transitional continuous function where the

transition variable is st. There are di�erent possible choices for the transition variable, which

can be exogenous or endogenous to the model, as long as it follows a strictly stationary

process. MV uses past innovations. An alternative could be the volume. We will consider

only the use of past shocks, st is εt−1. Testing other variables is left for future research.

As aforementioned, MV produced a sequence of tests to determine the number of regimes.

However, not only the test is computationally intensive but the model is exponentially less

parsimonious when the number of regimes increases - note that each regime implies estimating

�ve other parameters. Given the importance of the principle parsimony in the �nancial �eld,

it is applied a FCGARCH with only two regimes without the sequence of tests referred before.

It now follows a brief description of the conditions that allow for an FCGARCH(1,1,2),

σ2
t|t−1 = α1 + β1σ

2

t−1 + λ1ε
2

t−1 + [α2 + β2σ
2

t−1 + λ2ε
2

t−1]f2(εt−1), (12)

to work properly.

�The FCGARCH model is identi�able if there are no two sets of parameters such that

the corresponding distributions of the population variable ε are identical.�, MV (p. 130).

The same input-output map must not be obtained based on two di�erent FCGARCH mod-

els, which would imply two equal maximums for the log-likelihood function. Di�erent FC-

GARCH(1,1,2) models produce the same output - volatility estimates - if one of the models

is reducible. Thus, to achieve a feasible estimation process the model has to be irreducible,

i.e., there has to be no irrelevant regimes. The inexistence of irrelevant regimes is assured if

α2, β2, and λ2 do not equal 0 simultaneously and γ2 6= 0.

The reason for the �rst condition is straightforward to understand. For the second one

should note that when γ2 = 0, f2(εt−1) = 1/2, i.e., it becomes a constant. Thus, the regime

has no reason to exist because it can be incorporated on the plain-vanilla regime.

One also needs to ensure strictly positive conditional variances. Note that f2(εt−1)ε[0, 1].

Thus, if
∑K

i=1 αi > 0,
∑K

i=1 βi ≥ 0 and
∑K

i=1 λi ≥ 0, Kε{1, 2}, the conditional variance is

8



always positive.

MV proves that the following assumption is a su�cient condition for strict stationary of

the model: 1
2
(β1 + λ1) +

1
2

2∑
i=1

(βi + λi) < 1.

So, how does the model work? Assume that γ2 > 0:

α1 + β1σ
2

t−1 + λ1ε
2

t−1 [α2 + β2σ
2

t−1 + λ2ε
2

t−1]f2(εt−1)

c2 N/A highly negative highly positive

εt−1 → −∞ → 0 → +∞ → −∞ → 0 → +∞ → −∞ → 0 → +∞
f2(εt−1) N/A → 0 ≈ 1 → 1 → 0 ≈ 0 → 1

Regime is active inactive active active inactive inactive active

Table 1: The engine of a FCGARCH (1,1,2).

Note that f2(εt−1) has the opposite behavior when γ2 < 0.

Sign asymmetries are straightforward to observe. Assuming that γ2 > 0, the so called

�leveraged e�ect� is present if the regime has a negative impact on conditional variances.

Size asymmetries are de�ned by the value of c2. The model also allows other rich dynamics.

For instance, with negatives α2 and β2 but a positive λ2, a �very good new� triggers higher

marginal volatility per past return than in �tranquil periods�.

A �nal word for γ2. Its role is to determine the speed of transition between regimes, being

that when γ2 → +∞ the model becomes a threshold-type model.

2.4 Realized Volatility

Let pt be the asset price at the end of time t. Thus, the logarithm return is:

rt = ln

[
Pt
Pt−1

]
. (13)

Historical RV is often computed as:

σ̂2
t =

1

N − 1

N∑
t=1

(rt − r)2, (14)

the sample variance of asset returns, which can vary in terms of periodicity. By increasing the

frequency to its maximum, reckoning each trade, one would have a measure that considers

the complete spectrum of price variations. Notwithstanding, this is a biased estimator of RV.

Some authors argue that the use of spot volatility, tick by tick, is constrained due to noise
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problems introduced by micro-structure e�ects such as bid-ask spreads, non-synchronous

trades and intraday volatility patterns; see Andersen et al. (2003) for a comprehensive

discussion. On the same paper, �ve minutes interval was found to be the best periodicity.

