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Abstract

We o↵er a general equilibrium analysis of cryptocurrency pricing. The fundamental
value of the cryptocurrency is its stream of net transactional benefits, which depend
on its future prices. This implies that, in addition to fundamentals, equilibrium prices
reflect sunspots. This, in turn, implies there are multiple equilibria and extrinsic
volatility, i.e., cryptocurrency prices fluctuate even when fundamentals are constant.
To match our model to the data, we construct indices measuring the net transactional
benefits of bitcoin. In our calibration, a fraction of the variations in bitcoin returns
reflects changes in net transactional benefits, but a larger fraction reflects extrinsic
volatility.
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1 Introduction

What is the fundamental value of cryptocurrencies? Do high market valuations reflect fun-

damentals or speculation? Does high volatility reflect investors’ irrationality? We o↵er a

framework to address these issues. In our framework, the fundamentals of a cryptocurrency

are the net transactional benefits it is expected to provide.1 Yet, in addition to changes in

fundamentals, variation in equilibrium cryptocurrency prices reflects sunspot-driven extrin-

sic volatility. The contribution of this paper is thus to o↵er a theoretical formalisation and

empirical quantification of the relationship between cryptocurrency prices, fundamentals,

and extrinsic volatility.

Our theoretical model involves overlapping generations of agents, with stochastic en-

dowments, who can trade standard fiat money (such as dollar) and a cryptocurrency (such

as bitcoin). While both can be used to purchase consumption goods, the cryptocurrency

can provide transactional benefits that standard money cannot. For example, citizens of

Venezuela or Zimbabwe can use bitcoins to conduct transactions even when their national

currencies and banking systems are in disarray. Also, cryptocurrencies can be used for

cross-borders transfers when high costs or government controls hinder transfers via tradi-

tional financial institutions. Along with these transactional benefits, cryptocurrencies come

with costs: limited convertibility into traditional currencies, transaction costs on exchanges,

fees that agents must pay to have their transactions mined, and the risk of a crash of the

cryptocurrency.

In our model, investors rationally choose their demand for cryptocurrency based on their

beliefs about future prices and transactional benefits net of costs. This yields an Euler

equation relating the current price of the cryptocurrency to the expectation of the stochastic

discount factor multiplied by the sum of the future price and net transactional benefit. This

highlights that transactional benefits are to cryptocurrencies what dividends are to stocks.

There is, however, a major di↵erence. In perfect markets, dividends, which do not depend

on stock prices, provide a real anchor for stock valuations. In contrast, the transactional

benefits provided by a cryptocurrency depend on its price: The higher the price of the

cryptocurrency, the stronger its purchasing power relative to the standard currency, and

1Thus, when it becomes more likely that a cryptocurrency will facilitate transactions, its price should go
up. For example, this is consistent with the rise in bitcoin price, following announcements that firms such
as Paypal, MasterCard or Visa would integrate bitcoin in their payment architecture.
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consequently the higher the transactional benefits it delivers via the purchase of goods.

Because cryptocurrency prices reflect beliefs about future prices rather than real variables

independent of prices, equilibrium can reflect exogenous sunspots.2 This major di↵erence

between cryptocurrencies and stocks precludes a standard Campbell and Shiller (1988b)

decomposition, but, as explained below, we propose an alternative decomposition.

Characterising equilibrium currency price processes is challenging. One of our contri-

butions is to o↵er a new characterisation of two classes of equilibria: First, we consider

“constant price equilibria” in which, at each period, there can be a sunspot leading to a

crash in which the cryptocurrency price permanently drops to zero, while the standard cur-

rency price remains positive. Before and after the crash, however, prices of both currencies

are constant. We show there are multiple constant price equilibria, one for each possible

constant value of the crash probability. Second, we characterise “volatile price equilibria,” in

which sunspots can trigger price changes at each period. To do so, we consider an arbitrary

horizon of N periods. From period N onwards, the continuation equilibrium falls in the class

of “constant price equilibria.” There are di↵erent continuation constant price equilibria, one

for each value of the crash probability prevailing from period N onwards. These di↵erent

crash probabilities determine the state of the sunspot at that time, and the corresponding

equilibrium price.3 By backward induction we then obtain the equilibrium cryptocurrency

price at period N � 1, as a function of the state of the sunspot at N � 1, the transition

probabilities from that state to the period N state, and the corresponding possible values of

the cryptocurrency price at period N . Iterating, backward induction yields the sequence of

equilibrium cryptocurrency prices at all periods before N � 1.

There is equilibrium multiplicity since there exists an equilibrium for each possible dis-

tribution of the trajectory of the sunspot variable. Moreover, within each equilibrium (i.e.,

for each distribution of the sunspot), there is extrinsic volatility, since cryptocurrency prices

change, in response to the random evolution of the sunspot variable, even when fundamental

variables remain constant. While related, equilibrium multiplicity and extrinsic volatility

are di↵erent concepts. On the one hand, there are multiple constant price equilibria, in each

of which, except at the time of the crash, there is no volatility. On the other hand, within

2This is less of an issue for o�cial currencies, such as the dollar or the euro, whose fundamental value
reflects that they can be used to pay taxes (see, e.g., Starr, 1974).

3Precisely, the state of the sunspot includes whether a crash occurred, and what is the belief about a
crash occurring in the current period.
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a given volatile price equilibrium, there is volatility, as the sunspot and consequently the

prices vary randomly on the equilibrium path.4

For isoelastic utilities, we can further identify the economic determinants of equilibrium

cryptocurrency prices. The price of the cryptocurrency increases with its transactional ben-

efits and decreases with its crash risk. Moreover, risk averse investors require a risk premium

to hold the cryptocurrency in spite of its crash risk.

To confront our theory to the data, we compile data from 20 major exchanges to construct

a time series of bitcoin prices from July 2010 to December 2018. We also construct three

time series that proxy for the transactional costs and benefits of bitcoin. First, we collect

the time series of the transaction fees paid by bitcoin users to miners entering transactions

in the blockchain. These fees are high when the number of trades in bitcoin is very high,

leading to congestion in the blockchain. Thus, high transaction fees are not only costly

by themselves but also signal other costs of bitcoin associated with delays and congestion.

For the two other time series, we browse the web archives to collect information on events

likely to a↵ect the costs and benefits of transacting in bitcoin. We categorise these events

into two subsets. The first subset captures further information on the transaction costs of

bitcoin. More specifically, it contains events indicative of the ease with which bitcoins can

be exchanged against other currencies, such as a new currency becoming tradable against

bitcoin or the shutdown of a large platform. The second subset captures information on

transactional benefits: it contains events a↵ecting the ease with which bitcoin can be used

to purchase goods and services, such as merchants starting or ceasing to accept bitcoin as

means of payment. Based on these two subsets of events, we construct two indices proxying

for transactional costs and transactional benefits, respectively. Finally, we collect data about

bitcoin thefts and hacks, to obtain a measure of the corresponding losses.

Using these data, we calibrate our model. For simplicity, in the calibration, we focus on

4Equilibrium multiplicity was previously obtained for stocks by Spiegel (1998), Watanabe (2008), Biais,
Bossaerts and Spatt (2010), and Bacchetta, Tille and van Wincoop (2012). Both in these models and the
present one, multiplicity arises because of overlapping generations. One di↵erence between these models and
the present one is that, while they assume investors born at time t maximise the expected utility of their
time t+ 1 consumption and the risk free rate is constant, we take a general equilibrium approach in which
investors maximise the expected utility of their current and future consumption and all rates of return are
endogenous. So, in our analysis, required returns reflect the marginal rates of substitution between current
consumption and future consumption in the di↵erent possible states. Excess volatility also obtains in Spiegel
(1998) but it is driven by random stock supplies, unlike in the present paper, in which excess volatility is
driven by sunspots.
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the special case in which investors are risk neutral. Empirically, risk neutrality is likely to

be an admissible shortcut, because Liu and Tsyvinski (2021) find that, for our sample pe-

riod, cryptocurrency returns are not significantly correlated with consumption or production

growth. Theoretically, our analysis of the risk averse case shows that cryptocurrency price

changes do not a↵ect much standard currency prices, and investors’ consumption, as long

as the bitcoin capitalisation is small relative to that of GDP. Current bitcoin market capi-

talisation represents 1.3% of world GDP, which suggests that risk neutrality is a reasonable

approximation. In the risk neutral case, we obtain an expression for cryptocurrency required

returns that holds across all possible equilibria.5 While we calibrate the exact (nonlinear)

form of this restriction, its linearisation is useful to give intuition, as it states that the ex-

pected return must equal the sum of the probability of a crash and the transactions and

hacks costs, minus the expected transactional benefits of the cryptocurrency.

For the calibration, we specify transactional costs and benefits as linear functions of the

empirical variables whose construction is described above. The coe�cients of these linear

functions are set to minimise the root mean squared di↵erence between the required returns

implied by our calibrated model and the realised returns. This yields coe�cients with signs

in line with economic intuition, as they imply required returns that increase in transactional

costs and decrease in transactional benefits. That said, we do not claim statistical significance

or estimation of population parameters. This is precluded by the relatively short size of our

sample and the fact that our variables (in particular transactional costs and benefits) are

likely to be non-stationary.

We find that required bitcoin weekly returns start at a high level (between 8% and 18%

per week) in 2010 and 2011, remain between 2% and 8% for the next couple of years, and

drop below 2% during the rest of the sample period, except in the last months of 2017. In

the calibration, crash risk explains around 11 percentage points of the required return during

the first two years of the sample period. Then, as time goes by, the probability of a crash

and its contribution to required returns decrease to close to zero, reflecting that no crash

occurred during the sample period. The costs associated with the mining fees and delays and

congestion on the blockchain are negligible throughout the sample except for 2017. During

2017 they spike up, especially towards the end of the year, at which point they explain

up to 10 percentage points of the calibrated required return. The index proxying for the

5In the risk neutral case, as in the risk averse case, there is equilibrium multiplicity and extrinsic volatility.
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di�culty to exchange bitcoin against standard currency adds almost 10 percentage points to

the calibrated required return at the beginning of the sample. Within a year, however, its

contribution to the calibrated required return drops to around eight percentage points. It

then remains around that level throughout the rest of the sample period. The contribution

of hack risk is relatively small, as it amounts to only four basis points. Against these

costs, the calibrated transactional benefit component starts around zero at the beginning

of the sample but increases until 2015. From that point on the calibrated transactional

benefit, which underlies the fundamental value of the cryptocurrency, is around 8%. This is

admittedly high, and maybe implausible. It is useful, however, to compare this magnitude

to that of the cost of cross border fund transfers, which cryptocurrencies can help avoid. For

example data from the World Bank suggests that remittance costs are around 6%.6

While our calibration quantifies the e↵ect of fundamentals on required expected returns,

it also shows that changes in fundamentals only explain a small share (around 5%) of the

variance of bitcoin returns. Under the hypothesis that our model is well specified and our

proxies accurate, this implies that the lion’s share of bitcoin fluctuations reflects another

feature of the equilibria we characterise, extrinsic volatility unrelated to fundamentals.

Literature: Our theoretical analysis is in line with the classic overlapping generations

models of money (Samuelson, 1958, Wallace, 1980, and Tirole, 1985), which have also been

extended to cryptocurrencies by Saleh (2020) and Garratt and Wallace (2018). In a one-

currency model, Saleh (2020) compares equilibrium prices and welfare in two protocols:

proof-of-burn and proof-of-work. Garratt and Wallace (2018) use the Kareken and Wallace

(1981) model of several currencies to analyse the joint determination of the prices of a

cryptocurrency (say bitcoin) and a standard currency (say dollar). An important ingredient

in their analysis is that at each period, there can be a sunspot leading to a crash in which

the cryptocurrency price permanently drops to zero. This gives rise to the “constant price

equilibria” we also analyse. The incremental contribution of our theoretical analysis, relative

to that of Garratt and Wallace (2018), is twofold.7 First, for “constant price equilibria” we

complement Garratt and Wallace (2018) by solving explicitly for the cryptocurrency price in

6See “The World Bank, Remittance Prices Worldwide,” available at http://remittanceprices.
worldbank.org.

7While we confront our theoretical model to the data, the analysis in Garratt and Wallace (2018) is purely
theoretical.
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the isoelastic case. This enables us to conduct comparative statics analysis of the economic

drivers of the cryptocurrency price. Second, in addition to “constant price equilibria”, we

characterise a new class of equilibria: “volatile price equilibria”, in which sunspots trigger

cryptocurrency price changes at each period, resulting in volatile equilibrium cryptocurrency

price paths, even when fundamentals remain constant.8

Schilling and Uhlig (2019) study the interaction between bitcoin and dollars in a model

in which agents live forever, but alternate between consumption and production. This alter-

nation generates non double coincidence of wants so that money plays a role in facilitating

exchanges, similar to the role it plays in the overlapping generations model. Schilling and

Uhlig (2019) show that, if consumption and the price of dollar are independent from the price

of bitcoin, then the latter follows a martingale. This is similar to the condition we obtain in

the risk neutral case, except that the pricing equation in Schilling and Uhlig (2019) does not

feature the transactional costs and benefits of the cryptocurrency, which play a central role

in our analysis. Instead, Schilling and Uhlig (2019) focus on the public policy implications

of the introduction of a cryptocurrency, which we do not analyse.9 Benigno, Schilling and

Uhlig (2019) develop this line of research further by showing how a global cryptocurrency

may enforce a synchronisation of interest rates across countries.

Also in relation with the monetary theory literature, Chiu and Koeppl (2021), Hendry and

Zhu (2019), Fernández-Villaverde and Sanches (2019), Pagnotta (2021), and Auer, Monnet

and Shin (2021) extend the Lagos and Wright (2005) model to the case of cryptocurrencies.

An important feature of the models studied by Chiu and Koeppl (2021) and Pagnotta (2021)

is the risk of an attack on the network, which decreases with the hashpower that miners ded-

icate to the network. In Pagnotta (2021) there are multiple equilibria: If the cryptocurrency

is expected to be safe, its price is high. This induces many agents to engage in mining,10

thus making the cryptocurrency safe. But there is also a rational expectations equilibrium in

which the cryptocurrency is expected to be risky, its price is low, and there is little mining.

