Smart Innovation, Systems and Technologies 134

Research into Design for a Connected World

Proceedings of ICoRD 2019 Volume 1

Editor Amaresh Chakrabarti Centre for Product Design and Manufacturing Indian Institute of Science Bangalore Bangalore, India

 ISSN 2190-3018
 ISSN 2190-3026 (electronic)

 Smart Innovation, Systems and Technologies
 ISBN 978-981-13-5973-6
 ISBN 978-981-13-5974-3 (eBook)

 https://doi.org/10.1007/978-981-13-5974-3
 ISBN 978-981-13-5974-3
 ISBN 978-981-13-5974-3

Library of Congress Control Number: 2018966842

© Springer Nature Singapore Pte Ltd. 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Part I Design Theory and Research Methodology

1	Adap	otation of	Toulmin's Model of Argumentation for	
	Estab	olishing R	ligour and Relevance in Design Research	3
	Pram	od Khamt	pete	
	1.1	Introdu	ction: Design Research, Process, Outcomes	
		and As	sessment	3
		1.1.1	Design Research	3
		1.1.2	Design Research Outcomes	4
		1.1.3	Assessment of the DR Outcomes	4
	1.2	Toulmi	n's Model of Argumentation	5
		1.2.1	Argument and Argumentation	5
		1.2.2	The Structure of a Practical or "Substantial"	
			Argument	5
	1.3	Key As	spects of Toulmin's Model	6
	1.4	Mappin	g the Components of Toulmin's Model to Elements	
		of Rese	earch	7
		1.4.1	Application to Design Research Process and	
			Activities	7
		1.4.2	Methodology Neutral Mapping of the Elements	9
		1.4.3	Guidance for Using the Model for Reflection	
			and Self Evaluation	10
	1.5	Discuss	sion and Future Directions	11
	Refer	rences		12
2	The	Ethno-Cu	ltural Influences on "Assam Type" Building	
-			Case of Barduwa, Assam	15
			avi Mokashi Punekar	10
	2.1		ction	15
	2.2		lology	16
				10

		2.2.1	Aim, Research Questions, Hypothesis	17
		2.2.2	Data-Collection Method	18
		2.2.3	Setting	18
		2.2.4	Object	19
		2.2.5	Coding and Analysis Method	19
		2.2.6	Verification of Methods	20
	2.3	Finding	gs	20
		2.3.1	Planning of Village	21
		2.3.2	Organization of Activities	21
		2.3.3	Neighborhood Schema	22
		2.3.4	Elements of a Dwelling Units Given	
			in Appendix A	22
		2.3.5	Site Organization and Features	22
		2.3.6	Assam-Type House Portions and Details Given	
			in Appendix B	23
	2.4	Results		24
	2.5	Conclu	sion	25
	Refer	ences		26
3	Func	tional Co	rrelation, Design Information Entropy,	
3			idency of Axiomatic Design Axioms	27
		Krus	lucity of Axiomatic Design Axioms	21
	3.1		ction	27
	3.2		Space and Functional Space	28
	3.3	-	vity Analysis	20
	3.4		Information	31
	3.5		onal Correlation	32
	3.6		Determinant and Design Controllability	33
	3.7	•	sion	36
	3.8		sions	36
	_			37
				57
4			ogression Framework for Designing	
			aviour Change	39
			ni, Pramod Khambete and Ravi-Mokashi Punekar	
	4.1		ction	39
	4.2		Design	40
	4.3	-	for Behaviour Change and Ethics	41
	4.4		Ire Review	43
	4.5		our Progression Framework	45
	4.6		ng the Framework to Design a Case Study	47
	4.7		sion and Future Direction	49
	Refer	ences		50

Contents

5		ssing Designers' Perception, Analysis, and Reflective Using al Protocol Analysis	51
		ammad Jameel Mohamed Kamil, Shahriman Zainal Abidin	21
		Oskar Hasdinor Hassan	
	5.1	Introduction	51
	5.2	Unconscious Interaction and Cognitive of Human	51
	5.2	Behavior (UICHB) in Everyday Product	52
	5.3	Methodology.	53
	5.4	Results and Discussion	56
			- 50 - 60
	5.5	Summary	
	Refer	rences	60
6		ssing the Attributes of Unconscious Interaction Between	
		an Cognition and Behavior in Everyday Product Using	()
		e-Based Research Analysis	63
		ammad Jameel Mohamed Kamil, Shahriman Zainal Abidin	
		Oskar Hasdinor Hassan	
	6.1	Introduction	63
	6.2	Literature Review	64
		6.2.1 The Attributes of UIHCB in Everyday Product	64
		6.2.2 Image-Based Research Analysis.	66
	6.3	Methodology	66
	6.4	Results and Discussion	67
		6.4.1 The Results of Image Analysis	67
		6.4.2 Respondents' Evaluation of the Analysis	
		of Images	70
	6.5	Summary	71
	Refer	rences	72
_			
7		ucts and Services—Strangers or Siamese Twins?	75
		anth Radhakrishna Wagle, Ravi Mahamuni	
		Krishnesh Mehta	
	7.1	Introduction	75
	7.2	Methodology	76
	7.3	Establishing Product and Service Characteristics	77
	7.4	Case Study 1: Designing a Service for an Existing	
		Product	78
	7.5	Case Study 2: Designing a Product for an Existing	
		Service	80
	7.6	Observations	81
		7.6.1 Mapping the Characteristics Without Any	
		Abstraction	83
	7.7	Conclusions and Direction for Future Work	84
		ences	84

8	Biomi	micry: Exploring Research, Challenges, Gaps,			
	and T	ools	7		
	Sunil Sharma and Prabir Sarkar				
	8.1	Introduction	7		
	8.2	Methodology and Research Design	8		
		8.2.1 Methodology 88	8		
		8.2.2 Research Design 89	9		
		8.2.3 Applications of Biomimicry	1		
		8.2.4 Biomimetic Methodology 92	2		
		8.2.5 Tools and Methods	3		
		8.2.6 Research Challenges in Biomimicry	4		
		8.2.7 Research Gaps in Biomimicry 92	5		
		8.2.8 Conclusion	6		
	Refere	nces	6		
9	Cultur	ral Domain Analysis for Soundscape Assessment	9		
	Malay	Dhamelia and Girish Dalvi			
	9.1	Introduction	9		
		9.1.1 Introduction to the Locality 10	0		
	9.2	Existing Approaches, Methods, and Tools 10	0		
		9.2.1 Measuring Perceptions 10	1		
	9.3	On Cultural Domain Analysis 10	1		
	9.4	Method	2		
		9.4.1 Free Listing 10/	2		
		9.4.2 Pile Sorting 102	2		
	9.5	Analysis	4		
	9.6	Results	5		
		9.6.1 Cultural Domain Analysis 10	5		
		9.6.2 Thematic Analysis 10'	7		
	9.7	Discussion 10			
	9.8	Future Work	9		
	9.9	Conclusion	9		
	Refere	nces	9		
10	An Ov	verview of Futures Research for Designers	1		
	Deepsł	hikha Dash			
	10.1	Introduction 11	1		
		10.1.1 Current Relation Between Design			
		and the Future 11			
		10.1.2 Way Forward	2		
	10.2	Definitions 112	2		
		10.2.1 Futures Research or Futures Studies 112	2		
		10.2.2 Design 11	3		

	10.3	Why Sho	buld Designers Look into the Far Future?	113
		10.3.1	Enabling Better Decision-Making	113
		10.3.2	Acknowledging Both Macro and Micro	
			Environments	113
	10.4	How Car	n the Future Be Studied?	114
		10.4.1	Creating Images of the Future	114
		10.4.2	Observing Dimensions of Change	114
		10.4.3	Traces and Witnesses	115
		10.4.4	Multidisciplinary Approach	115
	10.5	How Car	n We Establish a Synergy?	115
		10.5.1	Productive Thinking	115
		10.5.2	Key Ingredients for Productive Thinking	116
	10.6	Methodo	logy	118
		10.6.1	Step One: Collection (<i>Gathering Information</i>)	118
		10.6.2	Step Two: Analysis (Creating Categories)	118
		10.6.3	Step Three: Relation (Finding Interconnections)	119
		10.6.4	Step Four: Synthesis (Creating Images)	119
		10.6.5	Step Five: Reaction (Critiquing Images)	119
		10.6.6	Step Six: Value Negotiation (Making Informed	
			Final Judgments)	120
		10.6.7	Step Seven: Action (<i>Creating Actionable Plans</i>)	120
	10.7		on	120
	Refere	nces		121
11	Theore	etical and	Conceptual Discussions Towards Creative	
			anagement in the Construction Sector	123
	Vishal	_		
	11.1	Introduct	ion	123
	11.2	Backgrou	ınd	124
		11.2.1	Lean Design Management in Construction	
			Research and Practice	124
		11.2.2	Expectations of Innovation and Disruption	
			in the Construction Sector	126
	11.3	Conceptu	al and Theoretical Propositions for Future	
		Research	and Development	126
		11.3.1	Convergence of Operational and Cognitive	
			Iteration Cycles in Design	126
		11.3.2	'Missed Opportunity' as a Waste	127
		11.3.3	Can Current Conceptions of Transformation	
			and Flow Adequately Account for Radical	
			Reformulation?	127

		11.3.4 From a Theory of Constraints, Towards a Theory	
		1	.28
	11.4		31
	Refere	$1 ces \ldots \ldots$.32
12	A The	pretical Framework for Interactive Visual	
			33
		a Kumar Radhakrishnan and Ravi Poovaiah	
	12.1	Introduction to Interactive Visual Narratives (INVs) 1	33
	12.2	Model for Storytelling 1	34
	12.3	Theoretical Framework for IVN Environments 1	40
	12.4	Conclusion	42
	Refere	nces	42
13	Study	of Assamese Letterform and Its Structure:	
	•		43
		Padun and Amarendra Kumar Das	
	13.1		43
	13.2		45
		13.2.1 Kaitheli Style	45
		13.2.2 Bamuniya Style	45
		13.2.3 Garhgaya Style	46
		13.2.4 Conclusion of Literature Review	46
	13.3	Methodology to Study Historical Assamese Letterforms 1	46
			47
		13.3.2 Arranging Resources Chronologically 1	48
			48
			.49
		13.3.5 Exploring Uniqueness 1	51
		0	51
			51
		1 91	53
			53
		II III	.54
	13.4		.54
	13.5 D.f.		54
	Refere	nces	55
14	Taxon	omy of Jewellery Manufacturing Processes According	
	to Roc	t Processes	57
	0	K. Vyas	
	14.1		57
	14.2		58
	14.3	Results	.60