In fact, the true RV is latent, i.e., it can only be estimated with some error (Andersen et

al., 2006) - note that we designated the sample standard deviation as σ̂, i.e., an estimator of

volatility and not the true observer volatility. We ignore this point, and focus, instead, on

daily RV de�ned as the absolute value of daily asset returns,

RVt = |rt|. (15)

Despite being a biased estimator, futures on foreign exchange RV3 de�ne RV as the squared

daily asset return. As this study is a �rst step on developing a RV futures trading strategy, we

shall consider RV as market makers de�ne it. In the case that futures on RV become exchange-

traded, it is likely that RV will be designated as the squared daily returns. Although the use

of squared returns as a proxy of volatility can be criticised, it is of irrefutable importance to

forecast squared returns given its application on exchange-traded futures.

2.5 Implied/Market Volatility

IV is a reverse way of pricing an option. The relation between IV and an option price

is similar to the relation between a yield and a bond price. One can value an option(bond)

through its price or IV(yield).

IV is of major importance because it re�ects the market sentiment on the underlying asset,

it is a pricing measure for option traders and it is a tradable asset when hedging all greeks

but vega and through futures on IV proxies.

If we were to focus on trading vega, we would likely incur in errors of measurement and

misspeci�cation. On a plain vanilla bond the cash-�ows are ex-ante determined - ignoring

credit risk. But on the other hand, option's cash-�ows depend on the underlying asset's spot

price at maturity, creating the need for statistical pricing formulas, e.g. Black-Scholes. The

use of these type of formulas increases the likelihood of estimation's errors.

However, there are IV proxies that mitigate the problems of measurement errors of models'

inputs and model misspeci�cation. One of them is the VIX index, which is presented next.

The fact that the VIX index is an underlying asset on futures impel us to view it as a

more e�cient tool for trading IV. Hence, our focus should be on analysing the accuracy of

GARCH-type models to predict the VIX.

3http://www.cmegroup.com/trading/fx/realized-fx-volatilities/eur-usd-1-month-realized-
volatility_contract_speci�cations.html
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2.5.1 VIX

The VIX is a volatility index calculated by the Chicago Board Options Exchange. It is

based on the bid/ask quotes of options on the S&P 500 index and is considered to be the fear

index because it re�ects the market's expectation of the volatility in the S&P500 index. An

increase of the demand for put options triggered by a more prudent attitude rises IV and,

consequentially, increases the value of VIX.

The VIX was revised in 2003 incorporating two major changes4. First, a wider range

of strike prices is included so that the VIX assimilates the volatility skew. Secondly, it is

independent of a pricing model.

For the sake of comparison, RV and IV values need to be on the same basis. Thus, given

that VIX values are on an annualized basis, we need to adjust these values to a daily basis:

IVt =
V IXt√
252 ∗ 100

(16)

2.6 Forecasting

We proceed by describing the necessary steps to forecast volatility with GARCH-type

models.

First, an assumption regarding the error's distribution has to be made. Independently of

the Jarque-Bera test result - presented in Data Analysis -, which tests if innovations follow a

Gaussian distribution, we assume that the errors follow a Normal distribution to simplify the

estimation process. In fact, Bollerslev et al. (2010) �nds no bene�t in assuming a t-Student

distribution when forecasting volatility. Thus, the returns' process is de�ned by

rt = µt|t−1 + σt|t−1zt, zt ∼ N(0, 1). (17)

Following, the stationarity of the logarithm returns series should be assessed by the Aug-

mented Dickey-Fuller (ADF) test, that assumes in the null hypothesis the presence of a unit

root/nonstationary process. If there is evidence of stationarity, which is usual on logarithm

returns, no transformation of the series is needed.

Thereafter, we need to evaluate the existence of statistically signi�cant returns autocor-

relations. It is done by performing the Ljung-Box test, which considers no autocorrelation

between returns on the null hypothesis. In the case of statistically signi�cant autocorrelations

the conditional mean has to be model through ARMA - Autoregressive Moving Average -

processes. If the returns are uncorrelated we can assume the series of returns to correspond

to the series of shocks, i.e., the conditional mean is zero.

4See calculation procedures at http://www.cboe.com/micro/vix/vixwhite.pdf.
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After, the Engle's ARCH Lagrange Multiplier test is performed to evaluate the existence of

conditional heteroskedasticity. This test con�rms the need of conditional variance modeling.

Finally, we apply the models described before on a sample of ten years. We consider the

length of the period to be su�cient to support our �ndings.