The multiplicity of equilibria in Pagnotta (2021) di↵ers from that arising in our model. In

Pagnotta (2021) equilibrium multiplicity reflects the loop between prices and mining, in our

8Zimmerman (2020) proposes a di↵erent model in which the volatility of cryptocurrency prices arises
from the blockchain transaction validation process.

9Hendry and Zhu (2019) also study monetary policy implications of the existence of cryptocurrencies.
10Relatedly, Prat and Walter (2021) analyse theoretically and empirically how increases in bitcoin prices

induce miners’ entry.

6



paper it reflects that investors can coordinate on di↵erent beliefs about the likelihood of a

crash. Fernández-Villaverde and Sanches (2019) and Choi and Rocheteau (2020) analyse

models in which agents can create private monies at a cost, and show there exist equilib-

ria in which the value of private monies eventually vanishes. Choi and Rocheteau (2020)

characterise the set of all deterministic perfect foresight equilibria, which di↵ers from our

focus on stochastic equilibrium price paths. The focus of Fernández-Villaverde and Sanches

(2019) on the consequences of the shape of the entrepreneurs’ cost function and the quantity

of money di↵ers from our focus on the transactional benefits and costs of the cryptocurrency

and the agents’ beliefs on the risk of a crash. Auer, Monnet and Shin (2021) jointly analyse

the use of cryptocurrencies in a Lagos-Wright framework and the strategic contribution of

validators to the validation of trades conducted on the blockchain. Their emphasis on the

optimal design of the validation mechanism di↵ers from our emphasis on the dynamics of

cryptocurrency prices in general equilibrium.

Another interesting strand of the literature to which our paper is related focuses on

platforms within which agents can use cryptocurrencies to reap gains from trade. In Athey

et al. (2016), the platform is used by the agents to transfer funds abroad, for example to

their family, as in remittances. An important ingredient in this model is the risk of a fatal

flaw making the platform vulnerable to a successful attack. As time goes by, if there is no

crash, Bayesian learning leads to a decrease in the probability of platform disruption, and

more and more people adopt the platform. Similarly, in our model, there is a risk that the

cryptocurrency crashes. Our model encompasses the case in which a crash could be triggered

by a real event, as in Athey et al. (2016), and the case in which the crash is triggered by a

sunspot. It is the latter aspect of our analysis, which is not present in Athey et al. (2016),

which enables us to construct volatile price equilibria, in which bitcoin price variation reflects

extrinsic volatility unrelated to fundamentals. Cong, Li and Wang (2021) also consider a

platform, in which agents can use cryptocurrency tokens to conduct peer to peer transactions,

and thus benefit from transactional benefits. An important ingredient in Cong, Li and Wang

(2021) is that there are network externalities: The larger the number of platform users, the

larger the transactional benefits each gets. This implies there can be equilibrium multiplicity.

But the source of multiplicity in Cong, Li and Wang (2021): network externalities, di↵ers

from that in our paper: sunspots. Another important feature of the model analysed by Cong,

Li and Wang (2021) is that transactional benefits are increasing in the platform productivity,
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which evolves randomly. Network externalities amplify the impact of productivity shocks on

token prices. The corresponding “excess volatility” of cryptocurrency prices di↵ers from the

extrinsic volatility in our analysis: In Cong, Li and Wang (2021) excess volatility reflects

changes in fundamentals, in our analysis extrinsic volatility is unrelated to fundamentals.

Sockin and Xiong (2020) also o↵er a model of cryptocurrency valuation in the presence of

positive network externalities. They show that by delegating control to users, tokenization

creates commitment not to exploit users.

On the empirical side, Makarov and Schoar (2020), Borri and Shakhnov (2019), and

Hautsch, Scheuch, and Voigt (2020) document mispricings and arbitrage opportunities across

exchanges for bitcoin. Rather than on di↵erences in prices at the same point in time, our

work focuses on the dynamics of equilibrium cryptocurrency prices. This relates our paper to

Liu and Tsyvinski (2021), Liu, Tsyvinski and Wu (2021), Bianchi (2020), and Bhambhwani,

Delikouras and Korniotis (2019). Liu and Tsyvinski (2021) document that cryptocurrency

returns are not significantly correlated with consumption or production growth, but are ex-

posed to cryptocurrency network factors. Liu, Tsyvinski and Wu (2021) show that three

factors: cryptocurrency market, size, and momentum, capture the cross section of cryp-

tocurrencies’ expected returns. In contrast with that literature, our empirical focus is on

i) measuring the costs and benefits of bitcoin and ii) using these measures to calibrate our

theoretical model. Our indices measuring the ease and cost of using bitcoins are in the

same line as the index constructed by Auer and Claessens (2018) to measure the extent to

which regulation is favourable to cryptocurrencies. Both Auer and Claessens (2018) and the

present paper study how the evolution of such indices relates to the evolution of cryptocur-

rency prices. Di↵erences between Auer and Claessens (2018) and our paper include Auer

and Claessens (2018)’s focus on regulatory events and our reliance on a theoretical model.

2 Model

Time is discrete and divided into periods and the horizon is infinite. There is one consump-

tion good and three assets: a cryptocurrency (e.g., bitcoin), in supply Xt at period t, a

standard currency (e.g., dollar) in fixed supply m, and a risk-free asset in zero net supply.

There are investors, miners and hackers. All are competitive and take prices as given. We

consider miners and hackers in order to introduce two important features of the cryptocur-
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rency: the creation of new coins and the risk of hacks. In our model their actions are very

simple: they perform their activity and then sell their cryptocurrency holdings and consume.

In contrast, we analyse in detail the consumption and savings decisions of investors, which,

combined with market clearing, pin down equilibrium pricing.

At each period t a new generation of miners is born. Miners born at period t mine until

t+ 1, at which point they get rewarded by newly created coins, Xt+1 �Xt, and transaction

fees. At period t + 1 they sell their coins against consumption goods, which they consume

(along with the fees they received) before exiting the market. Denote by c
m
t+1 the consumption

of miners at period t+ 1.

Similarly, at each period t, a new generation of hackers is born. They try to steal some

cryptocurrency, for example by hacking a cryptocurrency exchange (like Bitfinex in 2016)

or a decentralized autonomous organization (like the DAO built on top of Ethereum, also

in 2016).11 The fraction they manage to steal is a random variable living in [0, 1], which

we denote by ht+1. The index t + 1 reflects the fact that the fraction stolen is not known

by investors at t, and is only discovered at t + 1. At period t + 1, hackers sell their stolen

coins against consumption goods, which they consume before exiting the market. Their

consumption is denoted by c
h
t+1.

Finally, a mass one continuum of investors are born at each period. They live and

consume during two periods, have separable additive utility u(.), with u
0
> 0 and u

00  0,

and discount factor �. At each period, their utility is defined over positive consumption and

the transactional benefits of using cryptocurrencies. To simplify the analysis, we assume that

consumption and transactional benefits enter additively in the utility function. To initialise

the model, at date 1 there is also a generation of old investors, miners and hackers, who hold

the supply of cryptocurrencies X1 and standard currency m.

At period t, each young investor is endowed with et units of consumption good, can buy

qt units of cryptocurrency, or coins, at unit price pt, q̂t units of standard currency at unit

price p̂t, and can save st. For notational simplicity, the consumption good is the numeraire.

That is, pt (resp. p̂t) is the number of units of consumption good that can be purchased

11There could also be security breaches resulting in thefts for the standard currency. For instance, hackers
used the SWIFT system to steal reserves of the Central Bank of Bangladesh at the New York Fed (see
“The billion-dollar bank job” by J. Hammer published in the NYtimes on May, 3, 2018.) However, because
cryptocurrency ownership is defined outside the legal system, it is more vulnerable to such thefts. To capture
this, we set ht � 0 for the cryptocurrency only.
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with one unit of cryptocurrency (resp. standard currency) at period t.

When buying cryptocurrency, each investor incurs a linear cost 'tqtpt, with 't � 0. Thus,

the young investor’s budget constraint is:

c
y
t = et � st � qtpt � q̂tp̂t � 'tqtpt. (1)

The cost term 'tqtpt reflects the cost of having a wallet, going through crypto-exchanges,

transactions fees, etc. It is indexed by t to capture the notion that this cost can change with

time. We assume that this cost is paid when buying the cryptocurrency, and thus depends

on the cryptocurrency price at period t.12

When old, in period t + 1, each investor consumes savings, plus proceeds from sale of

currencies. For the standard currency these proceeds are q̂tp̂t+1. For the cryptocurrency, pro-

ceeds are (1� ht+1)qtpt+1, where, as mentioned above, ht+1 is the fraction of cryptocurrency

holdings that is stolen by hackers, between t and t+ 1. Thus, old investors consume

c
o
t+1 = st(1 + rt) + (1� ht+1)qtpt+1 + q̂tp̂t+1. (2)

We assume that old investors also receive transactional benefits (1�ht+1)✓t+1qtpt+1 generated

by cryptocurrencies. For example, those benefits can stem from the ability to send money,

possibly to another country, without using the banking system, and without being controlled

by the government. Another example is that cryptocurrencies can enable agents holding them

to use more easily smart contracts and tokenized assets. Since the agent uses cryptocurrency

to buy consumption at period t+ 1 the transactional benefits reflect the period t+ 1 price.

We denote ĉ
o
t+1 = c

o
t+1 + (1� ht+1)✓t+1qtpt+1 the sum of the consumption and transactional

benefits that enters into the utility function of old investors.

We assume that ✓t+1 � �1.13 Equation (2) then implies that old agents sell all their

holdings of cryptocurrency (1 � ht+1)qt to increase their consumption. Note that, in our

theoretical and our empirical analyses, we assume {Xt}t>0, {✓t}t>0 and {'t}t>0 are exogenous

processes, independent from the actions of the agents in the market.

12The analysis remains largely unchanged if we include a cost when selling the cryptocurrency at t+ 1 as
well.

13If ✓t+1 < �1, then old agents would be better o↵ not selling their holdings if pt+1 was strictly positive.
Market clearing would then imply pt+1 = 0. Assuming ✓t+1 � �1 rules out this degenerate case.
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Finally the budget constraints of miners and hackers born at period t are

c
m
t+1 = (Xt+1 �Xt)pt+1 + 't+1qt+1pt+1 (3)

and

c
h
t+1 = ht+1qtpt+1, (4)

respectively.

As in Garratt and Wallace (2018), we allow for the possibility that, at the end of each

period t, with probability ⇡t, there is a crash, and the cryptocurrency price permanently

drops to 0, i.e., pt+s = 0, for all s > 0. As discussed in Garratt and Wallace (2018),

the occurrence of a crash can be due to a sunspot (see Cass and Shell, 1983). In that

interpretation, the crash is a purely extrinsic random variable. It does not reflect any change

in the fundamentals but an extrinsic change in beliefs, triggered by a sunspot, independent

from all the other variables, e.g., ✓t, 't or pt.

A crash occurs all agents believe the cryptocurrency is worthless. Hence they reject

payment in the cryptocurrency, which thus becomes worthless. So the agents’ belief is self-

fulfilling. An alternative interpretation of the crash is that it is triggered by a real event,

such as the discovery of a flaw in the protocol, a successful attack on the blockchain (for

example a 51% attack), or a sudden change in the political and legal environment making it

impossible to use the cryptocurrency.

In our model, the standard currency price could also go to zero. As shown in Starr (1974),

however, this can be prevented when the government levies taxes which must be paid in that

currency: Even if agents anticipate the others not to accept the standard currency, as long

as they know the government will accept it for the payment of taxes, the demand for the

standard currency is strictly positive at prices bounded away from zero.14 So, in our analyses,

we focus on equilibria in which the price of the standard currency is strictly positive at all

times.

The sequence of events at each period is summarised in Figure 1. As can be seen in Figure

1, the probability ⇡t of a crash during period t is determined at the beginning of period t. In

the sunspot interpretation of crashes, ⇡t is the realisation of a random variable independent

from all other variables in the information set of agents at the beginning of period t. Whether

14For a recent analysis of these issues see Gaballo and Mengus (2021).
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there is a crash in period t or not is determined by the realisation of a random variable at

the end of period t. In the sunspot interpretation of crashes, the distribution of this random

variable depends only on ⇡t and is independent from all the other variables in the information

set of the agents period t.

exogenous

parameters

determined:

✓t, 't, ⇡t

endogenous

parameters

determined:

pt, p̂t, qt, q̂t

⇡ t crash

1�
⇡
t no crash

period t

time

period t+ 1

✓t+1

't+1

⇡t+1

pt+1

p̂t+1

qt+1

q̂t+1

crash

or no

crash

Figure 1: Sequence of events.

3 Equilibria

3.1 The general case

A rational expectation equilibrium is defined by prices {pt, p̂t, rt}t>0 and portfolio decisions

{qt, q̂t, st}t>0 such that

(i) {qt, q̂t, st} maximises generation t investors’ expected utility, given prices and subject

to the budget constraints (1) and (2), and to consumptions being positive, while the

consumptions of the miners and hackers are set by (3), and (4), respectively,

(ii) at each period t, the markets for the cryptocurrency, the standard currency and the

risk-free asset clear: qt = Xt, q̂t = m, and st = 0.15

15By Walras’s law, the market for the consumption good also clears, that is: cyt + cot + cht + cmt = et.
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A young investor at period t solves

maxqt,st,q̂t u(c
y
t ) + �Etu(ĉot+1)

s.t. c
y
t � 0, (1), (2)

where Et is the expectation conditional on the information set of the agents at the beginning

of period t, which includes, in particular, ✓t, 't, and ⇡t (see Figure 1). Assume first that the

positive consumption constraint does not bind. The first order optimality condition with

respect to qt yields

pt = �Et


u
0(ĉot+1)

u0(cyt )
(1� ht+1)

1 + ✓t+1

1 + 't
pt+1

�
, (5)

or equivalently,

pt = �(1� ⇡t) Et


u
0(ĉot+1)

u0(cyt )
(1� ht+1)

1 + ✓t+1

1 + 't
pt+1

���� no crash

�
. (6)

The first order condition with respect to st is

� =
1

1 + rt

u
0(cyt )

Et

⇥
u0(cot+1)

⇤ . (7)

On the equilibrium path, at period t old investors cannot borrow or lend, since they won’t

be present in the market at period t + 1. Hence, in equilibrium st = 0. So the interest rate

must adjust so that (7) holds when evaluated at st = 0.