	14.4	Discussi	ion	163
	14.5	Limitatio	ons	166
	14.6	Conclus	ion	166
	Refere	ences		166
15	Propo	sal of a N	Model to Measure Diverse Factors Influencing	
10			in Jewellery	169
		K. Vyas		107
	15.1	2	tion	169
	15.2		r a Standardized Model to Measure 'Value'	171
	15.3		ology for Listing Quality Parameters	171
		15.3.1	Physical Factors Adding Value as a Result	
			of Hand Work	172
		15.3.2	Human Factors Adding Value as a Result	
			of Hand Work	172
		15.3.3	Association Between Material Factors	
			and Value	173
	15.4	Mathem	atical Model	174
		15.4.1	Hedonic Functions for Pricing/Valuation	174
		15.4.2	Proposition of Rational Valuation with Hedonic	
			Estimation	174
	15.5	Limitatio	ons	176
	15.6	Conclus	ion	176
	Refere	ences		177
16	Contr	asting Di	vergent and Convergent Thinking by	
		<u> </u>	lography and Eye Tracking	179
		_	pia, Francesca Montagna and Peter Törlind	
	16.1	-	tion	179
	16.2		periment: Methodology, Equipment, and Setting	181
		16.2.1	Participants	181
		16.2.2	Experimental Task and Conditions	182
		16.2.3	EEG Data Acquisition and Quantification	
			of Cortical Activity	183
		16.2.4	Eye Tracking Data Acquisition and Quantification	
			of Ocular Activity	184
				101
		16.2.5	· · · · · · · · · · · · · · · · · · ·	184
		16.2.5 16.2.6	Remaining Apparatus and Experimental Setting Behavioral Evaluation	
	16.3		Remaining Apparatus and Experimental Setting Behavioral Evaluation	184
	16.3	16.2.6	Remaining Apparatus and Experimental Setting Behavioral Evaluation	184 185
	16.3	16.2.6 Results	Remaining Apparatus and Experimental Setting Behavioral Evaluation	184 185 185
	16.3 16.4	16.2.6 Results 16.3.1 16.3.2	Remaining Apparatus and Experimental Setting Behavioral Evaluation	184 185 185 185
		16.2.6 Results 16.3.1 16.3.2 Discussi	Remaining Apparatus and Experimental Setting Behavioral Evaluation	184 185 185 185 185

	~		
17		eptual Intermediate Structures for Interaction Design	100
		mplex Safety-Critical Systems	189
		Kant and Mikael Wahlström	
	17.1	Introduction: Challenges of Interaction Design	100
	17.0	in Safety-Critical Systems	189
	17.2	Generic Mechanisms to Engage the Cognitive	
		and Social Sciences in Design of Safety-Critical	100
		Systems—A Hypothesis.	192
		17.2.1 Example 1: Cognitive Work Analysis	193
		17.2.2 Example 2: Core Task Analysis	195
	17.3	Implications and Conclusion	197
	Refere	ences	198
-			
Par	t II D	esign Modelling, Simulation and Visualisation	
18	Simul	ation of Falling Object Protective Structure Testing	
	of Ear	rth Moving Equipment Cabin	203
	A. Go	mathinayagam, P. Antony Stephen, S. Babu and K. Keshava	
	18.1	Introduction	204
	18.2	FOPS Testing Procedure According to ISO 3449	205
		18.2.1 Definitions	205
		18.2.2 Procedure	205
		18.2.3 Acceptance Criteria.	206
	18.3	Experimental Work	206
	18.4	Finite Element Analysis	208
	18.5	Conclusion	212
	Refere	ences	213
19	Form	asting: Bayesian Inference Using Markov Chain Monte	
19		Simulation	215
		inathan Meenakshisundaram, Anirudh Srikanth,	215
		nath Kumar Ganesan, Natarajan Vijayarangan	
		nanda Padmanaban Srinivas	
	19.1	Introduction	216
	19.1	Literature Review	210
	19.2	Design and Underlying Concepts	218
	19.5	19.3.1 ARIMA Model Forecasting	219
		0	219
		19.3.2 TBATS Model Forecasting19.3.3 ETS Model Forecasting	220
		19.3.4BSTS Model Forecasting19.3.4BSTS Model Forecasting	220
		-	220 221
			221 221
		19.3.7 Bayesian Model Averaging	222

	19.5	Simulation Procedure	223
	19.6	Results and Evaluation Criteria	226
	19.7	Summary and Future Work	226
	Refere	ences	228
20	Dovio	ing Product Design Architecture Strategies: Cose	
20		ing Product Design Architecture Strategies: Case	229
			229
		sh Chandra, Pranab K. Dan, Debraj Bhattacharjee,	
	20.1	bh Mandol and Prasenjit Patra Introduction	230
			230 231
	20.2	Tools and Methodology	231
		20.2.1 Powertrain Model	
	20.2	20.2.2 Calculation of Highest and Lowest Gear Ratio	236
	20.3	Simulation and Result Discussion	237
	20.4	Conclusion	238
	Refere	ences	239
Dow	t III	Design Evaluation and Optimisation	
Far		Design Evaluation and Optimisation	
21	Acces	sibility Evaluation of Three Important Indian Websites	243
	P. Mo	ounika, Deval Karia, Kshitij Sharma and Pradipta Biswas	
	21.1	Introduction	244
	21.2	Literature Survey	246
	21.3	Methodology	247
		21.3.1 Selection of Accessibility Tools	247
		21.3.2 Selection of Pages in Website	248
	21.4	Results	248
		21.4.1 Cambridge Simulator and GOMS Model Based	
		Evaluation	248
		21.4.2 WCAG Evaluation Tools	251
	21.5	Discussions and Conclusion	251
	Refere	ences	254
22	Decia	n Ontimization Tool for Development of Solar Photovoltaio	
22	<u> </u>	n Optimization Tool for Development of Solar Photovoltaic	255
	-	m in Rural Household Context	255
		sh Dhiman, Gautam Rituraj, Mrinal Krishna Chaudhury	
		bebkumar Chakrabarti	256
	22.1	Introduction	256
	22.2	Salient Features of the Proposed Design	250
	22.2	Optimization Tool	259
	22.3	Design Methodology of Optimization Tool	259
		22.3.1 GUI of Design Optimization Tool	260
		22.3.2 Inputs	260
		22.3.3 Results	262

		22.3.4 Wiring Diagram of SPVHS	262
	22.4	Conclusion	263
	Refere	ences	264
23	Effort	of Form Design on the Thermal Behavior of a Modular	
23		Clay Brick	265
		n Mirajkar and Avlokita Agrawal	205
	23.1	Introduction	265
	23.1	23.1.1 Justification of Material Choice	265
	23.2	Methodology	266
	23.2		260
		23.2.1 Theory 23.2.2 Process	267
		23.2.3 Model Validation	268
	23.3	Results and Discussions	268
	23.3		209
		23.3.1 Discussion 23.3.2 Conclusions	270
	Dafara		274
	Kelele	ences	213
24	Game	Design Frameworks and Evaluating Techniques	
	for Ed	lucational Games: A Review	277
	Madhu	uri Sasupilli, Prasad Bokil and Ravi Mokashi Punekar	
	24.1	Introduction	277
	24.2	Game Design Frameworks	278
		24.2.1 Educational Game Design	279
	24.3	Evaluation Techniques	281
		24.3.1 Heuristic Evaluation	281
		24.3.2 User Testing	282
		24.3.3 Cognitive Walkthrough	282
		24.3.4 Stealth Assessment Test	283
		24.3.5 Comparison of Evaluation Techniques	283
	24.4	Conclusion	284
	Refere	ences	285
25	Annlia	cation of Design Knowledge in Practice: Performance	
		ation of Single Operator Handheld Battery Powered Tea	
		esting Machine in Context to Tea Gardens of Assam	287
		njit Kakati and Amarendra Kumar Das	
	25.1	Introduction	287
	25.2	Conceptualisation and Design	289
	25.3	Materials and Methods	291
		25.3.1 Study Area	292
		25.3.2 Method	292
		25.3.3 Results and Discussions	293

	25.4	Discussion and Conclusion	295
	Refere	nces	296
26		Ct Innovation Index Using Linkograph Analysis	297
	26.1	Introduction	297
	26.2	Exploring Where Possibly Innovation Resides	• • • •
	26.2	in a Product	299
	26.3	Linkographs Generated	300
	26.4	Chinese Made and Lab Made	302 302
	26.5	Overall Results of Linkographs Developed	302
		ences	305
			505
27	_	ization of Windows for Daylighting and Energy	
		imption for South Facade in Office Building in Hot	207
	Nikhil	Bry Climate of India Climate of India Bhandari and A. Meenatchi Sundaram	307
	27.1	Introduction	307
	27.2	Literature Review	308
	27.3	Methodology.	308
		27.3.1 Location and Climate Description	308
		27.3.2 Building Model Parameters	309 310
		27.3.4 Simulation Process	310
	27.4	Results and Discussion	310
		27.4.1 Analysis of Screening Experiment Results	311
		27.4.2 Analysis of Most Effective Parameters	314
		27.4.3 Optimization	319
	27.5	Conclusion	319
	Refere	ences	319
28	An Ex	sperimental Study of Human Decisions in Sequential	
	Inform	nation Acquisition in Design: Impact of Cost and Task	
	Comp	lexity	321
	Ashish	M. Chaudhari and Jitesh H. Panchal	
	28.1	Introduction	321
		28.1.1 Relevant Work	322
	•••	28.1.2 Approach	322
	28.2	Behavioral Experiment Design	323
		28.2.1 Experimental Task	323
		28.2.2 Cost and Complexity Treatments	323
		28.2.3 Payment Structure	325

