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Abstract 

Objective: To provide 3D high-resolution cardiac T1 maps using model-based super-

resolution reconstruction (SRR). 

Approach: Due to signal-to-noise ratio (SNR) limitations and the motion of the heart during 

imaging, often 2D T1 maps with only low through-plane resolution (i.e. slice thickness of 6 to 

8 mm) can be obtained. Here, a model-based SRR approach is presented, which combines 

multiple stacks of 2D acquisitions with 6 to 8 mm slice thickness and generates 3D high-

resolution T1 maps with a slice thickness of 1.5 to 2 mm. Every stack was acquired in a 

different breath hold (BH) and any misalignment between BH was corrected retrospectively. 

The novelty of the proposed approach is the BH correction and the application of model-based 

SRR on cardiac T1 Mapping. The proposed approach was evaluated in numerical simulations 

and phantom experiments and demonstrated in four healthy subjects.  

Main results: Alignment of BH states was essential for SRR even in healthy volunteers. In 

simulations, respiratory motion could be estimated with an RMS error of 0.18 ± 0.28 mm. SRR 

improved the visualization of small structures. High accuracy and precision (average standard 

deviation of 69.62 ms) of the T1 values was ensured by SRR while the detectability of small 

structures increased by 40%.  

Significance: The proposed SRR approach provided T1 maps with high in-plane and high 

through-plane resolution (1.3×1.3×1.5 to 2 mm³). The approach led to improvements in the 

visualization of small structures and precise T1 values. 
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Introduction 

Cardiovascular MR is a well-established technique for the diagnosis of cardiac diseases. Over 

the last years, T1 mapping has been translated into clinical application as an important 

quantitative approach for cardiac tissue differentiation1. It has been demonstrated that T1 

mapping can be used to diagnose a wide range of different cardiac pathologies, including 

entities with preserved ejection fraction2–4.  

However, one of the major challenges in cardiac T1 mapping is that the achievable image 

resolution is often restricted due to respiratory and cardiac motion, SNR and limited acquisition 

time. In clinical practice, T1 maps are acquired with a 2D acquisition scheme resulting in one 

slice per breath hold (BH) that has a high in-plane resolution but suffers from a poor through-

plane resolution of 6-8 mm5. 3D T1 Mapping has been proposed but with a long acquisition 

time6,7. With the work proposed in 8, 80% of the cardiac cycle can be used for T1 mapping, 

allowing the acquisition of six slices with a slice thickness of 6-8 mm per BH. Nonetheless, 

image resolution is compromised by partial volume effects. This can impair the accurate 

detection of subtle fibrosis in the myocardium in different entities and limit the capability to 

differentiate myocardial injury within the thin myocardial wall of young patients. 

Super‐resolution reconstruction (SRR) has been proposed to improve the tradeoff between 

spatial resolution, acquisition time and SNR9-19. The resolution is thereby increased by 

acquiring various low-resolution (LR) images with complementary information about the 

object. This is ensured by shifting the image positions of the LR stacks along the slice direction 

or by changing their slice orientations. Subsequently, the LR stacks are combined into a high-

resolution (HR) data set by solving an inverse problem. The reconstructed HR image thus 

benefits from the high SNR of the LR images while providing HR diagnostic information. For 

quantitative MRI, the parametric model of the mapping can be combined with the SRR model 

which has been demonstrated on the brain20,21. Such a model-based SRR enables the direct 

estimation of HR T1 maps from LR T1-weighted images (dynamics). 

The principle of SRR is based on knowledge about the geometric relationship between 

different LR datasets. Motion leads to misalignment and strongly impairs the achievable 

image quality of SRR22. The application of SRR on the heart23–31 has so far only been shown 

for qualitative imaging. For T1 Mapping, SRR taking into account different motion states of 

the individual LR stacks has so far only been applied on the brain20,32,33 .  

The application of SRR to quantitative cardiac MRI data is especially challenging due to 

cardiac and respiratory motion. Next to that, the acquisition during breath hold imposes 

severe limitations on the acquisition time and thus limits the number of slices per LR stack. 

So far, no model-based SRR T1 mapping has been applied on cardiac data, which requires 

advanced acquisition and motion correction (moco) schemes. 
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In this study, we present a model-based SRR for cardiac T1 mapping, providing precise HR 

T1 maps with improved visualization of small structures compared to the direct LR 

acquisitions. It combined multiple stacks of 2D acquisitions with 6 to 8 mm slice thickness and 

generated 3D HR T1 maps with a target slice thickness of 1.5 to 2 mm in six to ten BH. Cardiac 

and residual respiratory motion was corrected. The approach was evaluated in native T1 

mapping in numerical simulations and phantom experiments and feasibility was demonstrated 

in four healthy volunteers.  