Denote

1 + Tt+1 =
1 + ✓t+1

1 + 't
. (8)

Tt+1 can be interpreted as the net transactional benefit per unit of the cryptocurrency,

reflecting its transactional benefits (✓t+1) net of its transactions costs ('t). Using (7) to

replace � into (5), we obtain our first proposition.

Proposition 1 The equilibrium price of the cryptocurrency at period t is such that

pt =
1

1 + rt
Et

 
u
0(ĉot+1)

Et

⇥
u0(ĉot+1)

⇤(1� ht+1) (pt+1 + Tt+1pt+1)

!
, (9)
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or, equivalently, for an arbitrary K > 1,

pt = Et

 
KX

k=1

 
kY

j=1

1� ht+j

1 + rt+j�1

u
0(cot+j)

Et

⇥
u0(cot+j)

⇤Tt+kpt+k

!
+

 
KY

j=1

1� ht+j

1 + rt+j�1

u
0(cot+j)

Et

⇥
u0(cot+j)

⇤
!
pt+K

!

(10)

In Appendix 1, we complete the proof of Proposition 1 by showing that (9) also holds

when the constraint that consumption is positive binds.

Fundamental value, price and transactional benefit. Equation (9) states that the

price of the cryptocurrency at period t is equal to the present value of the expectation of

the product of three terms: i) The first term is the pricing kernel, capturing the correlation

between the marginal utility of consumption and the cryptocurrency price. ii) The second

term reflects the risk of hacks. iii) The third term is the sum of the price of the cryptocurrency

at period t+ 1 and its net transactional benefit.

(10) rewrites (9) to show that the equilibrium price pt is the sum of the discounted

expected transactional benefits brought by the cryptocurrency Tt+kpt+k, which correspond

to its fundamental value. (10) is similar to its counterpart for stocks, except that instead

of stemming from the transactional benefits Tt+kpt+k, the fundamental value would stem

from the firm’s dividend. This points to an essential di↵erence between the fundamental

value of a currency and that of a stock. For stocks, in perfect markets, current valuation

reflects the expectation of future dividends, which do not depend on future stock prices.

Thus, valuation is anchored by a fundamental variable independent of future prices. In

contrast, for currencies, there is no such anchor, since endogenous future prices determine

transactional benefits. This lack of exogenous anchor raises the possibility of equilibrium

multiplicity and extrinsic volatility, as explained below.16 Equation (10) further shows that,

for the cryptocurrency price to be strictly positive at time t, its net transactional benefit

⌧t+k must be positive for some k. Equation (10), however, does not rule out the possibility

that, in the short term, net transactional benefits could be negative, as long as they would

be expected to become su�ciently positive in the long term.

16As will be clarified below, such equilibrium multiplicity goes far beyond the possibility that, when there
exists an equilibrium with pt > 0, there also exists another equilibrium with pt = 0.

14



3.2 Constant price equilibria with risk averse agents

It is di�cult, in our stochastic infinite horizon setting, to explicitly solve for equilibrium

prices when agents are risk averse. There is one relatively simple case, however, in which

we can further characterise equilibrium prices: equilibria in which prices are constant until

there is a crash, bringing the cryptocurrency price down to zero. In this subsection the

crash probability is constant, and denoted by ⇡.17 By a slight abuse of language, we refer to

these equilibria as “constant price equilibria”, although, of course, at the time of the crash

they involve a sharp change in prices. Admittedly, these constant price equilibria are not

very plausible, because they do not allow for volatility except at the time of the crash. But

they o↵er a simple laboratory in which to develop intuition about the economics of currency

pricing. They also serve as a building block, which we use below to characterise more general

and plausible equilibria, with volatile prices.

To study constant price equilibria, for simplicity we assume that endowments, cryp-

tocurrency supply, costs, and benefits are constant, i.e. et = e, Xt = X, 't = ', ✓t = ✓

et ht = h. In the event of a crash, the cryptocurrency price goes to 0. We also assume

(1�h)(1+ ✓) > 1+' so that the net transactional benefit of the cryptocurrency is positive,

which is necessary for the cryptocurrency to have a positive price. Finally, we assume that

u
00
< 0, so we can analyse the consequences of investors’ risk aversion on currency pricing.

3.2.1 General preferences

Denote by p and p̂, respectively, the prices of the cryptocurrency and the standard currency,

which remain constant as long as there is no crash. The equilibrium condition for the

cryptocurrency (6) is

u
0(e�X(1 + ')p�mp̂)p = �(1� ⇡)(1� h)

1 + ✓

1 + '
u
0((1� h)Xp(1 + ✓) +mp̂)p. (11)

The left-hand side of (11) is the period t price of the cryptocurrency, evaluated at the

marginal utility of young investors at that time, while the right-hand side is the present

value of the period t+1 price of the cryptocurrency when there is no crash, evaluated at the

17In the next subsection we extend the analysis to the case in which the probability of a crash evolves
stochastically.
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marginal utility of old investors at that time. We focus on strictly positive prices.18 So (11)

simplifies to

u
0(e�X(1 + ')p�mp̂) = �(1� ⇡)(1� h)

1 + ✓

1 + '
u
0((1� h)Xp(1 + ✓) +mp̂). (12)

The equilibrium condition for the standard currency is

u
0(e�X(1 + ')p�mp̂)p̂ = � [(1� ⇡)u0((1� h)Xp(1 + ✓) +mp̂)p̂+ ⇡u

0(mp̂c)p̂c] , (13)

where p̂c is the price of the standard currency after the crash of the cryptocurrency. Finally,

the equilibrium condition for the risk-free asset is

u
0(e�X(1 + ')p�mp̂) = �(1 + r) [(1� ⇡)u0((1� h)Xp(1 + ✓) +mp̂) + ⇡u

0(mp̂c)] . (14)

Substituting the right-hand side of (12) into the left-hand side of (13), the equilibrium

condition for the standard currency becomes

(1� ⇡)

✓
(1� h)(1 + ✓)

1 + '
� 1

◆
u
0((1� h)Xp(1 + ✓) +mp̂)p̂ = ⇡u

0(mp̂c)p̂c. (15)

Finally, p̂c is pinned down by the equilibrium condition for a constant price on the

continuation equilibrium path after a crash:

u
0(e�mp̂c) = �u

0(mp̂c).

With u
00
< 0, there exists a unique solution p̂c to that equation.

Thus we obtain our next proposition:

Proposition 2 There exists a constant price equilibrium i↵ there exists a solution (p, p̂) to

the system of equations

u
0((1� h)Xp(1 + ✓) +mp̂) =

p̂c

p̂

⇡

1� ⇡

1 + '

(1� h)(1 + ✓)� (1 + ')
u
0 (mp̂c) , (16)

18There always exists an equilibrium such that pt = 0 8t. Here we investigate equilibria with strictly
positive prices.
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u
0((1� h)Xp(1 + ✓) +mp̂) =

1 + '

�(1� ⇡)(1� h)(1 + ✓)
u
0(e�X(1 + ')p�mp̂), (17)

with p̂c defined by u
0(e�mp̂c) = �u

0(mp̂c).

(16) stems from (15), the equilibrium condition for the standard currency, while (17)

stems from (12) the equilibrium condition for the cryptocurrency. For general preferences it

is not easy to prove existence of a solution to this system of equations and to characterise

equilibria. As shown below, however, for isoelastic utility functions the problem is more

tractable.

3.2.2 Isoelastic utility

For tractability, we assume isoelastic utility, with constant relative risk aversion (CRRA)

coe�cient denoted by �: For � 6= 1, u(c) = c1���1
1�� while for � = 1, u(c) = ln(c). Also, to

avoid heavy notations but without qualitatively a↵ecting the results, we assume h = 0 and

' = 0 and we denote D ⌘ �(1 � ⇡)(1 + ✓). D can be interpreted as a generalised discount

factor for the cryptocurrency. In this context, we obtain the following proposition:

Proposition 3 If investors have power utility, for any crash probability ⇡ 2 (0, 1) and benefit

✓ such that  
1 +D

1
�

1 + �
1
�

!��1

>
⇡(1 + ✓)

✓(1� ⇡)
1
� (1 + ✓)

1
�

, (18)

there exists a unique equilibrium in which the cryptocurrency price p is strictly positive and

constant until there is a crash and is such that

Xp =
eD

1
� �mp̂(1 +D

1
� )

1 + ✓ +D
1
�

, (19)

while the standard currency price until there is a crash is the unique solution p̂ of

✓(1� ⇡)

 
(1 + ✓)D

1
� e� ✓D

1
�mp̂

1 + ✓ +D
1
�

!��

= ⇡(mp̂c)
�� p̂c

p̂
, (20)

with

p̂c =
e�

1
�

m(1 + �
1
� )
. (21)
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The equilibrium conditions (19) and (20) give the capitalisations of the cryptocurrency

and of the standard currency, Xp and mp̂, respectively, as a function of the parameters: ✓,

⇡, and �. The equilibrium existence condition (18) defines an upper bound on the crash

probability ⇡ as stated in the next corollary.

Corollary 1 Condition (18) is equivalent to

⇡ < ⇡ < 1 (22)

with ⇡ ⌘ g
�1
⇣
(1 + �

1
� )1��)✓(1 + ✓)

1��
�

⌘
, and g(⇡) = ⇡(1� ⇡)�

1
� (1 +D

1
� )1��.

For each value of the crash probability ⇡ < ⇡, there exists a pair of strictly positive

prices such that (19) and (20) hold, i.e., there exists a constant price equilibrium. As ⇡

varies, there is a continuum of constant price equilibria. If one interprets crashes in terms of

sunspot, di↵erent values of ⇡ correspond to di↵erent beliefs on which investors coordinate.

Since there is a continuum of di↵erent possible beliefs ⇡, there is a multiplicity of sunspot

equilibria.

In any constant price equilibrium, gross of transactional benefit the expected return on

the cryptocurrency is negative, since with probability ⇡ there is a crash and the return is

negative, while with the complementary probability there is no crash and the return is zero.

Yet, as stated in the next corollary, the expected return on the cryptocurrency, inclusive of

the transactional benefit, is higher than the equilibrium risk free rate.

Corollary 2 In the equilibrium defined in Proposition 3, the cryptocurrency commands a

strictly positive risk premium, i.e.

(1 + ✓)(1� ⇡) > (1 + r). (23)

To see why the cryptocurrency commands a risk premium, note that combining the first-

order conditions for the cryptocurrency (12) and for the risk-free asset (14) (with ' = h = 0)
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yields

(1 + ✓)(1� ⇡) = (1 + r)


(1� ⇡) + ⇡

u
0(mp̂c)

u0(mp̂+Xp(1 + ✓))

�
. (24)

That is, there is a cryptocurrency risk premium if and only if old investors’ consumption

is lower in the state where the cryptocurrency crashes than in the state where it does not

crash, which we show to be true (see the proof of Corollary 2 in Appendix 1). Thus, the

cryptocurrency’s return is positively correlated with consumption. In contrast, as we will see

below, when investors are risk neutral the expected return of the cryptocurrency (inclusive

of transactional benefits) is equal to the risk free rate.

The magnitude of the cryptocurrency risk premium is obviously related to the crash

probability ⇡. Note that not only the return of cryptocurrency but also the risk-free rate r

depend on ⇡ (Equation (14)) so that the variation of this risk premium with respect to ⇡ is

not a priori straightforward. When the crash probability tends to the upper bound ⇡ defined

in Corollary 1, the cryptocurrency price tends to zero, and thus its market capitalization

Xp becomes small relative to the market capitalization of the standard currency mp̂. Old

investors’ consumption is then less a↵ected by the occurrence of a crash, and the cryptocur-

rency risk premium tends to 0. This suggests that the risk neutral case we study below can

be an approximation of a model with risk aversion when the cryptocurrency has a relatively

high crash probability and a low market capitalisation relative to the standard currency.19

3.2.3 Logarithmic utility

For the logarithmic utility case (� = 1), the equilibrium conditions (18), (19), and (20)

simplify and yield an explicit solution for the equilibrium price vector, as stated in the next

proposition.

Proposition 4 If the investors have log utility and

(1 + ✓)(1� ⇡) > 1, (25)

then there exists an equilibrium in which, as long as there is no crash, the capitalisation of

19If, in the future, the capitalisation of the cryptocurrency became larger (relative to GDP), then the risk
premium could become large.
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the cryptocurrency as a percentage of total endowment is

Xp

e
=

�

1 + �
(1� ⇡(1 +

1

✓
)), (26)

while the capitalisation of the standard currency is

mp̂

e
=

⇡(1 + ✓)

✓

�

1 + �
. (27)

Consistent with intuition, Equation (26) implies that the cryptocurrency price is decreas-

ing in crash risk (⇡) and increasing in transactional benefits (✓). In contrast the standard

currency price is increasing in the probability of crash, and decreasing in the transactional

benefits. The larger ⇡, the more likely it is that the cryptocurrency will crash, resulting in

an increase in the standard currency price. Also, the lower ✓ the less the cryptocurrency can

compete with the standard currency, the larger the price of the latter.

More precisely

@p

@⇡
= � e

X

�

1 + �

1 + ✓

✓
< 0 and

@p̂

@⇡
=

e

m

�

1 + �

1 + ✓

✓
> 0. (28)

The opposite directions of the changes in the standard currency and the cryptocurrency

prices when the probability of a crash changes reflect the competition between the two cur-

rencies. That competition, however, is muted when the capitalisation of the cryptocurrency

is small. To see that note that (28) implies that the elasticity of the standard currency price

to the cryptocurrency price is equal to the opposite of the ratio of the capitalisation of the

cryptocurrency to the capitalisation of the standard currency:

@p̂
@⇡/p̂

@p
@⇡/p

= �Xp

mp̂
.