	28.3	Decision Models for Sequential Information Acquisition28.3.1Modeling the Decision to Choose Next x 28.2.2Modeling the Decision to Step Security	325 325 226
	28.4	28.3.2 Modeling the Decision to Stop Search Estimation of Behaviors from the Experimental Data Using	326
	20.4	Bayesian Inference	327
		28.4.1 Bayesian Model Comparison	328
		28.4.2 Results and Discussion	329
	28.5	Concluding Remarks	330
	Refe	rences	331
Par	t IV	Eco-design, Sustainable Manufacturing, Design	
		for Sustainability	
29	'Con	cepTe': Supporting Environmentally Benign Design	
		sion-Making at Conceptual Stage	335
		untala Acharya and Amaresh Chakrabarti	
	29.1	Introduction	335
	29.2	Literature Review: Theory and Background	337
	29.3	Prescriptive Study: Support Development	339
		29.3.1 Realisation of the Actual Support	339
		29.3.2 Limitations of the Actual Support	340
	29.4	Descriptive Study: Evaluation of Actual Support	341
		29.4.1 Evaluation Plan and Methodology	341
		29.4.2 Results and Inferences	343
	29.5	Conclusions, Limitations and Future Work	343
	Refe	rences	344
30	Inve	stigation on the Performance of Copper-Coated 6061	
		ninium Alloy Electrode in Electric Discharge Machining	345
	P. M	andal and S. C. Mondal	
		Introduction	345
	30.2	Experimentation	347
	30.3	Results and Discussion	348
	30.4	Conclusion	354
	Refe	rences	354
31	Desi	gn and Development of Affordable Tool	
	for N	Metal Handicraft	357
		n Kumari Mahato, Pratul Chandra Kalita	
		Amarendra Kumar Das	
	31.1	Introduction	357
	31.2	Aim and Objective	360
	31.3	Methodology	360
	31.4	Overview of Hajo Brass Metal Handicrafts Cluster	
		in Assam	361

	31.5	Basic Manufacturing Process of Kalah	362
	31.6	Concept Development for a New Tool for Beading	
		Process	364
	31.7	Conclusion	366
	Refere	nces	366
32	Measu	ring Sustainability of Development in Planned Hill Towns:	
54		e of New Tehri Town	369
		nran Kaur and Pushplata Garg	507
	32.1	Introduction	369
	32.2	Methodology and Data Presentation	370
	02.2	32.2.1 First Stage—Study Area: New Tehri Town	371
		32.2.2 Second Stage—Selection of Indicators	372
	32.3	Results and Observations	374
	32.4	Conclusions and Future Work	378
		ences	378
33		opment of a Framework Model to Explore the	
		nufacturing Feasibility of Automotive Components	381
	•	ani Roy, K. E. K. Vimal and K. Jayakrishna	201
	33.1	Introduction	381
	33.2	Literature Review	382
	33.3	Methodology	384
	33.4	Case Study	385
		33.4.1 Development of Framework Model	385
	22.5	33.4.2 Multi-grade Fuzzy MCDM Technique Used	385
	33.5	Remanufacturability Assessment Using Hybrid MCDM	200
		Method	386
	22.6	33.5.1 Results and Discussion	388
	33.6	Conclusion	389
	D.C	33.6.1 Future Scope of the Study	389
	Refere	nces	389
34	Social	ly Constructed Design in Context of Small-Scale Solar	
		voltaic Home System	391
	Brajes	h Dhiman, Mrinal Krishna Chaudhury, Sadhan Mahapatra	
	and De	ebkumar Chakrabarti	
	34.1	Introduction	392
	34.2	Socially Constructed Design and Decentralized Energy	393
	34.3	Context of Developing Countries: Kamworks Case Study	394
		34.3.1 Socially Constructed Design Approach	394
	34.4	Small-Scale Solar Home System and Developing	
		Countries	395
		34.4.1 Health	396

		34.4.2 Education	396
		34.4.3 Productive Usage of Decentralized Energy	396
		34.4.4 Facilitating ICT Access	397
	34.5	Relevance to Rural Indian Context	398
		34.5.1 Study Done in Local Setup	398
	34.6	Conclusion	400
	Refere	nces	400
35	Techn	ology, Sustainability, and Consumer Expectation—New	
	Ways	of Thinking About Future Fashion	403
	Vishak	ta Agarwal	
	35.1	Introduction	403
	35.2	Fashion and Technology	405
	35.3	Fashion and Social Media	406
	35.4	Fashion and Consumer Expectation	406
	35.5	Methodology	407
	35.6	Result	407
	35.7	Conclusion	410
	Refere	nces	411
36		tunity Areas for Industrial Designers to Explore New	
		eations of Product-Integrated Photovoltaics (PIPV) for	
		Communities of India	413
		Satpute, Ravi Mokashi Punekar and Avinash Shende	
	36.1	Introduction	413
	36.2	Industrial Design of PIPV for Rural India	414
	36.3	Identification of Intervention Areas for PIPV Product Design	41.5
		in the Context of Rural India	415
	26.4	36.3.1 Field Visits and Observations	415
	36.4	Study of Current Interventions in PIPV	416
		36.4.1 Maslow's Hierarchy of Human Needs36.4.2 Method of Study	418
		36.4.2Method of Study	418 420
		36.4.4 Application-Wise Categorization	420
		of PIPV Products	421
	36.5	Conclusion	422
		nces	422
27			
37	-	ring the Possibilities of Using Biomimicry to Improve	122
		ermal Behaviour of Walling Units	423
	37.1		423
	57.1		423
			424
		37.1.1 Biomimicry in Design	424 425

	37.2	Thermal Behaviour	425
		37.2.1 Factors Affecting the Thermal Performance	425
	37.3	Biomimetic Inspirations for Better Thermal Behaviour	425
		37.3.1 Organism Level—Weaver Birds Nest	426
		37.3.2 Behaviour Level—Elephant Skin	428
		37.3.3 Ecosystem Level—The Interaction of the Littorinid	
		Snails and Its Immediate Surroundings	431
	37.4	Conclusion	433
	Refere	nces	434
38	Redev	elopment of Urban Flood Plains	437
		Supritha, B. S. Sheethal and K. Shreyas	
	38.1	Introduction	437
	38.2	Study Location: Bengaluru	439
		38.2.1 Bengaluru Metropolitan Region	439
		38.2.2 Growth of Bengaluru City	439
		38.2.3 Population of Bengaluru	442
		38.2.4 Watershed Areas in Bengaluru	442
	38.3	Rational for Selection of Case Study Area	443
	38.4	Delineation Study Area	444
	38.5	National Green Tribunal Norms	446
	38.6	Proposals	448
	38.7	Conclusion	449
	Refere	nces	449
39	Design	of a Do-It-Yourself (DIY) Based Solar-Powered LED	
	0	ng System for Training and Empowering Rural Youth	451
		urth Nair, Roshan Rao, Tarun Kumar, G. Guru Prasad,	
	Manisl	h Kumar, P. Khadeeja Henna, Aysha Saifudeen	
		onto Mani	
	39.1	Introduction	452
	39.2	Design Methodology	453
	39.3	Discussion	456
	39.4	Conclusions	459
	Refere	nces	459
40	First S	Step to Combine Bio-inspiration and Frugal Innovation:	
••		cation to a Container's Village	461
		Graeff, Matthieu Gras, Rémy Piroux, Danièle Huet-Kouo,	
		e Jean, Nicolas Maranzana and Améziane Aoussat	
	40.1	Introduction	461
	40.2	State of the Art	462
		40.2.1 Frugal Design	462
		40.2.2 Bio-inspiration	463
			105

	40.3	Frugal I	nnovation and Bio-inspiration	465
		40.3.1	Problematic	465
		40.3.2	Comparison Between Bio-inspiration and Frugal	
			Design	466
		40.3.3	Proposition of a Frugal Bio-inspiration Method	466
	40.4	Case Stu	1dy	467
		40.4.1	Presentation of the Case Study	467
		40.4.2	Presentation and Application of the First Modified	
			Step: Step 1'	468
		40.4.3	Presentation and Application of the Second	
			Modified Step: Step 5'	468
		40.4.4	Presentation of the Third Modified Step: Step 7'	470
	40.5	Conclus	ion and Perspectives	470
	Refere	nces		471
41	Social	Suctaina	bility of Online Instant Messaging	
			atsApp	473
			a and Pankaj Upadhyay	175
	41.1		tion	473
		41.1.1	Research Background	474
		41.1.2	Chosen Approach	474
	41.2		e Review	475
	41.3		n Methodology	476
		41.3.1	Interviews	476
		41.3.2	Data Analysis	476
	41.4		and Results	477
	41.5	•	on	479
	41.6		ion	481
	Refere	nces		481
42			nsumer Awareness Towards Green Fashion	402
			Income Dhandari and Desmak John Mathews	483
	42.1		pasna Bhandari and Deepak John Mathew	102
	42.1		tion	483 484
	42.2	42.2.1	Green Fashion	484
		42.2.1	Standardizations of Green Fashion	484
		42.2.2		404
		42.2.3	Environmentally Responsible Consumer	485
		42.2.4	Behavior	485
		42.2.4	Eco-friendly Consumers and Their Beliefs Search and Purchase Intention	485
		42.2.5	Growing Acceptance of Green Fashion in Indian	400
		42.2.0		486
		42.2.7	Society	480
		42.2.1	Hypothesis Formation	400

	42.3	Methodology	487
		42.3.1 Sample and Data	487
		42.3.2 Measures	488
		42.3.3 Delimitation of the Study	488
	42.4	Data Collection and Analysis	488
		42.4.1 Demographics	488
		42.4.2 Comprehension of the Term "Green Fashion"	489
		42.4.3 Reliability and Validity	489
		42.4.4 Hypothesis Validation	490
	42.5	Findings and Conclusion	491
	Referen	nces	493
43	Propos	sition of a Selection Matrix for Use of Nonconventional	
	_	ials in Jewellery and Ornamental Applications	495
		K. Vyas	
	43.1	Introduction	495
	43.2	Properties of a Gemstone	497
	43.3	Need for Nonconventional Materials	498
	43.4	Methodology for Development of a Selection Matrix	499
	43.5	Result	500
	43.6	Discussion	500
		43.6.1 Lack of Universal System to Evaluate Properties	
		of a Material	500
		43.6.2 Selection Matrix	501
	43.7	Application of Selection Matrix	503
		43.7.1 Advantages	503
	43.8	Limitations	503
	43.9	Conclusion	503
	Refere	nces	504
44	An Er	gonomic Assessment and Design Intervention	
		d-Transfer Activity in Brick-Making Industry, India	505
	Amar]	Kundu, Lavanya Bachwal, Anshul Patle, Priyanka Rawal	
	and Ga	aur G. Ray	
	44.1	Introduction	505
	44.2	Mud-Transfer Activity	506
	44.3	Methods	507
	44.4	Results and Discussion	509
	44.5	Design Validation	516
	44.6	Conclusion	517
	Referen	nces	517