Regarding the periodicity of models' estimation, we decided to perform it on a daily basis.

We expect this to improve the predictive accuracy of the models. According to Andersen et

al. (2003), �ve year of monthly data is the most common rolling window used in volatility

forecasting. Thus, on each day from January, 2001 to December, 2010 the previous 5 years of

daily observations are used to estimate the GARCH-type models and to forecast the next day

volatility. The models are estimated by maximizing the logarithm of the likelihood function,

which, as we assume a Gaussian distribution for the conditional distribution - εt ∼ N(0, σ
2

t )

-, is described as:

lt = lnLt = −
1

2
ln(2π)− 1

2
ln(ht)−

ε2t
2ht

. (18)

For the sake of clari�cation, we brie�y describe the models presented before and the

assumptions that allow them to properly work:

h
(1)

t = α1 + λ1ε
2
t−1 + β1σ

2

t−1, (19)

Assumption1 : α1 > 0, λ1 ≥ 0 and β1 ≥ 0,

Assumption2 : λ1 + β1 < 1;

h
(2)

t = α1 + (λ1 + γIεt−1<0)ε
2
t−1 + β1σ

2

t−1 (20)

Assumption1 : α1 > 0, λ1 ≥ 0 and β1 ≥ 0,

Assumption2 : λ1 + β1 < 1;

h
(3)

t = α1 + λ1ε
2
t−1 + β1σ

2

t−1 + [α2 + β2σ
2

t−1 + λ2ε
2

t−1]
1

1 + e
−γ2(εt−1−c2)

; (21)

Assumption1 : {α2, β2, λ2} 6= {0, 0, 0} and γ2 6= 0,
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Assumption2 :
K∑
i=1

αi > 0,
K∑
i=1

βi ≥ 0 and
K∑
i=1

λi ≥ 0, K = {1, 2},

Assumption3 :
1

2
(β1 + λ1) +

1

2

2∑
i=1

(βi + λi) < 1.

2.7 Evaluation

The measurement of models' capability to forecast 1-day ahead RV and IV is based on

two diagnostic tools: Diebold-Mariano (DM) test and mean absolute error (MAE).

Let {RVt} and {IVt} be the series to be forecasted and {h(m)
t }, M = {1, 2, 3}, the forecasts

produced by the di�erent GARCH-type models.

From each model, the forecast errors are ω(m)
t = RVt −

√
h
(m)
t and θ(m)

t = IVt −
√
h
(m)
t .

ω
(1)
t , ω(2)

t and ω(3)
t use the same series of RV. As they all use the same data it might be the

case that the series of forecast errors are serially correlated - the same applies to IV. The

DM test is performed to circumvent this hurdle.

First, consider the following loss functions: L(ω(m)
t ) = |ω(m)

t | and L(θ
(m)
t ) = |θ(m)

t |. The
null hypothesis of the DM test assumes an equal forecasting capacity. Thus, for the case of
RV it tests the following null hypothesis:

Ho : E[L(ω
(i)
t )] = E[L(ω

(j)
t )], iεM, jεM, i 6= j. (22)

If the absolute value of the statistic test is above 1.96 the null hypothesis is rejected,

meaning that one model predicts better than the other. If the statistic is below -1.96 there is

evidence that model (i) best predicts, whereas a value higher than +1.96 indicates a better

predictive accuracy of model (j).

To assess what do GARCH models best predict - if RV or IV - we use the mean absolute

error: MAE(RV ) =
∑T
t=1 |ω

(m)
t |

T
and MAE(IV ) =

∑T
t=1 |θ

(m)
t |

T
.
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3 DATA ANALYSIS

This section is intended to analyse the data used to achieve the proposed objectives of

this thesis.

The descriptive statistics of the data are presented in table 2. We use the S&P500's

daily closing prices from January, 1996 to December, 2010. S&P 500 index values are taken

from Bloomberg and VIX index values from CBOE. Despite the fact that VIX calculations

procedures were revised in September 2002, past VIX values were re-calculated according to

the new rules.