So if Xp
mp̂ is close to 0, the percentage change in the standard currency price is small relative

to the percentage change in the cryptocurrency price. This is consistent with the stylized

fact that, so far, large variations in bitcoin prices had no noticeable e↵ect on dollar price.

This however could change, if bitcoin became more widely used and its capitalisation grew
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relative to that of the dollar.

Since investors save a constant fraction �/(1 + �) of their endowment, the ratio of cryp-

tocurrency capitalisation to standard currency capitalisation can be seen as a proxy for

cryptocurrency adoption. Using equations (26) and (27), this ratio can be written as

Xp

mp̂
=

(1� ⇡)(1 + ✓)� 1

1 + ✓ � (1� ⇡)(1 + ✓)
.

Consider the following comparative statics: increase the crash risk ⇡ while adjusting the

transaction benefit ✓ to keep the cryptocurrency expected return inclusive of private benefit

(1 � ⇡)(1 + ✓) constant. Since the variance of the cryptocurrency return is (1 � ⇡)(1 +

✓)2 � ((1� ⇡)(1 + ✓))2, this e↵ectively adds a mean-preserving spread of the cryptocurrency

return distribution. Then it is apparent from the equation above that Xp
mp̂ declines. The

interpretation is that extrinsic volatility is a drag on adoption.

3.2.4 Numerical illustration

To illustrate our analysis, we solve numerically for the cryptocurrency and standard currency

prices, for � = .5, 1 and 3, with ⇡ ranging between 3% and 7% and ✓ ranging between 0

and 10%. Figure 2 plots the capitalisation of the cryptocurrency Xp as a fraction of total

endowment e. As ✓ increases, the capitalisation of the cryptocurrency increases, reflecting

that the demand for that currency increases with the transactional benefits it delivers. As

⇡ increases, the capitalisation of the cryptocurrency decreases, because the demand for that

currency decreases as its crash risk increases. As the investors’ risk aversion increases,

the capitalisation of the cryptocurrency decreases, because investors demand a larger risk

premium to bear crash risk.

The curve depicting the capitalisation of the cryptocurrency starts only for values of ✓

that are above ⇡. This reflects the condition for existence of an equilibrium with strictly

positive cryptocurrency price, (18). When ✓ is too low relative to ⇡, transactional benefits

do not make up for crash risk, so that investors are not willing to buy the cryptocurrency at

any positive price.

In the figure, the capitalisation of the cryptocurrency ranges between 0 and 35% of the

endowment. Current world GDP is around 84.5 trillion dollars, while the current capitali-

sation of bitcoin is around 1.1 trillion dollars. So bitcoin capitalisation is currently around
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Figure 2: Cryptocurrency market capitalisation as a function of benefit

1.3% of world GDP. When crash risk is low (⇡ = 3%) and risk aversion is .5, one obtains

this order of magnitude when ✓ is lower than 4%. When crash risk is larger (⇡ = 7%), one

obtains this order of magnitude for ✓ as large as 8%. Of course this back of the enveloppe

calculation is to be taken with a generous dose of salt. Constant price equilibria are an ex-

tremely simplified representation of reality, in particular because volatility in these equilibria

is small relative to its empirical counterpart. Yet, the analysis of constant price equilibria

paves the way for the more realistic analysis of the next subsection, in which equilibrium

prices change at each period and volatility can be large.

3.3 Volatile price equilibria

Building on the above analysis, we now construct equilibria in which prices can vary at each

period. First, with constant relative risk aversion, we consider the case in which the only

source of variation is sunspots, so that volatility is purely extrinsic. Second, we turn to

the case of risk neutrality, which is tractable enough to yield equilibrium restrictions with

both sunspot-driven and fundamental-driven volatility. In both the risk averse and the risk

neutral cases, there is sunspot-driven equilibrium multiplicity.
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3.3.1 CRRA investors

Consider the case in which crashes are arbitrary, up to “sunspot” beliefs. In this context, we

now construct an equilibrium in which, in contrast with the previous section in which the

probability of a crash was constant, it changes at each period t until period N . From period

N on, the probability of a crash remains constant, and the cryptocurrency and standard

currency prices are set as in the constant price equilibrium studied in Section 3.2.2.

To capture the dependence of prices to sunspot-driven crash risk, we define the sunspot

at period t as !t = (⇠t�1, ⇡t), where ⇠t�1 = c in case of a crash at the end of period t� 1 and

⇠t�1 = nc otherwise, while ⇡t is the probability of a crash during period t. The sunspot !t is

publicly observed at the beginning of period t. Conditional on (!t�1, ⇠t�1), ⇡t is independent

of all the other variables in the information set of the agents at period t. Moreover, the

distribution of ⇠t depends only on ⇡t. An equilibrium is a mapping from !t into prices. As

before, the price of the standard currency after a crash is given by (21).

The family of equilibria we consider involve two phases. For t � N , we are in the

second phase in which, as long as there is no crash, the probability of a crash remains

constant and equal to ⇡N . Let p(⇡N) and p̂(⇡N) denote the prices of the cryptocurrency

and the standard currency in the second phase as long as no crash happens, i.e., at all

t � N such that ⇠t�1 = nc. Similarly to Proposition 3, these prices are determined by

the equilibrium conditions, equating current prices, valued at current marginal utility, with

discounted expected future prices, valued at future marginal utility:

p(⇡N)

(e�Xp(⇡N)�mp̂(⇡N))�
=

D(⇡N)p(⇡N)

(Xp(⇡N)(1 + ✓) +mp̂(⇡N))�
, (29)

and
p̂(⇡N)

(e�Xp(⇡N)�mp̂(⇡N))�
=

D̂(⇡N)p̂(⇡N)

(Xp(⇡N)(1 + ✓) +mp̂(⇡N))�
+

�⇡N p̂c

(mp̂c)�
. (30)

where D(⇡) = �(1+✓)(1�⇡) and D̂(⇡) = �(1�⇡) can be interpreted as generalised discount

factors for the cryptocurrency and the standard currency, respectively.

Now turn to the first phase when t  N � 1. At the beginning of each period t  N � 1,

a sunspot determines the current beliefs about the probability of a crash at the end of this

period, ⇡t. Specifically, we consider sunspot-driven beliefs such that, at the beginning of

period t  N �1, with probability xt, the crash probability goes up to ⇡
u
t � ⇡t�1 while, with
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probability 1� xt, it decreases to ⇡
d
t  ⇡t�1. Figure 3 presents the timing of events.

If ⇠t�1 = nc

x t
⇡u
t

1�
x
t

⇡d
t

pt, p̂t

qt, q̂t

period t

time⇡
u
t c

1�
⇡ u
t

nc

⇡
d
t c

1�
⇡ d
t

nc

Figure 3: Sequence of events for volatile price equilibria.

Denote by p(⇡t) and p̂(⇡t) the prices of the cryptocurrency and the standard currency in

the first phase as long as no crash happens (i.e., as long as ⇠t�1 = nc). If there is no crash

up to period t, the prices of the standard currency and the cryptocurrency, p(⇡t) and p̂(⇡t),

are related to the period t+ 1 prices by the following general equilibrium conditions

p(⇡t)

(e�Xp(⇡t)�mp̂(⇡t))�
=

xt+1D(⇡t)p(⇡u
t+1)

(Xp(⇡u
t+1)(1 + ✓) +mp̂(⇡u

t+1))
�
+

(1� xt+1)D(⇡t)p(⇡d
t+1)

(Xp(⇡d
t+1)(1 + ✓) +mp̂(⇡d

t+1))
�
,

(31)

and

p̂(⇡t)

(e�Xp(⇡t)�mp̂(⇡t))�
=

"
xt+1D̂(⇡t)p̂(⇡u

t+1)

(Xp(⇡u
t+1)(1 + ✓) +mp̂(⇡u

t+1))
�
+

(1� xt+1)D̂(⇡t)p̂(⇡d
t+1)

(Xp(⇡d
t+1)(1 + ✓) +mp̂(⇡d

t+1))
�

#
+ ⇡t

�p̂c

(mp̂c)�
. (32)

The left-hand side of (31) is the cryptocurrency price multiplied by the marginal utility

of the investor at period t. The first term on the right-hand side is the probability xt+1

that crash risk goes up to ⇡
u
t+1 multiplied by the product of the discounted price of the

cryptocurrency and the marginal utility of the investor in that state. The second term on

the right-hand side is the corresponding term for the state in which the crash risk goes down

to ⇡
d
t+1.
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Similarly for (32): The left-hand side is the standard currency price multiplied by the

marginal utility of the investor at period t. The first two terms on the right-hand side

correspond to the cases in which there is no crash at period t and the crash probability

moves up or down at the beginning of t + 1. The last term on the right-hand side of (32)

corresponds to the case in which there is a crash at the end of period t.

Equilibrium prices for t  N � 1 are obtained by backward induction. At t = N � 1,

using (31) and (32) one gets p(⇡N�1) and p̂(⇡N�1), as functions of p(⇡u
N), p(⇡

d
N), p̂(⇡

u
N), and

p̂(⇡d
N) defined by (29) and (30). Then at t = N � 2, using again (31) and (32) one gets

p(⇡N�2) and p̂(⇡N�2) as functions of the equilibrium prices p(⇡N�1) and p̂(⇡N�1) obtaining

for the di↵erent possible realisations of ⇡N�1. Iterating, one recovers prices in all states

from t = N � 1 to t = 1. In Appendix 1, we prove there exists a unique pair of prices,

(pt(⇡t), p̂(⇡t)) solving (31) and (32), so we can state our next proposition:

Proposition 5 For any sunspot process such that ⇡t < ⇡ for all t  N , there exists an

equilibrium such that

(i) for t < N , if there is no crash before t, the cryptocurrency price goes down with

probability xt and up with probability 1 � xt while the standard currency price moves

in the opposite direction. Both prices are defined by conditions (31) and (32).

(ii) for t � N , as long as no crash happens, prices are constant and defined by (29) and

(30).

(iii) After a crash, the cryptocurrency price is equal to zero and the standard currency price

is given by (21).

Proposition 5 shows that, within a given equilibrium, the sunspot (⇠t, ⇡t) plays the role

of a sequence of coordination variables, generating fluctuations in prices, even when fun-

damentals endowments (e, transactional benefits ✓) remain constant. These fluctuations

correspond to extrinsic volatility.20

20Such within equilibrium volatility is related to our earlier results on equilibrium multiplicity for constant-
price equilibria in Proposition 3 and Corollary 1. Indeed, we construct the equilibrium described in Proposi-
tion 5 working backward from multiple constant-price continuation equilibria after t = N , each corresponding
to a particular crash probability ⇡N .
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Moreover, there is a large number of possible distributions of the sunspot, each corre-

sponding to a possible equilibrium. So there is a large multiplicity of equilibria. Thus,

Proposition 5 extends the multiplicity results of Proposition 3 to our new class of equilibria,

in which prices move in response to sunspots not only when the cryptocurrency crashes but

also during arbitrarily many periods before that.

3.3.2 Risk neutral investors with linear transactional benefits

We now turn to the case in which investors are risk neutral. The equilibrium cryptocurrency

pricing relation (9) then simplifies to

pt =
1

1 + r
Et


(1� ht+1)

1 + ✓t+1

1 + 't
pt+1

�
, (33)

with

� =
1

1 + r
.

Equivalently, to make crash risk explicit, (33) can be rewritten as

pt =
1� ⇡t

1 + r
Et


(1� ht+1)

1 + ✓t+1

1 + 't
pt+1

���� no crash

�
. (34)

The pricing equation (33) leads to our next proposition.

Proposition 6 Consider a sequence of prices {pt}t=1,..,1 satisfying (33). There exists a con-

stant � > 0 and a sequence of random variables ũ⌧ , each with unit expectation (E⌧�1(ũ⌧ ) = 1)

and independent from the investors’ information set at period ⌧ � 1, such that the new price

sequence

{p̄t}t=1,..,1 =

(
�

 
tY

⌧=1

u⌧

!
pt

)

t=1,..,1

, (35)

also satisfies (33), and therefore also is an equilibrium.

Proposition 6 implies that, for any equilibrium price sequence {pt}t=1,..,1, one can con-

struct another equilibrium price sequence {p̄t}t=1,..,1. And, when one has gone from {pt}t=1,..,1

to {p̄t}t=1,..,1, one can iterate the process and go from {p̄t}t=1,..,1 to yet another equilibrium.

Iterating, one can generate a continuum of equilibria. Hence, as in the risk averse case, there
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exist multiple sunspot-driven equilibria. Also as in the risk-averse case, within each equilib-

rium there is extrinsic (sunspot) volatility, so that prices can vary even when fundamentals

remain constant. In Proposition 6, this extrinsic volatility is the volatility of the random

variables ũt, t = 1, ..,1.

To see, intuitively, how Proposition 6 obtains, take the three following steps: First mul-

tiply the left-hand side of (33) by �
�Qt

⌧=1 u⌧

�
, which yields p̄t. Second, also multiply the

right-hand side of (33) by �
�Qt

⌧=1 u⌧

�
, so that it is equal to p̄t. Third, multiply by ũt+1

the terms inside the brackets in (33) and note that this does not change the value of the

expectation, since Et(ũt+1) = 1 and ũt+1 is independent from the variables in the investors’

period t information set.

3.3.3 Risk neutral investors with concave transactional benefits

These three steps take advantage of the linearity in price of (33), which itself stems from

the linearity of the utility function and the linearity of transactional benefits. The analysis

of Sections 3.1 and 3.2 shows that extrinsic volatility arises also when the utility function

is strictly concave. We now show that our results are robust to relaxing the assumption

that transactional benefits are linear. For simplicity, we conduct this analysis in the simple

case in which parameters are constant through time. Instead of assuming that transactional

benefits are equal to ✓qtpt, where ✓ is a constant scalar, we assume there exists a twice

di↵erentiable function ✓(.) such that transactional benefits are equal to ✓(qtpt) and such that

✓
0
> 0, ✓00 < 0, and ✓

0(x) ! 0 when x ! 1. In this case, instead of yielding (33), market

clearing and first order conditions yields, for risk neutral investors

pt =
1� ⇡t

1 + r
Et


(1� h)

1 + ✓
0((1� h)Xpt+1)

1 + '
pt+1

���� no crash

�
. (36)

Our first step, in this context, is to show there exist constant price equilibria similar to

those characterised in Proposition 2. Following the same approach as for Proposition 2, from

(36) we have that the constant equilibrium price p is pinned down by

1 + ✓
0((1� h)Xp) =

1 + r

1� ⇡

1 + '

1� h
. (37)
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Since ✓
0 is decreasing, (37) admits a unique solution i↵

1� 1 + r

1 + ✓0(0)

1 + '

1� h
> ⇡. (38)

Denoting that solution by p(⇡), we obtain our next proposition.