45			l Practices as a Manifestation of Environmental	
			An Exploration as a Tool for Environmental Stress	
	Mitiga	tion		519
	Vikash	n Kumar		
	45.1	Introduc	tion	519
	45.2	Literatu	re Review—Perspectives on EWV	520
	45.3	Material	ls and Methods	521
	45.4	Cultural	Practices in India—Observations	522
		45.4.1	Case 1: Planting Tulsi in Houses	522
		45.4.2	Case 2: Tying Cotton Thread Around Trees	524
		45.4.3	Philosophical Interpretation in the Context of	
			Environmental World View	525
	45.5	Result a	nd Discussion—Cultural Practices as a Tool for	
		Environ	mental Protection	526
	45.6	Conclus	ion	527
	Refere	nces		528
	D ·	D 1		
46	<u> </u>	· · · · · · · · · · · · · · · · · · ·	pment, and Performance Evaluation	500
			a Gel Extractor	529
			Nayak, Radha krisihnan Kesavan,	
			shya and Gitanjali Behera	500
	46.1		tion	529
	46.2		Is and Methods	530
		46.2.1	Collection of Samples and Machine Parts	530
		46.2.2	Physical Properties of Aloe Vera	531
		46.2.3	Design Consideration of the Gel Extractor	531
		46.2.4	Machine Components	531
		46.2.5	Operating Principle	531
		46.2.6	Performance Evaluation of Extractor	533
		46.2.7	Performance Indices	
		46.2.8	Splitting Test for Aloe Vera Leaf	534
	16.0	46.2.9	Statistical Analysis	535
	46.3		and Discussion	535
		46.3.1	Physical Properties of Aloe Vera	535
		46.3.2	Performance of the Aloe Vera Gel Extraction	505
		16.0.0	Machine	535
		46.3.3	Cost Analysis	537
	46.4		ion	537
	Refere	nces	• • • • • • • • • • • • • • • • • • • •	538
47	Sustai	nable De	sign Literacy: Developing and Piloting Sulitest	
				539
	0		nd Susana Paixao-Barradas	
	47.1		tion	540

	47.2		ity Literacy Tests	540
			Sulitest [®]	541
			Sulitest [®] Design Submodule	541
			Results and Discussion	545
	47.3		18	547
	Refere	nces	• • • • • • • • • • • • • • • • • • • •	548
48			I Socially Responsible Design in Conflict	551
	Gavin			551
	48.1		n	551
	48.2		sm Versus Socially Responsible Design	552
			Voluntourism and University Sector.	552
	40.2		Socially Responsible Design for Development	553
	48.3			553
	48.4		Tribal (ST) Development, Maharashtra	554
	48.5		ainable Housing Project	555
			Obscure Budgets and Revenues	555
			Rhetoric of Development, Social Impact and	
			Cultural Experience	556
			Consultation not Participation	557
			Failed Delivery of Ambitious Housing Plans and	
			Objectives	557
			Choosing Technologies and Materials: Ignoring the	
			local	558
			Displaced or Ignored Livelihoods	560
	48.6		18	560
	Refere	nces	• • • • • • • • • • • • • • • • • • • •	560
Par	tV E	nahling Tec	hnologies and Tools (Computer Aided	
		0	Design, Augmented/Virtual Reality, MEMS,	
	Η	aptics, Sma	rt Technologies, IOT, Cobotics, etc.)	
49	Techn	ical Issues o	of Using BIM: East Indian Architects'	
	Perspe	ctive		565
	Ashapa	arava Mohar	nta, Rabi Narayan Mohanty and Sutapa Das	
	49.1	Introduction	n	565
	49.2	Technical I	Issues of BIM Tools for Designer	567
		49.2.1 E	Basic BIM	568
		49.2.2 A	Advanced BIM	568
			Customized BIM	568
	49.3	Methodolo	gy Adopted	568
	49.4		1 Discussion	569
	49.5	Conclusion		572
	Refere			573

50		re of OLEDs Technology in Wearable Textiles	575
		a Regina Topno, Poonam Sundriyal and Shantanu Bhattacharya	
	50.1	Introduction	575
	50.2	Research Problem	576
	50.3	Aim of Research	576
		50.3.1 Choice and Morphology of Fabric	576
		50.3.2 Vapor Deposition	578
		50.3.3 Inkjet Printing Method	578
	50.4	Active and Passive Displays	578
	50.5	Methodology of Encapsulation and Mechanical Stress	
		Testing and Water Vapor Transmission Rate Testing	580
	50.6	Conclusion	583
	Refere	ences	583
-1	T		
51		Fill: A Prototype to Know Actual Fuel Filled at Petrol	505
	_	Using Sensors for Common Indians	585
		oy Goswami	
	51.1	Introduction	585
	51.2	Literature Review	586
	51.3	Methodology	587
	51.4	User Study	588
	51.5	System Ideation	588
		51.5.1 System Framework	588
		51.5.2 Working Principle of the System	590
	51.6	Experimental Result	590
	51.7	Conclusion	591
	Refere	ences	592
52	Diagn	osing the Health of a Plant in a Click	593
54	<u> </u>	am Chandra	575
	1		593
	52.2	Methodology.	594
	52.2	52.2.1 Habitat Study	594
		-	596
		8	590 596
		5	
		52.2.4 Understanding the System	596
	50.0	52.2.5 Insights from Study	597
	52.3	Solution	598
	52.4	Conclusion and Future Scope	599
	Refere	ences	601

53	A Wi	reless System for High Temperature and Heat Flux Sensing:	
	Desig	n and Analysis	603
	Anupa	am Purwar and Swaroop Anand Hangal	
	53.1	Introduction	604
	53.2	Wireless System Design Objectives	604
	53.3	Design Methodology	605
		53.3.1 Design of Enclosure Housing	605
		53.3.2 Selection of Wireless Technology	607
	53.4	Model Formulation	611
		53.4.1 Computational Design	611
	53.5	Material Selection	611
	53.6	Results and Discussion	612
		53.6.1 Thermal-Structural Analysis	612
		53.6.2 Cost Feasibility and Market Analysis	612
	53.7	Conclusion and Further Work	613
	Refere	ences	614
54	LOC	AL: Online Visibility for Local Shopkeepers Through	
		cipatory Geo-information Systems	617
		Gupta, Udayan Vidyanta and Silpa Murali	
	54.1	Introduction	617
	54.2	Background and Motivation	618
	54.3	Literature Review	618
	54.4	Primary Studies	620
		54.4.1 Field Study	620
		54.4.2 Findings and Insights	620
	54.5	Design	621
		54.5.1 Conceptualization	621
		54.5.2 Application Design	621
		54.5.3 Web Exploration Tool.	622
	54.6	Prototype and Feedback	623
		54.6.1 Prototype Development	623
		54.6.2 Usability Evaluation	623
		54.6.3 Feedback	624
	54.7	Discussion	625
	54.8	Conclusion and Future Work	625
	Refere	ences	626
55	Pre-si	rgical Visualisation Made Easy by 3D Printed	
55		nt-Specific Heart Models	629
		prasad Kuppu Rao, Battula Kalyana Chakravarthy	029
		avi Bhallamudi	
	55.1	Introduction	630
	55.2	Method	630
	55.2		050

		55.2.1 Image Processing and Segmentation	632
	55.3	Results	635
	55.4	Conclusions	637
	Refe	rences	638
56	Colla	aborative Design of Mobile Interfaces for Vocational	
	Build	ding and Construction Education	641
	Gavi	n Melles, Tomi Winfree and Peter Graham	
	56.1	Introduction	641
	56.2	Learning to Build in Australia	642
		56.2.1 National Construction Code (NCC) and	
		Sustainability	642
		56.2.2 Sustainability in Vocational Education and	
		Training	643
	56.3	Learning and Workplace Practices	643
	56.4	M-Learning Affordances for NCC Compliance	644
	56.5	Methods	645
		56.5.1 Approach	645
		56.5.2 Design Process	646
		56.5.3 Summarizing the Interaction Design Process	648
		56.5.4 Failing the Fieldwork Interaction Design Test.	649
	56.6	Reflection and Conclusion	649
	Refe	rences	650
Part	t VI	Design for X (Safety, Manufacture and Assembly, Cost,	
		Reliability, Robustness, Social Interaction etc.)	
57	PCB	Inspection in the Context of Smart Manufacturing	655
	Abhi	shek Mukhopadhyay, L. R. D. Murthy, Manish Arora,	
	Ama	resh Chakrabarti, Imon Mukherjee and Pradipta Biswas	
	57.1	Introduction	656
	57.2	Related Work	657
	57.3	Our Methodology	658
		57.3.1 Automatic Inspection	659
		57.3.2 Template Based Inspection (Gerber File)	659
	57.4	User Interface	660
	57.5	Evaluation	661
	57.6	Discussion and Conclusions	662
	Refe	rences	663