Series S&P 500's Returns RV IV

Start 03/01/96 02/01/2001 02/01/2001
End 31/12/10 31/12/10 31/12/10

Observations 3776 2514 2514
Sample Mean 0,0002 0,0092 0,0139

Median 0,0007 0,0061 0,0128
Sample Std. Deviation 0,0131 0,0103 0,0063

Maximum 0,1096 0,1096 0,0509
Minimum -0,0947 0,0000 0,0062

Sample Skewness -0,1856 3,1184 1,8627
Sample Kurtosis 7,4617 16,4257 5,2245

Table 2: Descriptive Statistics of Returns

Logarithm daily returns were computed by the close price on a speci�c date and the close

on the day before. RV corresponds to the absolute value of daily returns, whereas IV is

computed by adjusting the VIX index to a daily basis:

rt = ln

[
Pt
Pt−1

]
, RVt = |rt| and IVt =

V IXt√
252 ∗ 100

(23)

Although S&P 500's returns have a positive mean, the negative skewness points an asym-

metry, namely a heavier left tail on the empirical distribution function. It is widely agreed

that negative returns - left tail - have more weight on empirical returns distribution than

on a Normal distribution. In fact, both tails are heavier than in a Gaussian distribution -

a Normal distribution has a kurtosis of three. Yet, the di�erence between the right tails is

lower. These non-Gaussian evidences are later con�rmed by the result of the Jarque-Bera

test.
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Figure 1: S&P500's daily closing prices

The sample chosen allows to test the models throughout the dotcom and subprime bubbles.

One observes bullish markets before 2000 and from 2003 to 2007 and crashes from 2000 to

2002 and 2008 to 2009.

The objective is to test the models under stressed market conditions, when both realized

and IV tend to �uctuate more. Assessing forecasts' accuracy on calm and turbulent periods

allows to take a better picture of the models' capabilities.
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Figure 2: S&P500's daily returns
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Figure 2 presents the S&P500's daily returns throughout the sample chosen. It is ob-

servable that the subprime crisis presents a more volatile pattern with clear and striking

spikes.

The mean stationarity of returns is later statistically proved. Yet, it is easy to observe

it in Figure 2 as returns �uctuates around an approximate zero mean. Moreover, volatility

clustering is crystal clear on returns movements. 96 to 97 and 03 to 06 calm periods contrast

with the turbulent intervals, which take place from 98 to 02 and, especially, from 07 to 10.

Figure 3 presents S&P500 index RV and IV. It is easily observable a higher variation of RV

while IV tends to be more stable. The maximum/minimum range and the sample standard

deviation is higher on RV. Thus, both graphically and numerically the RV evidences to be

more volatile.

We proceed by performing some of the statistical tests referred on Methodology.

As expectable, the Jarque-Bera test result clearly rejects the Gaussian distribution hy-

pothesis - the p-value is below a 5% signi�cance level. Thus, this study may be repeated

with the application of other distributions.

The result of the ADF test in Table 3 indicates the presence of stationarity as it is clearly

below the critical value at 5% signi�cance level. Therefore, there is no need of transformations

on the series used.

The Ljung-Box statistic is above a 5% signi�cance level indicating the returns to be

uncorrelated. Hence, we assume a zero conditional mean, i.e., µt|t−1 = 0 and rt = εt.

Finally, on the ARCH(1) LM test, the null hypothesis, which assumes conditional ho-

moskedasticity, is rejected. We conclude that the S&P 500 index returns exhibit ARCH

e�ects, which reinforces the need of GARCH-type models to forecast volatility.

Statistic P-value
Jarque-Bera 686.2963 0.001

ADF -35.5039 0.001
Ljung-Box(15) 21.8911 0.1107
ARCH(1) LM 48.3142 0

Table 3: Statistic tests (1996 to 2000)
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4 EMPIRICAL RESULTS

Using the methodology aforementioned, we produce daily volatility forecasts assuming

the three di�erent GARCH models. To estimate the parameters we use a rolling window,

re-estimating the models' parameters. We recorded the series of parameters, model likelihood

and volatility forecasts. The descriptive statistics of these series is available on Appendices.

Based on the sample used, Figure 4 relates the past daily innovation with the one-day

ahead volatility forecast. This relation is designated as the �News Impact Curve� and was

�rstly highlighted by Black (1976). It captures the impact of a shock on the next day

volatility. The importance of this relation concerns the di�erent inclination of the curve for

positive vs. negative innovations.

The graph is slightly asymmetric and seems to con�rm the presence of a higher marginal

impact on volatility when negative shocks are registered, i.e., a higher slope of the curve in

the case of negative shocks.
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Figure 4: News Impact Curve

Figure 5 presents the GARCH, GJR and FCGARCH volatility forecasts, which are, on

a visual analysis, synchronized. The only exceptions are the high FCGARCH spikes during

the dot-com crisis.
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Figure 6 and �gure 7 present the models' forecasts, as well as, RV and IV. Despite the

models' dynamics in responding to recent shocks, they are still unable to follow the noisy

behavior of RV. Yet, it is visible that models' forecasts pursue the RV's directional tendency.