Proposition 7 With linear utility and strictly concave transactional benefits, if

1 >
1 + r

1 + ✓0(0)

1 + '

1� h
,

there exists a continuum of constant price equilibria p(⇡), corresponding to the di↵erent

possible values of the sunspot-driven probability of crash ⇡ 2 [0, 1� 1+r
1+✓0(0)

1+'
1�h ].

Our second step is to construct volatile price equilibria when transactional benefits are

concave. To do so in the simplest possible manner, suppose that i) at the first period the

sunspot-driven probability of a crash is ⇡, ii) at the second period it can go up to ⇡
u with

probability x or down to ⇡
d with probability 1 � x, and iii) thereafter the probability of a

crash remains constant. In this context there are two possible constant price equilibria from

period 2 on: p(⇡u) and p(⇡d). The equilibrium price at period 1 is

p1 =
1� ⇡

1 + r

1� h

1 + '

⇥
x [1 + ✓

0 ((1� h)Xp(⇡u))] p(⇡u) + (1� x)
⇥
1 + ✓

0 �(1� h)Xp(⇡d)
�⇤

p(⇡d)
⇤
.

(39)

This is a volatile price equilibrium similar to those of Proposition 5 in that prices change,

from period 1 to period 2, without any change in fundamental and without the occurrence of

a crash. While in the analysis leading to (39) there is only one period at which prices change

without any crash or change in fundamentals, one can iterate the argument to construct

equilibria in which, as in Proposition 5, prices can vary at each period until N .

Thus, both in the risk averse and the risk neutral cases, and also both for linear and

for concave transactional benefits, our theoretical analysis implies the following: In contrast

with perfect-markets equilibrium stock prices, which should not be more volatile than fun-

damentals (Shiller, 1981), equilibrium currency prices can exhibit sunspot-driven extrinsic

volatility, unrelated to fundamentals.21 While stock prices are anchored by real variables

21Campbell and Shiller (1988a) emphasise that stock price changes can also stem from changes in discount
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such as firms’ profits, which, in perfect markets, are not determined by stock prices, cur-

rencies have no such real anchors, since their fundamental value directly depends on their

future price. Lack of real anchor raises the scope for extrinsic volatility.

4 Data

Our theoretical model yields implications about the relationship between cryptocurrency

prices, transactional benefits and costs, and crash probabilities. To confront these theoretical

implications to data, we collected data on returns, transactional benefits and costs.

Our dataset starts on July 17, 2010, with the opening of the MtGox bitcoin marketplace,

and ends on December 31, 2018. Computing a bitcoin price series over a period of almost

9 years is subject to several caveats: new marketplaces, sometimes short-lived, have been

created and shut down at a rather high pace, price volatility is high, and there is large

price dispersion between exchanges even when trading volumes are high (see Makarov and

Schoar, 2020). To construct a time series of bitcoin prices, we rely on the Kaiko dataset.

We use all transaction prices denominated in five currencies from 20 major exchanges.22

Following Paine and Knottenbelt (2016), pooling all transaction prices in each currency

intervals, we split each UTC day in 5-minute. In each interval, we compute the volume

weighted median price. To construct a daily price for each currency, we then compute an

arithmetic (unweighted) average of these median prices. Using medians reduces the e↵ect

of outliers. Using weighted medians prevents small trades from having too much influence.

Finally, non-weighted averages give equal weight to the information flowing at di↵erent times

during a day. To obtain a single daily price series, we convert daily prices in each currency

in US dollars using daily USD exchange rates from FRED (Federal Reserve Economic Data)

rates, reflecting changes in risk premia. This di↵ers from the risk created by changes in investors’ beliefs,
which we analyse.

22Precisely, for transactions in euros, we use all transactions from Bitfinex, bitFlyer, Bitstamp, BTC-e,
Coinbase-GDAX, CEX.IO, Gatecoin, HitBTC, itBit, Kraken and Quoine. For transactions in US dollars, we
use Bitfinex, bitFlyer, Bitstamp, Bittrex, BTC-e, BTCChina, CEX.IO, Coinbase-GDAX, Gatecoin, Gemini,
hitBTC, Huobi, itBit, Kraken, MtGox, OKCoin and Quoine. For transactions in British pounds, we use
Bitfinex, Coinbase-GDAX, CEX.IO and Kraken. For transactions in Japanese yens, we use Bitfinex, bitFlyer,
BTCBox, Kraken, Quoine and Zaif. For transactions in Chinese yuans, we use BTCChina, BTC38, Huobi,
OKCoin and Quoine. We also ran the estimation using only transactions between dollars and bitcoins.
This did not alter qualitatively our results. In particular it did not change the sign and significance of the
coe�cient estimates.

29



and compute an unweighted average daily price. This time series is illustrated in Figure 4.

Figure 4: Bitcoin price, in USD

We retrieve bitcoin transaction fees paid to miners (hereafter referred to as miners’ fees)

from blockchain data using Blocksci, an open-source software platform for blockchain anal-

ysis (Kalodner et al., 2017). Then, to compute percentage miners’ fees we divide fees by

transaction volume. Transaction volume, however, is di�cult to measure (see for instance

Meiklejohn et al., 2013, or Kalodner et al., 2017). This is because part of the transfers occur

among addresses belonging to the same participant. Yet, in a pseudonymous network like

Bitcoin, the identity of the participant corresponding to an address cannot be observed. To

estimate bitcoin transaction volume we retrieve the on-chain transaction volume, excluding

coinbase transactions (that is, transactions that reward miners by the creation of new bit-

coins) and transfers from an address to itself.23 From that value, we further exclude amounts

that are likely to result from “self churn” behaviour, that is, transfers among adresses be-

23The Bitcoin protocol states that an output of a transaction (that is, an amount payed to a particular
bitcoin address), when spent, must be spent in full. Thus, if a bitcoin owner wants to transfer, e.g, 1 BTC
to a payee, but owns 20 BTC as a single output of an earlier transaction, she has to create a transaction
with one input (the 20 BTC) and two outputs: 1 BTC to an address belonging to the payee, and 19 BTC
(abstracting from the fee payed to the miner of the block in which that transaction will be included) to
herself. These 19 BTC are change money, and should not be counted as transaction volume.
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Figure 5: Estimated transaction volume, in millions of BTC

longing to the same participant.24 The time series of transaction volume is illustrated in

Figure 5.25

The time series of miners’ fees (in percent of transaction volume) is depicted in Fig-

ure 6. The figure illustrates that, during most of the sample period, miners’ fees are low.

Daily fees amount to .0106% of transaction volume, on average. Q1, median, and Q3 are

.0038%, .0057% and .0099%, respectively. There are a few spikes, however. The largest one

occurs towards the end of 2017, a time at which transaction fees exceeded 0.23%, due to

the congestion triggered by the surge in trading volume (see Easley, O’Hara and Basu, 2019,

Huberman, Leshno and Moalleni, 2021, or Iyidogan, 2019 for models of blockchain miners’

fees).

Browsing the web (in particular bitcointalk.org), we collected information about all hacks

and other losses on Bitcoin. We identified and collected data on about 53 such events over

our sample period.26 We collected the amounts of the losses and the times at which they were

24For that purpose, we eliminate outputs spent within less than 4 blocks, an heuristic proposed by Kalodner
et al. (2017).

25The spike in trading volume at the end of 2011 was noted by the Bitcoin community and was attributed
to consolidation operations by MtGox.

26We have been unable to find information about the amount lost for the following three events: the hack
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Figure 6: Miners’ fees, in percent of estimated transaction volume

reported. To obtain percentage losses (to fit our definition of h), we divide lost amounts by

Xt. This time series is illustrated in Figure 7. The corresponding events are listed in Table 2

in the Online Appendix. Most events correspond to hacks of exchange platforms, during

which private keys securing access to bitcoins deposited by platform’s clients are stolen

by attackers. Besides being hacked, exchange platforms may also lose their private keys

(Bitomat, July 2011) or accidentally transfer bitcoins to wrong Bitcoin addresses (MtGox,

October 2011). The largest loss is due to the collapse of MtGox in February 2014, when

744,408 bitcoins were lost. On average, during the whole sample period, the fraction of

bitcoins lost per week is approximately 0.04%.

We also collected information about events likely to a↵ect the costs and benefits of using

bitcoins. We distinguished between two types of events, relative to:

• The ease with which bitcoins could be exchanged with currencies such as e.g. euros,

Japanese yens, or US dollars.

• The ease to use bitcoins to buy goods or services and thus reap transactional benefits.

of the e-wallet service company Instawallet in April 2013; the hack of the South Korean exchange Bithumb
reported in June 2017; the hack of the South Korean exchange Youbit in December 2017.
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Figure 7: Hacks, thefts and other losses of bitcoins, in percent of bitcoin supply

As explained below, we constructed two indices referred to as MarketAccess and Benefit,

measuring the cumulative impact of those events. To construct MarketAccess, we identified

43 events over our sample period (see Table 3 in the Online Appendix). We considered

three categories of events. The first category relates to exchange platforms.27 It includes

the creation of the first exchange platform on which a given currency can be traded against

bitcoin, or the closure of the last exchange platform on which that currency can be traded.

For example, in the case of the Chinese yuan, the first exchange opened on June 13, 2011,

while the last one closed on September 30, 2017.28 The first category of events also includes

evolutions of these platforms, for example technological improvements in their payment

system (e.g. MtGox eased fund transfers on October 25, 2010) or trading disruptions. The

second category relates to regulatory changes that facilitate or impair the trading of bitcoin,

for example the ban of bitcoin trading by citizens in China from January 16, 2018. The third

27We use the term exchange platform to refer to electronic limit order markets, although such markets are
not regulated exchanges.

28We consider all currencies for which bitcoin trading is significant, i.e. average trading volume exceeds
100 transactions a day during the lifetime of a given market. For each currency, we select as the event date
the first day for which trading data is available in at least one of the following two large-coverage, tick-by-tick
datasets: Kaiko and bitcoincharts.com (see https://bitcoincharts.com/markets/list/).
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category includes miscellaneous but important events, e.g., the opening of the first bitcoin

ATM on October 29, 2013, or the start of bitcoin futures trading at the CBOE on December

10, 2017. Positive events are coded by +1 and negative events by �1. To account for the

importance of these events, we weight them by the GDP of the country in which they take

place, relative to the world GDP.29 The MarketAccess index is the sum of these weighted

events: At each point in time, it quantifies how easy it is to buy or sell bitcoins.

To construct Benefit, we identified 39 events, listed in Table 4 in the Online Appendix.

These events fall in two categories. The first category includes new goods and services

available for electronic purchase with bitcoins (e.g. computer hardware or travel agency

services or illegal products). For example, on June 11, 2014, Expedia started accepting

bitcoins for hotel reservations. An example of illegal activity is the opening of SilkRoad on

January 23, 2011. The second category corresponds to new payment facilities (gift cards or

payment systems accepting bitcoins). For instance, Paypal accepted bitcoins on January 22,

2015. As before, positive events are coded by +1 and negative events are coded by �1. We

do not weight these events because it is hard to define an appropriate weighting scheme. The

Benefit index is the sum of these events: At each time t it quantifies the variety of goods

and services which can be purchased with bitcoins.

The time series of the two indices is illustrated in Figure 8. The MarketAccess index

increased sharply during the first two years, as new exchange platforms allowing trades

between bitcoins and new currencies opened. Two major events triggered a sharp decrease

in the index in 2013: MtGox suspended fund transfers on May 14, 2013 and China banned

financial institutions from using bitcoins on December 3, 2013. The Benefit index remained

low in the first years of the sample period, reflecting that it was hard to use bitcoins to

purchase goods and services. It started increasing towards the end of 2013 and reached its

maximum in 2018. It then decreased somewhat, as some large companies stopped accepting

payments in bitcoins.

29We retrieve yearly GDP data from the World Bank database.

34



Figure 8: MarketAccess and Benefit indices

5 Calibration

The goal of this section is to calibrate the model, by evaluating the order of magnitude of

the coe�cients which o↵er a relatively good match between the model and the data.30

5.1 Calibrated model

We perform our calibration under the assumption that investors are risk neutral. This

assumption is likely to be innocuous because, during our sample period (2010-2018), the

capitalisation of bitcoin was only a small fraction of aggregate wealth. So variations in bit-

coin prices likely did not move marginal consumption a lot. Indeed, Liu and Tsyvinski (2021)

find empirically that the correlation of bitcoin returns with durable or non durable consump-

tion growth, industrial production growth and personal income growth is economically and

statistically insignificant. In the next paragraphs, we present the model that is calibrated,

30Estimating the parameters of the model would be more ambitious, but would be di�cult given that the
data is likely to be non-stationary. Thus, our calibration approach can be seen as a relatively modest first
step towards confronting the model to the data.
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the proxies for the model variables h, ✓, and �, and the specification of the probability of a

crash ⇡t.

Expected returns. Proceeding as for (33), one obtains the price of the standard cur-

rency,

p̂t =
1

1 + rt
Et (p̂t+1) . (40)

In practice, during our sample period (2010-2018), inflation in the US has been low and not

very volatile. Thus, in order to simplify the econometric analysis, we hereafter assume that

inflation in the standard currency between period t and period t+ 1 is known at period t.31

Under this assumption, in (40) p̂t+1 is in the information set used to take the expectation.32

Hence (40) simplifies to

p̂t =
p̂t+1

1 + rt
. (41)

Dividing (33) by (41), the price of the cryptocurrency in terms of standard currency, pt
p̂t
,

(e.g., the price of bitcoin in dollars) writes as

pt

p̂t
= Et


(1� ht+1)

1 + ✓t+1

1 + 't

pt+1

p̂t+1

�
. (42)

The rate of return on the cryptocurrency price expressed in the standard currency is

⇢t+1 =

pt+1

p̂t+1

pt
p̂t

� 1.