 

Methods 

The proposed workflow to achieve motion-corrected model-based SRR T1 maps is depicted 

in Figure 1: Multiple stacks of 2D slices were acquired continuously with one stack per BH. In 

a first step, non-rigid cardiac motion was estimated and used in a model-based T1 

reconstruction5 resulting in the dynamics γw and parameter maps γm (6 slices à 6 to 8mm per 

stack) which are all in the same cardiac motion state. In a second step, the stacks were 

registered to each other to estimate and compensate for different BH positions. After the 

motion alignment, the maps were then used to calculate the first estimate of the HR map Γ0
m 

as initialization of the SRR. Finally, a HR T1 map Γfinal
m  was generated by SRR.  
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Figure 1: Comparison of the proposed motion-corrected model-based SRR workflow and the 

common approach. In this schematic comparison, data was acquired over eight breath holds 

(BH). In the common approach, one slice could be reconstructed per BH. In the proposed 

approach, one stack per BH with six 2D slices each was acquired. Cardiac motion was 

estimated and included in a model-based T1 reconstruction of the k-space data 𝑘 yielding 

the dynamics 𝛾𝑤 and the parameter maps 𝛾𝑚 of the LR stacks. Then, the different stacks 

were registered to each other. The motion corrected 𝛾𝑚 were used to calculate the first 

estimate of the HR map 𝛤0
𝑚 and SRR yielded the final 3D HR parameter map 𝛤𝑓𝑖𝑛𝑎𝑙

𝑚 . In this 

example, the proposed approach led to six times more slices with the same number of BH, 

with a slice thickness reduced by a factor of four compared to the common approach. 

 

Data acquisition  

Data was acquired using a Golden-angle radial sampling scheme on 3 Tesla MR scanner 

(Verio, Siemens Healthineers, Erlangen, Germany) with a commercial 32-channel cardiac coil. 

After a slice-selective radio-frequency inversion pulse, data was continuously acquired in 

multiple stacks with six slices each resulting in an acquisition time of 16.8s for a single stack 

(2.8s for each slice) with the following parameters: flip angle α=5°, resolution 1.3×1.3×6.0 to 

8.0 mm³, FOV 320×320×84 to 105 mm3, TE/TR: 2.19/4.9 ms, orientation short-axis-view, 

subject specific slice gap of 4 to 9 mm to cover the desired FOV while avoiding slice 

interference from the radio-frequency inversion and excitation radio-frequency pulses. Six to 

ten stacks (one stack per BH) were acquired in total with an offset of 1.5 to 2 mm between 

stacks along the slice direction. Due to the short acquisition time, a slice-selective inversion 

pulse was used in combination with an interleaved multi-slice ordering. The ECG was recorded 

for retrospective cardiac moco. 
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Model-based T1 reconstruction 

Dynamic cardiac motion-resolved images were reconstructed with a temporal resolution of 

44.1 ms. Spatial and temporal total variation regularization (regularization parameters λ along 

time and space were 0.5) was applied to suppress undersampling artefacts34. To accelerate 

the motion estimation, a subject specific rectangular region of interest covering both ventricles 

was selected. In an iterative fashion, the non-rigid cardiac motion was estimated using the 

MIRTK Toolkit35.   

The estimated cardiac motion information was used in an iterative model-based T1 

reconstruction5,8. Data from the entire cardiac cycle was used, except for the 30% of the 

systole with the greatest through-plane motion. A Look-Locker model q was used in an 

iterative reconstruction scheme to estimate γm with the quantitative parameter m = [p, α, T1] 

and γw with a temporal resolution of 83.3 ms, p denoting the equilibrium magnetization and α 

the flip angle. In the following, only the T1 parameter is mainly considered because it is 

clinically the most relevant. 
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Breath hold registration 

 

Figure 2: Breath hold registration scheme. Different breath hold positions of the uncorrected 

T1 maps of the individual LR stacks, three of which are shown as an example (𝛾0
𝑇1, 𝛾1

𝑇1, 𝛾2
𝑇1), 

led to artifacts when combining them in 𝛾𝑎𝑣𝑔
𝑇1 . In the first step, each LR slice was registered to 

the closest slice in the neighboring stack (in-plane registration), leading to a reduction of 

artifacts in the orthogonal view of 𝛾𝑎𝑣𝑔
𝑇1 . In the subsequent through-plane registration, each 

LR stack was registered to 𝛾𝑎𝑣𝑔
𝑇1  in an iterative fashion. 