The pattern of IV is clearly more stable and convergence of forecasts with IV seems to be

far more frequent than with RV.

Finally, we present the statistic measures used to rank the models and achieve the objec-

tives of this thesis.

GARCH-GJR GARCH-FCGARCH GJR-FCGARCH

DM (RV) 4.889 4.459 0.183
DM (IV) 5.730 3.394 1.306

Table 4: Diebold-Mariano test

According to the results, GJR model beats the GARCH and the FCGARCH has a better

predictive accuracy than GARCH on both RV and IV because the DM statistics are above

+1.96. However, one cannot reject the hypothesis of equal forecasting capacity of GJR and

FCGARCH on both RV and IV as the absolute value of the statistics are in-between -1.96

and +1.96. Thus, we conclude that GJR and FCGARCH are the best models to predict RV

and IV.

GARCH GJR FCGARCH

MAE (RV) 0.0068 0.0067 0.0067
MAE (IV) 0.0025 0.0027 0.0027

Table 5: Mean Absolute Errors

By analysing the MAE results, we achieve the interesting conclusion that the capacity of

GARCH-type models to predict IV overperforms the accuracy of these models to forecast RV.

Thus, IV is better predicted by GARCH-type models than RV - lower MAE on all models.

We can deduce that market's expectation about future volatility is best inferred by GARCH

models than future RV.
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5 CONCLUSIONS

We performed an analysis of the accuracy of GARCH-type models to forecast, from 2001

to 2010, the VIX and daily RV of the S&P500 index. We apply the plain-vanilla GARCH

model, incorporate the leverage e�ect by employing the GJR model and introduce a smooth

transition process between volatility regimes by �tting the FCGARCH model. This is a

preparatory step in developing a trading strategy on futures on which the underlying assets

are daily squared returns or the VIX index - a measure of IV.

Based on Diebold-Mariano test, the GJR(1,1) and FCGARCH(1,1,2) reveal to best pre-

dict both RV and IV. The results can be justi�ed by the embedded dynamics on GJR and

FCGARCH allowing for di�erent volatility regimes. Thus, trading strategies on RV and IV

futures shall adopt these models to produce forecasts. This is left for future research.

Moreover, by comparing mean absolute errors one can also deduct that GARCH models

are more suitable to foresee IV than RV. Thus, a plausible corollary is that past returns and

past variance a�ect more IV, market's expectation of future volatility, than future RV.
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7 APPENDICES

α1 λ1 β1 Likelihood
√
ht

Sample Mean 3.929e-006 0.0856 0.8871 3.9608e+003 0.0118
Median 2.000e-006 0.0878 0.8944 3.9304e+003 0.0103

Sample Std. Deviation 3.254e-006 0.0131 0.0238 213.8664 0.0063
Maximum 1.3279e-005 0.1194 0.9145 4.3429e+003 0.0514
Minimum 2.000e-006 0.0563 0.8153 3.6429e+003 0.0053

Sample Skewness 1.5062 -0.1452 -1.4432 0.3681 2.8246
Sample Kurtosis 3.8245 2.4257 4.1470 1.9001 13.6716

Table 6: GARCH(1,1) model statistics.

α1 λ1 γ β1 Likelihood
√
ht

Sample Mean 3.269e-006 3.4125e-008 0.1416 0.9079 3.9927e+003 0.0117
Median 1.366e-006 1.5006e-008 0.1307 0.9226 3.9619e+003 0.0101

Sample Std. Deviation 3.273e-006 5.8142e-008 0.0498 0.0392 210.2855 0.0068
Maximum 1.179e-005 7.9649e-007 0.2514 0.9577 4.3670e+003 0.0532
Minimum 4.559e-007 5.3629e-018 0.0604 0.8157 3.6734e+003 0.0041

Sample Skewness 1.1387 4.4252 0.8133 -1.0182 0.3560 2.7230
Sample Kurtosis 2.8491 32.1206 2.5547 2.7112 1.8988 12.8254

Table 7: GJR(1,1) model statistics.
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Table 8: FCGARCH(1,1,2) model statistics.
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