Substituting this expression into (42) we obtain our next proposition.

Proposition 8 When investors are risk neutral and period t + 1 inflation in the standard

currency is known at period t, the rate of return on the cryptocurrency price expressed in

31As explained below, in our calibration, the length of one period is set to one week, making our assumption
that inflation is known from one period to the next quite innocuous.

32Because the occurrence of a crash between t and t+1 is not in the time t information set, the assumption
that p̂t+1 is in that information set implies the price of the standard currency cannot be a↵ected by the crash
in the cryptocurrency. With risk neutral investors this is consistent with equilibrium, which only requires
that the standard currency prices be such that (40) holds. In other words, with risk neutral investors, one
can construct equilibria such that the standard currency price does not change following a cryptocurrency
crash.
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standard currency is such that

1 = (1� ⇡t)Et [(1� ht+1) (1 + Tt+1) (1 + ⇢t+1)|no crash] , (43)

Equation (43) reflects that, in equilibrium, investors must be indi↵erent between using

one unit of consumption good to invest in bitcoin (generating transactional benefits as well

as costs and hacking risk) and using it to invest in dollars. To see the intuition more clearly,

take a first-order Taylor expansion of (43), for ⇢t+1, ⇡t, ht+1, 't and ✓t+1 close to 0,

Et [⇢t+1|no crash] ⇡ ⇡t + 't + Et(ht+1)� Et(✓t+1). (44)

Equation (44) states that the return on the cryptocurrency must compensate investors

for crashes, transactions costs and hacks, minus transactional benefits.

Transactional benefits and costs. To calibrate (43), we need to specify ✓t+1 and 't.

We assume that the transactional benefit ✓t+1 is

✓t+1 = ↵1Benefit t+1, (45)

where ↵1 is the parameter to be calibrated, and Benefit t+1 is the index described in the

previous section. The transactional cost 't is

't = �1CostMiningFeet + �2CostMarketAccess t, (46)

where �1 and �2 are to be calibrated and CostMarketAccess t measures the cost of accessing

bitcoin markets:

CostMarketAccess t =
1

1 +MarketAccess t
. (47)

Note that (47) purposefully lets the cost tend to zero when MarketAccess tends to infinity.

We further assume that the fraction of bitcoins hacked or lost, ht+1, is constant and we set

it to the sample average:

ht+1 = h̄. (48)
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Crash probability. Finally, similarly to Athey et al. (2016), we model ⇡t as the

Bayesian update of the probability of a fatal event such as the discovery of a flaw in the

protocol, a successful attack of the blockchain, or a sudden change in the political and legal

environment making it impossible to use the cryptocurrency.33 To do so, we assume that

there are two states H and L, that the a priori probability of state H is �0, and that the

probability of a crash is µ in state H and 0 in state L. Afterwards, this probability is updated

based on the observation of a crash or no crash. If, at period t, there has been no crash so

far, the probability of state H is

�t = Pr(H| no crash until t) =
(1� µ)t�0

(1� µ)t�0 + (1� �0)
. (49)

This probability goes down as the number of periods with no crash increases. Consequently,

the probability of a crash,

⇡t = �tµ, (50)

also decreases monotonically with the length of time with no crash. We chose this very

stylized model for simplicity. For greater realism, one would have to consider a richer model,

in which ⇡t could go up after bad news, even in the absence of a crash. Note that such

dynamics would be possible with sunspots.

5.2 Sample

To avoid day-of-the-week e↵ects while keeping a reasonable amount of data, the daily price

series is downsampled to a weekly frequency. The final sample used in the calibration contains

432 observations and runs from the week of September 26, 2010, until the week of December

23, 2018.34 Several forks occurred in our sample period that granted bitcoin owners additional

coins in the newly created currency. These coins can be interpreted as a form of dividend

and we therefore add them to the t+1 bitcoin price when computing the bitcoin return from

t to t+1. Table 5 in the Online Appendix presents the forks considered and the value of the

33In this context, crashes and their probability are not driven by sunspots, but correspond to fundamental
uncertainty about the reliability of the technology and its environment.

34Note that this weekly sample starts somewhat later than the daily sample described in Section 4. The
reason is that we use a burn-in period for the smoothed series that our calibrated results are benchmarked
to (see Figure 11).
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Figure 9: Bitcoin returns. This figure plots weekly bitcoin returns expressed in USD. The
top graph plots raw returns. The bottom graph smooths these returns by plotting an expo-
nentially weighted moving average of these returns with a half-life of one year.

new currencies.

The top panel of Figure 9 plots the raw weekly bitcoin return series in USD, net of hacked

coins. This is the series for which the equilibrium pricing equation (43) should hold. The

bottom panel of the figure plots a smoothed version of the returns series. The raw weekly

bitcoin return exhibits substantial variation. Its mean is 3.9% with a standard deviation of

17.3%, a minimum of -40.4%, and a maximum of 110.3%. The smoothed series helps visualise

a low-frequency trend of a generally declining return in the course of the sample. We will

revisit this plot after the model has been calibrated, overlaying it with the model-implied

required expected return to verify model fit.
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5.3 Calibration procedure

Calibration proceeds as follows: we replace model variables in (43) by their proxies defined

above, and we define the error as the di↵erence between the model-implied bitcoin return in

the oncoming period and the realised return. We then perform our calibration by minimising

the root mean squared errors (RMSE).

Error definition. Conditional on no-crash in the sample, the model-implied required

return for the oncoming period is obtained by inserting (48), (45), and (46) into (43):

Et

 
(1� ⇡t)

�
1� h̄

� �
1 + ↵1Benefit t+1

�

1 + �1CostMiningFeet + �2CostMarketAccess t
(1 + ⇢t+1)

!
= 1,

where ⇡t(�0, µ) is given by (50). One final assumption is needed to define the error that

enters the RMSE minimisation. We assume that agents at time t have perfect foresight

on the transactional benefit in the oncoming period (✓t+1). This is a relatively innocuous

assumption as the proxy for ✓t turns out to be highly persistent.

We define the error as the di↵erence between the model-implied bitcoin return in the

oncoming period and the realised return:

"t+1 = ⇢t+1 �
 
1 + �1CostMiningFeet + �2CostMarketAccess t

(1� ⇡t)
�
1� h̄

� �
1 + ↵1Benefit t+1

� � 1

!
. (51)

The model is calibrated by minimising the distance between model-implied returns and

realised returns, i.e., the root mean squared error:

min
�0 µ,� ↵1 �1 �2

RMSE =

 
1

T

X

t

"
2
t

! 1
2

,

where T is the number of observed bitcoin returns and "t is defined in (51).

The challenge of optimising a non-linear expression over multiple parameters (the “curse

of dimensionality”) requires a careful approach. We proceed in two steps:

1. In the first step, we calibrate a linearised version of our multiplicative model. To do
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so, we use the Taylor expansion of our model defined in (44) and obtain

"t+1 ⇡ ⇢t+1�⇡t+h̄�↵1Benefit t+1+�1CostMiningFeet+ +�2CostMarketAccess . (52)

The only non-linearity remaining is in ⇡t, which is a function of (�0, µ). The lin-

earisation, therefore, reduces the curse of dimensionality to manageable proportions.

RMSE minimisation proceeds through the search over a two-dimensional evenly-spaced

grid for (�0, µ) 2 [0, 1) ⇥ [0, 1].35 For each point on the grid, the model is linear in

the remaining parameters. These are therefore straightforward to calibrate by RMSE

minimisation implemented with ordinary least squares. Figure 10 depicts the RMSE

corresponding to the di↵erent possible values of the parameters.

2. In the second step, the non-linear model of (51) is calibrated by applying a standard

steepest-descent algorithm (BFGS). The calibrated parameters of the linearised model

serve as starting values in this minimisation. We will report both sets of parameters

because the parameters of the linear model serve as a natural “robustness” check.

We want to emphasise that the goal of our calibration exercise is only to study if there

exist parameters that provide a good match of the model to the data. We stop short of

actually estimating population parameters. Such an estimation would be di�cult, given

the statistical problems associated with the short size of our sample and the likely non-

stationarity of our variables. Solving these problems would go beyond the scope of the

present paper and is left for further research.

5.4 Calibration results

Table 1 presents the calibrated parameter values. Consistent with intuition, calibrated bit-

coin required expected returns decrease in the proxy for transactional benefits (↵1 > 0) and

increase in the cost of market access (�1 > 0 and �2 > 0). Again, given the above mentioned

statistical problems, we do not claim statistical significance of ↵1, �1, or �2.

A natural way to judge model fit is to plot the smoothed realised bitcoin return of Figure 9

and overlay it with the calibrated required expected return implied by (43). Figure 11 shows

35Note that µ = 1 is excluded as a sure crash at time zero is not consistent with the sample in which no
such crash occurred. The size of the grid is 100⇥ 100.
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Table 1: Calibrated parameters
This table contains the calibrated values for the model parameters. The calibration minimises
the root mean squared error (RMSE), with errors defined as

"t+1 = ⇢t+1 �
 
1 + �1CostMiningFeet + �2CostMarketAccesst

(1� ⇡t)
�
1� h̄

� �
1 + ↵1Benefitt+1

� � 1

!
.

RMSE is minimised with a standard steepest-descent algorithm (BFGS). The starting values
in this minimisation are obtained by calibrating a (partially) linearised model with ordinary
least squares (OLS).

µ �0 ↵1 �1 �2

Starting values (OLS) 0.07 0.9999000000 0.0039 0.69 0.14
Calibrated values 0.11 0.9999992691 0.0037 0.69 0.14

that our required-return series track the time-varying mean of the realised return series

reasonably well.

To assess economic significance of the variables that drive the required return, it is useful

to decompose this total return across these variables. The linearised version of the model (44)

allows us to do so. Figure 12 thus illustrates the decomposition of the calibrated required

expected return. The top graph depicts the total required expected return which is the sum

of the five components that follow in the five graphs below it. Figure 12 shows that the

required weekly bitcoin return starts at a very high level (between 8 and 18%) during the

first two years of our sample period, 2010 and 2011. Expected weekly returns remain high,

between 2% and 8%, for the next couple of years. Then, expected returns are lower, around

2%, during the rest of the sample period, except towards the end of 2017.

Figure 12 also shows that crash risk explains a large fraction of the required expected

return (around 11 percentage points) during the first two years of the sample period. As

time goes by, however, and no crash is observed, Bayesian updating leads to decline in the

conditional probability of a crash, which converges to 0. Figure 12 also shows that costs

associated with mining fees, delays and congestion on the blockchain are negligible, with

the notable exception of 2017. Figure 12 shows that towards the end of 2017, the costs of

mining fees, delays and congestion contribute to 10 percentage points of bitcoin required
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Figure 10: Root mean squared error linearised model
This figure plots the root mean squared error (RMSE) for the (partially) linearised model.
RMSE is plotted as a function of the two parameters, �0 and µ, that make up the two-
dimensional grid over which is being minimized. Given a point on this grid, the model is
linear in the remaining parameters (↵1, �1, �2):

⇢t+1 = ⇡t + h̄� ↵1Benefitt+1 + �1CostMiningFeet + �2CostMarketAccesst + "t+1.

Ordinary least squares (OLS) can therefore be used to find values for the remaining param-
eters that minimise the RMSE for this point on the grid.
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Figure 11: Illustration of model fit
This graph plots the smoothed realised bitcoin return of Figure 9, and overlays it with the
required return implied by the calibrated model.

return. Figure 12 also shows that the index proxying for the di�culty to exchange bitcoin

against standard currency contributes almost 10 percentage points to the required return at

the beginning of the sample, and then around 8 percentage points in the rest of the sample.

The contribution of hack risk is relatively small, as it amounts to only 4 basis points.

Against these costs, Figure 12 shows that the transactional benefit component (✓) starts

around 0 at the beginning of the sample but increases until 2015. From that point on the

calibrated transactional benefit, which underlies the fundamental value of the cryptocurrency,

is around 8%. Such large magnitude may be viewed as implausible. It is useful, however,

to compare this magnitude to that of, for instance, the cost of cross border fund transfers.

44



According to World Bank data, the cost of remittances is around 6%.36 To that amount,

one must add, for countries with severe capital controls, the cost of avoiding these controls.

While our calibration quantifies the e↵ect of fundamentals on required expected returns,

it also provides information on how much of the time variation in bitcoin return can be

attributed to a changing model-implied required expected return. To do so, let us compute

an R-squared. The standard deviation of the calibrated model-implied required expected

return is 3.9%. The standard deviation of realised returns is much larger, since it is 17.3%.

The R-squared therefore is (3.9%)2/(17.3%)2 = 5.2%. Thus, changes in fundamental vari-

ables explain only a small fraction of the variation in bitcoin returns.37 To interpret the

result that fundamentals explain only 5.2% of the variance of bitcoin returns, it is useful

to bear in mind that, in our theoretical model, return volatility can reflect extrinsic noise

in addition to changes in fundamental variables, as stated in Proposition 6. Thus, in the

framework of our model, our empirical results suggest a decomposition of the total variance

of bitcoin returns: 5.2% stems from changes in fundamentals, while the remaining 94.8%

reflects extrinsic noise.38

6 Conclusion

We build an overlapping generations rational expectation equilibrium model relating the price

of a cryptocurrency to its fundamentals: transaction costs and benefits. The model shows

how these fundamentals should be priced, and highlights the interaction between expected

future prices and fundamentals. The model also shows that equilibrium price volatility can

be increased by extrinsic volatility unrelated to fundamentals.