 

Each stack was acquired in a different BH. To correct for potential misalignments of BH 

positions, the stacks were registered to each other using a cross-correlation approach36. A 

two-stage process was developed for this purpose (Figure 2). In the first step of the motion 

estimation, the rigid motion in the in-plane direction of the slices γs
m was determined. For that, 

the T1 maps of the LR slices of stacks s were registered to each other: Each slice of each 

stack was registered to the slice which was closest (i.e. smallest distance along the slice 

direction) to it. The stacks were acquired in an overlapping fashion, therefore the closest slice 

was part of another stack and hence, γs
T1 was registered to γ(s−1)

T1  using a phase-cross-

correlation registration. That yielded information about the in-plane motion of every slice of 
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every stack. The median of the motion detected in its six slices was finally assigned to the 

entire stack of LR slices .  

In the second step, the LR stacks were registered with respect to shifts along the slice 

encoding direction. For that, γs
T1 was interpolated along the slice encoding direction using 

bicubic spline interpolation, which also filled the gaps between the LR slices. The interpolated 

T1 maps of the LR stacks were then combined and an average stack γavg
T1  was calculated. In 

an iterative process, each stack was then registered to γavg
T1 . In the next iteration a new γavg

T1  

was calculated taking the estimated motion into account. Only translational shifts were 

considered. Two iterations were used in total.  

 

Model-based super-resolution reconstruction  

For SRR, several LR stacks acquired with an offset to each other were combined to an HR 

volume. The model q calculates dynamics from given parameter maps. The SRR used here 

is model-based and thus q was incorporated into SRR to at the end obtain a HR T1 map Γm 

from γw. As initialization Γ0
m of the SRR, γm were calculated from γw using a voxel-wise 3-

parameter T1 fit and combined:  

Γ0,h
m = ∑ ∑ as

h,lγs,l
m

L

l=1

S

s=1

 

(1) 

In order to describe the effect of the excitation slice profile, a resolution model was calculated 

from Bloch simulations of the RF pulse37,38. The slice profile simulations were used to describe 

the weight as
h,l of HR slice h with respect to LR slice l in stack s (with h =  1, … , H,  l =  1, … , L  

and s =  1, … , S and H, L, and S being the number of HR-slices, the number of LR-slices and 

the number of stacks, respectively). With that, LR dynamics γt,s,l
w̃  (with  t =  1, … , T, and T 

being the number of inversion times) were calculated: 

γt,s,l
w̃ (Γm) = ∑ as

h,lqt(Γh
m)

H

h=1

 

(2) 

A functional based on the sum of the differences between the LR slices and stacks of the 

predicted (𝛾𝑡,𝑠,𝑙
�̃� ) and acquired LR dynamics (𝛾𝑡,𝑠,𝑙

𝑤 ) and a total variation based regularization 

term was minimized, which could be described by the following minimization problem: 

min
Γm

∑ ∑ ∑ ||γt,s,l
w   − γt,s,l

w̃ (Γm)||
2

2
L

l=1

S

s=1

T

t=1

+ κ ||GΓm||
1

   

(3) 
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where κ describes the regularization parameter and G corresponds to the forward finite 

differences operator. As as
h,l describes the relationship between a HR and LR slice, by solving 

Problem (3) an estimate of the HR slices could be recovered. Since solving problem (3) directly 

is challenging due to the non-smoothness of the L1-norm as well as the non-linear function q, 

a variable splitting21,39 approach was used. This allowed solving the resulting sub-problems 

with suitable algorithms. By introducing auxiliary variables xt ≔ qt(Γm) for all t and u  ≔

 Γm the problem was reformulated as a joint minimization problem. These equalities were 

relaxed by including two quadratic penalty terms, weighted by λ and μ, yielding: 

 

min
Γm,   x,   u 

∑ ∑ ∑ ||γt,s,l
w − ∑ as

h,l

H

h=1

xt,h||

2

2
L

l=1

S

s=1

T

t=1

+ λ||xt − qt(Γm)||
2

2
+ μ||u  −  Γm||

2

2
  + κ ||Gu||

1
  

(4) 

The solution of problem (4) was approached by alternating the minimization of (4) with respect 

to one of the variables and keeping the other two fixed. For fixed Γm, u, updating x 

corresponded to solving  

min
x

∑ ∑ ∑ ||γt,s,l
w − ∑ as

h,l

H

h=1

xt,h||

2

2
L

l=1

S

s=1

T

t=1

+ λ||xt − qt(Γm)||
2

2
   

(Sub1)  

Subproblem (Sub1) was minimized with respect to x, assuming Γm and u are fixed. Solving 

(Sub1) involved solving a linear system for which a conjugate gradient approach was used.  