58	Design	for Assembly Approach for Energy-Efficient	
	Optim	al Assembly Sequence Planning Using Improved Firefly	
	Algori	thm	665
	Gunji I	Bala Murali, B. B. V. L. Deepak, Golak Bihari Mahanta,	
	Amruta	a Rout and B. B. Biswal	
	58.1	Introduction	666
	58.2	Proposed Methodology	667
	58.3	Results and Discussion	669
		58.3.1 Contact Data	670
		58.3.2 Material Data	670
		58.3.3 Functionality Data	671
		58.3.4 Relative Motion Data	671
		58.3.5 Interference Data	672
	58.4	Conclusion	674
		nces	675
59		al Width and Thickness Sizer for Bamboo	677
	•	noy Das Rabha and Rahul Rabha	
	59.1	Introduction	677
	59.2	Process	678
		59.2.1 Process of Making Handicraft	678
		59.2.2 Problem Statement	679
	59.3	Conceptualization and Design	681
	59.4	Final Design	682
		59.4.1 Functioning of the Product	683
		59.4.2 Product Detail	683
		59.4.3 Technical Drawings	683
		59.4.4 Digital 3D Views	683
		59.4.5 Working Prototype	683
	59.5	Comparative Analysis	685
	59.6	Results	687
	Refere	nces	687
~			
60		ign of Indian Games: A Case Study of Traditional	
		Games Gilli Danda (Tip Cat) and Gatte ka Khel	600
		e of Five Stones)	689
		a Nagpal, Lalana Bathina and Supradip Das	
	60.1	Introduction	690
	60.2	Issues with the Indian Toys	691
	60.3	Methodology	692
	60.4	Selection of Toys	693
	60.5	Introduction to the Games	694
		60.5.1 Gilli Danda	694
		60.5.2 Gatte ka Khel	694

	60.6	Problem Identified with the Selected Traditional Games	694
	60.7	Design Process	695
		60.7.1 Brainstorming	695
		60.7.2 Concept Selection	696
		60.7.3 Concept	696
	60.8	Point of Purchase	698
		60.8.1 Branding	698
	60.9	Discussion	699
	60.10	Future Scope	700
		60.10.1 Gilli Danda	700
		60.10.2 Gatte ka Khel	700
	60.11	Conclusion	700
	Referen	nces	701
61	Design	of a Portable, Automated Sewer-Line Inspection	
~	0	e-Clogging Sewer-Bot for Indian Conditions	703
		Iafila, Yogansh Namdeo and Monto Mani	
	61.1	Introduction	703
	61.2	Methodology	704
		61.2.1 Problem Identification	704
		61.2.2 Need for Maintenance	705
		61.2.3 Stakeholders Mapping: Bengaluru Case Study	705
		61.2.4 Market Study: Competitors	708
		61.2.5 Outcomes from Market Study	711
	61.3	Proposed Design	711
	61.4	Conclusion and Future Work	712
	Referen	nces	713
62	A Nou	Safety Design of the Ceiling Fan to Avoid	
02		al Cases	715
		h Mishra, Balamurali Gunii and B. B. V. L. Deepak	/15
	62.1	Introduction	715
	62.2	Proposed Methodology	716
	62.3	Results and Discussion	719
	62.4	Conclusion	723
	Refere	nces	723
\mathbf{C}			
63	<u> </u>	and Development of a Semiautomatic Handloom	705
		ernative Material	725
	63.1		725
	63.2	Introduction	725
	63.3	Product and Literature Review	729
	63.4	Feasibility Study Design Concents	729
	03.4	Design Concepts	129

		63.4.1 Details of Alpha Model	730
		63.4.2 Operational Aspects of Semiautomatic	
		Handloom	730
	63.5	Production Consumption Cycle	733
	63.6	Human Factors	733
	63.7	Conclusion	734
	Refere	ences	734
64	A Cor	nparison of Practical and Computational Approaches	
	to Des	sign Modular Product Architecture for Products with	
		Im Complexity: A Case Study on Computer Numerical	
		ol Machine	735
	•	man Choudhuri, Pankaj Upadhyay and Abhishek Yevalkar	
	64.1	Introduction	735
	64.2	Literature Review	736
	64.3	Methodology	737
	64.4	Case Study and Results	738
	64.5	Discussion	743
	64.6	Conclusion	743
	Refere	ences	744
65		Design of a Space-Saving Furniture with Prototype-Driven	
	Innova	ation Approach	745
	Suprac	lip Das, M. P. Rijas and Amarendra Kumar Das	
	65.1	Introduction	745
	65.2	Methodology	746
		65.2.1 Shape-Shifting Phenomena in Nature	746
		65.2.2 Shape-Shifting Phenomena in the Manmade	
		World	748
		65.2.3 Concept Generation	748
		65.2.4 Concept Selection	751
	65.3	Product Detailing	752
		65.3.1 Selection of Material	752
		65.3.2 Joining of Side Panels and Cylindrical Bars	753
		65.3.3 Selection of Hole Pattern.	753
		65.3.4 Assembly	754
	65.4	Discussion	754
	65.5	Future Scope and Conclusion	754
	Refere	ences	755

66	Expe	riential Design Intervention to Motivate Tourist Local	
	Intera	action and Connect with Unexplored Landscape—A Case	
	Study	of North Guwahati	757
	Sukan	ya Bor Saikia and Debkumar Chakrabarti	
	66.1	Introduction	758
		66.1.1 Need	758
	66.2	Literature Study	759
		66.2.1 Concept of Place	759
		66.2.2 Tourism	760
		66.2.3 Travel Motivation: Push and Pull Motives	761
		66.2.4 Experiential Tourism	761
		66.2.5 Guwahati as a Place: North and South	762
		66.2.6 Research Question	762
		66.2.7 Aim and Objectives	762
	66.3	Methodology	763
		66.3.1 Survey	763
	66.4	Results and Discussion	764
	66.5	Conclusion	766
	Refere	ences	767
67	A True	memory for Understanding the Context and Evaluating	
07		amework for Understanding the Context and Evaluating	769
		ions in Design for Base of the Economic Pyramid	709
	67.1		769
	67.2	Research Question	770
	67.3	Methodology.	771
	67.4	Literature Review	772
	07.4	67.4.1 Results	774
	67.5	Discussion and Conclusion	777
		ences	777
	Kelen		,,,,
68	Desig	n Methodology for Elderly: Impact of Aging	
	and C	Culture	781
	Lau L	Langeveld	
	68.1	Introduction	781
	68.2	Literature Review	782
		68.2.1 Design Methodology	782
		68.2.2 Elderly	783
		68.2.3 Needs	785
		68.2.4 Culture	785
	68.3	Impact of Aging and Elderly on Design	786
	68.4	Impact of Culture on Design Specific for Elderly	788

	68.5	Discussion	789
	68.6	Conclusion	789
	Refere	ences	790
69	Annli	cation of Existing Cultural Frameworks in the Design	
09		Cultural Place: A Case Study of Meghalaya	793
		sa Bok Kharkongor, Abhirup Chatterjee	195
		ebkumar Chakrabarti	
			702
	69.1	Introduction	793
	69.2	Methodology	795
	69.3	Results and Discussions	796
		69.3.1 Reliability Test of the Questionnaires	796
		69.3.2 Demographic Data of Respondents	796
		69.3.3 Analysis of Tourists' Responses	797
	(0 , 1	69.3.4 Analysis of Natives' Responses	799
	69.4	Conclusion	802
	Refere	ences	804
70	Conne	ected Us! How Social Motives Determine DIY Behaviorism	
	in Ru	ral Base of the Pyramid Communities	807
	Prarth	ana Majumdar, Sharmistha Banerjee, Jan-Carel Diehl	
		M. L. Van Engelen	
	70.1	Introduction	807
	70.2	Theoretical Background	808
	70.3	Methodology	810
	70.4	Observations and Results	811
		70.4.1 Discussion	815
	70.5	Conclusion	818
	Refere	ences	818
71		ing Voronoi Structures to Artefacts for Style	
		trength	821
		rasad Kuppu Rao, Shubham Vishwakarma	
		hubham Saxena	
	71.1	Introduction	821
	71.2	History	822
	71.3	Voronoi Diagram Creation	822
	71.4	2D Voronoi Diagram to 3D Voronoi Structure	824
	71.5	Results	829
	71.6	Conclusions	830
	Refere	ences	832

хI	V111	
АІ	1 V III	

72	An In	tegrated E	Development Process for Stiffened Shell	
	Lightv	veight Str	uctures	835
	J. Krie	glsteiner, I	P. Horst and C. Schmidt	
	72.1		ion	835
	72.2	Developr	ment Problem and Applied Methods	836
	72.3	Reference	e Procedural Models	838
	72.4	Integrated	d Development	840
	72.5	Conclusio	ons	843
	Refere	nces		843
Part			on of Design Knowledge in Practice (Automotive,	
		Aerospace	e, Biomedical Devices, etc.)	
73			rated Product Architectures: An Aero Engine	
			mple	847
			d Ola Isaksson	
	73.1	Introduct	ion	847
	73.2	The Arch	nitecture Description Concepts	849
		73.2.1	Functions, Sections and Manufacturing Splits	849
		73.2.2	Graphs	850
		73.2.3	Composition of Relations	851
		73.2.4	EF-M Trees	852
		73.2.5	Centralities	852
		73.2.6	The Integrated Architecture Description Method	853
	73.3	Architect	ural Description of an Engine Structure	853
		73.3.1	Overall GF-GS Description	853
		73.3.2	Detailed Description of a Function	855
		73.3.3	Detailed Description of a Section	856
		73.3.4	Design Implications	857
		73.3.5	Software	857
	73.4	Conclusio	on	857
	Refere	nces		858
74	Percei	ved Quali	ty Estimation by the Design of Discrete-Choice	
	Exper	iment and	Best–Worst Scaling Data: An Automotive	
	Indust	ry Case .		859
	Konsta	intinos Sty	lidis, Serena Striegel, Monica Rossi,	
	Casper		and Rikard Söderberg	
	74.1	Introduct	ion	860
	74.2	Backgrou	ınd	861
		74.2.1	Perceived Quality as a Part of Product Quality	
			Models	861
		74.2.2	Perceived Quality Framework (PQF)	862
		74.2.3	Perceived Quality Attributes Importance Ranking	
			Method (PQAIR)	862