We then calibrate the equilibrium pricing equation, relying on a hand-collected dataset of

fundamental events that a↵ect the ease for agents to transact in bitcoins. Using these data

we construct proxies for the fundamentals of bitcoin: its transaction costs and benefits. We

show that these fundamentals are significant determinants of bitcoin returns, and we provide

36See “The World Bank, Remittance Prices Worldwide,” available at
http://remittanceprices.worldbank.org.

37This is not unlike traditional currencies, for which fundamentals (such as money supply, interest rates or
trade balances) also have no predictive power (see Meese and Rogo↵, 1983), at least up to a yearly horizon.

38If the set of events we used to construct the transactional benefits and market access indices was incom-
plete, this would reduce the calibrated contribution of fundamentals to bitcoin returns and bias upward our
estimate of the share of extrinsic noise in bitcoin fluctuations.
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Figure 12: Bitcoin required return components
This figure plots a decomposition of the required bitcoin return across all model variables
that contribute to it. The decomposition is based on the linearised model. The top graph
plots the total required return and the graphs below it decompose it into five components.
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quantitative measures of their relative importance over time. Consistent with our theoretical

implication that equilibrium prices can exhibit extrinsic volatility, our calibration also shows

that a large part of the variation in prices is not explained by changes in fundamentals.

Reflecting the very large realised bitcoin returns, our calibrated transactional costs and

benefits are very large, and arguably implausible. This calls for extensions of our framework

that could better rationalise observed returns. Our calibration relies on a simple Bayesian

specification of agents’ beliefs about crash risk. Richer specifications, possibly allowing for

di↵erences in beliefs, or keeping the probability of crash high even after a long period without

crash, could help match the data with more plausible parameters.
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Appendix 1: Proofs

Proof of Proposition 1: In the main text, we solved for prices and quantities under the

assumption that consumption was strictly positive (i.e. the constraint cyt � 0 did not bind).

We show here that Equation (9) also holds when considering explicitly the non-negativity

constraint on young investors’ consumption.

Formally, let µ be the Lagrange multiplier associated with the constraint that young

investors’ consumption be non-negative, cyt � 0. With that constraint, the young investors’

optimisation problem becomes

max
qt,st,q̂t

u(cyt ) + �Etu(c
o
t+1) + µc

y
t

First-order conditions with respect to qt, st and q̂t write, respectively

�u
0(cyt )pt + �Et


u
0(cot+1)(1� ht+1)

(1 + ✓t+1)

1 + '0(qt)
pt+1

�
= µpt (53)

�u
0(cyt ) + �(1 + rt)Et

⇥
u
0(cot+1)

⇤
= µ (54)

�u
0(cyt )p̂t + �Et

⇥
u
0(cot+1)p̂t+1

⇤
= µp̂t (55)

Suppose µ > 0, i.e., the consumption non-negativity constraint binds. Then combining (53)

and (54) yields the cryptocurrency pricing equation (9) in Proposition 1.

To write the cryptocurrency price as the present value of its expected discounted trans-

actional benefits, note that (9) implies that the price at period t+ 1 verifies

pt+1 = Et+1

"
1� ht+2

1 + rt+1

u
0(cot+2)

Et+1

⇥
u0(cot+2)

⇤(pt+2 + Tt+2pt+2)

#
. (56)

Substituting (56) into (9) yields

pt = Et

" 
1� ht+1

1 + rt

u
0(cot+1)

Et

⇥
u0(cot+1)

⇤
!
(1 + Tt+1)

 
1� ht+2

1 + rt+1

u
0(cot+2)

Et

⇥
u0(cot+2)

⇤
!
(1 + Tt+2)pt+2

#
.
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Iterating we obtain (10), or equivalently

pt = Et

" 
KY

k=1

(1� ht+k)
u
0(cot+k)

Et

⇥
u0(cot+k)

⇤ (1 + Tt+k)

1 + rt+k�1

!
pt+K

#
. (57)

QED

Proof of Proposition 3: For power utility, the equilibrium condition for the cryptocur-

rency (17) yields

(e�mp̂�Xp)D
1
� = mp̂+Xp(1 + ✓)

, Xp =
eD

1
� �mp̂(1 +D

1
� )

1 + ✓ +D
1
�

. (58)

This is the first equation in Proposition 3. Similarly, the equilibrium condition for the

standard currency (16) yields

✓(1� ⇡)(mp̂+Xp(1 + ✓))�� = ⇡(mp̂c)
�� p̂c

p̂
(59)

Using (58) to substitute Xp in (59) yields

✓(1� ⇡)

 
mp̂+

eD
1
� �mp̂(1 +D

1
� )

1 + ✓ +D
1
�

(1 + ✓)

!��

= ⇡(mp̂c)
�� p̂c

p̂

, ✓(1� ⇡)

 
(1 + ✓)D

1
� e� ✓D

1
�mp̂

1 + ✓ +D
1
�

!��

= ⇡(mp̂c)
�� p̂c

p̂
. (60)

This is the second equation in Proposition 3. The left-hand side of (60) is increasing in

p̂. The right-hand side of (60) is decreasing and tends to +1 when p̂ ! 0. From (58), mp̂
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is at most equal to eD
1
� /(1 +D

1
� ). Therefore (60) has a solution i↵

✓(1� ⇡)

 
D

1
�

1 +D
1
�

e

!��

> ⇡

 
�

1
�

1 + �
1
�

e

!��
�

1
�

1 + �
1
�

1 +D
1
�

D
1
�

, ✓(1� ⇡)
⇣
1 +D

1
�

⌘�
> ⇡

(1 + �
1
� )�

�

�
1
�

1 + �
1
�

⇣
1 +D

1
�

⌘
D

D
1
�

, �✓
1� ⇡

⇡

 
1 +D

1
�

1 + �
1
�

!�

> �
1
�
1 +D

1
�

1 + �
1
�

D

D
1
�

,
 
1 +D

1
�

1 + �
1
�

!��1

>
⇡(1 + ✓)

✓(1� ⇡)
1
� (1 + ✓)

1
�

, (61)

which is the equilibrium condition stated in Proposition 3.

QED

Proof of Corollary 1: Condition (18) can be written

✓(1 + ✓)
1��
�

(1 + �
1
� )��1

>
⇡

(1� ⇡)
1
� (1 + (�(1� ⇡)(1 + ✓))

1
� )��1

. (62)

Define g(⇡) = ⇡(1� ⇡)�
1
� (1 +D

1
� )1��. See that when � � 1, g is increasing in ⇡, hence

(62) is equivalent to ⇡ < ⇡. When � < 1, rewrite g as

g(⇡) =
⇡

⇣
(1� ⇡)�

1
� (�(1 + ✓))

1
�

⌘1��

1� ⇡
. (63)

Again, see that g is strictly increasing in ⇡.

QED

Proof of Corollary 2: We first establish that investors require a positive risk premium for

the cryptocurrency when their consumption decreases after the crash. In the constant price

equilibrium with ' = h = 0 and constant e, X, and ⇡, the FOCs for the cryptocurrency,
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standard currency, and risk-free asset are

u
0(cy) = �(1� ⇡)(1 + ✓)u0(conc) (64)

u
0(cy) = �


(1� ⇡)u0(conc) + ⇡u

0(coc)
p̂c

p̂

�
(65)

u
0(cy) = �(1 + r) [(1� ⇡)u0(conc) + ⇡u

0(coc)] , (66)

where c
o
nc denotes the consumption of old investors if there is no crash, and c

o
c their con-

sumption otherwise. Combining (64) and (66) yields

(1� ⇡)(1 + ✓)

1 + r
=

(1� ⇡)u0(conc) + ⇡u
0(coc)

u0(conc)

and therefore, the cryptocurrency commands a (strictly positive) risk premium i↵

u
0(conc) < u

0(coc) , c
o
c < c

o
nc ,

mp̂c

mp̂+Xp(1 + ✓)
< 1.

For power utility, see that (59) implies that mp̂c
mp̂+Xp(1+✓) < 1 i↵

p̂ >
⇡

✓(1� ⇡)
p̂c. (67)

We next prove that (67) holds at equilibrium. To do so, we first need to show that the

equilibrium condition (18) implies (1� ⇡)(1 + ✓) > 1. There are two cases.

1. � � 1

By contradiction: suppose (1� ⇡)(1 + ✓)  1.

(1 � ⇡)(1 + ✓)  1 implies the left-hand side of (18) is smaller than 1. It also implies

that ⇡(1 + ✓) > ✓. Therefore (18) implies

1

(1� ⇡)
1
� (1 + ✓)

1
�

< 1,

a contradiction.

2. � < 1

51



For ⇡ > 0, (18) is equivalent to

0

B@

1

(1�⇡)
1
�
+ (�(1 + ✓))

1
�

1 + �
1
�

1

CA

��1

>
⇡(1 + ✓)

✓(1� ⇡)(1 + ✓)
1
�

. (68)

The left-hand side of (68) is strictly decreasing in ⇡ while the right-hand side is strictly

increasing in ⇡. Note also that if ⇡ = ✓
1+✓ , (1 � ⇡)(1 + ✓) = 1, then the left-hand

side of (68) is equal to its right-hand side. It follows that

⇡ <
✓

1 + ✓
, (1� ⇡)(1 + ✓) > 1.

Last, (67) holds in equilibrium i↵ the left-hand side of (20) is smaller than the right-hand

side of (20) when evaluated at

p̂ =
⇡

✓(1� ⇡)
p̂c.

This is equivalent to

✓(1� ⇡)

D

✓
(1 + ✓)e� ⇡

1�⇡mp̂c

1 + ✓ +D
1
�

◆��

< ⇡(mp̂c)
�� ✓(1� ⇡)

⇡

, 1 + ✓ +D
1
�

(1 + ✓)e� ⇡
1�⇡mp̂c

<
D

1
�

mp̂c

, (1 + ✓ +D
1
� )
mp̂c

e
< (1 + ✓)D

1
� � ⇡

1� ⇡
D

1
�
mp̂c

e

,
✓
1 +

⇡

1� ⇡

◆
�

1
�

1 + �
1
�

D
1
� < (1 + ✓)

 
D

1
� � �

1
�

1 + �
1
�

!

, 1

1� ⇡
�

1
�D

1
� < (1 + ✓)

⇣
D

1
� (1 + �

1
� )� �

1
�

⌘

, D
1
� < (1 + ✓)(1� ⇡)

⇣
((1 + ✓)(1� ⇡))

1
� (1 + �

1
� )� 1

⌘

, 0 < (1 + ✓)(1� ⇡)[((1 + ✓)(1� ⇡))
1
� � 1] +D

1
� [(1 + ✓)(1� ⇡)� 1]

which is true since (1� ⇡)(1 + ✓) > 1.
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QED

Proof of Proposition 4: Condition ✓(1�⇡) > ⇡ (which is equivalent to (25)) straight-

forwardly follows from (18) when � = 1.

Next, Equation (20) with log utility yields

(1� ⇡)✓

D

1 + ✓ +D

(1 + ✓)e� ✓mp̂
= ⇡

1 + �

e�

e�
1+�

mp̂

, mp̂((1� ⇡)✓(1 + ✓) + ✓D) = ⇡D(1 + ✓)e

, mp̂

e
=

⇡(1 + ✓)

✓

�

1 + �
. (69)

Last, using (27), Equation (26) with log utility yields

Xp

e
=
D � ⇡(1+✓)

✓
�

1+� (1 +D)

1 + ✓ +D

=
✓(1 + �)D � ⇡(1 + ✓)�(1 +D)

✓(1 + �)(1 + ✓)(1 + �(1� ⇡))

=
(1 + �(1� ⇡))✓(1 + �)� ✓(1 + �)� ⇡�(1 + �(1� ⇡)(1 + ✓))

✓(1 + �)(1 + �(1� ⇡))

=
�

1 + �
(1� ⇡(1 +

1

✓
)). (70)

QED

Proof of Proposition 5: From Proposition 3, we know that for each realisation of ⇡N ,

prices defined by (29) and (30) form a unique continuation equilibrium as long as ⇡N < ⇡.

We now show that given equilibrium prices at N , there exists a unique pair of prices

p(⇡N�1) and p̂(⇡N�1) at N � 1 solving (31) and (32). That is, for a given probability of a

crash ⇡N�1, we study the system of two equations with two unknowns, p and p̂:

��1p
(e�Xp�mp̂)� = (1 + ✓)(1� ⇡N�1)Z, (71)

��1p̂
(e�Xp�mp̂)� = (1� ⇡N�1)Ẑ + ⇡N�1

p̂c
(mp̂c)�

, (72)
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where

Z ⌘


xNp(⇡u
N)

(Xp(⇡u
N)(1 + ✓) +mp̂(⇡u

N))
�
+

(1� xN)p(⇡d
N)

(Xp(⇡d
N)(1 + ✓) +mp̂(⇡d

N))
�

�
,

Ẑ ⌘


xN p̂(⇡u
N)

(Xp(⇡u
N)(1 + ✓) +mp̂(⇡u

N))
�
+

(1� xN)p̂(⇡d
N)

(Xp(⇡d
N)(1 + ✓) +mp̂(⇡d

N))
�

�
.

Note that Z, Ẑ and therefore the right-hand sides of (71) and (72) are independent from p

and p̂.

For any p̂ 2 (0, e
m), the left-hand side of (71) is strictly increasing in p for p 2 (0, (e �

mp̂)/X), tends to 0 when p tends to 0 and to +1 when p tends to (e�mp̂)/X. Therefore

(71) implicitly defines a function p(p̂) for p̂ 2 (0, e
m). Furthermore,

0 < p(p̂) < (e�mp̂)/X, (73)

and total di↵erentiation of (71) yields

@p

@p̂
(p̂)(e�Xp(p̂)�mp̂)�� + �p(p̂)(e�Xp(p̂)�mp̂)���1(X

@p

@p̂
(p̂) +m) = 0

, @p

@p̂
(p̂)(e�Xp(p̂)�mp̂) + �p(p̂)(X

@p

@p̂
(p̂) +m) = 0. (74)

(74) implies
@p

@p̂
(p̂) < 0. (75)

Let g(p̂) be the left-hand side of (72) where p is the implicit function of p̂ we just defined:

g(p̂) ⌘ �
�1
p̂

(e�Xp(p̂)�mp̂)�
. (76)

Di↵erentiating,

g
0(p̂) =

�
�1

(e�Xp(p̂)�mp̂)�
+

��
�1
p̂

(e�Xp(p̂)�mp̂)�+1
(X

@p

@p̂
(p̂) +m),

that has the sign of

e�Xp(p̂)�mp̂+ �p̂(X
@p

@p̂
(p̂) +m),
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which, using (74), is equal to

e�Xp(p̂)�mp̂� @p

@p̂
(p̂)

p̂

p(p̂)
(e�Xp(p̂)�mp̂),

which, from (73) and (75), is strictly positive.