For fixed Γm, x, updating u in problem (4) corresponded to solving 

min
u

μ/κ||u −  Γm||
2

2
+ ||Gu||

1
 

(Sub2) 

Subproblem (Sub2) was solved using the iterative algorithm proposed in 40.  

For fixed u and  x, updating Γm in problem (4) corresponded to solving  

min
Γm

∑ λ||xt − qt(Γm)||
2

2
  +  μ||u  −  Γm||

2

2
T

t=1

   

(Sub3) 

Due to the non-linearity of function q, the Limited-memory Broyden–Fletcher–Goldfarb–

Shanno algorithm41 was used for solving problem (Sub3). To solve problem (4), the 

subproblems were alternated eight times and the solution of problem (3) was referred to as 

Γfinal
m . 
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Simulation experiments  

Simulated data was generated using the XCAT phantom42. A dataset Xorig with the voxel size 

1.3x1.3x0.5 mm was generated. From this, eight stacks of LR dynamics were simulated with 

the same parameters used for the phantom and the in vivo experiments (slice thickness of 6 

mm, a gap between the LR slices of 6 mm and an offset between the stacks of 1.5 mm). As 

reference Xref, a dataset with a slice thickness of 1.5 mm was generated from Xorig. In Xorig, 

two cubical fibrotic structures were simulated in the septum with a width of 6 mm each along 

the slice encoding direction. They were separated by a 6 mm gap of healthy myocardium. 

Cardiac motion was simulated using the default settings of the XCAT phantom. Data 

acquisition was simulated with multiple receiver coils using the same acquisition parameters 

as for the phantom and the in vivo experiments. Zero-mean noise was added. This allowed 

the application of the entire pipeline including model-based T1 reconstruction and cardiac 

moco on the simulated data.  

In the simulations, a T1 time of 1300 ms was assigned to the myocardium, 400 ms to fat, 800 

ms to the liver, 900 ms to muscle and 1800 ms to the simulated fibrosis. Blood was simulated 

with an apparent T1 time of 350 ms, as it could not be estimated due to the in-flow effect 

caused by the slice-selective inversion pulse43. 

Two different types of simulations were carried out. First, a simulation assuming perfect BH 

(i.e. no misalignment between different BH) was performed to evaluate the possible 

improvement that could be achieved with SRR. In a second step, misalignment between the 

BH was included into the simulation. Different BH positions were simulated by applying 

translation shifts. 20 configurations with different breath-hold positions of the stacks were 

simulated. The simulated motion was in the range of (3.5, 1.9, 8.2) mm in the (anterior-

posterior, right-left, food-head) direction, based on half of the motion range between end 

expiration and end inspiration measured in 44. For reasons of computational time, no heart 

motion was included in this simulation. 

To assess the outcome of the SRR applied on simulated data, the detectability d between the 

simulated fibrosis and surrounding healthy myocardium was measured, using the following 

formula:  

d  = (μstructure − μnextStructure) / σbackground 

(5) 

Where the mean T1 value μstructure was measured in a region-of-interest (ROI) within the 

fibrosis, the mean T1 value μnextStructure was calculated in a ROI next to the fibrosis and the 

standard deviation (SD) σbackground was calculated from a ROI in the surrounding healthy 

myocardium. The ROI was calculated from the position of the simulated fibrotic structures in 

Xorig. 
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To evaluate the breathing moco, the RMS error ϵ between the originally simulated motion and 

the estimated motion was calculated in mm.  

The LR data in the proposed approach was always acquired in the same orientation according 

to the short-axis-view of the heart. To assess through-plane resolution, images in this 

publication are often presented orthogonally from the side, resulting in a four-chamber view. 

 

Phantom experiments  

To evaluate the proposed approach in phantom measurements, imaging was performed with 

the above‐described scan parameter in a “T1MES-phantom” with nine tubes with different T1 

times developed for cardiac imaging45. In order to cover the whole phantom with every stack, 

12 slices per stack were acquired. Furthermore, a scan γorth
m  orthogonal to the LR data was 

acquired, where the slice encoding direction of γm became an in-plane direction of γorth
m . As a 

reference, an inversion recovery spin-echo refSE was acquired, also in orthogonal direction to 

the LR data with 7 TIs between 25 and 4800 ms (TE/TR: 12/8000 ms, FOV: 143 × 160 mm2, 

spatial resolution: 0.8 × 0.8 × 5 mm3).  

To assess the outcome of the SRR applied on the T1MES phantom, a ROI was drawn in every 

tube in γm, Γ0
m, Γfinal

m  and refSE. The mean and SD of the T1 values were compared to assess 

T1 accuracy and precision, respectively. The Pearson’s correlation coefficient and the two-

tailed P-value between γm, Γ0
m, Γfinal

m  and refSE were calculated. 