	74.3	Methodology and Design	864
		74.3.1 DCE Design	864
		74.3.2 BWS Design	864
	74.4	Results and Discussion	865
		74.4.1 DCE Results	866
		74.4.2 BWS Experiment Results	867
		74.4.3 PQAIR Method Estimation	868
	74.5	Conclusions and Future Work	869
	Refere	ences	869
75	Multi	-utility Fantasy Bed: Experimental Design	871
		saram KCP, Namrita Sharma and Urmi R. Salve	
	75.1	Introduction	871
	75.2	Literature Review	872
	75.3	Research Gap	873
	75.4	Aim	873
	75.5	Methods	873
	75.6	Results and Discussions	874
		75.6.1 Bed: General Description	874
		75.6.2 Limitations in Existing Bed Designs	876
		75.6.3 Multi-function Concepts: An Overview	876
		75.6.4 Detailed Description of Individual Functional	
		Modules	876
		75.6.5 Aesthetics and Uniqueness	881
		75.6.6 Modular Concept	882
	75.7	Conclusion and Recommendations	885
	Refere	ences	885
76	Metho	odologies to Achieve Highest CO ₂ Emission Reduction	
		tomotive Systems to Meet Global CAFE/CAFC Norms	887
		raji Muthu and Pramod Kawade	
	76.1	Introduction	888
	76.2	Overview of Friction Reduction in PCU	889
	76.3	Piston Technologies for Friction Reduction	890
		76.3.1 Gasoline Engines	890
		76.3.2 Diesel Engines	891
	76.4	Piston Pin Coatings for Friction Reduction	892
	76.5	Piston Ring Technologies for Friction Reduction	893
		76.5.1 Top Ring	895
		76.5.2 Oil Control Ring (OCR)	895
	76.6	Conclusions	896
	Refere	ences	897

77	A Str	ategic Approach Towards Form and Design Development	
	of Bil	kers Shoes for Indian Market	899
	Karthi	ikeyan Kattaiya, Vishnupriya Veeraiyan, Krishnaraj Kaliappa	
	and C	handrasekaran Bangaru	
	77.1	Introduction	899
	77.2	Design and Modelling	900
	77.3	Computational Fluid Dynamics	901
	77.4	Results and Discussion	903
	77.5	Sample Prototype	905
	77.6	Conclusion	906
	Refere	ences	906
78	A Rev	view of the Agricultural Tools and Implements of the	
	North	eastern Region of India from Design Perspective	909
	M. At	ngelus Khoh and Amarendra Kumar Das	
	78.1	Introduction	909
	78.2	Methodology	910
	78.3	Tools and Equipment Used in Terrace Cultivation	910
		78.3.1 Forest and Vegetation Clearing Tools	910
		78.3.2 Land and Soil Preparation Tools	913
		78.3.3 Harvesting Tools	914
		78.3.4 Storage and Post-harvest Devices	916
	78.4	Observation and Result of the Study	917
	Refere	ences	918
79	Conce	eptual Design and Evaluation of a Novel	
		ransfer-Assistive Device	919
		Seid and Amarendra Kumar Das	
	79.1	Introduction	919
	79.2	Objectives	920
	79.3	Research Methodology	920
	79.4	Materials and Methods	921
		79.4.1 Data Collection	921
		79.4.2 Data Analysis	922
	79.5	Design Synthesis of a Proposed Mechanism	924
	79.6	Result and Discussion	927
	79.7	Conclusions	928
		ences	928

80	Applio	cation of Waterfall Design Process in Designing	
	of a H	lolistic System for Children with Hearing Impairment	
	in Res	source-Constrained Settings	929
	Deval	Karia, Rohit S. Nambiar, Agniwesh Pratap Maurya, A. Ramesh	
	and M	lanish Arora	
	80.1	Introduction	930
	80.2	Design Methodology	931
		80.2.1 List of Requirements	931
		80.2.2 List of Interpreted Problems	932
		80.2.3 Collation and Grouping of User Needs	932
		80.2.4 Need Screening	933
		80.2.5 Area of Focus	934
	80.3	Conceptual Design	934
	80.4	Concept Screening and Analysis	935
		80.4.1 Architecture of the Selected Concept	936
		80.4.2 Proposed Circuit Diagram of the Hearing Aid	936
	80.5	User Interface Design of the PoC Smartphone	
		Application	939
	80.6	Results and Discussion	939
		80.6.1 Future Work	940
	Refere	ences	940
81	Desig	n and Development of Drop Centre Axle	
01	-	VD Tractor.	941
		Kumar, Avinash Kumar and P K Pranav	211
	81.1	Introduction	941
	81.2	Materials and Methods	942
	01.2	81.2.1 Selection of Tractor and Its Specification	942
		81.2.2 Weight Distribution in 2WD Tractor	943
		81.2.3 Determination of CG Height of Tractor	944
		81.2.4 Design of Drop Centre Axle	944
		81.2.5 Analysis Using ANSYS Tool	947
		81.2.6 Criteria for Selection of Designed Axle	947
	81.3	Results	948
	01.5	81.3.1 Height of Tractor's CG	948
		81.3.2 Static Structural Analysis of Axles.	948
		81.3.3 Developed Drop Centre Axle and Its	940
		Installation	950
	81.4	Discussion	950 951
	81.5	Benefits of Drop Front Axle	951 952
	81.5 81.6	*	
		Conclusion	952 052
	Refere	ences	953

82	Kids o	on Board?! Rethinking Safety and Comfort	
	of Kid	s in School Vans	955
	Ar. Ne	eha Chourasia	
	82.1	Introduction	956
	82.2	Research Gap Findings	957
		82.2.1 Case Studies	960
	82.3	Problem Identification and Solutions	961
		82.3.1 Seating Layout	961
		82.3.2 Safety—Seat Belt	964
		82.3.3 Seat Design	964
	82.4	Conclusions	966
	Refere	nces	966
83	Patien	t-Centered Design in a Connected Healthcare World:	
05		e Study	967
		t Dey, Priyabrata Rautray and Mukesh Soni	<i>J</i> 07
	83.1	Introduction	967
	83.2	Design Thinking in Medical Field	968
	83.3	Human Factors Engineering	969
	83.4	Medical Design Anthropology	969
	83.5	Experience-Based Design.	969
	83.6	Patient-Centric Design	970
	83.7	Design Methodologies	970
	83.8	Case Studies: Glucose Monitoring	971
	05.0	83.8.1 Laboratory-Based Blood Glucose Testing	972
		83.8.2 Self-monitoring of Blood Glucose (SMBG)	972
		83.8.3 Continuous Glucose Monitoring (CGM)	973
		83.8.4 Smart CGM	973
		83.8.5 Automatic Drug Delivery	973
		83.8.6 Connected Diabetic Care	973
	83.9	Future Scope	975
	83.10	Conclusion	975
		nces	975
~ •			
84		igation into the Application of Liquid CO_2 and MQL	077
		NC Turning of Al Alloy 3055	977
		ndal, G. Paul and S. C. Mondal	070
	84.1	Introduction	978
	84.2	Experimental Planning	979
		84.2.1 Experimental Setup	979
	04.2	84.2.2 Results	980
	84.3	Analysis	981
		84.3.1 Analysis for MRR at Various Cutting	000
		Environments	982

	84.3.2	Analysis of Chip Thickness at Various Cutting				
		Environments	984			
	84.3.3	SEM Analysis of Chip	985			
84.4	Conclusio	on	987			
Referen	ces		987			

Chapter 5 Assessing Designers' Perception, Analysis, and Reflective Using Verbal Protocol Analysis

Muhammad Jameel Mohamed Kamil, Shahriman Zainal Abidin and Oskar Hasdinor Hassan

Abstract This paper examines designers' response toward the theory of unconscious interaction and cognitive of human behavior in the everyday product. During the Verbal Protocol Analysis (VPA) study, 30 designers were given four selected images which have been categorized into four attributes of unconscious interaction in everyday human behavior. At the same time, they were asked to verbally respond to following aspects: (1) their perception toward the attributes of the unconscious interaction of human behavior in everyday life; (2) their analysis on the given images; and (3) their reflection of those given images. The contribution of the study led to the identification of designers' abilities to perceive, understand, analyze, and reflect in enhancing the value of an existing product by interpreting the design needs from the four attributes of unconscious interaction in everyday human behavior.

5.1 Introduction

Ever since the aggressive expansion of technology features in design, one of the current approaches in finding a fit between technology and human values is to integrate the human interaction factor into product design by understanding the human behavior. Unfortunately, there are other realms of human behavior that might be overlooked: the unconscious interaction and cognitive of human behavior

M. J. M. Kamil (🖂)

Department of Product Design, School of the Arts, Universiti Sains Malaysia, Penang, Malaysia e-mail: jameel@usm.my

S. Z. Abidin · O. H. Hassan Formgiving Design Research Group, Universiti Teknologi MARA, Selangor, Malaysia e-mail: shahriman.z.a@salam.uitm.edu.my

O. H. Hassan e-mail: oskar@salam.uitm.edu.my

© Springer Nature Singapore Pte Ltd. 2019 A. Chakrabarti (ed.), *Research into Design for a Connected World*, Smart Innovation, Systems and Technologies 134, https://doi.org/10.1007/978-981-13-5974-3_5 (hereafter referred as UICHB). In comparison with the conscious human behavior, unconscious human behavior in design has always been hard to identify, more so to quantify. However, for the past few years, the integration of varying and disparate literature regarding this theory has shown extraordinary potential in product design ideation (see [1–8]). Unfortunately, the applicability and the usefulness of understanding the theory may be questioned, as both the approaches and empirical evidence to clarify designers' response toward the attributes of the theory are not widely discussed. Therefore, the objective of this study is to assess designers' perception, analysis, and reflection toward the theory of UICHB in the everyday product. The contribution from the study will provide a better understanding on how designers perceive the attributes of UICHB in everyday product, how they analyzed the subtle interaction existed within the attributes, and how they be inspired by the attributes to create an innovative product design concepts.