Hence, g(.) is strictly increasing and admits the following limits.

- g(p̂) ! 0 when p̂ ! 0.

From (76), this is true if limp̂!0 p(p̂) <
e
X . We know from (73) that p(p̂) < e

X . Suppose

limp̂!0 p(p̂) =
e
X , then the left-hand side of (71) tends to +1 when p̂ ! 0 while the

right-hand side is finite, a contradiction (in other words, we cannot have p = e
X as

young investors would then prefer to consume and buy less cryptocurrencies).

- g(p̂) ! +1 when p̂ ! e
m .

From (76), this is true if p(p̂) ! 0 when p̂ ! e
m , which is implied by (73).

It follows that there is a unique p̂ 2 (0, e
m) such that g(p̂) = (1� ⇡N�1)Ẑ + ⇡N�1

p̂c
mp̂c

. To

that unique p̂ corresponds a unique p(p̂), thus the system {(71), (72)} has a unique solution.

Therefore, given prices p(⇡N) and p̂(⇡N) at period N , there exists a unique pair of prices

p(⇡N�1) and p̂(⇡N�1) consistent with equilibrium conditions at period N � 1. Iterating

backward, we can find equilibrium prices at t� 1 as a function of equilibrium prices at t for

all t  N � 1.

Proof of Proposition 6: We want to prove that if (33) holds for pt then it holds for

p̄t. Start from the equilibrium condition for pt

pt =
1

1 + rt
Et [(1� ht+1) (1 + Tt+1) pt+1] .

Multiplying both sides by �
�Qt

⌧=1 u⌧

�
, we have

�

 
tY

⌧=1

u⌧

!
pt =

1

1 + rt
Et

"
�

 
tY

⌧=1

u⌧

!
(1� ht+1) (1 + Tt+1) pt+1

#
.
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The left-hand side is p̄t. So we have

p̄t =
1

1 + rt
Et

"
�

 
tY

⌧=1

u⌧

!
(1� ht+1) (1 + Tt+1) pt+1

#
.

Moreover, since ut+1 has unit expectation and is independent from the investors’ period t

information set, we have

Et

"
�

 
tY

⌧=1

u⌧

!
(1� ht+1) (1 + Tt+1) pt+1

#
= Et

"
�

 
t+1Y

⌧=1

u⌧

!
(1� ht+1) (1 + Tt+1) pt+1

#

= Et [(1� ht+1) (1 + Tt+1) p̄t+1] .

So

p̄t =
1

1 + rt
Et [(1� ht+1) (1 + Tt+1) p̄t+1] .

QED
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Online Appendix

Table 2: Hacks, thefts and losses events

Date Amount (BTC) Description

2011-06-13 25000 User Allinvain hacked
2011-06-19 2000 MtGox theft
2011-06-25 4019 MyBitcoin theft
2011-07-26 17000 Bitomat loss
2011-07-29 78739 MyBitcoin theft
2011-10-06 5000 Bitcoin7 hack
2011-10-28 2609 MtGox loss
2012-03-01 46653 Linode hacks
2012-04-13 3171 Betcoin hack
2012-04-27 20000 Tony76 Silk Road scam
2012-05-11 18547 Bitcoinica hack
2012-07-04 1853 MtGox hack
2012-07-13 40000 Bitcoinica theft
2012-07-17 180819 BST Ponzi scheme
2012-07-31 4500 BTC-e hack
2012-09-04 24086 Bitfloor theft
2012-09-28 9222 User Cdecker hacked
2012-10-17 3500 Trojan horse
2012-12-21 18787 Bitmarket.eu hack
2013-05-10 1454 Vircurex hack
2013-06-10 1300 PicoStocks hack
2013-10-02 29655 FBI seizes Silk Road funds
2013-10-25 144336 FBI seizes Silk Road funds
2013-10-26 22000 GBL scam
2013-11-07 4100 Inputs.io hack
2013-11-12 484 Bitcash.cz hack
2013-11-29 5400 Sheep Marketplace closes
2013-11-29 5896 PicoStocks hack
2014-02-13 4400 Silk Road 2 hacked
2014-02-25 744408 MtGox collapse
2014-03-04 896 Flexcoin hack

Continued on next page
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Table 2: Hacks, thefts and losses events

Date Amount (BTC) Description

2014-03-04 97 Poloniex hack
2014-03-25 950 CryptoRush hacked
2014-10-14 3894 Mintpal hack
2015-01-05 18886 Bitstamp hack
2015-01-28 1000 796Exchange hack
2015-02-15 7170 BTER hack
2015-02-17 3000 KipCoin hack
2015-05-22 1581 Bitfiniex hack
2015-09-15 5000 Bitpay fishing scam
2016-01-15 11325 Cryptsy hack
2016-04-07 315 ShapeShift hack
2016-04-13 154 ShapeShift hack
2016-05-14 250 Gatecoin hack
2016-08-02 119756 Bitfinex hack
2016-10-13 2300 Bitcurex hack
2017-04-22 3816 Yapizon hack
2017-07-12 1942 AlphaBay admin’s assets sized by FBI
2017-07-20 1200 Hansa’s funds seized by Dutch police
2017-12-06 4736 NiceHash hacked
2018-06-20 2016 Bithumb hacked
2018-09-20 5966 Zaif hacked
2018-10-28 8 MapleChange hack / scam
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Table 3: Market access events

Date E↵ect Regions Weight Description

2010-07-17 1 USA 0.2270 MtGox USD/BTC exchange opens
2010-10-25 1 USA 0.2270 MtGox eases fund transfers
2010-12-07 1 USA 0.2270 MtGox partners with e-payment company

Paxum
2011-01-06 1 EMU 0.1858 Bitcoin-Central EUR/BTC exchange opens
2011-04-01 1 POL 0.0072 Bitomat PLN/BTC exchange opens
2011-06-08 1 CAN 0.0244 CaVirTex CAD/BTC exchange opens
2011-06-13 1 CHN 0.1029 BTCC China CNY/BTC exchange opens
2011-07-28 1 BRA 0.0357 Mercado Bitcoin BRL/BTC exchange opens
2011-08-27 1 JPN 0.0839 MtGox opens JPY/BTC
2011-09-02 1 AUS 0.0190 MtGox opens AUD/BTC
2011-09-06 1 GBR 0.0359 MtGox opens GBP/BTC
2012-02-10 -1 USA 0.2158 Paxum exits bitcoin business
2012-08-17 1 RUS 0.0295 BTC-e opens RUB/BTC
2013-03-20 1 IND 0.0241 LocalBitcoins opens INR/BTC
2013-05-14 -1 USA JPN 0.2842 MtGox suspends fund transfers
2013-09-03 1 KOR 0.0169 Korbit KRW/BTC exchange opens
2013-10-29 1 CAN 0.0239 World first Bitcoin ATM opens
2013-12-03 -1 CHN 0.1240 China bans financial institutions from using

bitcoin
2013-12-18 -1 CHN 0.1240 BTC China suspends deposits in yuan
2014-01-30 1 CHN 0.1316 BTC China reinstates deposits in yuan
2014-02-09 1 IDN 0.0112 Indodax opens IDR/BTC
2014-02-25 -1 JPN 0.0612 MtGox shuts down
2014-03-08 1 JPN 0.0612 ANX opens JPY/BTC
2014-10-14 1 PAK 0.0031 Urdubit PKR/BTC exchange opens
2015-07-08 1 NGA 0.0066 BitX opens NGN/BTC
2017-08-13 -1 NPL 0.0003 Nepal bans bitcoin and other cryptocurren-

cies
2017-09-30 -1 CHN 0.1501 China’s exchanges shut down
2017-11-20 -1 MAR 0.0014 Morocco Central Bank bans transactions in

bitcoin
2017-12-10 1 USA 0.2409 Future trading starts at CBOE

Continued on next page
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Table 3: Market access events

Date E↵ect Regions Weight Description

2018-01-01 -1 EGY 0.0029 Egypt’s grand mufti issues a fatwa declaring
bitcoin trading unlawful under Sharia law

2018-01-13 -1 IDN 0.0121 Bitcoin banned in Indonesia
2018-01-16 -1 CHN 0.1586 China bans citizens from trading bitcoin
2018-04-06 -1 PAK 0.0036 Pakistan Central Bank bans Bitcoin trading

by financial companies
2018-04-08 -1 PAK 0.0036 Urdubit closes
2018-05-29 1 IDN 0.0121 Bitcoin can be legally traded as a commodity

in Indonesia
2018-06-20 -1 KOR 0.0189 Bithumb suspends all deposits and with-

drawals
2018-07-06 -1 IND 0.0318 Indian central bank forbids banks from deal-

ing with entities working with digital curren-
cies

2018-08-01 -1 KOR 0.0189 Bithumb suspends new account registration
2018-08-04 1 KOR 0.0189 Bithumb reopens deposits and withdrawals
2018-08-16 1 THA 0.0059 Thailand’s SEC authorizes seven cryptocur-

rency firms, including five crypto exchanges,
to operate in the country

2018-08-30 1 KOR 0.0189 Bithumb resumes accepting new user ac-
counts

2018-10-02 1 IDN 0.0121 Indonesia permits futures trading of crypto
assets

2018-11-12 1 RUS 0.0193 Singapore’s Huobi opens an o�ce in Russia,
with Russian language support
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Table 4: Transaction benefits events

Date E↵ect Illegal Description

2011-01-23 1 1 Silk Road opens
2011-02-25 1 0 CoinCard service opens
2011-06-08 1 0 BTC Buy service opens
2011-06-30 1 1 Black Market Reloaded opens
2012-09-04 -1 0 CoinCard trading service permanently closed
2012-11-15 1 0 WordPress accepts bitcoin
2013-02-06 1 0 PizzaForCoins allows users to order pizza delivery

with bitcoins
2013-04-03 -1 0 BTC Buy stops selling prepaid cards
2013-05-09 1 0 Gyft accepts bitcoin
2013-08-27 1 0 eGifter accepts bitcoin
2013-10-02 -1 1 Silk Road closes
2013-11-06 1 1 Silk Road 2.0 opens
2013-11-22 1 0 CheapAir accepts bitcoin for flights
2013-11-27 1 0 Shopify adds a bitcoin payment option for its sell-

ers
2013-12-02 -1 1 Black Market Reloaded closes
2014-01-09 1 0 Overstock.com accepts bitcoin
2014-01-24 1 0 TigerDirect accepts bitcoin
2014-02-03 1 0 CheapAir accepts bitcoin for hotel reservations
2014-06-10 1 0 REEDS Jewelers accepts bitcoin
2014-06-11 1 0 Expedia accepts bitcoin for hotel reservation
2014-07-01 1 0 Newegg accepts bitcoin
2014-07-18 1 0 Dell accepts bitcoin
2014-08-14 1 0 DISH Network accepts bitcoin
2014-11-06 -1 1 Silk Road 2.0 closes
2014-12-11 1 0 Microsoft accepts bitcoin from US customers
2014-12-22 1 1 opening of AlphaBay
2015-01-22 1 0 Paypal accepts bitcoin
2015-02-19 1 0 Dell Expands bitcoin payments to UK and Canada
2015-02-19 1 0 Payment processor Stripe o↵ers bitcoin integration
2016-03-03 1 0 Bidorbuy accepts bitcoin
2017-04-27 1 0 Valve accepts bitcoin
2017-07-05 -1 1 AlphaBay closes

Continued on next page
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Table 4: Transaction benefits events

Date E↵ect Illegal Description

2017-10-19 -1 0 Dell no longer accepts bitcoin
2017-11-29 1 0 Roadway Moving Company accepts bitcoin
2017-12-06 -1 0 Steam no longer accepts bitcoin
2017-12-26 -1 0 Microsoft no longer accepts bitcoin
2018-01-09 1 0 Microsoft resumes bitcoin payments
2018-03-23 -1 0 Payment processor Stripe ends support for bitcoin
2018-05-10 -1 0 Expedia no longer accepts bitcoin
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Table 5 lists the Bitcoin forks (up to 2018) that granted “free coins” to bitcoin owners.
The table reports the name of the cryptocurrency forked from Bitcoin, the tickers under
which it is or has been quoted on exchange platforms, the type of fork (a hard fork materi-
alises as a new branch hooked on the main blockchain; an airdrop is a separate blockchain
for a cryptocurrency whose initial ownership is based on the main chain), the cryptocurren-
cies that have been forked or used for airdrops (in the latter case, ownership of new units
of cryptocurrency could be granted to owners of more than one cryptocurrency, creating a
so-called “fork-merge”), the day of the snapshot of the main chain that determines to which
addresses new units of cryptocurrency have been granted (for a hard fork, this is the day of
the last common parent block; for airdrop, this is the day of a snapshot block, that is, the
block used as a reference to grant new units of cryptocurrency), the number of new units of
cryptocurrency each bitcoin held at the time of the snapshot granted, the earliest day (at or
after the snapshot date) at which a market price was available (as reported by CoinMarket-
Cap, CoinGecko, or BitInfocharts), and the closing price in USD of the cryptocurrency for
that day. Thus, the value in USD a bitcoin owner could cash in from each bitcoin held at the
time of the snapshot is the ratio times this market price. Note: two cryptocurrencies granted
new units of cryptocurrency per Bitcoin address (and not in proportion of the amount held):
Clams has been granted to Bitcoin addresses with a balance of more than 0.001 bitcoins;
Bitcore has been granted to Bitcoin addresses with a balance of 0.01 bitcoins or more. We
neglect these exceptions, applying these two ratios per-bitcoin instead.
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