To evaluate the outcome of the BH moco, another dataset was acquired with phantom data at 

different, well-defined positions simulating different BH positions. The different positions were 

in the range (5.0, 2.4, 5.0) mm compared to the reference position. The reference motion was 

known for this acquisition and the Root-Mean-Squared Error (RMSE) to the estimated motion 

was calculated.  

 

In vivo experiments 

To evaluate the proposed approach in in vivo measurements, data was obtained from four 

healthy subjects (4 males, aged 34.0 ± 11.7 y). All subjects gave written informed consent 

before participation, in accordance with the institution’s ethical committee. For the in vivo data, 

an orthogonal scan γorth
m  was acquired.  

For reference, a 3(3)3(3)5 modified Look-Locker inversion recovery (MOLLI) scan ΓMOLLI  was 

acquired with the following scan parameter: FOV: 360 × 306 mm2, TE/TR: 1.12/2.7 ms, flip 

angle: 35°, and spatial resolution: 2.1 × 1.4 × 6 mm3 once in four chamber (4CH) and once in 

two chamber (2CH) orientation. The T1 values of the SRR result and MOLLI reference were 

compared using a ROI placed in the septum.    
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To assess the outcome of the SRR applied on in vivo data, γorth
m  was qualitatively compared 

to Γfinal
m . The precision of the T1 values was evaluated quantitatively by comparing the bull’s 

eye plots46 before and after the SRR, using four selected slices (apex, apical, mid-cavity and 

basal) and calculating the SD over four healthy volunteers. No fibrotic tissue was present in 

the healthy volunteers and therefore the detectability of the right ventricle was calculated to 

assess the effect of SRR on small structures.  

The edge sharpness of the left ventricle in the anterior apical segment of the ventricle was 

calculated for γm, Γ0
m and Γfinal

m . Edge sharpness was calculated by manually drawing a line 

along the edge of interest, gathering the intensities perpendicular to the line, and generating 

an average edge profile. The first-order derivative of the edge profile was calculated and edge 

sharpness of 100% referred to the case when the maximum derivative of the average edge 

profile was equal to the maximum intensity difference in the average edge profile, similar to 47. 
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Results 

Simulation experiments 

 

Figure 3: Results of the numerical simulation. The combination of the LR stacks 𝛾0
𝑇1 and 𝛾3

𝑇1, 

the SRR initialization 𝛤0
𝑇1 and the SRR output 𝛤𝑓𝑖𝑛𝑎𝑙

𝑇1  are shown and compared to the 

reference 𝑋𝑟𝑒𝑓.Cardiac motion was simulated and corrected. No different breath hold states 

were simulated. The line plot shows the T1 values in the septum in slice encoding direction 

(SE) in brown along the line (white arrow) shown in 𝑋𝑟𝑒𝑓, compared to the reference values 

in green. The distinction between pathological and healthy tissue was improved by SRR. 

The SRR improved the visualization of the apex compared to 𝛤0
𝑇1. 

 

Figure 3 shows the results of the numerical simulations assuming perfect BH positions. In the 

LR stacks the two different fibrotic structures could not be distinguished along the slice 

encoding direction. The apex was inaccurately depicted in Γ0
T1. Its visualization improved after 

SRR. d of the fibrosis increased from 0.03 in Γ0
T1 to 4.38 in Γfinal

T1 . 
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Figure 4: SRR applied to simulated data with stack specific breath hold states. The best and 

worst result of the motion correction (moco) out of 20 simulations is shown, measured by the 

moco error in mm (ε). In the middle column, the simulation with the detectability 𝑑 closest to 

the mean 𝑑 is shown. The result of SRR without moco (𝛤𝑓𝑖𝑛𝑎𝑙,𝑛𝑜𝑀𝑜𝑐𝑜
𝑇1 ) is compared to the 

result including moco (𝛤𝑓𝑖𝑛𝑎𝑙,𝑀𝑜𝑐𝑜
𝑇1 ). SE indicates slice encoding direction. 