5.2 Unconscious Interaction and Cognitive of Human Behavior (UICHB) in Everyday Product

In 1964, Alexander [9] introduced the theory of unselfconscious design; a form of cognitive interaction which is animated by incremental engagements leading to subjective and possibly unknown design improvements in relationships among everyday products, environment, and end users. According to Alexander, people unconsciously make a "good fit" from a "misfit" as soon as the "misfit" is recognized. The term "unselfconscious" used by Alexander is to describe the process that produces this fit and claimed that the unselfconscious designing culture passes on by imitation and correction leading to the coherence of the design. This is in line with Suri's [1] idea of "thoughtless acts"; an act that revolved around intuitive interaction in which human adapts, exploits, and reacts to things in our environment. According to Suri, the acts involved things human did without "actually thinking" and by observing such interactions, designers shall able to discover a lot about how human engage, make sense of surroundings, and be inspired with new design opportunities. Based on her study, Suri outlined seven attributes of unconscious interaction in everyday human behavior: (1) reacting, (2) co-opting, (3) exploiting, (4) adapting, (5) conforming, (6) signaling, and (7) responding. However, Sohn et al. [3] simplified Suri's attributes into four. The objective of reducing the number of Suri's attributes is to simplify the design process. Moreover, the exact distinction among the seven attributes was not that meaningful for designers. For instance, the term "reacting" and "responding" do not seem to be very different from each other. After the grouping up of similar categories, Sohn et al. finally developed the four attributes that can be differentiated from each other, as follows: (1) Reacting: human reacts automatically with the affordance of an object (e.g., physical properties) and spaces that they encounter, even without any purpose [2, 10]. Sohn et al. [3] justify this attribute as an individual reaction that happens unintentionally. For instance, some people shake their pen unconsciously while reading due to the element of stress. At the moment, the gesture happens with no specific intention or purpose but helps to reduce the stress; (2) Adapting: human tend to alter the purpose or properties of things to meet certain objectives [1]. The process is called adaptation, which happens through the process of changing and evolving the surrounding artifact and system. The adapting attribute triggers on an individual basis and transpires with interaction [4, 5]. The process can be instigated by stimuli (either unconsciously, or consciously but the stimuli were no longer present) [11]. For instance, people usually put their jacket on the back of their chair. At first, they may have an initial intention to exploit the chair physical properties (the back side of the chair) in order to meet their objective (of hanging the jacket). However, after continuous and repeated processes, they have adapted and are no longer conscious of their action; (3) Signaling: human convey messages through signals and prompts to other people [1]. It was triggered by the desire to inform rules and to make others adhere to them. The signaling attribute is usually triggered in a social context and happened with initial intention [3]. However, the choice of signaling approach was made by human unconsciously (or almost unconscious) [12]. For instance, people leave the door ajar or open in signaling for a potential visit. The action of "leaving the door open" was performed after nothing more than a fleeting moment of awareness; and (4) Conform to others: human learns patterns of behavior from others in both social and cultural contexts [1]. The process can be explained as conformity; where an individual's attributes, beliefs, and behaviors are influenced by others [3]. This expands Cleereman's [12] idea which indicates that to certain extent, human is unaware that they have learned anything, or what it is that they have learned, or unaware that their behavior is influenced by something they have previously learned. An individual behavior is important source of stimulation for another individual behavior [13]. Hence, conform to others falls under the category of social behavior; whereby the behavior of two or more people with respect to one another within a common environment [13]. For instance, the evolution of fashion happened through the way people utilize their dress, learned from and followed others.

5.3 Methodology

The integration of varying and disparate literature regarding the protocol studies has shown extraordinary potential to contribute to understanding designers' thought and response processes (see [14–16]). As a method for seeking insights into human-thought processes in complex cognitive tasks, Verbal Protocol Analysis (henceforth, referred to as VPA) was used in this study. The method has received the most attention in recent years and is regarded as the most likely method (perhaps the only method) to bring out the somewhat mysterious cognitive abilities of designers into the open. Before the VPA study was conducted, 30 photographs were captured by the researcher. Each photograph depicts the subtle and creative ways in which people interact with a product. Using image-based research analysis [17] and Burri's [18] three visual dimensions of images, the photographs have been analyzed (see Fig. 5.1). As a result, each photograph has been categorized into four attributes of unconscious interaction in everyday human behavior, which is adapted from Suri [1] and Sohn et al. [3]. The reliability of analyzed images and its categories was obtained through survey study, which has been conducted by 30 respondents.

Specifically, for VPA study, four categorized images were selected as a stimulus (see Fig. 5.2). During the VPA study, two cameras were installed to capture different angles such as a whole angle of the designer when sitting on the table and a closer angle of the drawing pad. In order to ensure the designer's continuous verbalization, the researcher sat in front of the designer while the experiment is conducted (see Fig. 5.3). The VPA session began in earnest when designers started to conduct the experiment. At this point, designers began to verbalize and describe aloud what they are thinking as they generate a conceptual product ideation

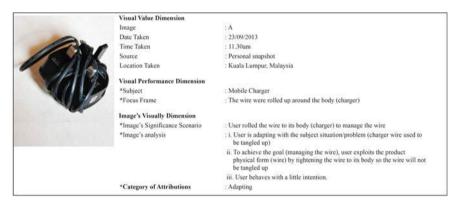


Fig. 5.1 Sample of image analysis

Fig. 5.2 Four polar images

Fig. 5.3 A three-dimensional illustration of designer and the researcher in actual VPA session

(sketching) based on their perceptions, analysis, and reflection on each polar image. In this paper, the designers' response toward the UICHB in everyday product was identified based on three research questions, as follows: (1) an analogy of "how we see things" is claimed as a common way of defining perception [19]. Thus, what are designers' perceptions toward the attributes of unconscious interaction in everyday human behavior as depicted in given polar images? (2) an analysis is a careful study of something to learn about its parts, what they do, and how they are related to each other [20]. Thus, what are designers' analysis on given polar images? and (3) reflection is a conscious and rational action that can lead to making innovation [21]. Thus, what are designers' reflections based on their analysis on given polar images? In order to identify these elements, the researcher needs to derive the explicit explanation and construct the abstract thought, which was grounded in the views of designers. Therefore, coding analysis using grounded theory approach was conducted.

In this study, open coding is used to identify the elements of interest as mentioned in the three research questions. For instance (see Fig. 5.4), in a study of designers' perceptions toward the adaptation attribute, the researcher coded the selected emphases of respondent's utterance and extracted the utterance's properties. The open coding in this study begins with writing simple descriptive labels or properties of utterance's analysis. The "Open Codes" column provides an excerpt of open coding from one of those utterance analyses. Then, open codes that were introduced have been renamed and organized in relation to one another. Once a category or a dimension has been determined, the researcher may need to return to the data, and recode the data regarding the emergent concept that is summarized in the category or the dimension. The process of clustering open codes via axial

No.	Protocol Time	Transcriptions	Properties	Open Codes	Axial Codes	Selective Codes
1	2:08	The behaviour in image A is an unconscious behaviour or generally known as habits which applied to most of human being.	1. Unconscious human behaviour 2. Generally known as habits	Adaptation is an unconscious interac- tion which generally known as habit	Adaptation is an unconscious interaction	Adaptation is a natural and unconscious interaction behav- iour
2	1:52	the scenario as a common action pursuit by most people.	1. common action pursuit by most people.	Adaptation is a common interaction	Adaptation is a normal/natural /common interaction	Adaptation is a natural and unconscious interaction behaviour
3	1:36	the scenario as an interaction between user and a product to gain control onto the wire management	1. as an interaction between user and a product 2. gain control onto the wire management	 Adaptation is an interaction between user and product Adaptation helps to gain control on product 	Adaptation is an interaction between user and product physical proper- ties	Adaptation is a process to gain control of product by exploiting the physical properties

Fig. 5.4 Sample of coding using grounded theory approach

coding, followed by re-coding may have to be followed multiple times, once for each axial code. Finally, the selective coding was generated by interpreting the interrelationships that emerge among categories formed in axial coding. The selective coding retains only relevant and applicable variables to the core variables, to yield explicit information. In order to ensure the results of the VPA study support the central proposition and obtained subsequently validate/disprove the theory, the researcher applied a statistical test to quantify the qualitative coding. Hence, the outcome of the coding analysis was further analyzed using frequency analysis in SPSS V16.

5.4 Results and Discussion

Figure 5.5 illustrates the participants' response toward adapting attribute depicted in Image A. Based on the result, we found that most designers perceived adaptation attribute as an immediate interaction that occurs as part of the problem-solving processes. As described by designers through the VPA study, adaptation spontaneously occurred and interacted when such "need" arises. This finding expands Suri's [1] idea that human tends to alter the purpose or properties of things to meet a certain objective. For instance, users need to tie up the messy cable to avoid further problems (e.g., broken and malfunction cable). Moreover, the design problem (mobile charger) is critical element analyzed by most designers. Based on the VPA data, the problem was being analyzed as follows: (1) disproportionate size of the original mobile charger design; and (2) a lack of additional features of mobile charger design to manage the cable. However, the majority of designers end up with a design that revolves around a "rolling up" solution. Based on the VPA data, there are eight design concepts generated to provide the "rolling up" solution, i.e., (1) a mobile charger with clip; (2) a mobile charger with rolling space outside the main

Subject	Value Lable	Descriptions	Frequency	(%)
Image A	Perception on Adaptation Attrib- ute in Image A	Adaptation is a process to gain control of product by exploiting the physical properties	4	13.3
		Adaptation is an immediate interaction which occurred to solve the problem and manage things	14	46.7
		Adaptation is a natural and unconscious interaction behaviour	11	36.7
		Adaptation was resulted from the repetition process of everyday life	1	3.3
		Total	30	10
	Designers' Analysis Based on Image A	Analyse the problem of mobile charger design in Image A	18	60.
		Analyse the inappropriate interaction and behaviour as depicted in Image A	11	36.
		Analyse the human issues in interaction as depicted in Image A	1	3.
		Total	30	100.
	Designers' Reflection Based on	Reflect to design a rolling solution	24	80.
	Their Analysis in Image A	Reflect to protect the cable	4	13.
	- 2000 - 640	Reflect to design an abstract form inspired by the messy cable	1	3.
		Reflect to build a design service	1	3.
		Total	30	100.

Fig. 5.5 The result of participants' response toward adapting attribute depicted in Image A

body; (3) a mobile charger with a hook; (4) a mobile charger with an automatic rolling system inside the main body; (5) a mobile charger with a manual rolling system inside the main body; (6) universal cap to tie the cable; (7) a mobile charger as a fashioned accessory; and (8) a mobile charger with a built-in compartment.