 

Figure 4 shows the SRR applied on simulated data, simulated with different BH positions for 

every stack. Γfinal
T1  is shown without moco (Γfinal,noMoco

T1 ) and with applying the calculated motion 

(Γfinal,Moco
T1 ), once from the simulation with ϵ = 0 (best case),with the largest ϵ (worst case) and 

once for the simulation with a d closest to the mean d of all simulationsMoco improved the 

outcome of the SRR. In the best moco case, the differentiation of healthy and pathological 

tissue was more clear compared to the worst moco case. d of the simulated fibrosis over all 

20 simulations after applying the calculated motion was 3.55 ± 0.54 in Γfinal,Moco
T1 . d after 

applying the correct motion was 3.62 ± 0.5. d in Γfinal,noMoco
T1  was not calculated, because the 

fibrosis could not be detected for these T1 maps, as Figure 4 shows. The error ϵ over all 

simulations was (0.0, 0.0, 0.18) ± (0.0, 0.0, 0.28) mm. 
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Phantom experiments  

 

Figure 5: SRR applied on phantom data. The in-plane view and the orthogonal reformation 

of the combination of the LR stacks 𝛾0
𝑇1 and 𝛾3

𝑇1, the SRR initialization 𝛤0
𝑇1 and its output 

𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1   is compared with an orthogonal acquisition 𝛾𝑜𝑟𝑡ℎ

𝑇1 . A line plot through three tubes 

(brown line) along the slice encoding direction (SE) shows an improved differentiation (pink 

arrows) between tubes and background after SRR as shown by the reference in green. 

 

Figure 5 shows the in-plane view and the orthogonal reformation of γT1, Γ0
T1 and Γfinal

T1  and 

compares it to an orthogonal acquisition γorth
T1 . A line plot through three tubes along the slice 

encoding direction shows an improved differentiation between tubes and background after 

SRR. 
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Figure 6: T1 values obtained with an inversion 

recovery spin-echo reference 𝑟𝑒𝑓𝑆𝐸 scan are 

compared to the combination of LR stacks 𝛾𝑇1, 

the initialization of SRR 𝛤0
𝑇1 and the final SRR 

result 𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1 . 

 

Figure 6 assesses the accuracy of SRR: γT1, Γ0
T1 

and Γfinal
T1  showed high correlation with the 

reference scan (P<0.001, R2>0.999). The mean 

difference between the T1 values of refSE and 

Γfinal
T1  was 7.65 ± 9.24 ms. The difference of γT1 

and Γ0
T1 to refSE was 7.74 ± 7.09 ms and 5.41 ± 

3.7 ms, respectively, indicating high accuracy of 

the SRR. 
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Figure 7: Simulated motion in the phantom experiment. The orthogonal view of the SRR 

initialization 𝛤0
𝑇1, the final SRR output 𝛤𝑓𝑖𝑛𝑎𝑙

𝑇1  as well as the in-plane view of 𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1  are shown 

when no motion correction (moco) was performed, when the estimated (est.) motion was 

applied and when the reference (ref.) motion was used during moco. SE indicates the slice 

encoding direction. 

 

Figure 7 shows the application of SRR on phantom data acquired at different positions 

simulating different BH positions. The orthogonal view of Γ0
T1 and  Γfinal

T1  and the in-plane view 

of Γfinal
T1  are shown without moco, when the estimated motion was applied and when the 

reference motion was applied during moco. SRR without moco shows motion artefacts, which 

could be removed after applying the calculated moco. The visual result after applying the 

estimated motion shifts is similar to applying the reference motion shifts during moco. The 

RMSE between estimated and reference motion was  (0.03, 0.04, 0.61) mm.  
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In vivo experiments 

 

Figure 8: Impact of respiratory motion correction (moco) on in-vivo data. The orthogonal view 

of the SRR initialization 𝛤0
𝑇1, the final SRR output 𝛤𝑓𝑖𝑛𝑎𝑙

𝑇1  as well as the in-plane view of 𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1  

are shown without and with moco.  

 

Figure 8 compares the orthogonal view of Γ0
T1 and  Γfinal

T1  and the in-plane view of Γfinal
T1  with 

and without moco. Without BH alignment, motion artefacts could be seen in the form of a 

discontinuous septum in the orthogonal view and an ambiguous delineation of the myocardium 

in the in-plane view, which is highlighted by the pink arrows in the figure. The motion artefacts 

were less visible in the initialization of the SRR compared to its output. Using the proposed 

BH registration and subsequent correction, the motion artefacts after SRR could be reduced.  
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Figure 9: SRR applied on in vivo data. 

The combination of the LR stacks 𝛾0
𝑇1 

and 𝛾3
𝑇1, the SRR initialization 𝛤0

𝑇1 and 

the SRR output 𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1  are reformatted 

orthogonally and compared to a direct 

orthogonal acquisition 𝛾𝑜𝑟𝑡ℎ
𝑇1  and to a 

MOLLI reference scan ΓMOLLI. All the 

results shown were obtained with the 

proposed moco approach. The 

visualization of the apex and the right 

ventricle improved after SRR (pink 

arrows). Due to the slice-selective 

inversion pulse, blood appeared with a 

low T1 value. SE indicates slice 

encoding direction. 

 

 

 

 

 

Figure 9 shows the in-plane view and the orthogonal reformation of γT1, Γ0
T1, Γfinal

T1  and 

compares it to an orthogonal acquisition γorth
T1  and ΓMOLLI. Due to the slice-selective inversion 

pulse, blood appeared with a low T1 value. The visualization of the apex as well as the 

differentiation between the right ventricle and blood improved after SRR. Due to scan time 

limitations, γorth
T1  could not be acquired for one volunteer. The mean T1 value across all 

volunteers in a ROI in the septum in Γfinal
T1  was 1.21 ± 0.08 and in ΓMOLLI 1.28 ± 0.04. One 

volunteer had to be excluded from the calculation because no MOLLI scan was available.  
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Figure 10: Four selected slices (apex, apical, mid-cavity and basal) before and after SRR. 

The visualization of the apex and the right ventricle improved in the SRR result Γfinal
T1  

compared to its initialization Γ0
T1 and a single LR stack γT1 (pink arrow in apex and mid-

cavity slice). SRR reduced artefacts (black arrow in basal slice). All the results shown were 

obtained with the proposed moco approach. 

 

In Figure 10, four selected slices (apex, apical, mid-cavity and basal) of γT1, Γ0
T1, Γfinal

T1  are 

compared in-plane. The apex was more clearly visible in the apex slice after SRR. The 

visualization of the right ventricle also improved after SRR. In addition, the combination of 

multiple LR slices in the SRR also reduced artefacts (black arrow in Figure 10) and improved 

e.g. the quantification of the inferolateral segment of the basal slice. d in the right ventricle 

increased from 2.4 ± 1.35 in γm, to 3.2 ± 1.63 in Γ0
m and 3.35 ±1.39 in Γfinal

T1 , thus an 

increasement of d by 40% from γm to Γfinal
T1 . The edge sharpness in the anterior apical segment 

was 0.26 ± 0.04 in γm, 0.21 ± 0.02 in Γ0
m and 0.26 ± 0.04 in Γfinal

T1 . The sharpness of the ventricle 

was lower in the SRR initialization than in the LR images, which could be attributed to the 

mixing of the partial volume effects in the individual LR images when combining them for the 

initialization. SRR was able to restore the original edge sharpness of the LR images. T1 maps 

of the three other volunteers can be seen in Supporting Information Figure S1.  
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Figure 11: Bull’s eye plots of the average T1 values in ms in standardized segments of the 

left ventricle and their standard deviation (SD). The SRR output 𝛤𝑓𝑖𝑛𝑎𝑙
𝑇1  is compared to a LR 

slice 𝛾𝑇1 and the SRR initialization 𝛤0
𝑇1. 
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Figure 11 shows the bulls-eye plots of γT1, Γ0
T1 and Γfinal

T1 , averaged over four healthy 

volunteers. The SD before and after the SRR remained comparable, indicating that SRR did 

not affect the precision of the T1 values. The T1 values in the segments varied in Γfinal
T1  by an 

average of 63.72 ms across the four healthy volunteers. The T1 intensities of the apex 

segment were underestimated before the SRR and showed a high SD. This was compensated 

by SRR.   

 

Discussion  

In this study, a novel motion-corrected model-based SRR approach was presented, providing 

3D HR T1 maps in six to ten 17-seconds BH. The proposed model-based SRR scheme 

improved the visibility of small structures while the accuracy and precision of the T1 values 

after SRR remained comparably high. An alignment of different BH states showed great 

improvement of the SRR result.  

Small structures, as e.g. the simulated fibrosis, the differentiation between phantom tubes and 

background or the right ventricle could be better visualized using SRR. Furthermore, anatomic 

information which was impaired in some LR stacks due to partial volume effects, as e.g. the 

apex, was successfully recovered by the proposed SRR approach.  

An improvement in the imaging of small features by SRR can be concluded from the improved 

visualization of small structures in all volunteers of the in vivo experiments, such as in the right 

ventricle. 

The accurate mapping of the right ventricular myocardium poses a great challenge due to its 

small thickness but would help to improve the diagnosis of e.g. right ventricular myocarditis or 

arrhythmogenic right ventricular cardiomyopathy. Its assessment could be improved by SRR, 

moving towards whole heart T1 mapping in the future.  