Figure 5.6 illustrates the results of participants' response toward signaling attribute depicted in Image B. Based on the result, we found that most designers perceived signaling as an attribute that has various and proper approaches which results in a different level of communication efficiency. As described by designers in the VPA study, there are many ways of signaling. However, each approach requires a significant element to make it communicable at certain level of efficiencies. Meanwhile, the issues of inappropriate signaling approach are the critical element analyzed by most designers. For instance, according to the participants, sticking the paper notes is not a suitable medium for signaling. The writing on the sticky notes could be washed out by heavy rain or the notes itself can be blown away by the wind. Moreover, the participants mostly reflect to design signaling features. The data also generated six design concepts, which aims to provide signaling solutions, i.e., (1) a parking meter with a slotting indicator card; (2) a parking meter with slide down indicator cap cover; (3) a parking meter with screen indicator; (4) a parking meter with light-emitting diode (LED) indicator; (5) a parking meter with a writing space; and (6) a parking meter with foldable indicator bag.

Figure 5.7 illustrates the results of participants' response toward reacting attribute depicted in Image C. We found that reacting attribute is perceived by most participants as a common form of interaction. The participants described reacting as

Subject	Value Lable	Descriptions	Frequency	(%)
Image B	Perception on Signaling Attribute in Image B	Signalling required an appropriate approach	9	30.0
		Signalling has a various and proper approach which result a different level of communication efficiencies	13	43.3
		Signalling has a significance relationship with human nature, morality, and values	6	20.0
		Visual is an essential key for signalling to provide a good notification	2	6.7
		Total	30	100.0
	Designers' Analysis Based on Image B	Analyse the inappropriate signalling approach in Image B	12	40.0
		Analyse the negative impact of having non-signalling features in parking metre	5	16.7
		Analyse the issues of responsibility in using public property	6	20.0
		Analyse the design problem of parking metre in Image B	7	23.3
		Total	30	100.0
		Reflect to design signalling features	24	80.0
	Designers' Reflection Based on	ners' Reflection Based on Reflect to develop the aesthetic element of parking metre	1	3.3
	Their Analysis in Image B	Reflect to enhance parking system efficiencies	3	10.0
		Reflect to design an abstract form inspired by depression expression from the malfunction parking metre	1	3.3
		Reflect to provide a public service announcement (PSA) on responsibility issues	1	3.3
		Total	30	100.0

Fig. 5.6 The result of participants' response toward signaling attribute depicted in Image B

Subject	Value Lable	Descriptions	Frequency	(%)
Image C	Perception on Reacting Attribute in Image C	Reacting is a common interaction	9	30.0
		Reacting is an unconscious interaction	7	23.3
		Reacting is a manifestation of habit	7	23.3
		Reaction occurred under certain circumstances and surrounding	3	10.0
		Reacting occurred from the interaction between human and product physical properties	3	10.0
		Reacting may cause a negative implication	1	3,3
		Total	30	100.0
	Designers' Analysis Based on Image C	Analyse the factor of biting pen	19	63.3
		Analyse the negative impact of biting pen	11	36.7
		Total	30	100.0
	Designers' Reflection Based on Their Analysis in Image C	Reflect to provoking interaction between user and the pen	19	63.3
		Reflect to prevent user from biting the pen	9	30.3
		Reflect to enhance the pen features	1	3.3
		Reflect to design a pen with curly handgrip	1	3.3
		Total	30	100.0

Fig. 5.7 The result of participants' response toward reacting attribute depicted in Image C

a common form of interaction, especially when the person is reading alone but still depends on the situation, venue, or even the types of book. This is in agreement with Suri [1], which indicates that humans are reacting automatically with the affordance of an object (e.g., physical properties) and spaces that they encounter, even without any purpose. Meanwhile, most participants analyze the rationale behind the pen-biting habit. It includes, among others, (1) users might get bored and start to chew the pen and (2) biting a pen helps users to manage the stress. The participants also mostly reflected to provoking interaction between the user and the pen. The data generated six design concepts, which aims to provoke interaction between user and the pen, i.e., (1) a pen with a candy on top; (2) a pen with paper bullet trigger; (3) a pen with a special hole for swinging; (4) a pen with a comfort biting spot; (5) a pen with health indicator; and (6) a pen that emits music sound whenever knocked.

Figure 5.8 illustrates the results of participants' response toward confirming to others attribute depicted in Image D. We found that conforming to others attribute as perceived by most participants can be justified as following the style and trend. This style and trend of behavior arise because one organism is important to another as part of its evolving environment [14]. Meanwhile, most designers analyzed that the glasses may fall if it is hanged to the collar. For instance, when a Muslim user with his glasses hanged at his collar bent a little forward for ablution, the glasses

Subject	Value Lable	Descriptions	Frequency	(%)
	Perception on Conforming to Others Attribute in Image D	Conforming to others can be justified as following the style and trend	10	33.3
		Humans are conforming to others because they were adapted to what others did	4	13.3
		Humans are conforming to others in order to simplify and managing their things	7	23.3
		Conforming to others is a common interaction and behaviour	5	16,7
		Conforming to others is an unconscious behaviour interaction	Ţ	3.3
		Human was influenced by environment when conforming to others	1	3.3
		Conforming to others can be justified as habit	1	3.3
		Conforming to others can be done in various ways	1	3.3
		Total	30	100.0
Image D	Designers' Analysis Based on	Analyse that the glassed may fall if hanged to the collar	14	46.7
		Analyse that the glasses' lens may get scratched if hanged to the collar	2	6.7
		Analyse that hanging a glasses to the collar is a trend and fashion	14	46.7
	Image D	Total	30	100.0
	Designers' Reflection Based on Their Analysis in Image D	Reflect to provide a hanging solution	17	56.7
		Reflect to protect the lens	10	33.3
		Reflect to add hi-tech values on glasses.	2	6.7
		Reflect to design an abstract form inspired by glasses material	1	3,3
		Total	30	100.0

Fig. 5.8 The result of participants' response toward confirming to others attribute in Image D

may slip and fall. The data generated three categories of design concept, which includes (1) glasses with supporting hanging cable and a built-in MP3 player; (2) glasses with special frame features that enable safe hanging solution; and (3) a shirt design with special holes for safe hanging solution.

5.5 Summary

Based on the results, we can conclude that our aims of this study have been met; to assess designers' perception, analysis, and reflective toward the theory UICHB using VPA. Through the study, we found that designers were able to perceive, understand, analyze, and reflect to enhance the value of an existing product by interpreting the design needs from the four attributes of unconscious interaction in everyday human behavior. This study contributes to provide a good insight of understanding designers' design thinking on conceptual ideation level based on their response toward the attributes of UICHB, which lead to new interpretation and present opportunities for new design solutions. Moreover, the study provides an alternative technique of using VPA as a comprehensive approach to look at the positive possibilities in the realms of unconsciousness and embodied human interaction for product design ideation.

References

- 1. Suri, J.F.: Thoughtless Acts Observation on Intuitive Design (2005)
- Wakkary, R., Maestri, L.: Aspects of everyday design: resourcefulness, adaptation, and emergence. Int. J. Human Comput. Interact. 24(5), 478–491 (2008)
- Sohn, M., Nam, T., Lee, W.: Designing with unconscious human behaviors for eco-friendly interaction. In: Proceeding of 27th International Conference Extended Abstract on Human Factors Computing System, p. 2651. ACM (2009)
- Hua, M., Fei, Q.: The value of unconscious behavior on interaction design. In: 2009 IEEE 10th International Conference on Computer-Aided Industrial Design & Conceptual Design, pp. 336–339 (2009)
- Waddington, N.J., Wakkary, R.: Everyday design through the lens of embodied interaction. In: GRAND Annual Conference, pp. 2–4 (2010)
- Kamil, M.J.M., Abidin, S.Z.: Unconscious human behavior at visceral level of emotional design. In: Procedia—Social and Behavior Science, vol. 105, pp. 149–161 (2013)
- Kamil, M.J.M., Abidin, S.Z.: The value of unconscious human behavior in product design innovation. In: 2nd International Conference on Technology, Informatics, Management, Engineering & Environment Bandung, Indonesia, pp. 123–127 (2014)
- Kamil, M.J.M., Abidin, S.Z.: Unconscious interaction between human cognition and behaviour in everyday product: a study of product form entities through freehand sketching using design syntactic analysis. In: International Conference on Engineering and Product Design Education, pp. 369–374. Loughborough University, UK (2015)
- 9. Alexander, C.: Notes on the Synthesis of Form. Harvard University Press, Cambridge (1964)
- 10. Bargh, J. A.: The automaticity of everyday life. J. Adv. Soc. Cogn. 10 (1997)

- 5 Assessing Designers' Perception, Analysis, and Reflective ...
- 11. Dijksterhuis, A., Smith, P.K., Baaren, R.B., Wigboldus, D.H.J.: The unconscious consumer: effects of environment on consumer behavior. J. Consum. Psychol. **15**(3), 193–202 (2005)
- 12. Cleeremans, A.: Conscious and unconscious cognition: a graded, dynamic perspective. Control 1, 401–418 (2004)
- 13. Skinner, B.: Science and Human Behavior. Simon and Schuster, New York, Appleton (1953)
- 14. Suwa, M., Purcell, T., Gero, J.: Macroscopic analysis of design processes based on a scheme for coding designers' cognitive actions. Des. Stud. **19**, 455–483 (1998)
- Cash, P., Kreye, M.: Exploring uncertainty perception as a driver of design activity. Des. Stud. 54, 50–79 (2018)
- 16. Cash, P., Kreye, M.: Uncertainty Driven Action (UDA) model: a foundation for unifying perspectives on design activity. Des. Sci. (2017)
- Mason, P.: Visual data in applied qualitative research: lessons from experience. Qual. Res. 5 (3), 325–346 (2005)
- Burri, R.V.: Visual rationalities: towards a sociology of images. Curr. Sociol. 60(1), 45–60 (2012)
- Munhall, P.: Perception. In: The SAGE Encyclopedia of Qualitative Research Methods, pp. 607–608. SAGE Publications, Thousand Oaks, CA (2008)
- Merriam-Webster: Merriam-Webster's Collegiate Dictionary. Massachusetts: Merriam-Webster Incorporated (2006)
- 21. Valkenburg, R., Dorst, K.: The reflective practice of design teams. Des. Stud. **19**(3), 249–271 (1998)