The results were compared to a clinical reference scan and the T1 values after SRR were in 

good agreement with both the reference values resulting from the modified Look-Locker 

inversion recovery reference scan and those presented in literature48. The small 

underestimation of the myocardial T1 values after the SRR compared to reference values was 

probably due to the use of a slice-selective inversion pulse. A similar underestimation of the 

T1 values was reported in 49, which was attributed to magnetization transfer effects. A direct 

comparison of the SRR results to an in vivo reference scan was however difficult since this 

was acquired in another BH, hence showing a different motion state. Thus, the accuracy of 

the T1 values could only be determined in phantom measurement but not in the volunteer 

scans.  

The proposed approach was not compared to previously published 3D T1 mapping 

frameworks as for example MR multitasking50 or MR fingerprinting51. Nonetheless, the 
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publications in this field have either not resulted in isotropic voxel sizes52–59 or a longer total 

scan time6,7,60 compared to the proposed approach. 

The precision of the T1 values was not calculated with a retest but as the SD over several 

healthy volunteers. It was assumed, that the T1 values of the myocardium were similar in all 

healthy volunteers.  

One limitation of this approach is that T1 values of voxels representing blood could not be 

estimated and appeared shortened, due to the in-flow effect caused by the slice-selective 

inversion pulse. The slice-selective inversion pulse only inverted the blood spins that were in 

the corresponding slice at the time of the inversion. In the course of the cardiac cycle, these 

were replaced by inflowing, non-inverted blood spins, which then lead to an apparent 

shortening of the T1 value of the blood43. To still be able to calculate the extracellular volume, 

a further fast acquisition of a single LR slice with a global inversion pulse would provide the 

necessary information about the blood pool T1 values.  

Every stack was acquired in a separate BH. Due to variations in BH, an alignment of different 

BH states was necessary before SRR. In agreement with 22, motion estimation was a key step 

in the SRR process and significantly affected the quality of the SRR result. Imperfectness in 

moco could lead to artefacts after SRR.  

In clinical practice, 17 seconds BH are sometimes not feasible. To adapt the BH duration, the 

acquisition time per stack would need to be reduced and compensated for by acquiring more 

stacks in total. Due to the higher number of stacks, the proposed moco approach would have 

an even greater influence on the SRR result.  

Compared to brain T1 mapping, cardiac imaging is restricted with respect to the number of LR 

slices per stack, due to limited BH time. To still cover a specific field-of-view in the slice 

encoding direction, gaps needed to be introduced between the LR slices. To compensate for 

these gaps, more stacks of LR slices needed to be acquired. According to 28, the more stacks 

used, the greater the degrading influence of inaccuracies in the motion registration on the 

SRR. 

The stacks were planned such that they overlapped with each other by 1.5-2 mm. As each 

stack was obtained in a different BH position, the original distribution of stacks was impaired, 

even if the respiratory motion was correctly detected and estimated. Overall, the detectability 

of the simulated fibrosis was high in most of the motion corrected SRR maps. Nevertheless, 

depending on the distribution of stacks relative to each other after moco, the depiction of the 

fibrosis could still be impaired. This effect could in future be reduced by orientating the LR 

stacks differently (e.g. rotated to each other) along the slice encoding direction, which has also 

previously shown to improve SRR reconstructions compared to shifting the LR stacks61.  

Page 23 of 31 AUTHOR SUBMITTED MANUSCRIPT - PMB-113811.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 
 

The results of the moco could be improved by its integration into the optimization scheme of 

the SRR, as described in 62. Furthermore, integrating rotation and deformation into the moco 

would probably further improve the alignment of BH states. Next to that, registering the slices 

within one stack separately to the HR volume would also account for inter stack motion due to 

poor breath holding. In addition, instead of retrospective BH correction, the position of the 

slices could be tracked prospectively and the acquisition adjusted accordingly, for example 

using the Pilot tone63. Next to that, SRR is not limited to T1 mapping, but could be extended 

to other quantitative parameters such as T264, for example using MR multitasking50 or MR 

fingerprinting51. To improve the overall result of the SRR in future approaches, the SRR 

optimization scheme could be integrated in a model-based reconstruction framework as 

performed in 21. By that, the SRR would incorporate the acquired raw data in the entire 

reconstruction optimization scheme instead of using it only in the model-based T1 

reconstruction as in the presented approach.  

This work was only evaluated in healthy volunteers, nevertheless, from the improved 

visualization of pathologies in the simulated data, it can be concluded that SRR might lead to 

an improved image quality in patients as well. 

 

Conclusion 

In this study, a novel motion-corrected cardiac model-based SRR approach was presented, 

providing 3D HR T1 maps in six to ten 17 seconds BH. The proposed approach was 

successfully applied in four healthy volunteers leading to improved visualization of small 

structures and precise T1 values. In future studies, an integration of the BH alignment and the 

T1 reconstruction into the optimization scheme could further improve the results.   
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